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STRONG SOLUTIONS AND INVISCID LIMIT FOR BOUSSINESQ

SYSTEM WITH PARTIAL VISCOSITY∗

LUCAS C.F. FERREIRA† AND ELDER J. VILLAMIZAR-ROA‡

Abstract. We consider the convection problem of a fluid with viscosity depending on tempera-
ture in either a bounded or an exterior domain Ω⊂R

N ,N =2,3. It is assumed that the temperature
is transported without thermal conductance (dissipation) by the velocity field which is described by
the Navier-Stokes flow. This model is commonly called the Boussinesq system with partial viscosity.
In this paper we prove the existence and uniqueness of strong solutions for the Boussinesq system

with partial viscosity with initial data in W
2− 2

p
,p
(Ω)×W 1,q(Ω). For a bounded domain Ω, we also

analyze the inviscid limit problem when the conductivity in the fully viscous Boussinesq system goes
to zero.
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1. Introduction

The Boussinesq equations of hydrodynamics describe the evolution of the velocity
u of an incompressible fluid caused by forces depending on variations of the tempera-
ture θ, which is transported with or without diffusion. When the kinematic viscosity
ν and heat conductivity coefficient κ are strictly positive constants, the Boussinesq
system is given by the coupled PDEs







∂tu−ν∆u+u ·∇u+∇π=θf in QT ,
div u=0 in QT ,

∂tθ−κ∆θ+u ·∇θ=0 in QT ,
(1.1)

where QT ≡Ω×(0,T ). Here Ω⊆R
N (N ≥2) represents the domain in which the fluid

is occurring and (0,T ) stands for a time existence interval. The function π :QT →R

denotes the pressure and f :QT →R
N is a given external field, usually the gravitational

force.
The system (1.1) has been widely analyzed from the mathematical viewpoint and

many results on existence, regularity and asymptotic behavior have been proved (see
for instance [23, 6, 25, 14, 15, 16, 29, 18, 1, 5] and references therein). In these
references, the reader can find global well-posedness results in the 2D case, global
existence of weak solutions and local existence of strong solutions in the 3D case,
regularity results for weak solutions, existence of asymptotically self-similar solutions,
and stability results in several singular frameworks.

In this paper we are interested in the study of Boussinesq systems under the
following two considerations. The first case is when the temperature is transported
with no dissipation by the velocity field, that is, κ=0 in (1.1). This situation is
of great interest due to applicability in several geophysical phenomena as well as its
close connection with fundamental models such as Euler and Navier- Stokes equations

∗Received: September 14, 2011; accepted (in revised form): June 22, 2012. Communicated by
Alexander Kiselev.
L.C.F. Ferreira was supported by FAPESP and CNPq, Brazil.

†Universidade Estadual de Campinas, Departamento de Matemática, Rua Sérgio Buarque de
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(see e.g. [28, 26, 24, 3, 10, 20, 7, 11, 19]). The second consideration is when the
kinematic viscosity ν depends on temperature. The variation of the viscosity with
the temperature may be important to a better description of the flow. Indeed, it is
known that the viscosity of a typical liquid decreases with temperature whereas that
of a typical gas increases (see [17]). The corresponding Boussinesq model describing
the above two considerations is given by







∂tu−div(ν(θ)(∇u+∇∗u))+u ·∇u+∇π=θf in QT ,
div u=0 in QT ,

∂tθ+u ·∇θ=0 in QT ,
(1.2)

where the viscosity ν is a function ν :R→ (0,∞) with ν(ξ)≥ν0>0 for all ξ∈R, and
ν0 is a constant. We also assume ν(x)=k2+ ν̃(x) with k2 a positive constant and ν̃
satisfying the below condition (1.6), which is compatible with ν(ξ)≥v0 (see Remark
1.1). The symbol ∇∗ denotes the transpose of the operator ∇. The system (1.2) is
completed with the following initial and boundary conditions:

{

(u,θ)|t=0=(u0,θ0) in Ω,
u=0 on ΓT =∂Ω×(0,T ).

(1.3)

In this paper we consider N =2,3 and Ω⊆R
N being either a bounded or an exterior

domain with boundary ∂Ω smooth enough. These two kind of domains correspond to
important physical situations. In particular, the case of an exterior domain to a sphere
of radius R is relevant in order to study the convection of a viscous incompressible
fluid in the exterior of a ball heated through its surface |x|=R (see e.g. [14, 18]).
In the case of bounded domains, it is common to take f =−g0~eN where g0 is the
gravitational constant. Recently, several authors have studied the system (1.2) on
the whole space R

N with f =−g0~eN , and interesting results have been obtained for
instance in [10, 20, 7, 11, 19]. However, a more physical situation is to consider the
origin of the gravitational force outside the fluid domain, which occurs when self-
gravitation effects are neglected (see [13]). Corresponding to such condition, one has
an exterior domain Ω and f(x)≈g0∇(1/|x|) for |x| large. In Remark 1.1 we comment
how to cover the case f(x)= g0∇(1/|x|).

Among others, the work [13] obtained existence theory and long-time behavior of
solutions for the full viscous Oberbeck-Boussinesq approximation in exterior domains
with both kinematic viscosity ν >0 and the heat conductivity coefficient κ>0 being
constant (see the system (1.4) below). Indeed, as far as we know, only a few works
are devoted to the study of the Boussinesq system with partial viscosity (κ=0) in
bounded or exterior domains. For instance, we have found in the literature the work
[22] where the authors studied the existence of classical solutions for (1.2)-(1.3) with
v>0 being a constant, Ω a bounded domain, and H3-initial data (see also [8] for
v=0).

We focus on the question of finding unique local strong solutions for (1.2)-(1.3)

with initial data (u0,θ0) belonging to W 2− 2
p ,p(Ω)×W 1,q(Ω) and Ω being either a

bounded or an exterior domain. Our results are obtained by means of an iterative
approach combined with recent results due to Abels [2] for general nonstationary
Stokes systems in unbounded domains (see Lemma 2.3). In order to perform the
iterative scheme, we need to obtain a stability result in the W 1,p-framework for an
associated transport equation (see Lemma 2.2). Afterwards, we consider the inviscid
limit of local strong solutions, when 0≤κ(θ)≤ κ̃ and κ̃→0, for the fully Boussinesq
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system with viscosity depending on temperature in a bounded domain Ω, which reads
as







∂tu−div(ν(θ)(∇u+∇∗u))+u ·∇u+∇π=θf in QT ,
div u=0 in QT ,

∂tθ−div(κ(θ)(∇θ))+u ·∇θ=g in QT .
(1.4)

The inviscid limit when κ(θ) is constant, that is κ(θ) ≡ κ̃→0, was discussed in [7] in
the framework of Hm(R2)×Hm(R2).

1.1. Main results. Before stating the main results, we introduce some
function spaces. Throughout this paper we use the classical notations and results of
Sobolev spaces W k,p(Ω). The letter c represents a positive constant that may change
from line to line.

