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EXPONENTIAL SYNCHRONIZATION OF FINITE-DIMENSIONAL
KURAMOTO MODEL AT CRITICAL COUPLING STRENGTH∗

YOUNG-PIL CHOI† , SEUNG-YEAL HA‡ , MYEONGMIN KANG§ , AND

MYUNGJOO KANG¶

Abstract. We discuss the exponential synchronization for an ensemble of Kuramoto oscillators
at the critical coupling strength, which is the diameter of the set consisting of natural frequencies.
When the number of distinct natural frequencies is greater than two and the initial phases are
strictly confined in an interval of length π

2
, we show that the initial configuration evolves toward

a phase-locked state at least exponentially fast. This fast convergence toward the phase-locked
state is markedly different from an ensemble of Kuramoto oscillators with only two distinct natural
frequencies. For this, we derive a Gronwall inequality for the frequency diameter to obtain complete
synchronization. We also compare our analytical results with numerical simulation results.
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1. Introduction

The objective of this paper is to present an exponential synchronization for an
ensemble of Kuramoto oscillators, when the coupling strength is exactly equal to the
diameter of the natural frequencies. The synchronization of large weakly coupled oscil-
lators appears in many biological complex systems, e.g., metabolic synchrony in yeast
cell suspension, synchronous firing of a cardiac pacemaker, and flashing of fireflies
(see [2, 3, 10, 19, 20, 29, 30] for details). Mathematical studies of the synchronization
of coupled oscillators were initiated by two pioneers, Winfree and Kuramoto, about
40 years ago. The emergence of engineering applications based on complex networks
such as power system networks and multi-agent unmanned aerial vehicles [8, 9, 14]
has increased the interest in Kuramoto type models in several scientific areas. Indeed,
the Kuramoto model has been studied extensively in many disciplines such as applied
mathematics, control theory, and statistical physics.

Kuramoto oscillators can be conceived as active point rotors moving on the unit
circle S1, and the Kuramoto phase model is a system of ODEs that is weakly coupled
via sinusoidal coupling. More precisely, we denote xi :=e

√
−1θi , θi∈R as the position

of the i-th rotor in C. In this case, the phase dynamics is governed by the following
system of ODEs [15, 16] in RN :

θ̇i= Ωi+
K

N

N∑
j=1

sin(θj−θi), t>0, i= 1,. ..,N, (1.1)
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386 SYNCHRONIZATION OF KURAMOTO OSCILLATORS

given the initial data:

θi(0) =θi0, (1.2)

where Ωi, K, and N are the intrinsic natural frequency of the i-th oscillator drawn
from some distribution function g=g(Ω), the uniform positive coupling strength, and
the size of the system, respectively. If necessary, we can take a rotating frame and
assume that

N∑
i=1

Ωi= 0. (1.3)

Note that if θ= (θ1, ·· · ,θN ) is a solution, then θ+α, α∈ZN is a solution due to the
translation invariance and periodicity of the coupling function. Thus, the system (1.1)
naturally induces a dynamical system for N -tori TN .

Next, we briefly review the published literature on synchronization estimates for
the Kuramoto model. The Kuramoto model (1.1) and its variants have been derived
heuristically from the complex Ginzburg-Landau equation [16] and as an averaged sys-
tem of the coupled system of Josephson junction arrays [28]. Ermentrout [10] found
a critical coupling where all oscillators become phase-locked, which was independent
of the number of oscillators. The stability of the phase-locked state was established
by van Hemmen and Wreszinski [25] for large coupling using the Lyapunov functional
approach, and Jadbabaie et al. [14] also considered the stability of the phase-locked
state on general connectivity graphs and derived the computable bounds for the crit-
ical coupling constant using tools from spectral graph theory. The linear stability of
the phase-locked state and rigorous characterization of the spectrum for the Kuramoto
model were treated by Mirollo and Strogatz [17, 18, 23]. We refer to [28] for a treat-
ment of the synchronization of super-conducting Josephson junction arrays. For a
detailed description of the Kuramoto model (1.1), we refer to survey papers [1, 3, 22].
We now discuss the synchronization problem. In [16], Kuramoto introduced an order
parameter r∞= r∞(K) to measure the degree of synchronization:

r(K,N,t) =
∣∣∣ 1

N

N∑
j=1

eiθj(t)
∣∣∣, r∞(K) := lim

t→∞
lim
N→∞

r(K,N,t).

