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SYNCHRONIZATION ANALYSIS OF KURAMOTO OSCILLATORS∗

JIU-GANG DONG† AND XIAOPING XUE‡

Abstract. In this paper, we study the original Kuramoto oscillators and the generalized Ku-
ramoto oscillators with directed coupling topology. For the original Kuramoto model with identical
oscillators, we obtain that frequency synchronization can occur for all initial phase configurations
distributed over the whole circle, which is proved by means of a new method based on the  Lojasiewicz
inequality for gradient systems of analytic functions. This improves the corresponding result in [S.-Y.
Ha, T. Ha, and J.-H. Kim, Physica D 239, 1692–1700, 2010], where the authors only considered initial
phase configurations distributed over the open half circle. For the generalized Kuramoto model with
directed coupling topology, we show that when the phases of oscillators are distributed over the half
circle and the coupling strength is sufficiently large, frequency synchronization is guaranteed. This
improves and extends the previous results in [N. Chopra and M. W. Spong, IEEE Trans. Automat.
Control 54, 353–357, 2009], [S.Y. Ha, T. Ha, and J.H. Kim, Physica D 239, 1692–1700, 2010], and
[Y.P. Choi, S.Y. Ha, S. Jung, and Y. Kim, Physica D 241, 735–754, 2012], where the corresponding
results hold in the original Kuramoto model for initial phase configurations whose diameters are
smaller than π

2
or π. Finally, we extend the result to the case of switching topology.
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1. Introduction
In the past few decades, synchronization in complex networks has been a focus of

interest for researchers from different disciplines. This phenomenon can be observed
in many biological phenomena such as flashing of fireflies, chorusing of crickets, syn-
chronous firing of a cardiac pacemaker, metabolic synchrony in yeast cell suspension,
etc. (see [5, 22]). Among many models that have been proposed to address synchro-
nization phenomena, we are here interested in the Kuramoto model [13, 14]. This
model can be used to understand the emergence of synchronization in networks of
oscillators. We refer the reader to the survey papers [23, 1] for the applications of the
Kuramoto model in various biological synchronization phenomena.

The Kuramoto model consists of a population of N coupled nonlinear oscillators
where the phase θi(t) of the ith oscillator evolves in time according to

θ̇i = Ωi +
K

N

N
∑

j=1

sin(θj−θi), i= 1, . . . ,N, (1.1)

and subject to initial conditions

θi(0) =θ0i ,

where Ωi is the natural frequency of ith oscillator and K>0 is the coupling strength.
We now give the definition of phase-frequency synchronization.

Definition 1.1. Let {θi(t)}
N
i=1 be the solution of the Kuramoto model (1.1).
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(1) We say the oscillators converge to phase synchronization if

lim
t→∞

|θi(t)−θj(t)|= 0, for i 6= j.

(2) We say the oscillators converge to frequency synchronization if

lim
t→∞

|ωi(t)−ωj(t)|= 0, for i 6= j,

where ωi(t) = θ̇i(t) is the frequency of ith oscillator.

There has been a large amount of literature on the Kuramoto model since the
remarkable work of Kurmamoto [14]. For further discussion, we refer to the sur-
vey papers [3, 19, 20]. Various estimates of the critical coupling strength for the
Kuramoto models were presented in several papers—Ermentrout [9], Hemmen and
Wreszinski [24], Jadbabaie et al. [12], and Verwoerd and Mason [25]—using tools
such as a Lyapunov functional, spectral graph theory, control theory, and fixed point
theory. The linear stability of the phase-locked state and rigorous characterization
of the spectrum for the Kuramoto model was treated by Mirollo and Strogatz [21]
and Aeyels and Rogge [2]. Bonilla et al. [4] analyzed the Kuramoto model with ran-
domly distributed frequencies and subject to independent external white noises in the
thermodynamic limit. De Smet and Aeyels [8] investigated partial entrainment in the
Kuramoto-Sakaguchi model.

The work most closely related to this paper is that in [7, 10, 6]. More precisely,
for the Kuramoto model (1.1) with identical oscillators (i.e., Ωi = Ωj), the authors in
[10] established phase and frequency synchronization results provided that the initial
phase configurations are distributed over an open half circle, i.e.,

{

θ= (θ1, . . . ,θN )∈T
N : D(θ) := max

1≤i,j≤N
|θi−θj |<π

}

.