For 1≤p<∞, and 0<T <∞, let E2,1
p,T be the Banach space of functions u∈

Lp(0,T ;W 2,p(Ω)) such that ∂tu∈L
p(QT ) :=L

p(0,T ;Lp(Ω)) endowed with the norm:

‖u‖E2,1
p,T

:=‖∂tu‖Lp(QT )+‖u‖Lp(QT )+‖∇u‖Lp(QT )+‖∇(∇u)‖Lp(QT ).

It is known that the space E2,1
p,T ⊂C([0,T ];W 2− 2

p ,p(Ω)), with continuous embedding,

where W 2− 2
p ,p(Ω) :=(Lp(Ω),W 2,p(Ω))1− 1

p ,p
.

Our main result reads as follows:

Theorem 1.1. Let 0<T <∞, N <p≤ q<∞, f ∈Lp(QT ), u0∈W
2− 2

p ,p(Ω), u0|∂Ω=
0, with div u0=0 and θ0∈W

1,q(Ω). Assume that ν :R→ (0,∞) satisfies 0<ν0≤ν,
ν ∈C1(R) with ν′(0)=0 and

|ν′(a)−ν′(b)|≤k1|a−b|, for all a,b∈R, (1.5)

where ν0,k1 are positive constants. Moreover, suppose that ν(x)=k2+ ν̃(x) with k2 a
positive constant and

ν̃(ω)∈C([0,T ];W 1,q(Ω)) when ω∈C([0,T ];W 1,q(Ω)). (1.6)

Then there is 0<T ′≤T and a unique solution (u,∇π,θ)∈E2,1
p,T ′ ×Lp(QT ′)×

C([0,T ′];W 1,q(Ω)) for (1.2)-(1.3) in QT ′ . Moreover, there exists a positive constant
L0 such that if ‖f‖Lp(QT )+‖u0‖

W
2− 2

p
,p
(Ω)

≤L0, then T
′=T.

Remark 1.1.

1. In Theorem 1.1, the condition (1.6) does not imply ν(θ(x,t))∈
C([0,T ];W 1,q(Ω)) when Ω is unbounded, because k2 is a positive constant.
Notice that it is compatible with the restriction 0<ν0≤ν and is necessary in
order to apply a result of Abels in [2].

2. In several applications, it is common to consider the gravitational force par-
allel to the xN -coordinate when Ω is a bounded domain Ω, that is, f =−g0~eN .
This approximation is covered in Theorem 1.1. For an exterior domain Ω with
0 /∈Ω, we can take f(x)=g0∇(1/|x|) where g0>0 is the gravitational con-
stant. In fact, in this case we have f(x)∈L(N/2,∞)(Ω)∩L∞(Ω)⊂Lp(Ω), for
p∈ (N/2,∞), and then ‖f‖Lp(QT )=T

1/p‖f(x)‖Lp(Ω) . From a physical view-
point, this case can be regarded as a version of the Bénard problem in an
exterior domain.
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We also investigate whether the system (1.2)-(1.3) can be described as the limit
of the fully viscous Boussinesq system, when the heat conductivity coefficient κ goes
to zero. For that matter, we first establish an existence result of strong solutions for
the following full viscous Boussinesq system:







∂tu−div(ν(θ)(∇u+∇∗u))+u ·∇u+∇π = θf in QT ,
div u = 0 in QT ,

∂tθ−div(κ(θ)(∇θ))+u ·∇θ = g in QT ,
(1.7)

where κ depends on temperature and satisfies 0≤κ(θ)≤ κ̃, for some positive constant
κ̃. System (1.7) is completed with the following initial and boundary conditions:

{

(u,θ)|t=0 = (u0,θ0) in Ω,
u,θ = 0 on ΓT :=∂Ω×(0,T ).

(1.8)

Proposition 1.2. In addition to the assumptions of Theorem 1.1, let g∈Lp(QT )

and (u0,θ0)∈W
2− 2

p ,p(Ω)×W 2− 2
p ,p(Ω), div u0=0 and (u0,θ0)|∂Ω=(0,0). Then there

is 0<T ′≤T such that (1.7)-(1.8) has a unique strong solution (u,∇π,θ)∈E2,1
p,T ′ ×

Lp(QT ′)×E2,1
p,T ′ .

In the next theorem we analyze the heat conductivity vanishing problem for (1.7)-
(1.8) in the W 1,p×W 1,q-framework.

Theorem 1.3. Under the hypotheses of Theorem 1.1. Assume further that Ω is a

bounded domain and θ0∈W
2− 2

p ,p(Ω). Let (u1,∇π1,θ1) be the local strong solution
of (1.2)-(1.3) given by Theorem 1.1 and let (u2,∇π2,θ2) be the local strong solution
of (1.7)-(1.8) with 0≤κ(θ)≤ κ̃ and g=0 established in Proposition 1.2. There exists
a common existence time interval [0,T ′] for (u1,∇π1,θ1) and (u2,∇π2,θ2), such that
(u2,θ2) converges to (u1,θ1) as κ̃→0 in C([0,T ′];W 1,p(Ω)×W 1,q(Ω)).

2. Linear problems

2.1. Transport equation. We start by recalling a result about existence of
solutions for a transport equation connected to (1.2).

Lemma 2.1. ([9, 21]) Let u∈L1(0,T ;W 1,∞(Ω)) with div u=0 and u|∂Ω=0. Then, for
all θ0∈W

1,q(Ω) with q∈ [1,∞), there exists a unique solution θ∈C([0,T ];W 1,q(Ω)) of
the transport equation

{

∂tθ+u ·∇θ=0 in QT ,
θ|t=0=θ0 in Ω.

(2.1)

Moreover, θ satisfies the following estimate:

‖θ(t)‖W 1,q(Ω)≤‖θ0‖W 1,q(Ω)e
∫ t
0
‖∇u(s)‖L∞(Ω)ds, (2.2)

for all t∈ [0,T ].

The following lemma establishes a stability result of solutions for (2.1) with re-
spect to the velocity field u. In [12] the reader can find a stability result for renormal-
ized solutions in a weaker framework.



L.C.F. FERREIRA AND E.J. VILLAMIZAR-ROA 425

Lemma 2.2. Assume that N <p<∞ and 1≤ q≤∞. Let {un}n∈N be a sequence in
E2,1
p,T satisfying div un=0 and un|ΓT

=0, and let θn∈L∞(0,T ;W 1,q(Ω)) be the solution

of (2.1) with initial data θ0∈W
1,q(Ω) and velocity field un. If un converges to u

in L1(0,T ;W 1,∞(Ω)), then θn converges to θ in L∞(0,T ;W 1,q(Ω)), where θ is the
solution of (2.1) with initial data θ0∈W

1,q(Ω) and velocity field u.