Note that r= 0 and 1 denote the completely incoherent state and complete phase
synchronization, respectively. Kuramoto also showed that there is a critical coupling
strength Kc such that r∞ bifurcates from zero to non-zero values as K exceeds Kc, i.e.,
the transition from “the completely incoherent state” to “a partially coherent state”
in the thermodynamic limit (N→∞). Indeed, the critical coupling strength Kc can
be explicitly computable for unimodal and symmetric distributions g. However, for
a finite-dimensional case with N <∞, the identification of such a critical value is
unclear because the fluctuation of the order parameter is O(N−

1
2 ) (see [1, 22] and

references therein). Of course, we may still argue that the critical value is close to Kc

when N is sufficiently large.
In this paper, we are interested in the complete synchronization problem where

all oscillators are phase-locked asymptotically. As observed in [5, 8, 11], for a finite-
dimensional Kuramoto model (1.1) with N <∞, a new threshold coupling strength
K=D(Ω) appears, when the complete frequency synchronization (in short CFS) of
(1.1) with N <∞ is considered (see Definition 2.1). In fact, Dörfler and Bullo [8]
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showed that if K≤D(Ω), then there exist a set of natural frequencies {Ω1,·· ·ΩN}
and initial configuration θ0,

D(Ω) = ΩM −Ωm and D(θ0)<π,

which do not lead to a phase-locked state exponentially fast. In contrast, when K>
D(Ω), there exists γ∈ (π2 ,π] such that the system (1.1) synchronizes exponentially
fast for all possible distributions of the natural frequencies whose diameters are equal
to D(Ω) and for all initial phases θ0 with D(θ0)<γ. In this sense, the strength K=
D(Ω) plays the role of a threshold from “partially synchronized states” to “completely
synchronized states” in the dynamics of (1.1). Thus, throughout the paper, we use the
terminologies “super-critical ” and “critical ” regimes to denote the regimes K>D(Ω)
and K=D(Ω), respectively. In [4, 5, 6, 8, 9, 11, 13], the CFS was extensively studied
in the super-critical regime K>D(Ω). In contrast, the corresponding synchronization
problem has not been well studied in the critical regime where K=D(Ω). In [12], Ha
and Kang considered the special case where only two distinct natural frequencies are
present in the set of natural frequencies, i.e., a mixed ensemble of two ensembles of
identical oscillators, and the initial configuration is confined in an arc with length π

2 .
In this situation, the phase configurations are confined within an arc with length π

2
and the complete frequency states emerge algebraically slowly in the order of O(1)(1+
t)−1. Thus it is natural to ask the following questions:

• Given an ensemble of nonidentical Kuramoto oscillators with
at least three distinct natural frequencies, is it possible to
have complete frequency synchronization asymptotically with
the critical coupling K=D(Ω) ?

• If so, what will be the convergence rate toward complete syn-
chronization ? Is it still algebraic ?

The main contributions of this paper are answers to the questions posed above
regarding the CFS for the Kuramoto model (1.1) where we provide quantitative esti-
mates. Our main result can be summarized as follows. When the number of distinct
natural frequencies is greater than two, and the Kuramoto oscillators are strictly con-
fined in the arc with a length π

2 , the Kuramoto oscillators will approach the complete
frequency states at least exponentially fast. This fast relaxation is markedly different
from the special case [12], where a slow relaxation of the two natural frequencies is
observed.

