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GLOBALLY HYPERBOLIC REGULARIZATION OF GRAD’S

MOMENT SYSTEM IN ONE DIMENSIONAL SPACE∗

ZHENNING CAI† , YUWEI FAN‡ , AND RUO LI§

Abstract. In this paper, we present a regularization to the 1D Grad’s moment system to
achieve global hyperbolicity. The regularization is based on the observation that the characteristic
polynomial of the Jacobian of the flux in Grad’s moment system is independent of the intermediate
coefficients in the Hermite expansion. The method does not rely on the form of the collision at all,
thus this regularization is applicable to the system without collision terms. Moreover, the proposed
approach is proved to be the unique one if only the last moment equation is allowed to be altered
to match the condition that the characteristic speeds coincide with the Gauss-Hermite interpolation
points. The hyperbolic structure of the regularized system, including the signal speeds, Riemann
invariants, and the properties of the characteristic waves including the rarefaction wave, contact
discontinuity, and shock are provided in the perfect formations.
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1. Introduction

Nowadays, the kinetic gas theory is drawing increased attention in the high-tech
fields. The kinetic theory is considered a mesoscopic description of fluids, which
is based on the classical Boltzmann equation from statistical physics. However, a
full accurate mesoscopic model is still too complex for many problems. People have
been looking for a median model between the classical macroscopic equations and
the Boltzmann equation for a long time. This can be tracked back to the work of
Burnett [5]. As is well known, the Burnett equations were proved to be linearly
unstable by Bobylev [3]. Another way leading to linearly stable intermediate models
is the moment method proposed by Grad [9]. Since this method was discarded by
Grad himself, very few works contributed to this area in the last century. However,
this field has becoming active in recent years, since people find that some traditional
difficulties in the moment equations can be ignored by some regularizations to these
models; see e.g. [12, 10, 19, 23].

This paper focuses on a major critique of the moment method — the lack of global
hyperbolicity for Grad’s moment system. This deficiency directly causes blow-ups
when the distribution is far away from the equilibrium state. It has been reported that
increasing the number of moments shows no improvements in numerical experiments
[8]. Levermore’s work [12] gave a theoretical way to approach the general globally
hyperbolic moment equations, although it is still far from practical use due to the lack
of an analytical form of his model. Later, using the Pearson-Type-IV distribution,
Torrilhon [23] also proposed a 13-moment system, which is globally hyperbolic when
reduced to the one-dimensional case, but its generalization to large number moment
systems seems to be difficult. In this work, we concentrate on the simple 1D case and
achieve a globally hyperbolic regularization to Grad’s moment system.
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The first essential observation is that the characteristic polynomial of the Jaco-
bian of the flux of a general Grad’s moment system has a simple expression, which
only depends on the macroscopic velocity, temperature, and two other coefficients in
the Hermite expansion of highest orders. This amazing result directly leads to the
possibility of a globally hyperbolic regularization. It is found that these two coeffi-
cients take the eigenvalues away from the real axis, resulting in the non-hyperbolicity.
We discover an elegant modification of the last equation of the moment system to
eliminate the terms involving these two terms in the characteristic polynomial and
obtain a globally hyperbolic system. This new hyperbolic system has many fasci-
nating properties. All characteristic fields are either genuinely nonlinear or linearly
degenerate. The investigation into the three kinds of elementary characteristic waves
(rarefaction waves, contact discontinuities, and shock waves) illustrates substantial
similarities with Euler equations. The regularization proposed is very different from
the classical way, which tries to give a reasonable recovery of the truncated moments,
which is justified in the view of characteristic speeds and order of accuracy. The
convergence in the number of moments is illustrated through the numerical study of
a shock tube problem.

The rest of this paper is arranged as follows: in Section 2, the Boltzmann equation
and the moment method are revised. In Section 3, a detailed investigation on the
hyperbolicity of the 1D Grad’s moment system is carried out. The regularization of
the 1D Grad’s moment system to achieve global hyperbolicity is derived in Section 4,
with detailed discussion on its properties. A short discussion on the moment equations
with collision terms is put forward in Section 5. Section 6 is devoted to the numerical
study of a shock tube problem. Finally, some concluding remarks are given in Section
7.

2. The moment method in kinetic theory

In the kinetic gas theory, the state of a gas on the microscopic level is described
by the velocity distribution function on each spatial point x∈Ω⊂R

D. For a time-
evolving problem, the distribution function can be described as

F :R+×Ω×R
D→R

+∪{0}, (t,x,ξ) 7→F (t,x,ξ), (2.1)

where t is the time and ξ denotes the velocity of microscopic gas particles. As in [9],
we introduce the mass density

f(t,x,ξ)=mF (t,x,ξ), (2.2)

where m is the mass of the molecule. The physical case is D=3, while in this paper
we only consider a 1D model problem. Thus, x and ξ will be written in plain font as
x and ξ for the rest of the paper.

2.1. The Boltzmann equation and conservation laws. The mass density
f satisfies the Boltzmann equation, which reads

∂f

∂t
+ξ

∂f

∂x
=Q(f,f), (2.3)

where Q(f,f) is the collision term with a complex expression, which models the
interaction between particles. In most of this paper, we only consider the collisionless
case, thus Q(f,f)=0 will be assumed if not specified. However, the readers may keep
in mind that our final aim is to provide an improved description of the Boltzmann
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equation with collision term using the moment method, and we will return to this
topic in Section 5.

The basic variables, including the density, the momentum density, and total en-
ergy density, are defined as

ρ(t,x)=

∫

R

f(t,x,ξ)dξ,

ρ(t,x)u(t,x)=

∫

R

ξf(t,x,ξ)dξ,

1

2
ρ(t,x)|u(t,x)|2+ 1

2
ρ(t,x)θ(t,x)=

∫

R

1

2
|ξ|2f(t,x,ξ)dξ.

(2.4)

Here u is the macroscopic velocity, and θ is the multiplication of gas constant and
temperature. Multiplying the Boltzmann equation (2.3) by (1,ξ,ξ2/2)T , integrating
both sides over R with respect to ξ, and then making some simplifications, we get the
non-conservative form of the conservation laws as

∂ρ

∂t
+u

∂ρ

∂x
+ρ

∂u

∂x
=0, (2.5a)

ρ
∂u

∂t
+

∂p

∂x
+ρu

∂u

∂x
=0, (2.5b)

1

2
ρ
∂θ

∂t
+

1

2
ρu

∂θ

∂x
+

∂q

∂x
+p

∂u

∂x
=0, (2.5c)

where p is the pressure and q is the heat flux. They are defined as

p=ρθ, q=
1

2

∫

R

(ξ−u)3f dξ. (2.6)

2.2. The moment method. The moment method was raised by Grad in
[9], where a thirteen moment system was introduced. However, systems with large
moment numbers were not investigated until recently (e.g. [24, 1, 6, 8]). Here we use
the notations in [6, 8], and expand f(t,x,ξ) as

f(t,x,ξ)=
∑

k∈N

fk(t,x)Hθ(t,x),k

(

ξ−u(t,x)
√

θ(t,x)

