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CROSSOVER OF THE COARSENING RATES IN DEMIXING OF

BINARY VISCOUS LIQUIDS∗

FELIX OTTO† , CHRISTIAN SEIS‡ , AND DEJAN SLEPČEV§

Abstract. We consider a model for phase separation in binary viscous liquids that allows for
material transport due to cross-diffusion of unlike particles and convection by the hydrodynamic
bulk flow. Typically, during the evolution, the average size of domains of the pure phases increases
with time — a phenomenon called coarsening. Siggia [Eric D. Siggia, Phys. Rev. A, 20(2), 595–605,
Aug. 1979] predicts that at an initial stage, coarsening proceeds mainly by diffusion, which leads to
the well-known evaporation-recondensation growth law ℓ∼ t1/3, when ℓ denotes the average domains
size and t denotes time. Furthermore, he argued that at a later stage, convection by the bulk flow
becomes the dominant transport mechanism, leading to a crossover in the coarsening rates to ℓ∼ t.
Siggia’s predictions have been confirmed by experiments and numerical simulations.

In this work, we prove the crossover in the coarsening rates in terms of time-averaged lower
bounds on the energy, which scales like an inverse length. We use a method proposed by Kohn
and the first author [Robert V. Kohn and Felix Otto, Commun. Math. Phys., 229(3), 375–395,
2002], which exploits the gradient flow structure of the dynamics. Our adaption uses techniques
from optimal transportation. Our main ingredient is a dissipation inequality. It measures how the
optimal transportation distance changes under the effects of convective and diffusive transport.
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1. Introduction

We investigate the coarsening rates in the demixing process of binary viscous
liquids. Demixing in liquid mixtures typically arises when the mixture is put into a
thermodynamically unstable state far from an equilibrium, for instance, after a quench
from a high to a sufficiently low temperature. Thermodynamics favors the separation
of the two phases. This drives the formation of microstructure: Initially, the mixture
demixes locally by forming intertwined domains of the two pure phases. The free
energy concentrates along the interface between these domains. In the subsequent
evolution, the system tends to equilibrium by reducing the interfacial area. During
this coarsening process the length scales describing the configuration (such as the
average domain width) grow.

In binary viscous liquids, there are two parallel transport mechanisms. Material is
transported by cross-diffusion, the relative motion of the two different species through
the bulk, and by convection, the material transport by the bulk flow. It turns out
that each transport mechanism becomes dominant during a certain time interval in
the demixing process. Initially, demixing is mediated mainly by diffusion. Later on,
as the domains become large enough, viscous forces in the liquid become effective and
the flow transport becomes the more efficient mechanism.

We are interested in the rate at which the coarsening of the domain morphology
proceeds. Generically, the system develops a typical length scale ℓ that describes the
typical width of the domains of the pure phases. Therefore, the coarsening rate is
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measured by the growth rate of ℓ. In 1979, in a seminal paper [22], Siggia argued
that during the first, diffusion-dominated regime, the coarsening rate behaves like
ℓ∼ t1/3 — the well-known coarsening law from the evaporation-recondensation process
(Ostwald ripening) studied by Lifshitz, Slyozov, and Wagner [14, 29]. Siggia predicted
that at a later stage, the dominance of convection leads to a crossover of the coarsening
rate to ℓ∼ t. Siggia’s coarsening rates have been confirmed in numerical simulations
[2, 11, 20, 25] and physical experiments [6, 30, 31, 13]; see also the discussion in
Section 3.

In this paper, we rigorously establish Siggia’s coarsening rates in the form of
weak upper bounds: We show that coarsening cannot proceed faster than ℓ. t1/3

for diffusion-mediated and subsequently ℓ. t for convection-mediated transport. The
coarsening rates come in the form of time-averaged lower bounds on the energy den-
sity; for a discussion on the energy scaling, see page 447.

Our mathematical investigation of the crossover of the coarsening rates fuses
together the individual results on coarsening rates for purely diffusive transport [12]
and for purely convective transport [4]. We apply the general method introduced in
[12]. There are two questions that arise. One concerns the technique:

Can the method of [12] be adapted to capture the crossover of coars-
ening rates which reflect two different transport regimes?

The second issue is more fundamentally related to the nature of the system:

Can the bulk transport mechanism sufficiently “help” the diffusive
transport during the stage when the later is dominant, for the coars-
ening rate to be affected (and vice versa)?

Below we answer the first question affirmatively and the second negatively.
Recently, Dai, Niethammer, and Pego [8] obtained rigorous results on the

crossover of coarsening rates from attachment-limited to diffusion-limited dynamics
as it occurs in rapid solidification of melts. They too used the framework of [12]. In
addition to being a different system and a mean-field-type approximation (we work
with a phase-field model), a significant difference from our work here is that in [8], the
system features two limiting dissipation mechanisms rather than two transport mech-
anisms. The authors prove the crossover from ℓ∼ t1/2 in the regime of attachment
dynamics to ℓ∼ t1/3 in the regime of diffusion dynamics. The presence of two limiting
dissipation mechanisms slows down the coarsening process, ℓ∼min{t1/2,t1/3}, while
the presence of two transport mechanisms speeds it up, ℓ∼max{t1/3,t}.

The paper is organized as follows: In Section 2 we introduce the model, both
in the diffuse-interface and the sharp-interface formulation. In Section 3 we present
a heuristic argument for the rates of coarsening and determine at what length scale
should the crossover occur. In Section 4 we state the main result. We present the
technique used and state the propositions that combine to establish the main result.
In Section 5 we present several results on how the optimal transportation distance
changes under the effects of (convective and diffusive) transport. These results are
needed to establish the propositions of Section 4, but are of independent interest
as well. In Section 6 we present the detailed proofs of the statements of Section 4.
Finally in Appendix A, we prove an optimal-transportation result that we need. Let
us also mention that an extended version of the paper which contains a discussion
on well-posedness and regularity (in three space dimensions) of the system of PDE
describing the demixing process is available both as a CNA preprint and as an MPI
preprint [18].
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2. The models

We present our results in detail for the diffuse-interface model. The dynamics
are described in terms of an order parameter (or phase field), which measures the
local composition of the mixture. The order parameter varies smoothly between the
pure phases, as is expected in diffusive systems. We also introduce the sharp-interface
model, which depicts the thermodynamics on a mesoscopic level. As the name sug-
gests, the diffuse interface is replaced by a sharp borderline between the domains of
the pure phases, where the order parameter is supposed to be constant. This approxi-
mation is justifiable in many systems if the typical domain size is much larger than the
interfacial width; see for example [19, 3, 5, 1]. While for the diffuse-interface model the
questions of well-posedness and regularity can be answered by standard techniques,
the well-posedness theory for the sharp-interface model remains open. Nevertheless,
since the sharp-interface system allows for a clear heuristic argument for the crossover
of the rate of coarsening, we introduce it and briefly comment on the results on the
coarsening of that system as well.

We consider the problem in a periodic setting. Let Ω⊂R
d, d≥2, be the cell of

periodicity of all functions considered. We assume that

|Ω|≫1.