On the other hand, for the Kuramoto model (1.1) with non-identical oscillators, the
frequency synchronization results were obtained by [7, 10] if the coupling strength K
is larger than a certain critical value and the initial phase configurations are such that

{

θ= (θ1, . . . ,θN )∈T
N : D(θ) = max

1≤i,j≤N
|θi−θj |<

π

2

}

.

Subsequently, the authors of [6] found that the results mentioned above still hold for
the initial phase configurations distributed over an open half circle. However, all these
results are not applied to the case when the diameter of the initial phase configurations
is strictly larger than π. Even for the identical oscillators, the frequency synchroniza-
tion result is still unknown when initial phase configurations are distributed over the
whole circle. Another natural problem is whether the aforementioned results hold for
the generalized Kuramoto model with directed coupling topology.

The contributions of this paper are threefold: first, we consider the Kuramoto
model with identical oscillators and show that the frequency synchronization can
occur for all possible initial phase configurations distributed over the whole circle. Our
method is based on  Lojasiewicz inequality for gradient systems of analytic functions.
As far as we know, this method is not used to study the Kuramoto model in the
literature. Our second contribution is to extend the results in [6] to the case of directed
coupling topology. We provide an explicitly sufficient condition to ensure frequency
synchronization for the generalized Kuramoto model with directed coupling topology
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when the initial phase configurations are distributed over a half circle. Specially, for
the Kuramoto model (1.1), the obtained sufficient condition reduces to the one in [6].
As a final contribution, we extend our second work to the case of switching topology
and present a similar sufficient condition to guarantee frequency synchronization for
the generalized Kuramoto model with switching topology.

The paper is organized as follows. In Section 2, we consider the Kuramoto model
for identical oscillators and establish the frequency synchronization for initial phase
configurations whose diameters are smaller than 2π. In Section 3, we first give a
sufficient condition on initial phase configurations and coupling strength aij to ensure
frequency synchronization for the generalized Kuramoto model with directed coupling
topology and then extend this result to the case of switching topology.

2. Synchronization for identical oscillators
In this section, we consider the Kuramoto model for identical oscillators:

θ̇i = Ω+
K

N

N
∑

j=1

sin(θj−θi), i= 1, . . . ,N, (2.1)

subject to initial conditions

θi(0) =θ0i ,

where θ is the phase of the ith oscillator, Ω is its natural frequency, and K is the
coupling strength. Due to the real analyticity of the right hand side of model (2.1),
we know that its global solution exists and is also real analytic (see, for example,
Hale’s book [11]).

Now we define mean values and their associated fluctuations for phase θi and
frequency θ̇i =ωi:

θc =
1

N

N
∑

i=1

θi and ωc =
1

N

N
∑

i=1

ωi,

θ̂i =θi−θc and ω̂i =ωi−ωc.

Then we have

θ̇c =ωc≡Ω

and

˙̂
θi =

K

N

N
∑

j=1

sin(θ̂j− θ̂i) i= 1, . . . ,N, (2.2)

subject to initial condition

θ̂i(0) = θ̂0i ,

with the condition

N
∑

i=1

θ̂i = 0.

We are now ready to state our main result for system (2.2).
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Theorem 2.1. Let {θ̂i(t)}
N
i=1 be the solution of system (2.2) with all initial phase dif-

ferences satisfying |θ̂0i − θ̂0j |<2π for 1≤ i,j≤N . Then ω̂i(t)→0 as t→∞. Moreover,

there exists θij such that θ̂i(t)− θ̂j(t)→θij as t→∞.

Note that the condition “ω̂i(t)→0 as t→∞” is equivalent to the condition

“ωi(t)→ωc = Ω as t→∞” and θ̂i(t)− θ̂j(t) =θi(t)−θj(t), from which the following
result for (2.1) immediately follows.

Corollary 2.2. Let {θi(t)}
N
i=1 be the solution of system (2.1) satisfying the initial

phase condition |θ0i −θ0j |<2π for 1≤ i,j≤N . Then ωi(t)→Ω as t→∞. Moreover,

there exists θij such that θi(t)−θj(t)→θij as t→∞.

Remark 2.3. We here use a new method based on the  Lojasiewicz inequality for
gradient systems of analytic functions to study system (2.1). To the best of our knowl-
edge, this inequality is first used to investigate the Kuramoto model. Compared with
the existing work, the result of Corollary 2.2 holds for all initial phase configurations
distributed over the whole circle, instead of an arc of length smaller than π. The
results for identical oscillators in [10] can be easily derived from Corollary 2.2 when
initial phase configurations are located on an arc whose length is smaller than π.