)

, (2.7)

where

Hθ,k(v)=
1√
2π

θ−
k+1
2 Hek(v)exp

(

−v2

2

)

, (2.8)

where Hek is the k-th Hermite polynomial, defined by

Hek(x)=(−1)k exp

(

x2

2

)

dk

dxk
exp

(

−x2

2

)

. (2.9)

Based on this expansion, some simple properties can be deduced:

f0=ρ, f1=f2=0, q=3f3. (2.10)
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If we put (2.7) into the Boltzmann equation (2.3), the equation for each coefficient
can be deduced as

∂fk
∂t

−fk−1
θ

ρ

∂ρ

∂x
+(k+1)fk

∂u

∂x
+

(

1

2
θfk−3+

k−1

2
fk−1

)

∂θ

∂x

−3

ρ
fk−2

∂f3
∂x

+θ
∂fk−1

∂x
+u

∂fk
∂x

+(k+1)
∂fk+1

∂x
=0, for k>3.

(2.11)

For details, we refer the reader to [8]. The conservation laws (2.5) together with
(2.11) form a moment system with an infinite number of equations. In order to get
a closed system with a finite number of equations, one can follow Grad’s idea [9] and
let fM+1=0 for some M >3. Thus a closed system with M+1 moments is obtained.

3. Hyperbolicity of Grad’s moment systems

A 1D quasilinear system

∂q

∂t
+A(q)

∂q

∂x
=0 (3.1)

is called hyperbolic for a particular q0 if the matrix A(q0) is diagonalizable with
real eigenvalues. For Grad’s systems, the hyperbolicity can only be obtained where
the distribution function is near Maxwellian [15, 4, 23]. The loss of hyperbolicity
makes Grad’s systems overdetermined for strongly non-equilibrium gases, and severely
restricts the application of moment methods. In this section, we are going to study
the 1D model problem and find the way in which high order moments affect the
hyperbolicity of the moment system.

Let wM =(ρ,u,θ,f3, · · · ,fM )T ∈R
M+1, M ∈N, and M >2. The Grad’s moment

system (2.5) and (2.11) with fM+1=0 is then written as

∂wM

∂t
+AM

∂wM

∂x
=0, (3.2)

where AM is a lower Hessenberg matrix defined as

AM =

























u ρ 0 . . . . . . . . . . . . . . . . . . . . . 0
θ/ρ u 1 0 . . . . . . . . . . 0
0 2θ u 6/ρ 0 . . . . . . . . 0
0 4f3 ρθ/2 u 4 0 . . . . . 0

−θf3/ρ 5f4 3f3/2 θ u 5 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−θfM−2/ρ MfM−1

1
2 [(M−2)fM−2+θfM−4] −3fM−3/ρ 0 · · · 0 θ u M

−θfM−1/ρ (M+1)fM
1
2 [(M−1)fM−1+θfM−3] −3fM−2/ρ 0 . . . . 0 θ u

























.

(3.3)
We write the matrix in a simplified formation with a translation and similarity trans-
formation. Let us define

Λ=diag

{

1,ρθ−1/2,
1

2
ρθ−1,θ−3/2, · · · ,θ−M/2

}

, gj =
fj

ρθj/2
, j=3, · · · ,M. (3.4)

Then

AM =uI+
√
θΛ−1ÃMΛ, (3.5)
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where ÃM is defined as

ÃM =

























0 1 0 . . . . . . . . . . . . . . . . . . 0
1 0 2 0 . . . . . . . . . . 0
0 1 0 3 0 . . . . . . . . 0
0 4g3 1 0 4 0 . . . . . 0

−g3 5g4 3g3 1 0 5 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
−gM−2 MgM−1 (M−2)gM−2+gM−4 −3gM−3 0 · · · 0 1 0 M
−gM−1 (M+1)gM (M−1)gM−1+gM−3 −3gM−2 0 . . . . 0 1 0

























. (3.6)

Thus, if

λ̃j , j=1, · · · ,M+1

are all the eigenvalues of ÃM , then

u+ λ̃j

√
θ, j=1, · · · ,M+1

are all the eigenvalues of AM .
The matrix ÃM can be considered as “simple” in a sense. It contains only dimen-

sionless variables g3, · · · ,gM with linear dependence. The diagonal elements of ÃM

are all vanished, and the subdiagonal entries are all 1. The superdiagonal elements
are equal to their row numbers. Meanwhile, apart from the tridiagonal part, only
the first four columns are nonzero. This formation gives us possibility to study its
eigenvalues.

We first present the main result of this section in Theorem 3.1. In this paper, | · |
is used to denote the determinant of a matrix.

Theorem 3.1. The characteristic polynomial of ÃM is
∣

∣

∣
λI−ÃM

∣

∣

∣
=HeM+1(λ)−

1

2
(M+1)! · [(λ2−1)gM−1+2λgM ]. (3.7)

The result is incredibly simple, and therefore gives us a realistic possibility to make
some kind of regularization to gain global hyperbolicity, which will be discussed in
the next section. To proof this theorem, we need the following two lemmas.

Lemma 3.2. Suppose that a square matrix A=(aij) depends on N variables

x1, · · · ,xN . Then the partial derivatives of |A| can be calculated as

∂|A|
∂xk

=
∑

i,j

(−1)i+j ∂aij
∂xk

Aij , k=1, · · · ,N. (3.8)

where Aij is the (i,j)-th minor of A, which is defined to be the determinant of the

submatrix obtained by removing from A its i-th row and j-th column.

This is a familiar result in linear algebra, and will not be proved here.

Lemma 3.3. Define tridiagonal matrices

Dj =





















λ −(j+1) 0 . . . . . . . . . . . . . . . 0

−1 λ −(j+2) 0 . . . . . . 0

0 −1 λ −(j+3) 0 · · · 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0 . . . . . . . . . . . . . . . . 0 −1 λ −M

0 . . . . . . . . . . . . . . . . . . . . . . . . . 0 −1 λ





















, 06 j6M. (3.9)
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The following relations for the determinants of Dj hold:

|Dj |=λ|Dj+1|−(j+1)|Dj+2|, 06 j6M−2. (3.10)

Proof. For 06 j6M−1, Dj can be written as

Dj =

(

λ −(j+1)eT1
−e1 Dj+1

)

, (3.11)

where e1 is the unit vector (1,0, · · · ,0)T . When λ 6=0, since

(

I 0

λ−1e1 I

)(

λ −(j+1)eT1
−e1 Dj+1

)

=

(

λ −(j+1)eT1
0 Dj+1−(j+1)λ−1e1e

T
1

)

, (3.12)

the equality

|Dj |=λ
∣

∣Dj+1−(j+1)λ−1e1e
T
1

∣

∣ (3.13)

is obtained by taking determinants on both sides of (3.12). When 06 j6M−2, we
use (3.11) again and get

|Dj |=λ
∣

∣Dj+1−(j+1)λ−1e1e
T
1

∣

∣=λ

∣

∣

∣

∣

λ−(j+1)λ−1 −(j+2)eT1
−e1 Dj+2

∣

∣

∣

∣

=λ

(∣

∣

∣

∣

λ −(j+2)eT1
−e1 Dj+2

∣

∣

∣

∣

+

∣

∣

∣

∣

−(j+1)λ−1 0

−e1 Dj+2

∣

∣

∣

∣

)

=λ|Dj+1|−(j+1)|Dj+2|.
(3.14)

If λ=0, the continuity of |Dj | with respect to λ gives the same result.