Proof. The difference (un,θn)−(u,θ) satisfies the equation

{

∂t(θ
n−θ)+un ·∇(θn−θ) = −(un−u) ·∇θ in QT ,

(θn−θ)|t=0 = 0 in Ω.
(2.3)

Let us denote by ψ̃ the flow of the field un, that is,

∂ψ̃(τ,t,x)

∂τ
=un(ψ̃(τ,t,x),τ), ψ̃|τ=t=x. (2.4)

Because (θn−θ)|t=0=0, the equation (2.3)1 implies

(θn−θ)(x,t)=−

∫ t

0

(un−u) ·∇θ(ψ̃(s,ψ̃(s,x)−1))ds. (2.5)

Computing the Lq-norm in (2.5) and afterwards employing the Hölder inequality, we
obtain

‖θn(t)−θ(t)‖Lq(Ω)≤

∫ t

0

‖(un−u) ·∇θ‖Lq(Ω)ds

≤‖un−u‖L1(0,T ;L∞(Ω))‖∇θ‖L∞(0,T ;Lq(Ω))

≤ c‖un−u‖L1(0,T ;L∞(Ω)). (2.6)

Because un→u in L1(0,T ;W 1,∞(Ω)), the right hand side of (2.6) goes to zero, and
then

θn→θ in L∞(0,T ;Lq(Ω)).

Now we compute the norm L∞(0,T ;Lq(Ω)) of the difference ∇θn−∇θ. For n∈N, let
us take ̺n∈C

1
0 (Ω) such that ‖̺n−θ0‖W 1,q(Ω)<1/n. The solution θ̺n

∈C1(QT ) of

{

∂tθ̺n
+u ·∇θ̺n

=0 in QT ,
θ|t=0=̺n in Ω,

(2.7)

is given by the formula

θ̺n
(x,t)=̺n(ψ(0,t,x)),

where ψ(τ,t,x) is the solution of the Cauchy problem

∂ψ(τ,t,x)

∂τ
=u(ψ(τ,t,x),τ), ψ|τ=t=x, (2.8)

and t is an arbitrary number in [0,T ] (see [21]). Due to the linearity of the problem
(2.1) and estimate (2.2), we have

‖θ̺n
(t)−θ(t)‖L∞(0,T ;W 1,q(Ω))≤‖̺n−θ0‖W 1,q(Ω)e

∫ t
0
‖∇u(s)‖L∞(Ω)ds, (2.9)
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for all t∈ [0,T ]. Similarly, the solution θn̺n
for

{

∂tθ
n
̺n

+un ·∇θn̺n
=0 in QT ,

θ|t=0=̺n in Ω,
(2.10)

belongs to C1(QT ) and is given by

θn̺ (x,t)=̺n(ψ
n(0,t,x)),

where ψn(τ,t,x) is the solution of the Cauchy problem

∂ψn(τ,t,x)

∂τ
=un(ψn(τ,t,x),τ), ψn|τ=t=x. (2.11)

Furthermore

‖θn̺n
(t)−θn(t)‖L∞(0,T ;W 1,q(Ω))≤‖̺n−θ0‖W 1,q(Ω)e

∫ t
0
‖∇un(s)‖L∞(Ω)ds, (2.12)

for all t∈ [0,T ]. Notice that the map x 7→ψn(τ,t,x), where ψn is the solution of (2.11),
has Jacobian equal to one.

Computing the difference ∂θn̺n
/∂xi−∂θ̺n

/∂xi, we have the equality

∂θn̺n

∂xi
−
∂θ̺n

∂xi
=

n
∑

k=1

[∂̺n
∂xk

(ψn(0,t,x))−
∂̺n
∂xk

(ψ(0,t,x))
]∂ψn

k

∂xi
(0,t,x)

−
n
∑

k=1

∂̺n
∂xk

(ψ(0,t,x))[
∂ψk

∂xi
(0,t,x)−

∂ψn
k

∂xi
(0,t,x)].

Therefore

‖∇(θn̺n
−θ̺n

)‖L∞(0,T ;Lq(Ω))≤c‖∇̺n‖Lq(Ω)‖∇ψ
n(0,t,x)−∇ψ(0,t,x)‖L∞(QT )

+c‖∇ψn(0,t,x)‖L∞(QT )

×‖∇̺n(ψ
n(0,t,x))−∇̺n(ψ(0,t,x))‖L∞(0,T ;Lq(Ω)).

(2.13)

It follows from (2.8) and (2.11) that















ψ(τ,t,x) = x−

∫ t

τ

u(ψ(s,t,x),s)ds,

ψn(τ,t,x) = x−

∫ t

τ

un(ψn(s,t,x),s)ds.

(2.14)

Then, for τ ≤ t, we get

|ψn(τ,t,x)−ψ(τ,t,x)|≤

∫ t

τ

|un(ψn(s,t,x),s)−u(ψ(s,t,x),s)|ds

≤

∫ t

τ

|un(ψn(s,t,x),s)−un(ψ(s,t,x),s)|ds

+

∫ t

τ

|un(ψ(s,t,x),s)−u(ψ(s,t,x),s)|ds. (2.15)
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Observe that

|un(ψn(s,t,x),s)−un(ψ(s,t,x),s)|≤‖∇un(s)‖L∞(Ω)|ψ
n(s,t,x)−ψ(s,t,x)|, (2.16)

for almost every s∈ (0,T ). The inequalities (2.15) and (2.16) imply

|ψn(τ,t,x)−ψ(τ,t,x)|≤

∫ t

τ

‖∇un(s)‖L∞(Ω)|ψ
n(s,t,x)−ψ(s,t,x)|ds

+

∫ t

τ

|un(ψ(s,t,x),s)−u(ψ(s,t,x),s)|ds. (2.17)

In view of (2.17), we can use the Gronwall inequality to obtain

|ψn(τ,t,x)−ψ(τ,t,x)|≤ ce‖∇un‖L1(0,T ;L∞(Ω)) ×‖un−u‖L1(0,T ;L∞(Ω)).

Taking τ =0 in the last inequality we get

‖ψn(0,t,x)−ψ(0,t,x)‖L∞(QT )≤ce
‖∇un‖L1(0,T ;L∞(Ω)) ×‖un−u‖L1(0,T ;L∞(Ω))

→ 0, as n→∞. (2.18)

From (2.18) and the regularity of ̺n, we can conclude that the second term in the
right hand side of (2.13) goes to zero as n→∞.

Now we analyze the first one in the right hand side of (2.13). We have from (2.14)
that

∂ψn(τ)

∂xi
−
∂ψ(τ)

∂xi
=−

n
∑

k=1

∫ t

τ

∂un(τ)

∂xk
(ψn(s,t,x),s)

∂ψn(s,t,x)

∂xi
ds

+

n
∑

k=1

∫ t

τ

∂u(τ)

∂xk
(ψ(s,t,x),s)

∂ψ(s,t,x)

∂xi
ds

=−

n
∑

k=1

∫ t

τ

[

∂un(τ)

∂xk
(ψn(s,t,x),s)−

∂u(τ)

∂xk
(ψ(s,t,x),s)

]

∂ψn(s,t,x)

∂xi
ds

+

n
∑

k=1

∫ t

τ

∂u(τ)

∂xk
(ψ(s,t,x),s)

[

∂ψ(s,t,x)

∂xi
−
∂ψn(s,t,x)

∂xi

]

ds.