For Kuramoto model (2.1), the following example shows that we can not obtain
phase synchronization, i.e., θij = 0 in Corollary 2.2 when the initial phase differences
are lying in [0,2π).

Example 2.4. Consider the Kuramoto model for three identical oscillators:

θ̇1 = Ω+
K

3
(sin(θ2−θ1)+sin(θ3−θ1)),

θ̇2 = Ω+
K

3
(sin(θ1−θ2)+sin(θ3−θ2)),

θ̇3 = Ω+
K

3
(sin(θ1−θ3)+sin(θ2−θ3)),

with initial condition (θ1(0),θ2(0),θ3(0)) = (0, 2π3 , 4π3 ). Then it is easy to see that the
corresponding solution is θ1(t) = Ωt, θ2(t) = 2π

3 +Ωt, and θ3(t) = 4π
3 +Ωt. Hence there

is no phase synchronization.

To show Theorem 2.1, we need the following lemma.

Lemma 2.5. Let {θ̂i(t)}
N
i=1 be the solution of system (2.2) with all initial phase

differences satisfying |θ̂0i − θ̂0j |<2π for 1≤ i,j≤N . Then we have |θ̂i(t)|<2π for t≥0,
i= 1, . . . ,N .

Proof. Assume that {θ̂i(t)}
N
i=1 is the solution of system (2.2) with initial con-

ditions |θ̂0i − θ̂0j |<2π for 1≤ i,j≤N . For i,j∈{1, . . . ,N}, there are only two cases for

initial states: (i) θ̂0i = θ̂0j , (ii) θ̂0i 6= θ̂0j .

(i) For θ̂0i = θ̂0j , consider the following equation:

d(θ̂i− θ̂j)

dt
=

K

N

N
∑

l=1

sin(θ̂l− θ̂i)−sin(θ̂l− θ̂i + θ̂i− θ̂j),

subject to the initial condition θ̂0i − θ̂0j = 0. By the existence and uniqueness of so-

lutions for the above equation, it follows that the unique solution is θ̂i(t)− θ̂j(t)≡0.

That is, if θ̂0i = θ̂0j , then θ̂i(t) = θ̂j(t).
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(ii) For θ̂0i 6= θ̂0j , we now make the following claim: for all t≥0,

θ̂i(t) 6= θ̂j(t) and |θ̂i(t)− θ̂j(t)|<2π.

We first prove θ̂i(t) 6= θ̂j(t). If not, let t0 be the first collision time, i.e.,

θ̂i(t) 6= θ̂j(t), t∈ [0,t0) and θ̂i(t0) = θ̂j(t0).

Then from case (i) we obtain that θ̂i(t) = θ̂j(t) for t≥ t0. However, by Corollary 1.2.6

in [15], if two analytic functions θ̂i(t) and θ̂j(t) are equal on some open set, then
the two functions must be equal on the whole existence domain. Hence we get a
contradiction which implies that θ̂i(t) 6= θ̂j(t), for all t≥0.

We now show that

|θ̂i(t)− θ̂j(t)|<2π for t≥0.

Assume the contrary. Then there exist i and j such that

θ̂i(t0) = θ̂j(t0)+2π and θ̂i(t)<θ̂j(t)+2π, for t∈ [0,t0). (2.3)

It follows that

dθ̂i
dt

(t0) =
K

N

N
∑

l=1

sin(θ̂l(t0)− θ̂i(t0))

=
K

N

N
∑

l=1

sin(θ̂l(t0)− θ̂j(t0)−2π)

=
K

N

N
∑

l=1

sin(θ̂l(t0)− θ̂j(t0))

=
dθ̂j
dt

(t0).

That is, ω̂i(t0) = ω̂j(t0). By differentiating system (2.2), we have

dω̂i

dt
(t0) =

K

N

N
∑

l=1

cos(θ̂l(t0)− θ̂i(t0))(ω̂l(t0)− ω̂i(t0))

=
K

N

N
∑

l=1

cos(θ̂l(t0)− θ̂j(t0)−2π)(ω̂l(t0)− ω̂i(t0))

=
K

N

N
∑

l=1

cos(θ̂l(t0)− θ̂j(t0))(ω̂l(t0)− ω̂j(t0))

=
dω̂j

dt
(t0).