Now we prove Theorem 3.1.

Proof of Theorem 3.1. We start the proof by calculating ∂|λI−ÃM |/∂gj for
36 j6M−3. From (3.6), one may find that gj only appears in five entries of the
matrix. Their positions are

(j+2,1), (j+1,2), (j+2,3), (j+4,3), (j+3,4),

which are illustrated in figure 3.1(a). Thus, according to Lemma 3.2, only five terms
appear in the right hand side of (3.8). Now we will consider them one by one. Below
we denote λI−ÃM =(cij), and use Ci,j to denote the (i,j)-th minor of λI−ÃM .

1. As in figure 3.1(b), Cj+2,1 is presented as the product of the determinants
of two matrices. One is a lower triangular matrix whose diagonal elements
are −1, · · · ,−(j+1), and the other is a lower right block of λI−ÃM , which is
actually Dj+2 defined in (3.9). Therefore, we obtain

Cj+2,1=(−1)j+1(j+1)! · |Dj+2|. (3.15)

Since cj+2,1=gj , one has

(−1)j+2+1 ∂cj+2,1

∂gj
Cj+2,1=(−1)j+1 ·1 ·(−1)j+1(j+1)! · |Dj+2|

=(j+1)! · |Dj+2|.
(3.16)
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2. Figure 3.1(c) shows that Cj+1,2 is factored into three parts: the first part is
λ, the second is a lower triangular matrix with diagonal elements −2, · · · ,−j,
and the third one is Dj+1. Since cj+1,2=−(j+1)gj , we get

(−1)j+1+2 ∂cj+1,2

∂gj
Cj+1,2=(−1)j+1 · [−(j+1)] ·(−1)j−1j!λ · |Dj+1|

=−(j+1)! ·λ|Dj+1|.
(3.17)

3. Cj+2,3 is illustrated in figure 3.1(d), from which one finds that Cj+2,3 is the
product of the determinants of three matrices. The first matrix is a 2×2
upper left block of λI−ÃM , for which we have

∣

∣

∣

∣

λ −1
−1 λ

∣

∣

∣

∣

=λ2−1. (3.18)

And the other two blocks are similar to the last case. Using cj+2,3=−jgj ,
we have

(−1)j+2+3 ∂cj+2,3

∂gj
Cj+2,3=(−1)j+1 ·(−j) ·(−1)j−1 1

2
(j+1)!(λ2−1) · |Dj+2|

=− j

2
(j+1)! ·(λ2−1)|Dj+2|. (3.19)

4. The structure of Cj+4,3 is plotted in figure 3.1(e), which is very similar as
Cj+2,3. Therefore we directly write the result,

(−1)j+4+3 ∂cj+4,3

∂gj
Cj+4,3=(−1)j+1 ·(−1) ·(−1)j+1 1

2
(j+3)!(λ2−1) · |Dj+4|

=−1

2
(j+3)! ·(λ2−1)|Dj+4|, (3.20)

where we have used cj+4,3=−(j+2)gj+2−gj . Note that we define |DM+1|=
1 so that (3.20) is correct for j=M−3.

5. Similar to Cj+2,3 and Cj+4,3, the minor Cj+3,4 is also factored into the de-
terminants of three matrices as in figure 3.1(f), while the first matrix is the
3×3 upper left block of λI−ÃM , whose determinant is

∣

∣

∣

∣

∣

∣

λ −1 0
−1 λ −2
0 −1 λ

∣

∣

∣

∣

∣

∣

=λ3−3λ. (3.21)

Thus the last term becomes

(−1)j+3+4 ∂cj+3,4

∂gj
Cj+3,4=(−1)j+1 ·3 ·(−1)j−1 1

6
(j+2)!(λ3−3λ) · |Dj+3|

=
1

2
(j+2)! ·(λ3−3λ)|Dj+3|. (3.22)

Collecting (3.16), (3.17), (3.19), (3.20), and (3.22), we finally get

∂|λI−ÃM |
∂gj

=(j+1)! ·
[

|Dj+2|−λ|Dj+1|−
j

2
(λ2−1)|Dj+2|

− (j+3)(j+2)

2
(λ2−1)|Dj+4|+

j+2

2
(λ3−3λ)|Dj+3|

]

.

(3.23)
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This expression will be further simplified using Lemma 3.3. Since (3.11) also holds
for j=M−1, if we define |DM+1|=1 the following relation is deduced:

|Dj+2|−λ|Dj+1|−
j

2
(λ2−1)|Dj+2|

= |Dj+2|−λ(λ|Dj+2|−(j+2)|Dj+3|)−
j

2
(λ2−1)|Dj+2|

= − j+2

2
(λ2−1)|Dj+2|+(j+2)λ|Dj+3|

= − j+2

2
(λ2−1)[λ|Dj+3|−(j+3)|Dj+4|]+(j+2)λ|Dj+3|

= − j+2

2
(λ3−3λ)|Dj+3|+

(j+2)(j+3)

2
(λ2−1)|Dj+4|.

(3.24)

Substituting this equation into (3.23), we conclude

∂|λI−ÃM |
∂gj

=0, 36 j6M−3. (3.25)

It is clear that g3, · · · ,gM−3 do not appear in the characteristic polynomial of ÃM .
For j=M−2,M−1,M , the entries containing gj still appear in the matrix as in

figure 3.1(a), while some items are missing due to the cut-off. Therefore, if we define
|Dj |=0 for j >M+1, then (3.23) still applies for j=M−2,M−1,M . Note that this
definition leads to

|DM |=λ|DM+1|−(M+1)|DM+2|, (3.26)

and therefore gM−2 does not appear in |λI−ÃM | either. Moreover, we have

∂|λI−ÃM |
∂gM−1

=M ! ·
[

|DM+1|−λ|DM |−M−1

2
(λ2−1)|Dj+2|

]

=− (M+1)!

2
(λ2−1),

(3.27)

∂|λI−ÃM |
∂gM

=(M+1)! ·(−λ|DM+1|)=−(M+1)! ·λ. (3.28)

Since (3.27) and (3.28) hold for any gj , 3≤ j≤M , we write the characteristic polyno-

mial of ÃM as

|λI−ÃM |=C(λ)− (M+1)!