Therefore

|∇ψn(τ)−∇ψ(τ)|≤c

∫ t

τ

‖∇ψn(s)‖L∞(QT )‖∇u
n(s)−∇u(s)‖L∞(Ω)ds

+c

∫ t

τ

‖∇u(s)‖L∞(Ω)|∇ψ
n(s)−∇ψ(s)|ds.

Using the Gronwall inequality, it follows that

‖∇ψn(t)−∇ψ(t)‖L∞(QT )≤ce
‖u‖

L1(0,T ;W1,∞(Ω))

×

∫ t

0

‖∇ψn(s)‖L∞(QT )‖∇u
n(s)−∇u(s)‖L∞(Ω)ds

≤ce
‖u‖

L1(0,T ;W1,∞(Ω))‖un−u‖L1(0,T ;W1,∞(Ω))‖∇ψ
n(s)‖L∞(QT )

≤cTecT‖∇u‖L∞(QT )‖un−u‖L1(0,T ;W1,∞(Ω)).
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Because un→u in L1(0,T ;W 1,∞(Ω)), the first term of the right hand side of (2.13)
tends to zero as n→∞. Then, from the triangle inequality, (2.9), (2.12), and (2.13),
we obtain

‖∇θn−∇θ‖L∞(0,T ;Lq(Ω))≤‖∇θn−∇θn̺n
‖L∞(0,T ;Lq(Ω))+‖∇θn̺n

−∇θ̺n‖L∞(0,T ;Lq(Ω))

+‖∇θ̺n
−∇θ‖L∞(0,T ;Lq(Ω))→0, as n→∞.

2.2. Nonstationary Stokes equation with variable viscosity.

Lemma 2.3. Let N <p≤ q<∞, θ :QT →R, and ν :R→ (0,∞) be such that

0<ν0≤ν(θ)=k2+ ν̃(θ) with ν̃(θ)∈C([0,T ];W
1,q(Ω)),

where ν0 and k2 are positive constants. Assume also that h∈Lp(QT ) and u0∈

W 2− 2
p ,p(Ω) with u0|∂Ω=0 and div u0=0. Then there exists a unique solution (u,∇π)∈

E2,1
p,T ×Lp(QT ) for















∂tu−div(ν(θ(x,t))(∇u+∇∗u))+∇π=h in QT ,
div u=0 in QT ,

u=0 on ΓT ,
u|t=0=u0 in Ω.

(2.19)

Moreover,

‖u‖E2,1
p,T

+‖π‖E1,0
p,T

≤ C̃
(

‖h‖Lp(QT )+‖u0‖
W

2− 2
p
,p
(Ω)

)

. (2.20)

The constant C̃ >0 depends continuously on δ∈ [0,∞), where δ=
‖ν̃(θ)‖L∞(0,T ;W 1,q(Ω)). The dependence of C̃ on T is given only by means of
the norm ‖ν̃(θ)‖L∞(0,T ;W 1,q(Ω)).

Proof. First notice that C([0,T ];W 1,q(Ω))=BCU([0,T ];W 1,q(Ω)), because the
interval considered, [0,T ], is compact. Second, recall that the results of [2] cover both
smooth bounded and exterior domains Ω. Therefore we have that 0<ν0≤ν(θ(x,t))=
k2+ ν̃(θ(x,t)) with ν̃(θ(x,t))∈BCU([0,T ];W 1,q(Ω)), and then the proof of Lemma
2.3 follows as a particular case of [2, Theorem 1.1]. Observe that in our case we can
remove the condition p 6=3 in [2, Theorem 1.1] because we are considering a pure
Dirichlet boundary condition (see item 1 of Lemma 2.4 in [2]).

3. Proof of Theorem 1.1

3.1. Existence of strong solutions.

Proof. First step. We prove the existence of strong solutions for the problem
(1.2)-(1.3) by using successive approximations. Given u0=u0 and θ0=θ0, we define
recursively um,πm,θm, for m∈N, as the solution of the following system:























∂tu
m+1−div(ν(θm+1)(∇um+1+∇∗um+1))+∇πm+1 = θm+1f−um ·∇um in QT ,

div um+1 = 0 in QT ,
∂tθ

m+1+um ·∇θm+1 = 0 in QT ,
um+1 = 0 on ΓT ,

(um+1,θm+1)|t=0 = (u0,θ0) in Ω.
(3.1)
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Because um∈E2,1
p,T and p>N, it follows that um∈L1(0,T ;W 1,∞(Ω)). Since div(um)=

0, from Lemma 2.1, there exists θm+1∈C([0,T ];W 1,q(Ω))⊂L∞(QT ) such that

{

∂tθ
m+1+um ·∇θm+1 = 0 in QT ,

θm+1|t=0 = θ0 in Ω.

We have that θm+1f ∈Lp(QT ) for all m∈N. Moreover, the inclusion E2,1
p,T ⊂L∞(QT )

implies um ·∇um∈Lp(QT ). In view of θm+1∈C([0,T ];W 1,q(Ω)), we can apply Lemma
2.3 in order to obtain the existence of a unique solution (um,∇πm)∈E2,1

p,T ×Lp(QT )
for (3.1)1-(3.1)2. Thus, we get a sequence (um,∇πm,θm) whose elements satisfy (3.1)
and belong to the class

E2,1
p,T ×Lp(QT )×C([0,T ];W

1,q(Ω)).

In the sequel we obtain suitable uniform estimates for (um,∇πm,θm). Using that
θm+1∈L∞(0,T ;W 1,q(Ω))⊂L∞(QT ), we get from (2.20) that

‖um+1‖E2,1
p,T

+‖∇πm+1‖Lp(QT )≤C̃(‖u0‖
W

2− 2
p
,p
(Ω)

)

+ C̃(‖θm+1f‖Lp(QT )+‖um ·∇um‖Lp(QT ))

≤C̃(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θm+1‖L∞(QT )‖f‖Lp(QT )

+‖um ·∇um‖Lp(QT )). (3.2)

Notice also that

‖um ·∇um‖Lp(QT )≤ c‖u
m‖L∞(QT )‖∇u

m‖Lp(QT ). (3.3)

Moreover, for a=(p−N)/(2p−N)<1, we have the inequalities

‖∇um‖Lp(Ω)≤‖um‖W 1,p(Ω)≤ c‖u
m‖aW 2,p(Ω)‖u

m‖1−a
L∞(Ω). (3.4)

Then

∫ T

0

‖∇um‖pLp(Ω)dt≤ c‖u
m‖

(1−a)p
L∞(QT )

∫ T

0

‖um‖apW 2,p(Ω)dt. (3.5)