Since we are always working with averages, the system size, i.e., the volume of Ω,
will not enter in our analysis. For any measurable set A⊂Ω, we write −

∫

A
= 1

|Ω|

∫

A
for

convenience.
The mathematical quantity that models the physical configuration is the order

parameterm, which describes the local composition of the mixture. It takes the values
±1 in the stable phases. For symmetry reasons, m takes value zero where both phases
are mixed in equal measure. Since we exclude chemical reactions, the total mass of
each phase is conserved during the evolution. We consider the critical mixture, where
both phases occupy the same volume fraction, so that

m :=−

∫

Ω

mdx=0.

The case m 6=0 can be treated analogously.

Below we introduce the models. For a more detailed introduction of the models
as well as an explanation of their gradient-flow structure, we refer to [4].

2.1. Diffuse-interface model. We begin with the introduction of the model
for diffuse interfaces. The free energy, averaged over cell Ω, is given by the Ginzburg-
Landau functional with the classical double-well potential:

E(m) := −

∫

Ω

1

2
|∇m|2+

1

2
(1−m2)2dx. (2.1)

It favors the values m=1 and m=−1, representing the pure phases, and penalizes
transitions between these values. It is nondimensionalized in such a way that the
typical transition layer between the domains of the pure phases is of order one, and
thus much smaller than the system size. The L2 derivative of the energy is the
chemical potential

µ :=
∂E

∂m
= −∆m−2(1−m2)m. (2.2)
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Since the order parameter must be conserved, the evolution equation for m comes
in the form of a local conservation law, ∂tm+∇·J = 0. Due to the two paral-
lel transport mechanisms, the transporting flux combines diffusion and convection,
J =λJdiff+Jconv, where λ measures the relative strength of the diffusion flux com-
pared to the convection flux. The flux due to cross-diffusion is given by Jdiff = −∇µ,
and the flux due to fluid convection is Jconv = mu, where u denotes the fluid velocity.
It obeys a Stokes equation:

−∆u+∇p=−m∇µ,

∇·u=0,
(2.3)

in which p is the hydrodynamic pressure. The forcing term which acts on u is deter-
mined by the “principle of virtual work”: It guarantees that the dissipation due to
convection is given by the Stokes friction term (cf. (2.5)). Summing up, the demixing
process is described by the equation

∂tm−λ∆µ+∇·(mu)=0, (2.4)

where µ is given by (2.2) and u solves the Stokes Equation (2.3). This model is
nondimensionalized and permits — besides the size of the system— one dimensionless
parameter: λ. Well-posedness and smoothness of solutions, for the physically relevant
dimensions d=2,3, can be established using the standard energy based methods. We
do not present them in this paper. However an extended version of the paper that
contains the proofs of these results is available [18].

Direct calculation shows that the energy dissipation rate is

dE

dt
= −−

∫

Ω

λ|∇µ|2+ |Du|2dx. (2.5)

2.2. Sharp-interface model. On the mesoscopic level, m takes only the
values which characterize the pure phases, i.e., m=±1. The energy concentrates
on the interface and is proportional to its area (length in two space dimensions). A
straightforward computation of the energy of the one-dimensional interfacial profile
determines the prefactor 4

3 . We thus define

E(m) :=
4

3
×

1

2
−

∫

Ω

|∇m|dx =
2

3
−

∫

Ω

|∇m|dx. (2.6)

Let Ω+ be the subset of Ω where m takes value 1, and Ω− the subset where m=−1.
Let Γ=∂Ω+. We denote the mean curvature of Γ by H, with the convention that H
is nonnegative along convex boundaries ∂Ω+.

The chemical potential µ is given by

−∆µ=0 in Ω\Γ,

µ=
2

3
H on Γ.

(2.7)

The fluid velocity u solves the following Stokes equation in which S=(Du+(Du)T )−
pI is the stress tensor, p is the hydrodynamic pressure, τ is any tangent vector to Γ,
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and ν is the outside (relative to Ω+) unit normal vector to Γ:

−∇·S=0 in Ω\Γ,

∇·u=0 in Ω,

τ [Sν]=0 on Γ,

ν[Sν]=−
4

3
H on Γ.

(2.8)

In the above system, [A] denotes the jump in quantity A across Γ.

Again, the order parameter m is transported by the total flux. That is, the
interface Γt moves with normal velocity

V =−
1

2

[

∂µ

∂ν

]

+u ·ν. (2.9)

While the second term in the velocity is just the transport by the bulk flow, the first
term is well known from the Mullins-Sekerka law. Notice that this sharp interface
version of (2.3)&(2.4) is — besides the system size — free of dimensionless parameters.
This comes from the fact that there is no length scale that corresponds to interfacial
width. Thus, in any statements in which λ appears and that apply to sharp interfaces,
one should set λ=1.

3. Heuristics

In this section, we present a simple heuristic argument in favor of the two coars-
ening rates. A fairly neutral starting point for demixing studies is an almost uniform
state corresponding to full mixing, say m≈0. This configuration is unstable and lin-
ear analysis and numerical simulations (cf. [4]) indicate that a wavelength of order
one grows the fastest. A natural assumption on the typical domain size ℓ at the onset
of coarsening is therefore

ℓ & 1. (3.1)

It is expected, as such behavior is ubiquitous in related energy-driven systems, that
in large systems, the evolution of the characteristic length scale obeys a power law:

ℓ(t) ∼ tγ .

The coarsening exponent γ is determined by the dominant material transport mecha-
nism. We argue that γ=1/3 for diffusion-mediated and γ=1 for convection-mediated
transport.

The heuristics are based on the assumption that the coarsening evolves statisti-
cally self-similarly in the interfacial regime. This means

|Fm(t, ·)(k)|2 ≈ f(tγk), (3.2)

for some structure function f and every wave number k. Above, Fm denotes the
Fourier transform of m, i.e., Fm(k)=−

∫

Ω
m(x)eik·xdx. Such a behavior is suggested

by numerical simulations, but, to our knowledge, there are no rigorous results in this
direction.

In order to determine the different coarsening exponents, we treat the underlying
dominant transport mechanisms separately. We consider the sharp-interface models.
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In the purely diffusive system, the evolution of the interface Γ is the Mullins–Sekerka
law

V = −
1

2

[

∂µ

∂ν

]

on Γ,

where µ is the chemical potential defined via (2.7). Solutions are invariant under the
scaling

x = αx̂, t = α3t̂, (3.3)

and therefore, assuming statistical self-similarity,

f(tγk)
(3.2)&(3.3)

≈ |Fm(α3t,α·)(k)|2 = |Fm(α3t, ·)(α−1k)|2 ≈ f((α3t)γ(α−1k)),

which yields γ=1/3, since α is arbitrary. Thus

ℓ(t) ∼ (λt)1/3,

To illustrate the λ-dependence of the coarsening rate, observe that in the purely
diffusive version of (2.4), λ can be absorbed into the time scale via the transformation
t̂=λt.