2
[(λ2−1)gM−1+2λgM ], (3.29)

where C(λ) is a function of λ.
Now it only remains to determine C(λ), which is done by assigning g3, · · · ,gM to

be zero, and then calculating the characteristic polynomial of ÃM . In this case, it is
easy to find

|λI−ÃM |=C(λ)= |D0|, if g3= · · ·=gM =0. (3.30)

Meanwhile, the following relation between |Dj | and Hermite polynomials is discovered:

|DM+1|=He0(λ)=1, |DM |=He1(λ)=λ,

|Dj |=λ|Dj+1|−(j+1)|Dj+2|,
Hej(λ)=λHej−1(λ)−(j−1)Hej−2(λ).

(3.31)
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This reveals that

|Dj |=HeM+1−j(λ), 06 j6M+1. (3.32)

Hence C(λ)= |D0|=HeM+1(λ). This completes the proof of Theorem 3.1.

row j+1

(a) Entries containing gj

row j+1

(b) The (j+2,1)-th minor of λI−ÃM

row j+1

(c) The (j+1,2)-th minor of λI−ÃM

row j+1

(d) The (j+2,3)-th minor of λI−ÃM

row j+1

(e) The (j+4,3)-th minor of λI−ÃM

row j+1

(f) The (j+3,4)-th minor of λI−ÃM

Fig. 3.1. The Hessenberg matrix ÃM and its minors of the elements containing gj .

Theorem 3.1 reveals that hyperbolicity can only be obtained in a particular re-
gion (gM−1,gM )∈ΩM for the (M+1)-moment system. Since the roots of Hermite



556 GLOBALLY HYPERBOLIC MOMENT SYSTEM

polynomials are all real, the origin must lie in ΩM . The region ΩM for M =4 to 9
are plotted in figure 3.2, among which the result for M =4 has been obtained in [23],
agreeing with ours with proper scaling and translation.

(a) M =4 (b) M =5

(c) M =6 (d) M =7

(e) M =8 (f) M =9

Fig. 3.2. Hyperbolicity region of Grad’s (M+1)-moment system. The x-axis is gM−1 and the

y-axis is gM .

As a reference, the following corollary gives the characteristic polynomial of the
original matrix AM .
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Corollary 3.1. The characteristic polynomial of AM is

θ
M+1

2 HeM+1

(

λ−u√
θ

)

− (M+1)!

2ρ

[(

(λ−u)2−θ
)

fM−1+2(λ−u)fM
]

. (3.33)

Proof. This can be shown by direct calculation:

|λI−AM |=
∣

∣

∣λI−(uI+
√
θΛ−1ÃMΛ)

∣

∣

∣

=θ
M+1

2

∣

∣

∣

∣

λ−u√
θ

I−Λ−1ÃMΛ

∣

∣

∣

∣

=θ
M+1

2

∣

∣

∣

∣

λ−u√
θ

I−ÃM

∣

∣

∣

∣

=θ
M+1

2

{

HeM+1

(

λ−u√
θ

)

− (M+1)!

2

[(

(λ−u)2

θ
−1

)

fM−1

ρθ(M−1)/2
+

2(λ−u)√
θ

fM
ρθM/2

]

}

=θ
M+1

2 HeM+1

(

λ−u√
θ

)

− (M+1)!

2ρ

[(

(λ−u)2−θ
)

fM−1+2(λ−u)fM
]

.

(3.34)

4. Hyperbolic moment system

The loss of global hyperbolicity of Grad’s moment system has long been considered
as a failure of moment method. Recently, some encouraging progress has been made
in this direction [12, 23]. However, in the case that the number of moments is greater
than 10, Levermore’s method leads to great difficulties for numerical implementation,
since the moments cannot be analytically solved from the Lagrange multipliers1; and
it has been demonstrated by Junk [11] that the domain of definition for a realizable
distribution is not convex. Torrilhon’s method mainly focuses on the 13-moment case
in one space dimension, which seems not trivial to extend to the general case. To the
best of our knowledge, no results for the general moment system have been published.

In this section, we provide the method to regularize the moment system based on
the results in Section 3 to achieve global hyberbolicity. We discuss only the 1D case
here and the multi-dimensional problems will be reported soon in later papers.

4.1. Construction of the hyperbolic moment system. For an (M+1)-
moment system containing quantities {ρ,u,θ,f3, · · · ,fM}, the Grad’s moment system
gives accurate evolution equations for most variables expect for fM , since fM+1 ap-
pears in the accurate equation of fM , and is forced to be zero in Grad’s closure.
Almost all the regularization methods in references are focused on the reconstruction
of fM+1, trying to express fM+1 as a function of the M+1 known variables in some
possible ways such as Chapman-Enskog expansion or realizing a positive distribution
[12, 19, 8, 23]. In this paper, we also limit our regularization to the modification of
the equation of fM . However, since fM+1 exists in this equation only in the form of
its derivative, here we directly substitute ∂fM+1/∂x with some other expression to
gain global hyperbolicity.

Corollary 3.1 shows that the characteristic polynomial of AM is independent of
f3, · · · , fM−2, and its dependence of fM−1 and fM can be regarded as the result of

1A local system is required to be solved by Newton iteration on each grid for every time step.
We refer the readers to [20] for details. There is no report indicating that such a system has a fast
solver.
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truncation. That is, if a Grad’s system with M+3 or more variables is considered,
then fM−1 and fM do not affect the characteristic polynomial, either. Thus, it is
reasonable to modify the matrix AM such that its characteristic polynomial is a
function only of u and θ. More precisely, the characteristic polynomial of the modified
matrix should always be

θ
M+1

2 HeM+1

(

λ−u√
θ

)

, (4.1)

which is obtained by substituting fM−1=fM =0 into (3.33). Recalling that only the
equation of fM is allowed to be changed, we summarize all the requirements and raise
the following problem:

Find M+1 functions aj =aj(wM ), j=1, · · · ,M+1, such that for all

ρ,u,θ,f3, · · · ,fM ,

∣

∣

∣

∣

∣

∣

λI−AM −
M+1
∑

j=1

ajEM+1,j

∣

∣

∣

∣

∣

∣

=θ
M+1

2 HeM+1

(

λ−u√
θ

)

,

where Eij denotes the matrix eie
T
j , and ej is the unit vector whose

j-th component is equal to 1.
If aj =aj(wM ), j=1, · · · ,M+1 is the solution of this problem, then a globally hyper-
bolic system can be obtained by substituting the matrix AM in (3.2) with

ÂM :=AM +

M+1
∑

j=1

ajEM+1,j . (4.2)

The rest part of this section will be devoted to tackling this problem.
In order to simplify the notation, we use Si,j to denote the (i,j)-th minor of the

matrix λI−AM , and define S(k) as its k-th order leading principal minor, which is the
determinant of the upper-left part of λI−AM with k rows and k columns. According
to the expression of AM (3.3), it is not difficult to find

SM+1,1=(−1)MM !, SM+1,2=(−1)M−1M !

ρ
(λ−u), (4.3a)

SM+1,3=(−1)M−2M !