Now it follows from the Hölder inequality that

∫ T

0

‖um‖apW 2,p(Ω)dt≤

(

∫ T

0

1dt

)1−a(
∫ T

0

‖um(t)‖pW 2,p(Ω)dt

)a

≤T 1−a‖um‖ap
E2,1
p,T

≤T 1−a{‖um‖E2,1
p,T

+‖∇πm‖Lp(QT )}
ap. (3.6)

Using the estimate (3.5) we get

‖∇um‖Lp(QT )≤ c{‖u
m‖E2,1

p,T
+‖∇πm‖Lp(QT )}

1−aT
1−a
p {‖um‖E2,1

p,T
+‖∇πm‖Lp(QT )}

a

≤ cT
1−a
p {‖um‖E2,1

p,T
+‖∇πm‖Lp(QT )}, (3.7)
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which, together with (3.3), yields

‖um ·∇um‖Lp(QT )≤ c‖u
m‖L∞(QT )T

1−a
p {‖um‖E2,1

p,T
+‖∇πm‖Lp(QT )}

≤ cT
1−a
p {‖um‖E2,1

p,T
+‖∇πm‖Lp(QT )}

2. (3.8)

On the other hand, from estimate (2.2) we have

‖θm+1(t)‖W 1,q(Ω)≤‖θ0‖W 1,q(Ω)e
∫ t
0
‖∇um(s)‖L∞(Ω)ds, ∀t∈ [0,T ], m=1,2, ... (3.9)

Let us now denote

Ψm(t) :=‖um‖E2,1
p (Qt)

+‖∇πm‖Lp(Qt), t∈ [0,T ].

Coming back to the inequality (3.2), taking into account (3.8)-(3.9), and using Young’s
inequality, we can estimate

Ψm+1(t)≤ C̃(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θm+1‖L∞(Qt)‖f‖Lp(QT )+‖um ·∇um‖Lp(Qt))

≤ C̃(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θ0‖W 1,q(Ω)e
∫ t
0
‖∇um(s)‖L∞(Ω)ds‖f‖Lp(QT )+ t

1−a
p Ψm(t)2)

≤ C̃(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θ0‖W 1,q(Ω)e
c1t

1/p′Ψm(t)‖f‖Lp(QT ))+ C̃t
1−a
p Ψm(t)2

≤ C̃(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θ0‖W 1,q(Ω)‖f‖Lp(QT ))e
c1t

1/p′Ψm(t)+ C̃t
1−a
p Ψm(t)2.

(3.10)

According to Lemma 2.3, the constant C̃ depends continuously on the norm of ν̃(θm)
in C([0,T ];W 1,q(Ω)). Now, because θm satisfies the transport equation

∂tθ
m+1+um ·∇θm+1=0 in QT , θ

m+1|t=0=θ0,

we have that ν̃(θm+1) satisfies

∂t
(

ν̃(θm+1)
)

+um ·∇
(

ν̃(θm+1)
)

=0 in QT , ν̃(θ
m+1)|t=0= ν̃(θ0);

moreover, for all t∈ [0,T ],

‖ν̃(θm+1)(t)‖W 1,q(Ω)≤‖ν̃(θ0)‖W 1,q(Ω)e
∫ t
0
‖∇um(s)‖L∞(Ω)ds

≤‖ν̃(θ0)‖W 1,q(Ω)e
c1t

1/p′Ψm(t)

≤ cec1t
1/p′Ψm(t). (3.11)

Assume that Ψm(T ′)≤4cA, for T ′∈ (0,T ], where c is the absolute constant in (3.11),
and A>0 is independent of m and will be chosen later. It follows that

‖ν̃(θm)‖L∞(0,t;W 1,q(Ω))≤ ce
c1(T

′)1/p
′

4cA, for all t∈ [0,T ′]. (3.12)

From (3.12) and the continuity of C̃= C̃(‖ν̃(θm)‖L∞(0,t;W 1,q(Ω))) with respect to
‖ν̃(θm)‖L∞(0,t;W 1,q(Ω)), we obtain that

C̃= C̃(‖ν̃(θm)‖L∞(0,t;W 1,q(Ω)))≤M, for all t∈ [0,T ′],
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where M>0 is a constant independent of m.
Let

A := (‖u0‖
W

2− 2
p
,p
(Ω)

+‖θ0‖W 1,q(Ω)‖f‖Lp(QT )) (3.13)

and take T ′∈ (0,T ] small enough in a such way that

4c1c(T
′)1/p

′

A≤ ln(2c/M), 8cAM(T ′)
1−a
p ≤1.

If Ψm(T ′)≤4cA then it follows from (3.10) that Ψm+1(T ′)≤4cA. Now an induction
argument shows that {Ψm(T ′)}m≥1 is a real bounded sequence, and so um and ∇πm

are uniformly bounded in E2,1
p,T ′ and Lp(QT ′), respectively. Moreover, the inequality

(2.2) yields

‖θm‖L∞(0,t;W 1,q(Ω))≤‖θ0‖W 1,q(Ω)e
∫ T ′

0
‖∇um(s)‖L∞(Ω)ds

≤‖θ0‖W 1,q(Ω)e
c1(T

′)1/p
′

Ψm(T ′)

≤ c‖θ0‖W 1,q(Ω), for all t∈ [0,T ′],

and therefore θm is uniformly bounded in C([0,T ′];W 1,q(Ω)).

Second step. In order to obtain the convergence of the sequence {um,πm,θm}, we
compute the respective norms in the equation satisfied by the triple

(um+1−um,πm+1−πm,θm+1−θm).

For that, we denote Um :=um+1−um, Πm :=πm+1−πm, and Θm :=θm+1−θm. The
triple (Um,Πm,Θm) satisfies the system



































∂tU
m−div(ν(θm+1)(∇Um+∇∗Um))+∇Πm+1

=Θmf−Um−1 ·∇um−um−1 ·∇Um−1+div((ν(θm+1)−ν(θm))(∇um+∇∗um)),

div Um=0,
∂tΘ

m+um ·∇Θm=−Um−1 ·∇θm,
Um=0 on ΓT ,
(Um,Θm)|t=0=(0,0) in Ω.

Employing the inequality (2.20), we obtain

‖Um‖E2,1
p,t

+‖∇Πm‖Lp(Qt)≤C̃(‖Θ
mf‖Lp(Qt)+‖Um−1 ·∇um‖Lp(Qt)

+‖div(ν(θm+1)−ν(θm))(∇um+∇∗um)‖Lp(Qt)

+‖um−1 ·∇Um−1‖Lp(Qt)) := C̃(I1+I2+I3+I4),
(3.14)

for all t≤T ′. Proceeding similarly to the proof of Lemma 2.2 (see (2.6)) with um+1

and um in place of un and u, respectively, one gets

‖Θm‖L∞(0,t;W 1,q(Ω))≤ c‖U
m−1‖Lp(0,t;W 2,p(Ω)). (3.15)

It follows from the Hölder inequality and (3.15) that

I1≤‖Θm‖L∞(Qt)‖f‖Lp(Qt)≤ c‖Θ
m‖L∞(0,t;W 1,q(Ω))≤ c‖U

m−1‖Lp(0,t;W 2,p(Ω)). (3.16)
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Moreover, recalling that um,um−1∈E2,1
p,T ′ , we obtain from the Hölder inequality that

I2≤‖Um−1‖Lp(Qt)‖∇u
m‖L∞(Qt)≤ c‖U

m−1‖Lp(0,t;W 2,p(Ω))

and

I4≤‖Um−1‖Lp(Qt)‖∇u
m−1‖L∞(Qt)≤ c‖U

m−1‖Lp(0,t;W 2,p(Ω)).