Similarly, we can obtain

dnω̂i

dtn
(t0) =

dnω̂j

dtn
(t0), for n≥2.
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This fact, together with analyticity of ω̂i and ω̂j , and Corollary 1.2.5 in [15], shows
that

ω̂i(t) = ω̂j(t), t∈ (0,T ) for T >t0,

which is in contradiction with the fact (2.3). This shows that

|θ̂i(t)− θ̂j(t)|<2π for t≥0.

Based on the above analysis for cases (i) and (ii), it follows that for t≥0, i=
1, . . . ,N ,

|θ̂i(t)|= |θi(t)−θc(t)|≤
1

N

N
∑

j=1

|θi(t)−θj(t)|

=
1

N

N
∑

j=1

|θ̂i(t)− θ̂j(t)|<2π,

which completes the proof of Lemma 2.5.

Proof of Theorem 2.1.

Proof. We will apply Theorem A.2 to show Theorem 2.1. To this end, we write
(2.2) in the form of gradient system (A.1). Let θ̂= (θ̂1, . . . , θ̂N ) and

f(θ̂) = 1−
K

2N

∑

1≤i,j≤N

cos(θ̂i− θ̂j).

Then (2.2) can be rewritten as

˙̂
θ=−∇f(θ̂). (2.4)

From Lemma 2.5, it follows that the solution θ̂(t) is bounded, which implies that there

exist a vector θ̂∞ = (θ̂1∞, . . . , θ̂N∞) and some sequence tn→∞ such that θ̂(tn)→ θ̂∞
as n→∞. We now use Theorem A.2 to conclude that θ̂(t)→ θ̂∞ as t→∞, which

implies that there exists θij such that θ̂i(t)− θ̂j(t)→θij as t→∞. In addition, vector

θ̂∞ satisfies

N
∑

1=j

sin(θ̂j∞− θ̂i∞) = 0, i= 1, . . . ,N,

and ω̂i(t) =
˙̂
θi(t) = K

N

∑N

j=1 sin(θ̂j− θ̂i)→0 when t→∞. This completes the proof of
Theorem 2.1.

3. Synchronization for non-identical oscillators

In this section, we study the generalized Kuramoto model for non-identical os-
cillators. We first consider the generalized Kuramoto model with fixed topology and
derive a sufficient condition to ensure exponential frequency synchronization, and then
we extend this result to the case of switching topology.
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3.1. Fixed topology. We consider the generalized Kuramoto model for non-
identical oscillators:

θ̇i = Ωi +

N
∑

j=1

aij sin(θj−θi), i= 1, . . . ,N, (3.1)

subject to initial conditions

θi(0) =θ0i

where Ωi is the natural frequency of the ith oscillator and aij ≥0 is the coupling
strength.

For the solution {θi(t)}
N
i=1 of (3.1), define extremal phases θM (t), θm(t) and phase

diameter D(θ(t)):

θM (t) := max
1≤i≤N

θi(t), θm(t) := min
1≤i≤N

θi(t), and D(θ(t)) :=θM (t)−θm(t).

Similarly, define

ωM (t) := max
1≤i≤N

ωi(t), ωm(t) := min
1≤i≤N

ωi(t), and D(ω(t)) :=ωM (t)−ωm(t).

The natural frequency diameter is defined by

D(Ω) := max
1≤i,j≤N

|Ωi−Ωj |.

We now state the main result for system (3.1).

Theorem 3.1. Let {θi(t)}
N
i=1 be the solution of system (3.1) satisfying

0<D(θ0)<π, C>
D(Ω)

sinD(θ0)
,

where

C = min
i6=j











aij +aji +

N
∑

k=1

k 6=i,j

min{aik,ajk}











.

Then we have, for some time T >0,

D(ω(t))≤D(ω(T ))e−C(cosD∞)(t−T ), for t≥T,

where D∞ satisfies

sinD(θ0) = sinD∞, D∞∈
(

0,
π

2

)

.

In the case of identical coupling strength, i.e., aij = K
N

, Theorem 3.1 reduces to
the following known result.

Corollary 3.2. Let {θi(t)}
N
i=1 be the solution of system (3.1) satisfying

0<D(θ0)<π, K>
D(Ω)

sinD(θ0)
.
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Then we have, for some time T >0,

D(ω(t))≤D(ω(T ))e−K(cosD∞)(t−T ), for t≥T,

where D∞ satisfies

sinD(θ0) = sinD∞, D∞∈
(

0,
π

2

)

.