In the purely convective system, the evolution of the interface Γ is

V = u ·ν,

where u solves (2.8). Solutions are invariant under the scaling

x = αx̂, t = αt̂.

This implies, assuming statistical self-similarity, by a similar computation as above,

ℓ(t) ∼ t.

Comparing both coarsening rates, we expect the crossover from the diffusion-domi-
nated to the convection-dominated regime at time and length, respectively, to be

tcrossover ∼ λ1/2, ℓcrossover ∼ λ1/2. (3.4)

In particular, in view of (3.1), we may think of λ≥1 in order to treat a crossover
situation.

The heuristic argument presented in this section and the rigorous results in the
remainder of this paper apply in any space dimension larger than or equal to two, in
particular in the physically important case of three dimensions. However, in dimen-
sion two, the validity of the convection-dominated growth law is under controversy in
the physics literature. There are basically two positions. On the one hand, in [21], the
authors claim that in two dimensions, the curvature-driven Stokes flow induced by
(2.8) does not yield the appropriate evolution law of the interface, and therefore, the
linear growth law ℓ∼ t does not hold. The argument is based on the investigation of
Rayleigh instabilities in two dimensional hydrodynamic fluids; linear stability analysis
indicates that long cylindrical tubes of fluid surrounded by fluid of different density
are stable under long wavelength perturbations — as opposed to the situation in three
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dimensions. Therefore, the authors deduce that convective coarsening is not possible.
It is suggested that in two dimensions the linear coarsening rate is replaced by ℓ∼ t1/2

corresponding to droplet coalescence. This scaling law has also been numerically ob-
served [26, 15]. On the other hand, the author of [9] explains the discrepancy of
the coarsening rates in two and three dimensions by the occurrence of many isolated
spherical domains in two dimensions, for which the hydrodynamic bulk flow is not
effective, and which coarsen therefore according to the evaporation-recondensation
growth law ℓ∼ t1/3. This thesis is supported by the numerical computation of dif-
ferent measures of length scales (different moments of the structure function). As a
particular consequence, in two dimensions, the presence of a sole characteristic length
scale is questionable (the largest domains, however, still show linear coarsening be-
havior). In three dimensions, one observes a rich connectivity among the domains, so
that the accumulation of isolated droplets is less apparent. Despite this unsatisfactory
ambiguity in the state of the art in 2-d coarsening of binary viscous fluids, the present
work contributes to the discussion, proving that, even in two space dimensions, coars-
ening cannot proceed faster than ℓ∼ t in the convective regime (more precisely, we
show that the interfacial area cannot decrease too fast).

4. Results and method

Let us rigorously state our main results. We focus on the diffuse-interface setting,
that is, we consider the energy density defined in (2.1), and the (gradient flow) dy-
namics given by (2.3)&(2.4). When it might be of interest, we also shortly comment
on the corresponding sharp-interface versions of our results.

Our main result, Theorem 4.1 below, describes a crossover in the coarsening rates
from ℓ∼ (λt)1/3 in a diffusion dominated regime to ℓ∼ t in a convection dominated
regime. The result comes in the form of time-averaged lower bounds on the energy
density (see the discussion on page 448). Before presenting Theorem 4.1, we still need
some preparation.

Our analysis uses two different notions of intrinsic length scales, a geometric one
and a physical one. The canonical candidate for a geometric length scale is the inverse
energy density of the system, which, because

E ≈ energy of one-dimensional interfacial layer×
area of interface

volume of system

(cf. (2.6)), indeed scales like a length (heuristically at least). The physical length
scale is defined via a transportation distance, which we call a Monge–Kantorovich–
Rubinstein distance (MKR distance) in its most abstract form, and which will be
introduced presently.

For any two measures θ,ϑ on Ω, with θ(Ω)=ϑ(Ω) the MKR distance dc with cost
c is defined by

dc(θ,ϑ) := inf
π∈Π(θ,ϑ)

−

∫

−

∫

Ω×Ω

c(x,y)dπ(x,y),

where Π(θ,ϑ) is the set of all couplings between θ and ϑ, that is, the set of all measures
π on Ω×Ω such that

π(A×Ω)=θ(A) and π(Ω×B)=ϑ(B) for all measurable sets A,B.

Here, we use the notation −
∫

−
∫

A×B
= 1

|Ω|

∫∫

A×B
for any measurable sets A and B.
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With the cost function c defined by

c(z) :=

{

λ−1/2z 0≤ z≤λ1/2,
1+lnz− lnλ1/2 λ1/2≤ z,

(4.1)

and

m+ :=max{m,0} and m− :=max{−m,0},

we set

L :=dc(m+,m−). (4.2)

As we shall explain later, the latter can be considered a physical length of the system.
Let Ω=[0,Λ]d. For z∈R

d we set ‖z‖=min{|z+Λ(α1e1+ · · ·αded)| : α1, . . . ,αd∈Z},
where ei are unit coordinate vectors. Note that if Ω is considered as a flat torus
then the distance between x and y in Ω is ‖x−y‖. We use c(x,y)= c(‖x−y‖) as a
symbol for both a function from Ω×Ω→ [0,∞) and a function from [0,∞)→ [0,∞)
as it is clear from the argument which one is considered. Note that, since m=0, we
have −

∫

Ω
m+(x,t)dx=−

∫

Ω
m−(x,t)dx for all t≥0. We remark that for m 6=0, one would

consider (m−m)+ and (m−m)−.

Before motivating the definition of c and commenting on the interpretation of L
as a physical length in our dynamical system, we present our main result and discuss
the analytical method we apply.

Theorem 4.1. Let E(m(0))≪1 and L(m(0))≪1. Then

∫ T

0

max{λ1/2E2,E}dt &

∫ T

0

min

{

λ1/2
1

(λt)2/3
,
1

t

}

dt

for all T such that λ−1/2T≫L(m(0))3.

Remark 4.2. The above result, with λ=1 and without any assumption on E(m(0)),
also holds for the sharp interface system under the assumption that the sharp-interface
system has smooth enough solutions.

We use the sloppy notation “&” and “≫” to indicate that the inequality holds
up to a generic constant which may depend on the space dimension only, provided

that E(m(0)) and L(m(0)) are sufficiently small and λ−1/2T
L(m(0))3 is sufficiently large. In

particular, the statement in Theorem 4.1 is uniform in L(m(0)) and λ, and we formally
obtain the individual results from [12] (pure diffusion) and [4] (pure convection) in
the asymptotic limits λ≫1 and λ≪1, respectively.