Notice that

div((ν(θm+1)−ν(θm))(∇um+∇∗um)) (3.17)

=((ν(θm+1)−ν(θm))∇(∇um+∇∗um)

+(ν′(θm+1)∇θm+1−ν′(θm)∇θm)(∇um+∇∗um)

=(ν(θm+1)−ν(θm))∇(∇um+∇∗um)

+ν′(θm+1)∇Θm+[ν′(θm+1)−ν′(θm)]∇θm. (3.18)

The assumptions on ν yield

|ν(a)−ν(b)|≤
(

sup
d∈(a,b)

|ν′(d)|
)

|a−b|≤k1

(

sup
d∈(a,b)

|d|
)

|a−b|≤k1(|a|+ |b|) |a−b| .

(3.19)
Using Hölder’s inequality, (3.19), and that ‖θm‖L∞(QT ′ ) is uniformly bounded, we can
bound each term on the right hand side of (3.18) as follows:

‖(ν(θm+1)−ν(θm))∇(∇um+∇∗um)‖Lp(Qt)≤c(‖θ
m+1‖L∞(QT ′ )+‖θm‖L∞(QT ′ ))

×‖Θm‖L∞(Qt)‖u
m‖E2,1

p,T ′

≤c‖Θm‖L∞(Qt)‖u
m‖E2,1

p,T ′

,

‖ν′(θm+1)∇Θm‖Lp(Qt)≤c‖θ
m+1‖

L
pq

q−p (QT )
‖∇Θm‖Lq(Qt),

and

‖[ν′(θm+1)−ν′(θm)]∇θm‖Lp(Qt)≤c‖Θ
m‖

L
pq

q−p (QT )
‖∇θm‖Lq(QT ′ ).

In view of (3.15), we have

I3≤c‖Θ
m‖L∞(Qt)‖u

m‖E2,1

p,T ′

+c‖θm+1‖
L

pq
q−p (QT )

‖∇Θm‖Lq(Qt)

+c‖Θm‖
L

pq
q−p (QT )

‖∇θm‖Lq(QT ′ )

≤c‖Θm‖L∞(0,t;W 1,q(Ω))

≤c‖Um−1‖Lp(0,t;W 2,p(Ω)). (3.20)

Inserting (3.16)-(3.20) into (3.14), we get

‖Um‖E2,1
p,t

+‖∇Πm‖Lp(Qt)≤ cC̃‖U
m−1‖Lp(0,t;W 2,p(Ω))

≤ cC̃(‖Um−1‖E2,1
p,t

+‖∇Πm−1‖Lp(Qt))

≤ (cC̃)m−1
(

‖U1‖E2,1
p,t

+‖∇Π1‖Lp(Qt)

)

. (3.21)
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We can consider 0<T ′≤T such that cC̃ <1, which implies the convergence of the
series

∑

(‖Um‖E2,1
p,t

+‖∇Πm‖Lp(Qt)) for all t≤T ′. Thus, the sequence (um,∇πm)

converges in E2,1
p,T ′ ×Lp(QT ′). Let u=limm→∞um and ∇p=limm→∞∇πm. Because

um converges to u in E2,1
p,T ′ , it follows from Lemma 2.2 that θm converges in

C([0,T ′];W 1,q(Ω)). Taking θ=limm→∞θm, the triplet (u,∇π,θ) satisfies the system
(1.2)-(1.3).

Third step. Here we show that if A=(‖u0‖
W

2− 2
p
,p
(Ω)

+‖θ0‖W 1,q(Ω)‖f‖Lp(QT )) is

small enough, then T ′=T . To do this, recall the inequality (3.10),

Ψm+1(T )≤ C̃Aec1T
1/p′Ψm(t)+ C̃T

1−a
p Ψm(T )2. (3.22)

Analogously to the first step, there is a constant c>0 such that if Ψm(t)≤4cA, then
C̃≤M. Also, there exists L0>0 such that if A≤L0, then

4c1cT
1/p′

A≤ ln(2c/M), 8cAMT
1−a
p ≤1.

In view of (3.22) we have that Ψm+1(T )≤4cA when Ψm(T )≤4cA. Just like the
first step, it follows that um and ∇πm are uniformly bounded in E2,1

p,T and Lp(QT ),
respectively. Moreover, again the inequality (2.2) and the uniform boundedness of
{um}m≥1 yield

‖θm‖L∞(0,t;W 1,q(Ω))≤‖θ0‖W 1,q(Ω)e
∫ T
0

‖∇um(s)‖∞ds≤ c‖θ0‖W 1,q(Ω), for all t∈ [0,T ],

which implies that θm is uniformly bounded in C([0,T ];W 1,q(Ω)). Proceeding as in
the proof of first and second steps, we obtain the desired result.

Uniqueness.

Proof. Let (u1,∇π1,θ1) and (u2,∇π2,θ2) be two solutions of (1.2)-(1.3) with

the same data θ0∈W
1,q(Ω), u0∈W

2− 2
p ,p(Ω), and f ∈Lp(QT ). Denote U =u1−u2,

∇Π=∇π1−∇π2, and Θ=θ1−θ2. Then (U,Π,Θ) satisfies the system


































∂tU−div(ν(θ1)(∇U+∇∗U))+∇Π
=Θf−U ·∇u2−u1 ·∇U+div((ν(θ1)−ν(θ2))(∇u2+∇∗u2)),

div U =0,
∂tΘ+u1 ·∇Θ=−U ·∇θ2,
U =0 on ΓT ,
(U,Θ)|t=0=(0,0) in Ω.

Applying inequality (2.20), it follows that

‖U‖E2,1
p,t

+‖∇Π‖Lp(Qt)≤C̃(‖Θf‖Lp(Qt)+‖U ·∇u2‖Lp(Qt)+‖u1 ·∇U‖Lp(Qt)

+‖div(ν(θ1)−ν(θ2))(∇u2+∇∗u2)‖Lp(Qt))

:=C̃(J1+J2+J3+J4), (3.23)

for all 0≤ t≤T ′, where 0<T ′≤T is a common existence time. Here, in view of Lemma
2.3, notice that C̃ depends continuously on ‖ν̃(θ1)‖L∞(0,t;W 1,q(Ω)) . Let 0<θ<1 be

such that (1−θ)/p=1/2−N/2p. Now we recall the following property of the Besov
spaces (see [27]):

(B
1− 2−N

p
∞,∞ ,B

1−N
p

∞,∞)θ,1=B0
∞,1⊂L

∞,
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with

‖∇h‖L∞(Ω)≤ c‖∇h‖
θ

B
1−N

p
∞,∞

‖∇h‖1−θ

B
1− 2−N

p
∞,∞

.