Remark 3.3. The result of Corollary 3.2 has been obtained in [6] (see Theorem 3.1
of [6]), which improves the main results in [7, 10]. Note that in Theorem 3.1, the
coupling matrix A= (aij) can be asymmetric.

To give the proof of Theorem 3.1, we need the following lemma.

Lemma 3.4. Let the conditions of Theorem 3.1 be satisfied. Then we have, for some

time T >0,

D(θ(t))≤D∞, t≥T. (3.2)

Proof. Let Imax(t) be the set of indices of phases θ1(t), . . . ,θN (t) that are equal
to the counterclockwise maximum, and define Imin(t) similarly. Note that the upper
Dini derivative of D(θ(t)) along the system (3.1) is defined by [16, Lemma 2.2]

D+D(θ(t)) = limsup
h↓0

D(θ(t+h))−D(θ(t))

h
= θ̇M̄ (t)− θ̇m̄(t),

where M̄ and m̄ are indices which have the properties that

θ̇M̄ (t) = max{θ̇M (t) : M ∈ Imax(t)} and θ̇m̄(t) = min{θ̇m(t) : m∈ Imin(t)}.

By the assumption C> D(Ω)
sinD(θ0) , we can obtain

D+D(θ0) = ΩM̄ +

N
∑

k=1

aM̄k sin(θ0k−θ0
M̄

)−Ωm̄−

N
∑

k=1

am̄k sin(θ0k−θ0m̄)

≤ΩM̄ −Ωm̄−(aM̄m̄ +am̄M̄ )sin(θ0
M̄
−θ0m̄)

−

N
∑

k=1

k 6=M̄,m̄

min{aM̄k,am̄k}[sin(θ0
M̄
−θ0k)+sin(θ0k−θ0m̄)]

≤D(Ω)−min
i6=j











aij +aji +

N
∑

k=1

k 6=i,j

min{aik,ajk}











sin(θ0
M̄
−θ0m̄)

=D(Ω)−C sinD(θ0)<0,

(3.3)

where the second inequality follows from the fact that

sin(θ0
M̄
−θ0k)+sin(θ0k−θ0m̄)

= 2sin

(

θ0
M̄
−θ0m̄
2

)

cos

(

θ0
M̄

+θ0m̄
2

−θ0k

)

≥2sin
θ0
M̄
−θ0m̄
2

cos
θ0
M̄
−θ0m̄
2

= sin(θ0
M̄
−θ0m̄).
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This implies that D(θ(t)) is strictly decreasing for t∈ [0,ε) when ε is sufficiently small.
We first claim that

D(θ(t))<D(θ0) for t>0. (3.4)

Assume the contrary, so that there exists a first time t0>0 such that

D(θ(t))<D(θ0) for t∈ [0,t0) and D(θ(t0)) =D(θ0).

On the other hand, we note that

D−D(θ(t0))≤D(Ω)−C sinD(θ(t0))

=D(Ω)−C sinD(θ0)<0.

This is in contradiction with the fact that D(θ(t))<D(θ(t0)) for t∈ [0,t0). Hence we
prove our claim (3.4). We next prove (3.2).

Case (i) If D(θ0)∈
(

0, π2
)

, then one has D(θ0) =D∞. The desired result (3.2) then
follows from (3.4).

Case (ii) For D(θ0)∈
(

π
2 ,π

)

, we have D∞<D(θ0). When D∞≤D(θ(t))≤D(θ0),
it follows that D+D(θ(t)) takes the form

D+D(θ(t))≤D(Ω)−C sinD(θ(t))

≤D(Ω)−C sinD(θ0)<0,

where the second inequality sinD(θ(t))≥ sinD(θ0) is used. Integrating the above
differential inequality, we get

D(θ(t))≤D(θ0)+(D(Ω)−C sinD(θ0))t,

from which it follows that D(θ(t))≤D∞, for t≥T with

T =
D(θ0)−D∞

C sinD(θ0)−D(Ω)
,

which completes the proof of Lemma 3.4.

Proof of Theorem 3.1.

Proof. Differentiating system (3.1) with respect to t, we obtain

ω̇i =
N
∑

j=1

aij cos(θj−θi)(ωj−ωi).