ρ
[(λ−u)2−θ], (4.3b)

SM+1,j =(−1)M+1−j M !

(j−1)!
S(j−1), j=4, · · · ,M+1. (4.3c)

Now we expand the characteristic polynomial of the matrix (4.2) as

∣

∣

∣

∣

∣

∣

λI−AM −
M+1
∑

j=1

ajEM+1,j

∣

∣

∣

∣

∣

∣

= |λI−AM |−
M+1
∑

j=1

(−1)M+1+jajS
M+1,j . (4.4)

In order that the above expression equals to (4.1), according to Corollary 3.1, we may
choose aj such that

(M+1)!

2ρ

[(

(λ−u)2−θ
)

fM−1+2(λ−u)fM
]

+

M+1
∑

j=1

(−1)M+1−jajS
M+1,j ≡0. (4.5)
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The leading principal minor S(k) is a polynomial in λ of degree k, since it is the
characteristic polynomial of the k×k upper-left block of AM . Hence, SM+1,j is a
polynomial in λ of degree j−1, which can be observed from (4.3). This observation
directly leads to

aj ≡0, j=4, · · · ,M+1, (4.6)

since the first term in (4.5) is a quadratic polynomial in λ. Then, we put (4.3a) and
(4.3b) into (4.5), and some simplification gives

[(λ−u)2−θ]

(

M+1

2
fM−1+a3

)

+(λ−u)[(M+1)fM +a2]+a1≡0. (4.7)

Now, the choices of a1, a2, and a3 are naturally given as

a1=0, a2=−(M+1)fM , a3=−M+1

2
fM−1. (4.8)

For simplicity, the notation RM is introduced as follows.

Definition 4.1. The regularization term based on the characteristic speed correction

is denoted as

RM ,
M+1

2

(

2fM
∂u

∂x
+fM−1

∂θ

∂x

)

. (4.9)

Then we have the following theorem.

Theorem 4.1. The moment system

∂wM

∂t
+AM

∂wM

∂x
−RMeM+1=0 (4.10)

is strictly hyperbolic if θ>0, and its characteristic speeds are

sj =u+cj
√
θ, j=1, · · · ,M+1, (4.11)

where cj is the j-th root of HeM+1(x).

Proof. The equations (4.10) can be rewritten as

∂wM

∂t
+



AM +

M+1
∑

j=1

ajEM+1,j





∂wM

∂x
=0, (4.12)

where aj , j=1, · · · ,M+1 are defined in (4.6) and (4.8). As we have discussed above,
(4.1) gives the characteristic polynomial of the matrix in the parentheses, which will

be denoted by ÂM below as in (4.2). If θ>0, one has

|λI−ÂM |=θ
M+1

2 HeM+1

(

sj−u√
θ

)

=θ
M+1

2 HeM+1(cj)=0. (4.13)

Therefore, (4.11) gives all eigenvalues of ÂM . Since the Hermite polynomial
HeM+1(x) has M+1 different zeros in R [17], all cj ’s are distinct. Thus, the ma-

trix ÂM has no duplicate eigenvalues, and hence is diagonalizable. This indicates
that (4.10) is a strictly hyperbolic system.
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Comparing with the exact moment system (2.11), we see that the hyperbolic
system (4.10) replaces ∂fM+1/∂x by

− 1

M+1
RM =−fM

∂u

∂x
− 1

2
fM−1

∂θ

∂x
. (4.14)

This is a totally new way to regularize Grad’s moment system.

Remark 4.2. By modifying the last row of the matrixAM , the characteristic speeds
can be appointed. Our regularization (4.10) selects a special set of characteristic
speeds (4.11) such that they coincide with the Gauss-Hermite interpolation points.
As discussed in [22], the characteristic speeds can be viewed as a sort of discretization
of the distribution function. Therefore, the system (4.10) is similar to the “shifted
and scaled discrete velocity model”, with the expectation of spectral convergence
when M goes to infinity. Meanwhile, unlike the ordinary discrete velocity model, the
nonlinearity of Grad’s moment systems introduced by shifting and scaling of the basis
functions is preserved. Additionally, such regularization is only a slight modification
based on the original Grad’s moment system, and we will find in the next subsection
that a number of interesting properties can be obtained.

4.2. Characteristic waves of the hyperbolic moment system. In this
part, we will focus on the Riemann problem of (4.10). First, we claim that all charac-
teristic fields of (4.10) are either genuinely nonlinear or linearly degenerate. To verify

this, we write the right eigenvectors of ÂM in the following theorem.

Theorem 4.3. The right eigenvector of ÂM with eigenvalue u+cj
√
θ is

rj =(rj,1, · · · ,rj,M+1)
T , j=1, · · · ,M+1, (4.15)

where cj is the j-th root of Hermite polynomial HeM+1(x), and rj,k is defined as

rj,1=ρ, rj,2= cj
√
θ, rj,3=(c2j −1)θ,

rj,k=
Hek−1(cj)

(k−1)!
ρθ

k−1
2 −

c2j −1

2
θfk−3−cj

√
θfk−2, k=4, · · · ,M+1.

(4.16)

Proof. To prove this theorem, we need only to prove

ÂMrj =(u+cj
√
θ)rj . (4.17)

Split ÂM by row as ÂM =(aT
1 ,a

T
2 , · · · ,aT

M+1)
T , where ak is the k-th row of ÂM ,

k=1,2, · · · ,M+1. Thus (4.17) can be written as

(a1rj ,a2rj , · · · ,aM+1rj)
T =(u+cj

√
θ)rj , for j=1,2, · · · ,M+1. (4.18)

With the expression of ÂM , the first four rows of (4.18) can be verified directly:

a1rj =urj,1+ρrj,2=ρ(u+cj
√
θ)= rj,1(u+cj

√
θ),

a2rj =θ/ρ ·rj,1+urj,2+rj,3= cj
√
θ(u+cj

√
θ)= rj,2(u+cj

√
θ),

a3rj =2θrj,2+urj,3+6/ρ ·rj,4=(c2j −1)θ(u+cj
√
θ)= rj,3(u+cj

√
θ),

a4rj =4f3rj,2+ρθ/2 ·rj,3+urj,4+4rj,5

=He3(cj)ρθ
3/2/6 ·(u+cj

√
θ)= rj,4(u+cj

√
θ), (only when M >4).

(4.19)
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For 5≤k≤M ,

akrj =−θfk−2

ρ
rj,1+kfk−1rj,2+

1

2
[(k−2)fk−2+θfk−4]rj,3

− 3fk−3

ρ
rj,4+θrj,j−1+urj,j+krj,j+1.