The result of Theorem 4.1 above is in agreement with the physical prediction in
[22]. Indeed, since the normalized energy scales like an inverse length (see discussion
above) and assuming that there is only one length scale present in the dynamics, a
lower bound on the energy can be interpreted as an upper bound on the coarsening
rate. As other results based on the technique of [12], our analysis produces only time-
averaged and only lower bounds on the energy. (A counter-example for a pointwise
version of the coarsening rates derived within this method is given in the original
paper [12, Remark 4].) The condition on T gives a bound for the minimal size of
the time interval over which the coarsening rates are averaged. Also, we have no
rigorous arguments to precisely determine the crossover time in terms of λ. Our
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result has to be read as follows: The initial configuration must be chosen such that
its typical length scale is at least of order one, 1≪ 1

E(m(0)) , to ensure that we start

within the interfacial regime, i.e., the mixture is separated into two domains of the
two phases; but the typical length scale of the initial configuration is well below the
crossover length, L(m(0))≪1 (recall that for small length scales, L is normalized
by λ1/2), cf. (3.4). The diffusive regime, E≫ 1

λ1/2 and t≪λ1/2, is only relevant if

λ≥1. If so, the above result is a time-averaged version of E& 1
(λt)1/3

, since in this

situation max{λ1/2E2,E}=λ1/2E2 and min
{

λ1/2

(λt)2/3
, 1t

}

= λ1/2

(λt)2/3
. Likewise, in the

regime E≪ 1
λ1/2 and t≫λ1/2, our result is a time-averaged version of E& 1

t .
We want to remark that upper bounds on coarsening rates are quite different

from lower bounds. There are configurations, like parallel planar layers, that do not
coarsen at all, or do so exponentially slowly. Therefore, lower bounds depend strongly
on the initial data and can only be generically true.

The method we apply in our analysis was first introduced in [12]. It exploits the
gradient flow structure of the dynamics. In fact, the dynamical system (2.3)&(2.4)
(or analogously (2.7)–(2.9)) can be interpreted as a gradient flow for the metric tensor

g(δm,δm)

= inf
j,u

{

−

∫

Ω

1

λ
|j|2dx+−

∫

Ω

|Du|2dx
∣

∣

∣
δm+∇·(j+mu)=0,∇·u=0

}

, (4.3)

cf. [4, Section 1.4]. The method of [12] now translates bounds on the energy landscape,
i.e., information on how fast the energy can decrease as a function of a distance
(originally, the distance induced by the metric tensor) to some reference configuration,
to bounds on the dynamics, i.e., bounds on how fast the energy decreases as a function
of time. The method consists mainly of three ingredients: an energy dissipation
inequality, an interpolation (or isoperimetric) inequality, and an ODE argument.

The main contribution of this work is the dissipation inequality.

Proposition 4.3 (Dissipation inequality). Let m be a solution of (2.4). Assume
that E(m(0)).1. Then L is an absolutely continuous function and for a.e. t≥0,

d

dt
L(t) .

(

−

∫

Ω

λ|gradµ|2+ |Du|2dx

)1/2

.

The statement with λ=1 holds for the sharp interface system as well, again provided
that it has regular enough solutions. We may also drop the condition on the initial
energy.

The interpolation inequality we obtain holds for a very broad range of cost func-
tions. It represents a diffuse-interface counterpart of the one proved in [4]. One should
note that the interpolation inequality for the sharp interface case does not require an
assumption on energy smallness.

Proposition 4.4 (Interpolation inequality). Let c be monotonically increasing
with c(0)=0. Let m∈L2(Ω) with m=0. Assume E(m)≪1. Then there exists a
constant c0, dependent on the space dimension only, such that

dc(m+,m−) & c

(

1

c0E(m)

)

.
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Finally, we state the ODE argument. The inhomogeneous form of the time av-
erages in the statement of Proposition 4.5 is due to the particular feature of the
argument, which only allows for Lq averages in time, with 1<q<3 in the diffusive
regime (for convenience, we choose q=2), and q=1 in the convective regime, in order
to capture the explicit form of the cost function c from the interpolation inequality in
the particular regimes. Notice that in our formulation of the ODE argument below,
we have absorbed c0 and the constants from the inequalities in Propositions 4.3 & 4.4
into E, L, and the new constant C.

Proposition 4.5 (ODE argument). Let E(t) and L(t) be two absolutely contin-
uous, nonnegative functions satisfying

dL

dt
≤ C

(

−
dE

dt

)1/2

for a.e. t, (4.4)

and

L ≥

{

1
λ1/2E

if 1≤λ1/2E,

1+ln 1
λ1/2E

if 1≥λ1/2E.
(4.5)

Assume that 2L(0)≤1. Then there is a constant C̃ such that

∫ T

0

max{λ1/2E2,E}dt ≥
1

C̃

∫ T

0

min

{

λ1/2
1

(λt)2/3
,
1

t

}

dt,

for any T such that λ−1/2T ≥L(0)3.

Now we come back to the definition of c, (4.1), and the interpretation of L, (4.2),
as a physical length scale. A natural choice of the physical length scale is related to
the gradient flow structure of the dynamics: In a gradient flow, the metric tensor
encodes the limiting dissipation mechanisms. In particular, the geodesic distance in-
duced by the metric tensor measures the minimal amount of energy that is dissipated
when “moving” from one point in configuration space to another. However, in our
situation, the induced distance with metric tensor defined in (4.3) is not known explic-
itly. Therefore, we construct a proxy L(m) that is bounded by the induced distance.
The idea of approximating induced distance functions by MKR distances has been
introduced in [16, 10].

We now motivate the choice of c. The cost function has to be chosen in such a
way that the MKR distance is dominated by the induced distance function. In the
purely diffusive setting, the induced distance reduces to the H−1 norm. Though in
this situation a proxy is not necessary, the authors of [12] use a slightly weaker norm,
the H−1,∞ norm, which is equivalent to the Monge–Kantorovich distance (i.e., the
MKR distance with cost function given by the Euclidean distance c(z)= z), in order
to treat simultaneously the case of surface diffusion (diffusion along the interfacial
layer in contrast to diffusion through the bulk). In the purely convective setting,
the induced distance is due to the viscous dissipation, i.e., −

∫

Ω
|gradu|2dx. Since the

dissipation mechanism only controls the gradient of the convecting velocity, it is not
surprising that the cost functional in the MKR distance can only grow logarithmically:
In the finite dimensional analogue, trajectories of a Lipschitz vector field can diverge
exponentially fast. This idea is exploited in [4]. Since our goal is to prove the crossover
in the coarsening rates from diffusion- to convection-mediated coarsening, we combine
the cost function from [12] and [4]: We use the Euclidean distance as cost function for
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distances smaller (measured in terms of E) than the crossover length, 1
E ∼λ1/2, cf.

(3.4), and the logarithmic cost function for distances larger than the crossover length.
A key insight of our work is that combining the cost appropriately for the two

problems corresponding to separate transport mechanisms works for the problem in
which the transport mechanisms are combined.

We remark that there is a subtle but nontrivial difference from [4] in the definition
of L, dc(m+,m−) is used instead of dc(m+1,1). The quantity above is more natural
for the problem considered. Furthermore the change is necessary since there are no
known L∞ bounds onm which are uniform in time (and which one could use to findM
such that m+M ≥0 and then consider dc(m+M,M)). However, the total integrals
of m+ and m− change in time, which needs to be accounted for when computing dL

dt
for example.