The rest of the paper is organized as follows. In Section 2, we briefly outline
our main results on CFS at the critical coupling strength. In Section 3, we present
two basic estimates for the pointwise estimate of phase differences and the existence
of invariant regions given the dynamics of (1.1). In Section 4, we present a proof
of Theorem 2.2 and in Section 5 we provide several numerical simulations, which we
compare with our analytical results. Finally, Section 6 provides a summary of our
main results. In Appendix A, we list several elementary estimates.

Notation: Next, we provide several notations that are used throughout the
paper.

`(Ω) := The number of distinct natural frequencies, ωi= θ̇i,
D(θ) := max

1≤i,j≤N
|θi−θj |, D(ω) := max

1≤i,j≤N
|ωi−ωj |, D(Ω) := max

1≤i,j≤N
|Ωi−Ωj |.
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2. Discussion of the main result
In this section, we briefly outline the main result of this paper. The well-posedness

issue of the Kuramoto model (1.1) is standard because the right hand side of (1.1)
is globally Lipschitz continuous with respect to the state variables. Thus, one of the
interesting issues for (1.1) is the emergence of collective motion “synchronization” that
depends on the distribution of the natural frequency and the coupling strength. Under
the Assumption (1.3), the phase-locked states for (1.1) correspond to the equilibrium
solutions:

Ωi+
K

N

N∑
j=1

sin(θj−θi) = 0, i= 1, ·· · ,N. (2.1)

It is easy to see that if |Ωi|>K for some i, then the system (2.1) does not permit
equilibrium solutions, because we have∣∣∣Ωi+K

N

N∑
j=1

sin(θj−θi)
∣∣∣≥|Ωi|−K>0.

Thus, to find the phase-locked solution for (1.1)-(1.3), the coupling strength K should
be sufficiently large. It is natural to ask how large the coupling strength should be,
which is a question of “computing the critical coupling strength”. This question has
been discussed in [8, 9, 26, 27]. Next, we restate the definition of complete frequency
synchronization (CFS) as follows.

Definition 2.1. [11] The Kuramoto model (1.1) has an asymptotically complete
(frequency) synchronization if and only if the relative frequency differences converge
to zero as t→∞:

lim
t→∞
|θ̇i(t)− θ̇j(t)|= 0, for all i,j∈{1,. ..,N}.

In [8], Dörfler and Bullo reviewed several synchronization conditions found in the
literature and provided a necessary and sufficient condition for the super-critical case
K>D(Ω) for asymptotic exponential synchronization with respect to the arbitrary

natural frequencies drawn from the interval [−D(Ω)
2 , D(Ω)

2 ]. In this case, they also
showed that the initial phase configuration θ0 that belongs to S,

S :=
{
θ∈RN : D(θ)< sin−1

(D(Ω)

K

)
∈
(π

2
,π
)}
,

leads to a phase-locked state at least exponentially rapidly. Note that this set S
certainly contains our admissible set R.

Recall that the purpose of this paper is to consider the CFS at the critical coupling
strength K=D(Ω). Therefore, our result is complementary to that of [8]. We now
describe our framework (F) and main results in Section 4.

• (F1) : A system of Kuramoto oscillators consists of many heterogeneous sub-
groups:

`(Ω)≥3.

• (F2) : The coupling strength K is critical:

K=D(Ω).
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Under the above framework (F), the CFS at a critical coupling strength can be stated
as follows.

Theorem 2.2. Suppose that the framework (F) holds, and let θ=θ(t) be the solution
to the system (1.1) - (1.3) with the initial data θ0:

R :=
{
θ∈RN : 0<θi<

π

2
, i= 1, ·· · ,N

}
. (2.2)

Thus, CFS occurs asymptotically and we also have

(i) D∞θ := sup
t≥0

D(θ(t))<
π

2
,

(ii) D(ω(t))≤D(ω0)exp
[
−K(cosD∞θ )t

]
, t≥0, ω0 := θ̇(0).

Remark 2.1.
1. For the supercritical case K>D(Ω), the synchronization estimates of the system
(1.1) were studied in [4, 5]. For the mean-field case (N→∞), the linearized stability
of the phase-locked state was investigated in [17, 18, 23, 24].