(4.20)

Then, we substitute (4.16) into (4.20) and get

akrj =
Hek−2(cj)

(k−2)!
θk/2+u

Hek−1(cj)

(k−1)!
θ(k−1)/2+

Hek(cj)

(k−1)!
θk/2

+(−cjθ
1/2)(cj

√
θ+u)fk−2+[−θ(c2j −1)(u+cj

√
θ)/2]fk−3

=u
Hek−1(cj)

(k−1)!
θ(k−1)/2+cj

Hek−1(cj)

(k−1)!
θk/2

+(−cjθ
1/2)(cj

√
θ+u)fk−2+[−θ(c2j −1)(u+cj

√
θ)/2]fk−3

=(u+cj
√
θ)rj,k.

(4.21)

For k=M+1, the situation is similar as 5≤k≤M . We expand aM+1rj as

aM+1rj =
HeM−1(cj)

(M−1)!
θ(M+1)/2+u

HeM (cj)

M !
θM/2

+(−cjθ
1/2)(cj

√
θ+u)fM−1+[−θ(c2j −1)(u+cj

√
θ)/2]fM−2.

(4.22)

Here, cj is the j-th root of Hermite polynomial HeM+1(x). Hence, the recursion
relation of Hermite polynomials gives

HeM−1(cj)=
cjHeM (cj)

M
. (4.23)

Substituting this equation into (4.22), we get

aM+1rj =(u+cj
√
θ)rj,M+1. (4.24)

Collecting (4.19), (4.21), and (4.24), we finally arrive at (4.18). This completes the
proof of the theorem.

Corollary 4.2. Each characteristic field of the hyperbolic system (4.10) is either

genuinely nonlinear or linearly degenerate.

Proof. Let sj =u+cj
√
θ. We only need to verify that either ∇wM

sj ·rj ≡0 or
∇wM

sj ·rj 6≡0 holds. Since

∇wM
sj =

(

0,1,
1

2

cj√
θ
,0, · · · ,0

)T

, (4.25)

we have

∇wM
sj ·rj = cj

√
θ+

1

2
cj(c

2
j −1)

√
θ=

1

2
cj(c

2
j +1)

√
θ. (4.26)

If cj is zero, the right hand side vanishes, while if cj is nonzero, it is clear that
∇wM

sj ·rj 6≡0.
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This corollary indicates the simplicity of characteristic waves in the solution of
Riemann problems. Consider the following Riemann problem:

∂wM

∂t
+ÂM

∂wM

∂x
=0,

wM (0,x)=

{

wL
M , x<0,

wR
M , x>0.

(4.27)

A typical solution of this problem is the composition of at most M+2 intermediate
states

w0
M =wL

M , w1
M , · · · , wN

M , wN+1
M =wR

M , N 6M,

which are connected by N+1 elementary waves: rarefaction waves, contact disconti-
nuities, or shock waves. In order to get a full understanding of the hyperbolic moment
system, these waves will be studied respectively below.

4.2.1. Rarefaction waves. As in all hyperbolic systems, the integral curves
and the Riemann invariants are the major objects for the investigation of rarefaction
waves. The parameterization of an integral curve of the vector field rj satisfies

w̃′
M (ζ)=rj(w̃M (ζ)), (4.28)

where ζ is the parameter, and

w̃M (ζ)=
(

ρ̃(ζ),ũ(ζ), θ̃(ζ), f̃3(ζ), · · · , f̃M (ζ)
)T

denotes the integral curve in the (M+1)-dimensional phase space. For a given point
w0

M in the phase space, the integral curve through w0
M can actually be analytically

solved. Here we do not intend to write down the complete expressions, while the
analytical solutions of ρ(ζ), u(ζ), and θ(ζ) are given as

ρ̃(ζ)=ρ0 exp(ζ), (4.29a)

ũ(ζ)=u0+
2cj

c2j −1

√
θ0

[

exp

(

c2j −1

2
ζ

)

−1

]

, (4.29b)

θ̃(ζ)=θ0exp
(

(c2j −1)ζ
)

. (4.29c)

It is easy to verify that (4.29) satisfies the first three equations of (4.28). Note that
in (4.28), only ρ, θ and fj−2, fj−1 appear in the right hand side of fj ’s equation, j=
3, · · · ,M . Therefore, if the complete solution of w̃M (ζ) is needed, one can solve fj(ζ)
by explicit integration. Now we use (4.29) to give the j-th eigenvalue of AM (w̃M (ζ))
as

sj(w̃M (ζ))= ũ(ζ)+cj

√

θ̃(ζ)=u0+cj
√
θ0+

c2j +1

c2j −1
cj
√
θ0

[

exp

(

c2j −1

2
ζ

)

−1

]

.

(4.30)
It is not difficult to prove that sj(w̃M (ζ))≷sj(w̃

0
M ) if and only if cjζ≷0, which is

helpful to predicate which part of the integral curve satisfies the entropy condition.
And substitution of (4.29b) into (4.30) gives

sj(w̃M (ζ))−sj(w̃
0
M )=

c2j +1

2
(ũ(ζ)−u0). (4.31)
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Hence, sj(w̃M (ζ))≷sj(w̃
0
M ) holds if and only if ũ(ζ)≷u0. Therefore, if the left state

wL
M and the right state wR

M are connected by a single rarefaction wave, uL<uR has
to be satisfied, since the entropy condition requires sj(w

L
M )<sj(w

R
M ). Now let us

turn to the pressure p. Equations (4.29a) and (4.29c) show that

p̃(ζ)= ρ̃(ζ)θ̃(ζ)=p0 exp(c2jζ). (4.32)

Therefore, the pressures on both sides of a rarefaction wave should satisfy

{

pL<pR, if cj >0,
pL>pR, if cj <0.

Here we point out that the sign of cj is as

cj







>0, if j > (M+1)/2,
=0, if j=(M+1)/2,
<0, if j < (M+1)/2.

(4.33)

It is interesting that Riemann invariants exist for all genuinely nonlinear fields,
and the following theorem gives its expressions.

Theorem 4.4. For the hyperbolic moment system (4.10), the Riemann invariants

for the j-family are

R1=ρθ−1/(c2j−1), R2=u− 2cj
c2j −1

√
θ,

Rk=Ck,0ρθ
k/2+

k
∑

i=3

Ck,ifiθ
(k−i)/2, k=3, · · · ,M,

(4.34)

where Ck,i is defined recursively as

Ck,k=1, Ck,k−1=
2cj

c2j −1
, (4.35a)

Ck,i=
1

k− i

(

Ck,i+2+Ck,i+1
2cj

c2j −1

)

, i=3, · · · ,k−2, (4.35b)

Ck,0=
2

(1−c2j )k−2

k
∑

i=3

Hei(cj)

i!
Ck,i. (4.35c)

Proof. We only need to prove

∇wM
Rk ·rj ≡0, ∀k=1, · · · ,M. (4.36)

The verification in the cases k=1 and k=2 is straightforward:

∇wM
R1 ·rj =θ−1/(c2j−1) ·ρ− 1

c2j −1
ρθ−1/(c2j−1)−1 ·(c2j −1)θ=0, (4.37)

∇wM
R2 ·rj =1 ·cj

√
θ− cj

(c2j −1)
√
θ
·(c2j −1)θ=0. (4.38)
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If k>3, the gradient of Rk is

∇wM
Rk=

(

Ck,0θ
k/2, 0,

k

2
Ck,0ρθ

(k−1)/2+

k−1
∑

i=3

k− i

2
Ck,ifiθ

(k−i)/2−1,

Ck,3θ
(k−3)/2, Ck,4θ

(k−4)/2, · · · , Ck,kθ
(k−k)/2

)T

.