MKR distances have been successfully introduced as proxies for the induced dis-
tance function in the framework of [12] in two further situations: In [23], the author
considers a Wasserstein distance (i.e., an MKR distance with cost function given by
the square of the Euclidean distance) to prove an upper bound on the coarsening
rates in a non-local, degenerate Cahn–Hilliard equation modeling biological aggrega-
tion and phase segregation in binary alloys. In [17], a model for viscous thin films
is under consideration, in which droplet configurations coarsen by Ostwald ripening
and droplet collision. The evolution is given by a Cahn–Hilliard-type equation, and
the induced distance is the Wasserstein distance.

5. Effect of material transport on optimal transportation distances

We establish estimates on how much the optimal transportation distances be-
tween fluid components change if the fluid is perturbed. We consider two sources
of perturbation: mass redistribution via a flux j and bulk transport via a velocity
vector field u. Since this situation is of general interest, in this section j and u are
not assumed to be given by a model of demixing. Furthermore we do not assume the
regularity of j and u, so that the result applies to systems where only weak solutions
are known to exist. More precisely, we consider m to be a (distributional) solution of

∂tm+∇·j+∇·(mu) = 0

on a torus Ω, where j and u are given.

Effect of bulk transport on optimal transportation distances was considered in [4,
Lemma 1]. We state the result below and refer to [4] for a proof.

Lemma 5.1. Assume that c : [0,∞)−→ [0,∞) is smooth and nondecreasing, with c(0)=
0. We denote the associated cost function by the same letter: c(x,y)= c(‖x−y‖),
where ‖x−y‖ denotes the distance on Ω considered as a torus. Let u be a C1 vector
field with period cell Ω. Let m1,m2∈C(0,T ;L

1(Ω)) be two distributional solutions of

∂tmi+∇·(miu) = 0,

such that m1(0)(Ω)=m2(0)(Ω). Then

d̄+

dt
dc(m1(t),m2(t))≤−

∫

−

∫

Ω×Ω

c′(‖x−y‖)∇x‖x−y‖·(u(x,t)−u(y,t))dπ(t),

where π(t) is an optimal transportation plan with cost c between m1(t) and m2(t) and
d̄±

dt is the one-sided upper derivative, i.e.,

d̄+

dt
f(t) := limsup

h→0+

f(t+h)−f(t)

h
.
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The analogous result holds for the one-sided lower derivative.

When applying the above lemma to the demixing problems, we have in mind m
being the order parameter of average 0 and set m1=m+ and m2=m−. The main
difference between the situation considered in [4] and the one here is that the total
mass of m+, that is m+(t)(Ω), is not constant in time in the diffuse-interface case.
This is entirely due to the transport by flux j. The following lemma contains the
essential estimate to handle that element. It is an integral version of the estimate on
the rate of change of the transportation distance.

Lemma 5.2. Let c : [0,∞)−→ [0,∞) be smooth and nondecreasing, with c(0)=0. Fur-
thermore assume that c is subadditive and that c′(0)≤1. Let m be an L2 function on
Ω and j an H1 vector field. Let m′=m+∇·j. Then

dc(m
′
+,m

′
−)−dc(m+,m−) ≤ −

∫

Ω

|j|dx.

Proof. Note that since c is subadditive, nondecreasing, and c(0)=0, the function
c(x,y)= c(‖x−y‖) defines a metric on Ω. This enables us to use Lemma A.1 in the
Appendix to conclude

dc(m
′
+,m

′
−) ≤ dc(m

′
++m−,m

′
−+m+)+dc(m+,m−).

Observe that dc(m−,m+)=dc(m+,m−). Let d1 be the Monge–Kantorovich distance,
that is the optimal transportation distance corresponding to the Euclidean distance
cost. Since c is subadditive and c′(0)≤1, it holds that c(z)≤ z for all z≥0. Therefore

dc(m
′
++m−,m

′
−+m+) ≤ d1(m

′
++m−,m

′
−+m+).

We now recall the following representation formula for d1 (see [27, page 38]):

d1(m,m
′) = inf

{

−

∫

Ω

|j̃|dx : ∇· j̃=m′−m

}

. (5.1)

On the one hand, this implies that

d1(m
′
++m−,m

′
−+m+) = d1(m+−m−,m

′
+−m′

−) = d1(m,m
′).

On the other hand, we have the estimate

d1(m,m
′) ≤ −

∫

Ω

|j|dx.

Gathering the inequalities above we conclude that

dc(m
′
+,m

′
−) ≤ −

∫

Ω

|j|dx+dc(m+,m−).

We now combine the results of Lemma 5.1 and Lemma 5.2 and generalize them
to apply to less regular vector fields.

Lemma 5.3. Let c : [0,∞)−→ [0,∞) be C1 and concave and such that c(0)=0 and
c′(0)≤1. Assume that u is vector field in L1(0,T ;L2(Ω,Rd)) and j is a vector field in
L1(0,T ;L1(Ω,Rd)). Let m∈C(0,T ;L2(Ω)) be a distributional solution of

∂tm+∇·j+∇·(mu)=0
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with m=0. Let L(t)=dc(m+(t),m−(t)). Then for all t∈ [0,T ) and h∈ (0,T − t),

L(t+h)−L(t)

≤

∫ t+h

t

−

∫

Ω

|j(x,s)|dxds

+

∫ t+h

t

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(u(x,s)−u(y,s))dπ(s)ds, (5.2)

where π(s) is an optimal transportation plan, for cost c, between m+(s) and m−(s).

From (5.2) and the assumptions on j,u, and m, it follows that L is an absolutely
continuous function. That allows us to use the (a.e.) derivative of L in the subsequent
calculations.

Proof.

Step 1. Assume that u and j are C1 vector fields. To be able to separately account
for the effects of the two transport mechanisms, we introduce for any t∈ [0,T ) the
solution ρt of

∂sρt+∇·(ρtu) = 0 on Ω× [t,T ],

ρt(t) = m(t).

Let σt(s)=m(s)−ρt(s). When the subscript t is clear from the context, we will
omit it. To estimate the change of the transportation distance, we separate the
contributions that come from the two transport mechanisms. In particular, by Lemma
A.1 in the Appendix A and ρt(t)=m(t), we have for 0<h<T − t and ρ=ρt,

dc(m+(t+h),m−(t+h))−dc(m+(t),m−(t))

≤dc(ρ+(t+h),ρ−(t+h))−dc(ρ+(t),ρ−(t))

+dc(ρ+(t+h)+m−(t+h),ρ−(t+h)+m+(t+h)).

Now (5.2) follows from the two estimates

dc(ρ+(t+h),ρ−(t+h))−dc(ρ+(t),ρ−(t))

≤

∫ t+h

t

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(u(x,s)−u(y,s))dπ(s)ds (5.3)

and

dc(ρ+(t+h)+m−(t+h),ρ−(t+h)+m+(t+h))

≤

∫ t+h

t

−

∫

Ω

|j(x,s)|dxds+o(h). (5.4)

Indeed, dividing by h and taking the limit h→0 establishes the upper bound for
d̄+

dt L(t) for every t∈ [0,T ). Integrating in time then gives (5.2).