Since W 2− 2
p ,p(Ω)⊂B

2− 2
p

p,p ⊂B
2− 2−N

p
∞,∞ and W 1,p(Ω)⊂B

1−N
p

∞,∞ , the Hölder and Young
inequalities yield

‖∇U‖Lp(0,t;L∞(Ω))≤ c

(

∫ t

0

‖∇U‖θp

B
1−N

p
∞,∞

‖∇U‖
(1−θ)p

B
1− 2−N

p
∞,∞

dτ

)1/p

≤ c

(
∫ t

0

‖U‖θpW 2,p(Ω)‖U‖
(1−θ)p

W
2− 2

p (Ω)
dτ

)1/p

≤ ct
1
2−

N
2p ‖U‖θLp(0,t;W 2,p(Ω))‖U‖1−θ

L∞(0,t;W
2− 2

p (Ω))

≤ ct
1
2−

N
2p (‖U‖Lp(0,t;W 2,p(Ω))+‖U‖

L∞(0,t;W
2− 2

p (Ω))
). (3.24)

We conclude from (3.24) that

J3=‖u1 ·∇U‖Lp(Qt)≤‖u1‖L∞(0,t;Lp(Ω))‖∇U‖Lp(0,t;L∞(Ω))

≤ c‖u1‖L∞(0,t;Lp(Ω))t
1
2−

N
2p

(

‖U‖Lp(0,t;W 2,p(Ω))+‖U‖
L∞(0,t;W

2− 2
p (Ω))

)

≤ c‖u1‖L∞(0,t;Lp(Ω))t
1
2−

N
2p ‖U‖E2,1

p,t
. (3.25)

Moreover,

J1=‖Θf‖Lp(Qt)≤‖Θ‖L∞(Qt)‖f‖Lp(Qt)≤ c‖Θ‖L∞(0,t;W 1,q(Ω))‖f‖Lp(Qt), (3.26)

and

J2=‖U ·∇u2‖Lp(Qt)

≤‖∇u2‖Lp(0,t;L∞(Ω))‖U‖L∞(0,t;Lp(Ω))

≤‖∇u2‖Lp(0,t;L∞(Ω))‖U‖E2,1
p,t
. (3.27)

In view of the equality

div((ν(θ1)−ν(θ2))(∇u2+∇∗u2))=(ν(θ1)−ν(θ2))∇(∇u2+∇∗u2)

+ν′(θ1)∇Θ+[ν′(θ1)−ν
′(θ2)]∇θ2,

we can use the Hölder inequality and the hypotheses on ν in order to bound J4 as
follows:

J4≤ck1‖Θ‖L∞(Qt)‖u2‖Lp(0,t;W 2,p(Ω))+ck1‖θ1‖
Lp(0,t;L

pq
q−p (Ω))

‖∇Θ‖L∞(0,t;Lq(Ω))

+ck1‖Θ‖
L

pq
q−p (Qt)

‖∇θ2‖Lq(Qt)

≤c(‖u2‖Lp(0,t;W 2,p(Ω))+‖θ1‖
Lp(0,t;L

pq
q−p (Ω))

+‖∇θ2‖Lq(Qt))‖Θ‖L∞(0,t;W 1,q(Ω)).

(3.28)

Working as in the proof of inequality (3.15), we get

‖Θ‖L∞(0,t;W 1,q(Ω))≤ c‖U‖E2,1
p,t
.
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Inserting the inequalities (3.25)-(3.28) into (3.23) we obtain

‖U‖E2,1
p,t

+‖∇Π‖Lp(Qt)≤cC̃{‖f‖Lp(Qt)+‖u2‖Lp(0,t;W 2,p(Ω))+‖u1‖L∞(0,t;Lp(Ω))t
1
2−

n
2p

+‖θ1‖
Lp(0,t;L

pq
q−p (Ω))

+‖∇θ2‖Lq(Qt)}‖U‖E2,1
p,t
,

(3.29)

for all t∈ [0,T ′]. Similar to the existence part, we have that (cC̃)≤M where M>0
depends on the fixed time T ′, but not on t∈ (0,T ′). Taking t= t0 small enough in such
a way that the bracketed term in (3.29) is less than 1

2c , we get

‖U‖E2,1
p,t

+‖∇Π‖Lp(Qt)≡0, for all t∈ [0,t0].

Therefore ‖Θ‖L∞(0,t;W 1,q(Ω))≡0 on [0,t0]. Now, from standard arguments, it follows
that ‖U‖E2,1

p,t
+‖∇Π‖Lp(Qt)+‖Θ‖L∞(0,t;W 1,q(Ω))=0 for all t∈ [0,T ′].

4. The heat conductivity vanishing

The aim of this section is to prove Theorem 1.3.

4.1. Proof of Proposition 1.2.

Proof. The proof of Proposition 1.2 can be achieved through an iterative proce-
dure. Firstly, like in Lemma 2.3, we consider the following two linear problems related
to (1.7)-(1.8):















∂tu−div(ν(θ)(∇u+∇∗u))+∇π = F in QT ,
div u = 0 in QT ,

u = 0 on ΓT ,
u|t=0 = u0 in Ω,

(4.1)

and







∂tθ−div(κ(θ)(∇θ)) = G in Ω×(0,T ),
θ = 0 on ΓT ,

θ|t=0 = θ0 in Ω.
(4.2)

Using the unique strong solution (u,∇π)∈E2,1
p,T ×Lp(QT ) for (4.1) and the solution

θ∈E2,1
p,T for (4.2), we can construct a strong solution of (1.7)-(1.8) according to the

following iteration scheme. Choosing u0=u0 and θ0=θ0, let u
m,πm,θm be such that

(for m∈N)























∂tu
m+1−div(ν(θm+1)(∇um+1+∇∗um+1))+∇πm+1 = θmf−um ·∇um in QT ,

div um+1 = 0 in QT ,
∂tθ

m+1−div(κ(θm+1)(∇θm+1)) = −um ·∇θm in QT ,
(um+1,θm+1) = 0 on ΓT ,

(um+1,θm+1)|t=0 = (u0,θ0) in Ω.
(4.3)

Then, the existence of a strong solution for (1.7)-(1.8) is obtained as the limit of the
sequence (um,πm,θm). The details are left to the reader, who is referred to [4] where
an analogous result is proved for the case of incompressible micropolar fluids.
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4.2. Proof of Theorem 1.3.

Proof. Let (u1,∇π1,θ1) be the local strong solution for (1.2)-(1.3) given by
Theorem 1.1 and let (u2,∇π2,θ2) be the one for (1.7)-(1.8) given by Proposition

1.2 (with g=0), both with the same data (θ0,u0)∈W
2− 2

p ,p(Ω)×W 2− 2
p ,p(Ω) and f ∈

Lp(QT ). Let [0,T
′] be a common existence interval of (u1,∇π1,θ1) and (u2,∇π2,θ2).