By Lemma 3.4, we know D(θ(t))≤D∞< π
2 for t≥T , which implies that cosD(θ(t))≥

cosD∞>0 for t≥T . Using this fact, similar to D+D(θ(t)), for D+D(ω(t)) one has,
for t≥T ,
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D+D(ω(t)) =

N
∑

k=1

aM̄k cos(θk(t)−θM̄ (t))(ωk(t)−ωM̄ (t))

−

N
∑

k=1

am̄k cos(θk(t)−θm̄(t))(ωk(t)−ωm̄(t))

≤− [(aM̄m̄ +am̄M̄ )cos(θM̄ (t)−θm̄(t))](ωM̄ (t)−ωm̄(t))

−

N
∑

k=1

k 6=M̄,m̄

min{aM̄k cos(θk(t)−θM̄ (t)),am̄k cos(θk(t)−θm̄(t))}

× [(ωM̄ (t)−ωk(t))+(ωk(t)−ωm̄(t))]

≤− [(aM̄m̄ +am̄M̄ )cosD∞](ωM̄ (t)−ωm̄(t))

−

N
∑

k=1

k 6=M̄,m̄

min{aM̄k,am̄k}cosD∞ [(ωM̄ (t)−ωk(t))+(ωk(t)−ωm̄(t))]

≤−min
i6=j











aij +aji +

N
∑

k=1

k 6=i,j

min{aik,ajk}











cosD∞(ωM̄ (t)−ωm̄(t))

=−C cosD∞D(ω(t)),

(3.5)

which leads to

D(ω(t))≤D(ω(T ))e−CcosD∞(t−T ), for t≥T.

This completes the proof of Theorem 3.1.

Since {θi(t)}
N
i=1 with D(θ(t)) = 0 is not the solution of the Kuramoto model for

non-identical oscillators, there is no phase synchronization for system (3.1). The
following proposition indicates that we can force the phase diameter to be smaller
than any given positive constant ε by enlarging the value of the coupling strength C.

Proposition 3.5. Let the conditions of Theorem 3.1 be satisfied. For any given

ε>0, if

C>
D(Ω)D∞

εsinD∞
,

then there exists a time T ′>0 such that

D(θ(t))≤ ε, for t≥T ′.

Proof. First, recalling Lemma 3.4, we know that there exists some time T >0
such that

D(θ(t))≤D∞, for t≥T.
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If ε≥D∞, then the desired result follows. We next assume that ε<D∞. Similar to
(3.3), for t≥T we get

D+D(θ(t))≤D(Ω)−C sinD(θ(t))

≤D(Ω)−C
sinD∞

D∞
D(θ(t)),

(3.6)

where the above second inequality follows from the fact that

sinx

x
≥

sinD∞

D∞
, for x∈ [0,D∞].

From (3.6), it follows that

D(θ(t))≤

(

D(θ(T ))−
D(Ω)D∞

C sinD∞

)

e−
CsinD∞

D∞ (t−T ) +
D(Ω)D∞

C sinD∞

≤ ε−
D(Ω)D∞

C sinD∞
+

D(Ω)D∞

C sinD∞

= ε for t≥T ′.

Here we use the fact

lim
t→∞

e−
CsinD∞

D∞ (t−T ) = 0

to find a time T ′>T satisfying

e−
CsinD∞

D∞ (t−T )≤ ε−
D(Ω)D∞

C sinD∞
, for t≥T ′.

This completes the proof of Proposition 3.5.

3.2. Switching topology. We consider the generalized Kuramoto model with
switching topology for non-identical oscillators:

θ̇i = Ωi +

N
∑

j=1

a
σ(t)
ij sin(θj−θi), i= 1, . . . ,N, (3.7)

subject to initial conditions

θi(0) =θ0i ,

where Ωi is the natural frequency of the ith oscillator and a
σ(t)
ij ≥0 is the cou-

pling strength. The switching law σ(t) : [0,∞)→P ={1, . . . ,p} is a piecewise con-
stant function which is continuous from the right. The switching times are {tℓ}

∞
ℓ=1:

0 = t0<t1< · · ·<tℓ< · · · and limℓ→∞ tℓ =∞.
For s∈P, let

Cs = min
i6=j











asij +asji +

N
∑

k=1

k 6=i,j

min{asik,a
s
jk}











and C̃ = mins∈P Cs. We have the following result for the generalized Kuramoto model
with switching topology (3.7).
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Theorem 3.6. Let {θi(t)}
N
i=1 be the solution of system (3.7) satisfying

0<D(θ0)<π, C̃>
D(Ω)

sinD(θ0)
.