Obviously, by the definition of ρ, (5.3) is a direct consequence of Lemma 5.1. We
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now argue in favor of (5.4). We estimate

dc(ρ+(t+h)+m−(t+h),ρ−(t+h)+m+(t+h))

≤d1(ρ+(t+h)+m−(t+h),ρ−(t+h)+m+(t+h))

=d1(ρ(t+h),m(t+h))

=d1(σ(t+h),0)

≤

∫ t+h

t

−

∫

Ω

|j(x,s)|+ |σ(x,s)u(x,s)|dxds,

where we used c(z)≤ z, the representation of the d1 distance given in (5.1), and the
fact that σ satisfies

∂sσ+∇·j+∇·(σu) = 0,

with σ(t)=0. We have to show that the second term on the right hand side of
the above inequality is of higher order. To do so, we multiply the equation by σ;
integrating by parts gives for s≥ t:

d

ds

1

2
‖σ(s)‖2L2(Ω) ≤ ‖j(s)‖H1(Ω)‖σ(s)‖L2(Ω)+

1

2
−

∫

Ω

σ(s)2|∇·u|dx.

Above and in the rest of this proof, all the norms (‖·‖L2(Ω), ‖·‖H1(Ω), etc.) are
rescaled by the size of the domain. Dividing by ‖σ(s)‖L2(Ω) yields

d

ds
‖σ(s)‖L2(Ω) ≤ C(j,u)(1+‖σ(s)‖L2(Ω)),

where C=C(j,u) is a constant involving the C1 bounds on j and u. By Gronwall’s
inequality,

‖σ(s)‖L2(Ω) ≤ exp(C(s− t))−1

for all s∈ [t,T ]. Therefore

∫ t+h

t

−

∫

Ω

|σ(x,s)u(x,s)|dxds = o(h).

Step 2. Consider j∈L1(0,T ;L1(Ω)), with u still assumed to be C1. Let ηε be a stan-
dard mollifier in space and time. Consider the interval [t,t+h]⊂ (0,T ). Convolving
with ηε, where Ω is considered as a torus, gives that mε :=m∗ηε is a solution of

∂tmε+∇·(mεu)+∇· j̃ε = 0 on Ω× [t,t+h],

where j̃ε := j ∗ηε−mεu+(mu)∗ηε. Note that j̃ε is C1 and thus the assumptions of
Step 1 are satisfied. Let for s∈ [t,t+h], Lε(s) :=dc(mε+(s),mε−(s)), and let πε(s) be
an optimal transportation plan between mε+(s) and mε−(s). We have

Lε(t+h)−Lε(t)

≤

∫ t+h

t

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(u(x,s)−u(y,s))dπε(s)ds

+

∫ t+h

t

−

∫

Ω

|j̃ε(x,s)|dxds.
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Since mε+(s)→m+(s) and mε−(s)→m−(s) in L
2(Ω) as ε→0, we conclude Lε(t)→

L(t) and Lε(t+h)→L(t+h) as ε→0.
Regarding the term involving the velocity u: For any s∈ [t,t+h],

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(u(x,s)−u(y,s))d(πε(s)−π(s)) → 0 as ε→0, (5.5)

since πε(s)−π(s)→0 weakly in the sense of measures due to stability of optimal
transportation plans (see Theorem 5.20 in [28]). Assumptions on c imply that 0≤
c′(z)≤1 for all z≥0. Thus

∣

∣

∣

∣

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(u(x,s)−u(y,s))d(πε(s)−π(s))

∣

∣

∣

∣

≤−

∫

−

∫

Ω×Ω

|u(x,s)|+ |u(y,s)|d(πε(s)+π(s))

=−

∫

Ω

|u(x,s)|(mε+(x)+m+(x))dx+−

∫

Ω

|u(y,s)|(mε−(y)+m+(y))dy,

which enables us to use the dominated convergence theorem to obtain the integral-
in-time form of (5.5).

Since j̃ε→ j in L1(0,T ;L1(Ω)) as ε→0, convergence of the term involving j̃ε
follows as well. So (5.2) follows in the ε→0 limit.

Step 3. Now consider u∈L1(0,T ;L2(Ω)) and j∈L1(0,T ;L1(Ω)). Again let [t,t+
h]⊂ (0,T ). Let ηε be a mollifier in space and time and let uε :=u∗ηε. Then m∈
C(0,T ;L2(Ω)) is a distributional solution of

∂tm+∇·(muε)+∇·(j+m(u−uε)) = 0 on Ω× [t,t+h].

Let jε := j+m(u−uε). Note that jε, uε satisfy the assumption of Step 2. To take the
limit ε→0 of

L(t+h)−L(t)

≤

∫ t+h

t

−

∫

Ω

|jε(x,s)|dx

+−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(uε(x,s)−uε(y,s))dπ(s)ds,

it suffices to observe that jε→ j in L1(0,T ;L1(Ω)) as ε→0,

∣

∣

∣

∣

−

∫

−

∫

Ω×Ω

c′(x−y)∇x‖x−y‖·(uε(x,s)−u(x,s)−(uε(y,s)−u(y,s))dπ(s)ds

∣

∣

∣

∣

≤−

∫

Ω

|uε(x,s)−u(x,s)|m+(x,s)dx+−

∫

Ω

|uε(y,s)−u(y,s)|m−(y,s)dy,

integrate in time and use the fact that uε→u in L1(0,T ;L2(Ω)) and m+, m−∈
L∞(0,T ;L2(Ω)).

For the case t=0, the result follows in the limit of the result on intervals [δ,δ+h],
due to continuity of both sides of (5.2) with respect to t.
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6. Proof of the upper bound on coarsening rate

6.1. Dissipation Inequality. We now turn to the proof of Proposition 4.3.
It relies on the main result from the previous section, Lemma 5.3, which measures
the effect of diffusive and convective material transport on transportation distances.
Our proof follows closely the one of [4, Proposition 2.2], which in turn was inspired
by estimates derived by Crippa & DeLellis in [7, Theorem 2.1 resp. Theorem 3.3].

Proof. [Proof of Proposition 4.3] We apply Lemma 5.3 with c replaced by λ−1/2c.
Then c′(0)≤1 and c′(z)≤ 1

z , and we have for a.e. t≥0

d

dt
L(t) ≤ −

∫

Ω

1

λ1/2
|j|dx+−

∫

−

∫

Ω×Ω

|u(x)−u(y)|

|x−y|
dπ,

where π is any optimal transport plan with respect to cost c between m+(t) and
m−(t). Recall that j=−λ∇µ in our setting. Thus

−

∫

Ω

1

λ1/2
|j|dx ≤

(

−

∫

Ω

λ|∇µ|2dx

)
1
2

.

The estimate for the contribution coming from convective transport is exactly the one
from [4, Proposition 2]. For the convenience of the reader, we repeat the argument.
The proof is based on maximal functions, M(f)(x)=supr>0

1
|Br|

∫

Br(x)
|f |dx, cf. [24].

Maximal functions have the following basic properties:

|f(x)−f(y)| . (M(Df)(x)+M(Df)(y))|x−y|,

and

−

∫

Ω

|Mf |2dx . −

∫

Ω

|f |2dx.