Denoting U =u1−u2, Π=π1−π2, and Θ=θ1−θ2, we have that






























∂tU−div(ν(θ1)(∇U+∇∗U))+∇Π
=Θf−U ·∇u2−u1 ·∇U+div((ν(θ1)−ν(θ2))(∇u2+∇∗u2)),
div U =0,
∂tΘ+u2 ·∇Θ+U ·∇θ1+div(κ(θ2)∇θ2)=0,
(U,θ)=0 on ΓT ,
(U,Θ)|t=0=(0,0) in Ω.

(4.4)

Taking the L2-product with U in equation (4.4)1, using div(u1)=0, and noting that

−

∫

Ω

div(ν(θ1)(∇U+∇∗U))Udx≥β0‖∇U(t)‖2L2(Ω), (4.5)

we get

1

2

d

dt
‖U(t)‖2L2(Ω)+β0‖∇U(t)‖2L2(Ω)≤

∫

Ω

ΘfUdx−

∫

Ω

(U ·∇u2)Udx

+

∫

Ω

div((ν(θ1)−ν(θ2))(∇u2+∇∗u2))Udx

≤‖∇u2(t)‖L∞(Ω)‖U(t)‖2L2(Ω)

+‖f(t)‖Lp(Ω)‖Θ(t)‖L2(Ω)‖U(t)‖
L

2p
p−2 (Ω)

−

∫

Ω

((ν(θ1)−ν(θ2))(∇u2+∇∗u2))∇Udx.

(4.6)

Using W 1,2(Ω)⊂L
2p

p−2 (Ω) and Young’s inequality, we have

‖f(t)‖Lp(Ω)‖Θ(t)‖L2(Ω)‖U(t)‖
L

2p
p−2 (Ω)

≤c‖f(t)‖Lp(Ω)‖Θ(t)‖L2(Ω)‖U(t)‖W 1,2(Ω)

≤cmax{1,‖f(t)‖2Lp(Ω)}(‖Θ(t)‖2L2(Ω)+‖U(t)‖2L2(Ω))+
β0
4
‖∇U(t)‖2L2(Ω). (4.7)

The inequality (3.19) and Hölder’s inequality yield
∣

∣

∣

∣

∫

Ω

((ν(θ1)−ν(θ2))(∇u2+∇∗u2))∇Udx

∣

∣

∣

∣

≤

∫

Ω

(k1(|θ1|+ |θ2|)|Θ|)(|∇u2+∇∗u2|) |∇U |dx

≤c(‖θ1‖L∞(QT ′ )+‖θ2‖L∞(QT ′ ))

×‖Θ‖L2(Ω)‖∇u2‖L∞(Ω)‖∇U‖L2(Ω)

≤c‖Θ‖L2(Ω)‖∇u2‖L∞(Ω)‖∇U‖L2(Ω). (4.8)

In view of (4.7) and (4.8), the inequality (4.6) gives us

1

2

d

dt
‖U(t)‖2L2(Ω)+

3β0
4

‖∇U(t)‖2L2(Ω)
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≤cmax{1,‖f(t)‖2Lp(Ω)}×(‖Θ(t)‖2L2(Ω)+‖U(t)‖2L2(Ω))

+‖∇u2‖L∞(Ω)‖U‖2L2(Ω)+c‖Θ‖L2(Ω)‖∇U‖L2(Ω)‖∇u2‖L∞(Ω)

≤c(1+‖f(t)‖2Lp(Ω))(‖U‖2L2(Ω)+‖Θ‖2L2(Ω))+
β0
4
‖∇U(t)‖2L2(Ω), (4.9)

because ‖∇u2‖L∞(QT ′ )≤‖u2‖E2,1

p,T ′

≤ c. Taking now the L2-product with Θ in (4.4)3,

and using the Young and Hölder inequalities, we obtain

1

2

d

dt
‖Θ(t)‖2L2(Ω)+‖

√

κ(θ2)∇Θ(t)‖2L2(Ω)

=−

∫

Ω

U ·∇θ1Θdx+

∫

Ω

κ(θ2)∇θ1∇Θ

≤‖∇θ1‖Lq(Ω)‖U‖
L

2q
q−2 (Ω)

‖Θ‖L2(Ω)+ κ̃
1/2‖∇θ1‖L2(Ω)‖

√

κ(θ2)∇Θ‖L2(Ω)

≤c(‖U‖L2(Ω)+‖∇U‖L2(Ω))‖Θ‖L2(Ω)+ κ̃
1/2‖∇θ1‖L2(Ω)‖

√

κ(θ2)∇Θ‖L2(Ω)

≤c(‖U‖2L2(Ω)+‖Θ‖2L2(Ω))+
3β0
8

‖∇U‖2L2(Ω)+ κ̃
1/2‖∇θ1‖L2(Ω)‖

√

κ(θ2)∇Θ‖L2(Ω)

≤c(‖U‖2L2(Ω)+‖Θ‖2L2(Ω))+
3β0
8

‖∇U‖2L2(Ω)+
κ̃

2
‖∇θ1‖

2
L2(Ω)+

1

2
‖
√

κ(θ2)∇Θ‖2L2(Ω).

(4.10)

We deduce from (4.9)-(4.10) that

d

dt
(‖U(t)‖2L2(Ω)+‖Θ(t)‖2L2(Ω))≤c(1+‖f(t)‖2Lp(Ω))(‖U(t)‖2L2(Ω)+‖Θ(t)‖2L2(Ω))

+
κ̃

2
‖∇θ1‖

2
L2(Ω). (4.11)

From Gronwall’s inequality, the estimate (4.11) implies

‖U(t)‖2L2(Ω)+‖Θ(t)‖2L2(Ω)≤(‖U(0)‖2L2(Ω)+‖Θ(0)‖2L2(Ω)+
κ̃

2

∫ T ′

0

‖∇θ1(s)‖
2
L2(Ω)ds)

×e
∫ t
0
c(1+‖f(s)‖2

Lp(Ω))ds

≤

(

κ̃

2

∫ T ′

0

‖∇θ1(s)‖
2
L2(Ω)ds

)

e
c
∫ T ′

0
(1+‖f(s)‖p

Lp(Ω)
)ds

≤cκ̃. (4.12)

Above we have used that ‖U(0)‖2L2(Ω)+‖Θ(0)‖2L2(Ω)=0. Therefore, for some α∈ (0,1),
we have

‖U‖L∞(0,T ′;W 1,p(Ω))≤ c‖U‖α
L∞(0,T ′;W

2− 2
p
,p
(Ω))

‖U‖1−α
L∞(0,T ′;L2(Ω))

≤ cκ̃(1−α)/2‖U‖α
L∞(0,T ′;W

2− 2
p
,p
(Ω))

→0, as κ̃→0.

Analogously, one can show that ‖Θ‖L∞(0,T ′;W 1,q(Ω))→0 as κ̃→0.
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