Then we have, for some time T >0,

D(ω(t))≤D(ω(T ))e−CcosD∞(t−T ), for t≥T,

where D∞ satisfies

sinD(θ0) = sinD∞, D∞∈
(

0,
π

2

)

.

To show Theorem 3.6 we need the following lemma, which is similar to Lemma
3.4.

Lemma 3.7. Let the conditions of Theorem 3.6 be satisfied. Then we have, for some

time T >0,

D(θ(t))≤D∞, t≥T. (3.8)

Proof. Let σ(t) =s0 for t∈ [0,t1). Then system (3.7) can be written as

θ̇i = Ωi +
N
∑

j=1

as0ij sin(θj−θi), t∈ [0,t1),

subject to initial conditions

θi(0) =θ0i .

Similar to (3.3), by the assumption that C̃> D(Ω)
sinθ0 , we have

D+D(θ0)≤D(Ω)−Cs0 sinD(θ0)

≤D(Ω)−C̃ sinD(θ0)<0.

This implies that D(θ(t)) is strictly decreasing for t∈ [0,ε) when ε is sufficiently small.
We first claim that

D(θ(t))<D(θ0) for t∈ (0,t1). (3.9)

Assume the contrary, so that there exists a first time t′∈ (0,t1) such that

D(θ(t))<D(θ0) for t∈ (0,t′) and D(θ(t′)) =D(θ0).

On the other hand, we note that

D−D(θ(t0))≤D(Ω)−Cs0 sinD(θ(t0))

=D(Ω)−C̃ sinD(θ0)<0.

This is in contradiction with the fact that D(θ(t))<D(θ(t′)) for t∈ [0,t′). Hence we
prove (3.9). Now we show

D(θ(t))<D(θ0) for t∈ [t1,t2).
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Let σ(t) =s1 for t∈ [t1,t2). Then system (3.7) can be written as

θ̇i = Ωi +

N
∑

j=1

as1ij sin(θj−θi), t∈ [t1,t2).

We now proceed as for t∈ [0,t1) to arrive at

D(θ(t))<D(θ(t1))<D(θ0) for t∈ (t1,t2).

By induction, we can obtain that

D(θ(t))<D(θ0) for all t>0. (3.10)

We now show (3.8).

Case (i) If D(θ0)∈
(

0, π2
)

, then one has D(θ0) =D∞. The desired result (3.8) then
follows from (3.10).

Case (ii) For D(θ0)∈
(

π
2 ,π

)

, we have D∞<D(θ0). If D∞≤D(θ(t))≤D(θ0), then
sinD(θ(t))≥ sinD(θ0). Let σ(t) =sk for t∈ [tk,tk+1). As a result, for t∈ [tk,tk+1),

D+D(θ(t))≤D(Ω)−Csk sinD(θ(t))

≤D(Ω)−C̃ sinD(θ0).

This implies that

D+D(θ(t))≤D(Ω)−C̃ sinD(θ0), for all t≥0.

Integrating the above differential inequality, we get

D(θ(t))≤D(θ0)+(D(Ω)−C̃ sinD(θ0))t,

from which it follows that D(θ(t))≤D∞, for t≥T with

T =
D(θ0)−D∞

C sinD(θ0)−D(Ω)
.

This completes the proof of Lemma 3.7.

Proof of Theorem 3.6. By Lemma 3.7, we know D(θ(t))≤D∞< π
2 for t≥T ,

which implies that cosD(θ(t))≥ cosD∞>0 for t≥T . Let [tk,tk+1) be such that T ∈
[tk,tk+1). Note that σ(t) =sk when t∈ [tk,tk+1). For t∈ [T,tk+1), differentiate system
(3.7) with respect to t to obtain

ω̇i =

N
∑

j=1

askij cos(θj−θi)(ωj−ωi).

Similar to (3.5), one has

D+D(ω(t))≤−Csk cosD∞D(ω(t))≤−C̃ cosD∞D(ω(t)), for t∈ [T,tk+1),

which implies that

D+D(ω(t))≤−C̃ cosD∞D(ω(t)), for t≥T.
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This leads to

D(ω(t))≤D(ω(T ))e−C̃cosD∞(t−T ), for t≥T.