Using these properties of Mf , we have

−

∫

−

∫

Ω×Ω

|u(x)−u(y)|

|x−y|
dπ

.−

∫

−

∫

Ω×Ω

(M(Df)(x)+M(Df)(y))dπ

.−

∫

Ω

M(Du)(m++m−)dx

.

(

−

∫

Ω

M(Du)2dx

)
1
2
(

−

∫

Ω

m2dx

)
1
2

.

(

−

∫

Ω

|Du|2dx

)
1
2

.

Above we used that

−

∫

Ω

m2dx=−

∫

{|m|>2}

m2dx+−

∫

{|m|≤2}

m2dx

≤−

∫

{|m|>2}

(1−m2)2dx+−

∫

{|m|≤2}

22dx

≤E+4 . 5,
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since E≤E(m(0)).1. Combining the estimates above and the expression for the
energy dissipation, (2.5), gives the desired estimate.

For the sharp-interface model, we no longer assume that E.1. Also recall that
we take λ=1. The proof is entirely analogous to the diffuse-interface case, so we do
not present the details.

6.2. Interpolation Inequality. The interpolation inequality for sharp-
interfaces is the one proved in [4, Proposition 3]. The one for diffuse interfaces can
be proved similarly. It requires the additional result that the domain is essentially di-
vided into phases. We present a proof below for completeness. We also remark that an
alternative proof of the inequality follows from the proof of Theorem 6 (and Corollary
7) in [23] (in particular Step 5 and Step 6 imply that in any coupling between m+ and
m− a significant proportion of the mass has to be transported over distances at least
of size 1/E, which implies the inequality). Recall that the interpolation inequality
was stated in Proposition 4.4.

Proof. [Proof of Proposition 4.4] We introduce some notations. We denote by
A the set essentially occupied by one phase, and by χ its indicator function. More
precisely,

A=
{

x∈Ω :m(x)≥
1

2

}

and χ=χA.

Furthermore, let hW denote some constant satisfying

W (m) ≥

{

2hW (|m|−1) for |m|≥ 3
2 ,

hW for |m|≤ 1
2 .

Here, W (m) denotes the potential energy, W (m) := 1
2 (1−m

2)2. (It is easy to check
that hW = 9

32 is optimal.) We first claim that

‖A‖ :=
|A∩Ω|

|Ω|
& 1. (6.1)

We split the phase space according to

1=−

∫

{m≤− 1
2
}

(m+1)dx+−

∫

{− 1
2
<m< 1

2
}

(m+1)dx

+−

∫

{ 1
2
≤m≤ 3

2
}

(m+1)dx+−

∫

{ 3
2
<m}

(m+1)dx

≤
1

2
+

3

2
−

∫

{− 1
2
<m< 1

2
}

1dx+
5

2
‖A‖+−

∫

{ 3
2
<m}

(m−1)dx+2

∥

∥

∥

∥

{

3

2
<m

}∥

∥

∥

∥

≤
1

2
+

3

2hW
−

∫

Ω

W (m)dx+
5

2
‖A‖+

1

2hW
−

∫

Ω

W (m)dx+2‖A‖

≤
1

2
+

2

hW
−

∫

Ω

W (m)dx+
9

2
‖A‖.

We can rewrite the estimate as 1≤ 4
hW

E+9‖A‖. Due to the assumption E(m)≪1,
this implies (6.1).
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In the sequel, the superscript R denotes the convolution with a standard mollifier
supported in the ball of radius R. From (6.1) and the definition of A we find

1 . −

∫

Ω

χdx . −

∫

Ω

χmdx,

which we split according to

1 . −

∫

Ω

χ(m−mR)dx+−

∫

Ω

χmRdx. (6.2)

For the first term in (6.2), we proceed as in [12]. Defining

U(m) :=

∫ m

0

|1−m̃2|dm̃,

we have dU
dm = |1−m2|, and thus

−

∫

Ω

|∇(U(m))|dx=−

∫

Ω

|∇m|
dU

dm
dx

≤ −

∫

Ω

1

2
|∇m|2+

1

2

(

dU

dm

)

dx = E. (6.3)

On the other hand, by the definition of U(m), it holds (m1−m2)
2. |U(m1)−U(m2)|,

so that

∣

∣

∣

∣

−

∫

Ω

χ(m−mR)dx

∣

∣

∣

∣

.
1

δ
−

∫

Ω

(m−mR)2dx+δ−

∫

Ω

χ2dx

≤
1

δ
sup
|y|≤R

−

∫

Ω

(m(x)−m(x+y))2dx+δ

.
1

δ
sup
|y|≤R

−

∫

Ω

|U(m(x))−U(m(x+y))|dx+δ

.
R

δ
−

∫

Ω

|∇(U(m))|dx+δ.

Thanks to the Modica–Mortola estimate (6.3), we obtain

∣

∣

∣

∣

−

∫

Ω

χ(m−mR)dx

∣

∣

∣

∣

.
R

δ
E+δ. (6.4)

For the second term in (6.2), we argue as in [4]. We have, for any admissible transfer
plan π,

−

∫

Ω

χmRdx=−

∫

Ω

χRmdx

=−

∫

Ω

χRm+dx−−

∫

Ω

χRm−dx

=−

∫

−

∫

Ω×Ω

(

χR(x)−χR(y)
)

dπ(x,y).
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To estimate the last term, we must deal separately with transport over large and small
distances:

∣

∣

∣

∣

−

∫

Ω

χmRdx

∣

∣

∣

∣

≤ −

∫

−

∫

{|x−y|≤r}

|χR(x)−χR(y)|dπ(x,y)

+−

∫

−

∫

{|x−y|<r}

|χR(x)−χR(y)|dπ(x,y).

(6.5)

For the small distances, we find

∣

∣

∣

∣

∣

−

∫

−

∫

{|x−y|≤r}

|χR(x)−χR(y)|dπ(x,y)

∣

∣

∣

∣

∣

≤ sup |∇χR|−

∫

−

∫

{|x−y|≤r}

|x−y|dπ(x,y) .
r

R
. (6.6)

For large distances, we use the monotonicity of c:

∣

∣

∣

∣

∣

−

∫

−

∫

{|x−y|>r}

|χR(x)−χR(y)|dπ(x,y)

∣

∣

∣

∣

∣

≤2sup |χR|
1

c(r)
−

∫

−

∫

Ω×Ω

c(|x−y|)dπ(x,y) .
dc(m+,m−)

c(r)
. (6.7)

Substituting (6.6) and (6.7) in (6.5) we conclude

∣

∣

∣

∣

−

∫

Ω

χmRdx

∣

∣

∣

∣

.
r

R
+
dc(m+,m−)

c(r)
. (6.8)

In view of (6.4) and (6.8), inequality (6.2) turns into

1 .
RE

δ
+
r

R
+
dc(m+,m−)

c(r)
+δ.