(4.39)

With some rearrangement, ∇wM
Rk ·rj is simplified as

∇wM
Rk ·rj =

[

(

1+
k

2
(c2j −1)

)

Ck,0+

k
∑

i=3

Ck,i
Hei(cj)

i!

]

ρθk/2

+

k−2
∑

i=3

[

c2j −1

2
(k− i)Ck,i−cjCk,i+1−

c2j −1

2
Ck,i+2

]

fiθ
(k−i)/2

+

(

c2j −1

2
Ck,k−1−cjCk,k

)

fk−1.

(4.40)

We have that

• (4.35a) indicates that the last line of (4.40) is zero;

• (4.35b) indicates that the second line of (4.40) is zero;

• (4.35c) indicates that the first line of (4.40) is zero.

Thus (4.36) is proved.

4.2.2. Contact discontinuities. According to the proof of Corollary 4.2, the
contact discontinuities can only be found in the case of cj =0. Thus, if M is odd, no
contact discontinuities exist in the characteristic waves. For contact discontinuities,
the discussion on integral curves and Riemann invariants above is still valid. If we
substitute cj =0 into (4.34), u, p, and f3 can be found to be invariant across the
contact discontinuity.

4.2.3. Shock waves. The discussion of shock waves requires additional care.
As been well known, the jump condition on the shock wave is sensitive to the form of
the hyperbolic equations. Therefore, before we give the Rankine-Hugoniot condition,
it is necessary to rewrite (4.10) in an appropriate form. Though a conservative form
is desired, the whole system can no longer be written as a conservation law since two
terms are added to the last equation. Nevertheless, the conservative form of the first
M equations remains. Thus (4.10) can actually be reformulated by M conservation
laws and a single non-conservative equation. Precisely, if we let

q=(q0, · · · ,qM )T , qj =
1

j!

∫

R

ξjf(ξ)dξ, j=0, · · · ,M, (4.41)

(4.10) is reformulated as

∂qj
∂t

+(j+1)
∂qj+1

∂x
=0, j=0, · · · ,M−1,

∂qM
∂t

+
∂F (q)

∂x
−RM =0.

(4.42)
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The relation between q and wM is

fj =

j
∑

k=0

(−1)j−kHej−k(u/
√
θ)

(j−k)!
θ

j−k

2 qk, u= q1/q0, θ=2q2/q0−(q1/q0)
2, (4.43)

and F (q) is defined as

F (q)=(M+1)
M
∑

k=0

(−1)M−kHeM+1−k(u/
√
θ)

(M+1−k)!
θ

M+1−k
2 qk. (4.44)

For convenience, we write (4.42) in the following form:

∂q

∂t
+B(q)

∂q

∂x
=0, (4.45)

where B(q) is an (M+1)×(M+1) matrix.
Since (4.45) is still a non-conservative system, the DLM theory [13] is introduced

when discussing the shock wave. A shock wave is a single jump discontinuity connect-
ing two constant states qL and qR in a genuinely nonlinear field j, and qL, qR, and
the propagation speed of the shock wave Sj should satisfy the following conditions:

• Generalized Rankine-Hugoniot condition:

∫ 1

0

[

SjI−B
(

Φ(ν;qL,qR)
)] ∂Φ

∂ν
(ν;qL,qR)dν=0, (4.46)

where I is the identity matrix of order M+1, and Φ(ν;qL,qR) is a locally
Lipschitz mapping satisfying

Φ(0;qL,qR)=qL, Φ(1;qL,qR)=qR. (4.47)

We refer the readers to [13] for details. In Section 5, we will point out that
the setup of Φ is not crucial if the collision term presents.

• Entropy condition

sj(q
L)>Sj >sj(q

R). (4.48)

It is obvious that the first M rows of (4.46) are independent of Φ; they are the same
as the classical Rankine-Hugoniot conditions. This allows us to analyze the properties
of the shock waves without regarding the form of Φ.

The first and second equations of (4.46) can be written as

ρLuL−ρRuR=Sj(ρ
L−ρR), (4.49)

ρL(uL)2+ρLθL−ρR(uR)2−ρRθR=Sj(ρ
LuL−ρRuR). (4.50)

Since ρL 6=ρR and ρLuL 6=ρRuR (otherwise qL=qR), one has

Sj =
ρLuL−ρRuR

ρL−ρR
(4.51a)

=
ρL(uL)2+ρLθL−ρR(uR)2−ρRθR

ρLuL−ρRuR
. (4.51b)
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Putting (4.51a) into (4.48), and multiplying both sides with (ρL−ρR)2, we get

ρL(uL−uR)(ρL−ρR)>cj(ρ
L−ρR)2

√
θR, (4.52a)

ρR(uL−uR)(ρL−ρR)<cj(ρ
L−ρR)2

√
θL. (4.52b)

If cj >0, (4.52a) gives

(uL−uR)(ρL−ρR)>0. (4.53)

Thus, we can divide both sides of (4.52) by (uL−uR)(ρL−ρR) without changing the
inequality sign, and the result is

ρL√
θR

>
cj(ρ

L−ρR)

uL−uR
>

ρR√
θL

, (4.54)

from which one directly has

(ρL)2θL−(ρR)2θR>0. (4.55)

Similarly, if cj <0, we have

(uL−uR)(ρL−ρR)<0, and (ρL)2θL−(ρR)2θR<0. (4.56)

Lemma 4.5. For the hyperbolic moment system (4.45), if qL and qR are connected

by a j-shock wave, then the following inequalities hold:

uL>uR, and

{

pL>pR, if cj >0,
pL<pR, if cj <0.

(4.57)

Proof. With some rearrangement, (4.51) can be reformulated as

(ρL−ρR)(ρLθL−ρRθR)=ρLρR(uL−uR)2. (4.58)

Since the right hand side of (4.58) is positive, one and only one of the following two
statements is true:

1. ρL>ρR and ρLθL>ρRθR;

2. ρL<ρR and ρLθL<ρRθR.

If cj >0, equation (4.55) indicates that the first statement is true. Then, we can
use (4.53) to conclude uL>uR. The conclusion for the case cj <0 can be proved in
the same way.