This completes the proof of Theorem 3.6.
Analogous to Proposition 3.5, the following proposition shows that we can enlarge

the value of the coupling strength C̃ so as to make the phase diameter be smaller than
any given positive constant ε. We omit its proof since it is very similar to the proof
of Proposition 3.5.

Proposition 3.8. Let the conditions of Theorem 3.6 be satisfied. For any given

ε>0, if

C̃>
D(Ω)D∞

εsinD∞
,

then there exists a time T ′>0 such that

D(θ(t))≤ ε, for t≥T ′.

Appendix A.  Lojasiewicz inequality. In the sixties,  Lojasiewicz [17] (see also
[18]) proved the following fundamental inequality for gradient systems of analytic
functions.

Theorem A.1. Suppose that f : D⊆R
n→R is analytic in the open set D. Let x̄ be

a critical point of f , i.e., ∇f(x̄) = 0. Then there exist r>0, c>0, and θ∈ (0,1) such

that

‖∇f(x)‖≥ c|f(x)−f(x̄)|θ for all x∈B(x̄,r).

Based on the above  Lojasiewicz inequality,  Lojasiewicz obtained the following
result. For the convenience of the reader, we give the proof.

Theorem A.2. Consider the gradient system

ẋ(t) =−∇f(x) (A.1)

where x(t)∈R
n and f : R

n→R is real analytic function. If x(t) has a limit point

x0, i.e., x(tn)→x0 for some sequence tn→∞, then we have x(t)→x0 as t→∞.

Moreover, x0∈M ={x : ∇f(x) = 0}, and therefore ẋ(t)→0 as t→∞.

Proof. For the solution x(t) of (A.1), we have

d

dt
f(x(t)) = 〈∇f,ẋ(t)〉=−‖∇f(x(t))‖2≤0. (A.2)

Thus, the function f(x(t)) is decreasing with respect to t. Since x(tn)→x0, we
have f(x(tn))→f(x0), which implies that f(x(t))→f(x0) as t→∞. Without loss of
generality, we assume f(x0) = 0 (if not, replace f(x(t)) by f(x(t))−f(x0)). That is,
limt→∞f(x(t)) = 0. Next, we prove limt→∞x(t) =x0.

By Theorem A.1, there exist r>0, c>0 and θ∈ (0,1) such that

‖∇f(x)‖≥ c|f(x)|θ, for x∈B(x0,r). (A.3)
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Let h(t) = [f(x(t))]
1−θ

. Then h(t) is decreasing function of time t and limt→0h(t) = 0.
As a result, we can find a time tN such that for any t≥ tN ,

|h(t)−h(tN )|

c(1−θ)
≤

r

3
(A.4)

and

‖x(tN )−x0‖<
r

3
.

Define

T = inf {t≥ tN : x(t) /∈B(x0,r)} .

Then T >tN . Next we prove that T = +∞.
For t∈ [tN ,T ), by (A.2) and (A.3) we have

h′(t) = (1−θ)[f(x(t))]−θ d

dt
f(x(t))

=−(1−θ)[f(x(t))]−θ‖∇f(x(t))‖2

≤−c(1−θ)‖∇f(x(t))‖,

which implies that

∫ t

tN

‖∇f(x(s))‖ds≤−
1

c(1−θ)

∫ t

tN

h′(s)ds=
1

c(1−θ)
(h(tN )−h(t))≤

r

3
.

Therefore,

∫ t

tN

‖ẋ(s)‖ds=

∫ t

tN

‖∇f(x(s))‖ds≤
r

3
for t∈ [tN ,T ). (A.5)

Suppose that T <+∞. Then

‖x(T )−x0‖=

∥

∥

∥

∥

∥

x(tN )+

∫ T

tN

ẋ(s)ds−x0

∥

∥

∥

∥

∥

≤‖x(tN )−x0‖+

∫ T

tN

‖ẋ(s)‖ds

≤
2

3
r.

This is in contradiction with the definition of T . Hence we have T = +∞. It fol-
lows from (A.5) that ‖ẋ(t)‖∈L1(0,+∞), which implies that limt→+∞x(t) exists. By
limn→+∞x(tn) =x0, we have limt→+∞x(t) =x0. From the fact

∫ ∞

tN

‖∇f(x(s))‖ds<+∞,

it follows that

liminf
t→+∞

‖∇f(x(t))‖= 0.

Thus, the continuity of ∇f(x) implies that ∇f(x0) = 0, i.e., x0∈M . This completes
the proof.
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