Choosing δ sufficiently small and optimizing in R yields

2

(

1

c0

)1/2

≤ (rE)1/2+
dc(m+,m−)

c(r)
,

when we reintroduce some constant c0. Choosing r=
1
c0E

, this becomes

(

1

c0

)1/2

≤
dc(m+,m−)

c
(

1
c0E

) ,

which is the desired estimate of Proposition 4.4.

6.3. ODE argument. In this section, we provide the proof of Proposition
4.5.

Proof. [Proof of Proposition 4.5] By rescaling

E=λ−1/2Ê, L= L̂, t=λ1/2t̂,
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we may without loss of generality assume that λ=1. We set for abbreviation:

c(s) :=

{

s for s≤1
1+lns for s≥1

}

,

(which is our cost function in the definition of L with λ=1,)

f(e) :=

{

e for e≤1
e2 for e≥1

}

= max{e2,e},

and

g(e) := c

(

1

e

)

=

{

1+ln 1
e for e≤1

1
e for e≥1

}

.

Notice that g and f are related by

g′(e) =

{

− 1
e for e≤1

− 1
e2 for e≥1

}

= −
1

f(e)
.

Hence, as long as L(T )≥2L(0), we have

L(T ) ≤ 2(L(T )−L(0)) = 2

∫ T

0

dL

dt
dt,

and thus, applying (4.4), (4.5), and the definition of g,

g(E(T )) ≤ C̃

∫ T

0

(

−
dE

dt

)1/2

dt,

where C̃ denotes a generic constant whose value may change from line to line. Without
loss of generality, we may assume that C̃≥1. With the help of the Cauchy–Schwarz
inequality, this estimate turns into

g(E(T )) ≤ C̃

(

∫ T

0

1

f(E)

(

−
dE

dt

)

dt

∫ T

0

f(E)dt

)1/2

. (6.9)

By the relation between f and g, it is

1

f(E)

(

−
dE

dt

)

= g′(E)
dE

dt
=

d

dt
g(E),

and thus

∫ T

0

1

f(E)

(

−
dE

dt

)

dt = g(E(T ))−g(E(0)) ≤ g(E(T )),

so that (6.9) implies

g(E(T )) ≤ C̃

(

g(E(T ))

∫ T

0

f(E)dt

)1/2

,
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or equivalently

g(E(T )) ≤ C̃

∫ T

0

f(E)dt.

We rewrite this estimate as an implicit ODE for h(T ) :=
∫ T

0
f(E)dt:

(g◦f−1)(h′(T )) ≤ C̃h(T ).

Since g is a decreasing and f−1 an increasing function, the above inequality is equiv-
alent to

h′(T ) ≥ (f ◦g−1)(C̃h(T )).

Let F be the antiderivative of 1
f◦g−1 with F (0)=0. An easy calculation shows

F (z) =

{

1
3z

3 for z≤1
exp(z−1)− 2

3 for z≥1

}

.

Then the above inequality can be rewritten as

d

dT
F (C̃h(T )) ≥ C̃,

which turns into

F (C̃h(T )) = F (C̃h(T ))−F (C̃h(0)) ≥ C̃T
C̃≥1

≥ T

after integration. Since F is an increasing function, this can be paraphrased as

C̃h(T )≥F−1(T )

=

{

(3T )1/3 for T ≤ 1
3

1+ln
(

T + 2
3

)

for T ≥ 1
3

}

∼

∫ T

0

min

{

(

1

t1/3

)2

,
1

t

}

dt.

By the definition of h, this turns into

∫ T

0

max{E2,E}dt ≥
1

C̃

∫ T

0

min

{

(

1

t1/3

)2

,
1

t

}

dt. (6.10)

We now argue for the case that L(T )≤2L(0). By (4.5), we have

c

(

1

E(T )

)

≤ L(T ) ≤ 2L(0).

Since 2L(0)≤1, it is c
(

1
E(T )

)

≤1, and thus c
(

1
E(T )

)

= 1
E(T ) . Consequently, the above

estimate can be rewritten as

1

E(T )
≤ L(T ) ≤ 2L(0).
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Since L(0)≤T 1/3, it is

1

E(T )
≤ 2T 1/3,

and since E(t) is an decreasing function, this implies

E(t) ≥ E(T ) ≥
1

2T 1/3
,

for all 0≤ t≤T . We square both sides and integrate in time:

∫ T

0

max{E2,E}dt≥

∫ T

0

E2dt

≥
1

4
T 1/3

=
1

12

∫ T

0

(

1

t1/3

)2

dt

≥
1

12

∫ T

0

min

{

(

1

t1/3

)2

,
1

t

}

dt. (6.11)

It remains to combine (6.10) and (6.11) to conclude the proof of Proposition 4.5.
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Appendix A. Here we establish some properties of optimal transportation dis-
tances.

Lemma A.1. Let c :Ω×Ω−→ [0,∞) be a metric on Ω. Then for all positive measures
θ1,θ2,ϑ1, and ϑ2, such that θ1(Ω)=ϑ1(Ω) and θ2(Ω)=ϑ2(Ω),

dc(θ1,ϑ1) ≤ dc(θ1+θ2,ϑ1+ϑ2)+dc(θ2,ϑ2).

Proof. By Kantorovich duality, cf. [27, Theorem 1.3],

dc(θ1,ϑ1) = sup
{φ,ψ |φ(x)+ψ(y)≤c(x,y)}

−

∫

Ω

φdθ1+−

∫

Ω

ψdϑ1.

Furthermore it is enough to consider pairs such that φ and ψ are c-duals of each other,
for instance

ψ=φc and φ=ψc,

where the c-duals are defined as

φc(y)= inf
x∈Ω

{c(x,y)−φ(x)} and ψc(x)= inf
y∈Ω

{c(x,y)−ψ(y)}.
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We claim that if φ=ψc for some ψ then for all x1,x2∈Ω,

|φ(x1)−φ(x2)| ≤ c(x1,x2). (A.1)

To see this, note that by the definition of ψc, for any ε>0 and x1,x2∈Ω there exists
x′1 such that

φ(x1) ≥ c(x1,x
′
1)−ψ(x

′
1)−ε.

Therefore

φ(x2) ≤ c(x2,x
′
1)−ψ(x

′
1) ≤ c(x2,x

′
1)−c(x

′
1,x1)+φ(x1)+ε ≤ c(x1,x2)+φ(x1)+ε.

Letting ε→0 and using symmetry in x1,x2 allows us to conclude (A.1). By similar
arguments, based on (A.1), we prove that

−φ(x)−ψ(y) ≤ c(x,y).

We deduce that

−

∫

Ω

φdθ1+−

∫

Ω

ψdϑ1

=−

∫

Ω

φd(θ1+θ2)+−

∫

Ω

ψd(ϑ1+ϑ2)−

(

−

∫

Ω

φdθ2+−

∫

Ω

ψdϑ2

)

≤dc(θ1+θ2,ϑ1+ϑ2)+−

∫

−

∫

Ω×Ω

c(x,y)dπ2(x,y).

It remains to optimize in φ, ψ, and π2.

REFERENCES
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