Now, we summarize all our discussions on the entropy conditions of three types
of waves in the following theorem:

Theorem 4.6. For hyperbolic moment system (4.10), if the wave of the j-th family

is elementary, then its type can be determined by the value of cj and the macroscopic

velocities or pressures on both sides of the wave:

Velocity Pressure
Contact discontinuity cj =0, uL=uR cj =0, pL=pR

Rarefaction wave cj 6=0, uL<uR cj >0, pL<pR

cj <0, pL>pR

Shock wave cj 6=0, uL>uR cj >0, pL>pR

cj <0, pL<pR
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Remark 4.7. It is not difficult to find that Euler equations are a special case
of the proposed hyperbolic moment equations. In the case of M =2, we have f1=
f2=0, and thus the regularization vanishes. In other words, just like Grad’s moment
system, the hyperbolic system can be viewed as an extension of the Euler equations.
Actually, all the discussions in this section, including the eigenvalues and eigenvectors,
Riemann invariants, and the entropy condition, are valid for the 1D Euler equations
with adiabatic index γ=3, while Grad’s moment system is not able to preserve these
criteria. In this respect, comparing with Grad’s moment system, this regularized
moment system is likely to be a more natural extension of Euler equations.

5. The case with collision terms

In this section, we will give a short discussion on the moment system with collision
terms. For simplicity, the BGK collision operator [2] is considered. In this case, the
Boltzmann equation (2.3) becomes

∂f

∂t
+ξ

∂f

∂x
=

1

τ
(fM −f), (5.1)

where τ is the relaxation time, and fM is the Maxwellian:

fM =
ρ√
2πθ

exp

(

−|ξ−u|2
2θ

)

. (5.2)

This equation leads to a very simple form of the collision term in the moment system
as

∂wM

∂t
+AM

∂wM

∂x
−δHRMeM+1=−1

τ
PwM , (5.3)

where P is a diagonal matrix

P=diag{0,0,0,1, · · · ,1}, (5.4)

and δH =0 corresponds to Grad’s moment system, while δH =1 corresponds to the
regularized moment system. Note that when considering the weak solution of (5.3),
one still needs to rewrite (5.3) as equations of q:

∂qj
∂t

+(j+1)
∂qj+1

∂x
=−1

τ
Pj(q0, · · · ,qj), j=0, · · · ,M−1,

∂qM
∂t

+
∂F (q)

∂x
−RM =−1

τ
PM (q0, · · · ,qM ),

(5.5)

where Pj , j=0, · · · ,M are the corresponding production terms. Then the first order
derivative part of the last equation will still be treated using the DLM theory.

An important index that exhibits the quality of a collisional moment system is
its order of accuracy in terms of τ . The conception of “order of accuracy” is based on
the assumption that τ is a small quantity, and its precise definition can be found in
[18, 7]. In [8], the order of magnitude for each moment has been deduced as

fk∼O(τ ⌈k/3⌉), k>3 (5.6)

for the infinite moment system, which is obtained by the technique of Maxwellian
iteration. It is easy to find that (5.6) remains correct for the regularized moment
system (equation (5.3) with δH =1), since the order of RM never exceeds the leading
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order term of fM/τ . However, when M =3m+1, m>1, the order of accuracy of
the moment system is actually reduced by 2 with presentation of the regularization
terms. This fact is not difficult to obtain and will be reported elsewhere. In general,
the order of accuracy still goes to infinity as M increases.

Another issue is the choice of the path function Φ, which was introduced in (4.46).
Let us restrict our discussion of its role in solving a Riemann problem of (5.3). First,
we need to get some knowledge about the general behavior of the solution, referring
to the careful study of the Riemann problem of 13-moment system in [21]. Roughly
speaking, the solution shows a number of waves initially, then these waves are damping
gradually, and eventually the solution tends to a smooth curve which is similar to the
solution of Euler equations. The initial waves have no physical meaning due to the
strong non-equilibrium which cannot be described by the moment system, while the
solution gets close to the Boltzmann equation’s solution only when the waves are
fully dissipated. Later, this behavior is verified numerically for large number moment
equations in [1], where the authors show that the speed of dissipation increases when
the number of moments gets larger. It is expected that this also describes the evolution
of the regularized moment system. Based on [21, 1], we have the following assertions
for the regularized moment system:

1. If subshocks appear in the solution, the choice of Φ indeed makes sense. In
this situation, the system is inadequate for the description of the physical
process, saying M needs to be increased.

2. Φ affects the solution when the time t is very small. However, such solution
has no physical significance, either. Only when the solution gets close enough
to a smooth function, the moment system starts to show its ability to describe
physics. Note that the smooth solution is independent of Φ; therefore, Φ
only affects the way in which the waves are damped, but does not affect the
intrinsic constituent of the solution.

These two assertions indicate that the choice of Φ is not crucial in solving a
Riemann problem. We can simply use a linear function to connect any two states
such that the numerical schemes can be constructed easily.

6. Numerical experimentation for a shock tube problem

In this section, a shock tube problem is studied numerically to show the behavior
of the hyperbolic moment systems. We consider the following Riemann problem:

∂wM

∂t
+ÂM

∂wM

∂x
=−1

τ
PwM ,

wM (0,x)=

{

wL
M , x<0,

wR
M , x>0,

(6.1)

where P is defined in (5.4) and the initial left and right states are

wL
M =(7,0,1,0, · · · ,0)T , wR

M =(1,0,1,0, · · · ,0)T . (6.2)

The relaxation time is chosen as τ =Kn/ρ. Here two different cases Kn=0.05 and
Kn=0.5 are considered. A nonconservative version of the HLL scheme [16] is em-
ployed to discretize the moment system.

The numerical results for Kn=0.05 with M ranging from 2 to 10 are listed in
figure 6.1, in which the thin black lines are the numerical results of the hyperbolic
moment equations (HME), and the thick gray lines are the results of Mieussens’
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discrete velocity model (DVM) [14], provided as reference solutions. The profiles of
ρ, u, and p are drawn. It is clear that the solutions of hyperbolic moment systems
converge to the solution of the Boltzmann equation when M increases. Note that
when M =2, the hyperbolic moment system is equivalent to the Euler equations, and
the contact discontinuities and the shocks are obvious. When M =3, a shock can
still be found near x=0.75. When M is greater than 5, the discontinuities are fully
damped. This agrees with Torillhon’s theory [1] that the discontinuities are damped
faster when M is larger.
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Fig. 6.1. Numerical results of the shock tube problem for Kn=0.05. The left y-axis is for ρ

and p, and the right y-axis is for u.

For a larger Knudsen number Kn=0.5, the results are shown in figure 6.2. These
results can also be considered as the solutions at t=0.03 in the case of Kn=0.05 (with
proper scaling in the x direction). Thus these actually show the start-up phases of a
shock tube by moment approximation. The discontinuities are clear for all choices of
M , and the convergence can also be readily observed.

7. Concluding remarks

We regularize the 1D Grad’s moment system to achieve global hyperbolicity for
arbitrary order expansion. Fully investigations to the characteristic waves show that
this set of equations may be a natural extension of Euler equations. Actually, the
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Fig. 6.2. Numerical results of the shock tube problem for Kn=0.5. The left y-axis is for ρ and

p, and the right y-axis is for u.

approach in this paper has been extended to two or three dimensional Grad’s moment
system, and the result is reported in a following paper.
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