2. For `(Ω) = 2 and K=D(Ω), it is known that the speed of complete frequency
synchronization can be algebraic for some class of initial configurations with the order
O(1)(1+ t)−1. Thus, the dynamic feature of `(Ω)≥3 is essentially different from that
of `(Ω) = 2.

3. Existence of a positively invariant set
In this section, we present a proof of the positive invariance of the set R under

the Kuramoto flow (1.1), which will be crucial in the proof of Theorem 2.2 in next
section.

Before we study the invariance of the set R in (2.2), we recall some estimates of
the phase differences from [5]. We set

θij :=θi−θj , Ωij := Ωi−Ωj ,

Elij := 1−
cos
(
θli+θlj

2

)
cos(

θji
2 )

, βij(N,θ) := 1− 1

N

∑
l 6=i,j

Elij .

Proposition 3.1. Suppose that the framework (F) holds, and let θ=θ(t) be the
solution to the system (1.1) - (1.3) with initial data θ0∈R. Then, the following
estimates hold:

(i) The phase difference θij satisfies

θ̇ij+Kβij(N,θ)sinθij = Ωij . (3.1)

(ii) Suppose that the pair (i,j) satisfies

θi(t0)>θj(t0) and Ωi≥Ωj for some t0∈R+.

Then, the i and j-oscillators will not meet after t= t0, i.e.,

θi(t)>θj(t), t> t0.
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(iii) If Ωi>Ωj , then there exists a positive time t∗ij such that

θi(t)>θj(t) for t≥ t∗ij .

Proof. The corresponding estimates in [5] are based on the assumption K>
D(Ω). However, the straightforward modification in [5] still applies in the critical
case K=D(Ω). Therefore, we omit its proof.

Remark 3.1.
1. The results in Proposition 3.1 imply that the oscillators will be arranged according
to the size of their eventual natural frequency, so the collision times are less than
or equal to N(N−1)/2, since we can take t∗ij to be a time after the collision time
between two different oscillators and these oscillators do not collide for t>t∗ij .

2. From [5], we can obtain upper and lower bounds for the mean field coupling term
βij :

L(N)≤βij(N,θ)≤U(N), (3.2)

where L(N) and U(N) are explicitly given by

U(N) :=
2

N
+
√

2
(

1− 2

N

)
, L(N) :=

2

N
.

By combining the estimates (3.1) and (3.2), when two oscillators i and j have the
same natural frequencies, their phase difference θij can be estimated as follows:

θij(0)e−KU(N)t≤θij(t)≤θij(0)e−KL(N) 2
π t, t≥0.

The above lower bound estimate implies that there will be no finite time phase col-
lisions between two identical oscillators with different initial phases. More precisely,
if θi0 6=θj0, then the i-th and j-th identical oscillators never meet during finite time.
We can also see that if Ωij = 0, then

θij(t)→0 as t→∞,

based on the upper bound estimate.

Let Ωi1 ,·· ·Ωi` be the distinct natural frequencies, and {C1,. ..,C`} are the partition
of the set {1,·· · ,N} such that

Ck :={j : Ωj = Ωik}.

Lemma 3.2. Let θ=θ(t) be the solution to the system (1.1) - (1.3) with a uniform
bound:

sup
t≥0

max
1≤i≤N

|θi(t)|≤
π

2
.

Then, there exist sequences {τk}, ω∞i , and θ∞i such that

(i) lim
k→∞

ωi(τk) =ω∞i , lim
k→∞

θi(τk) =θ∞i , for all i∈{1,. ..,N},
(ii) lim

t→∞
θi= lim

t→∞
θj for all i,j∈Ck, k∈{1,·· · ,`},
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where θ∞i is a nonnegative constant in the interval [0, π2 ].

Proof.
(i) We split this proof into two steps.
• Step A (Construction of limit points {ω∞i }): Note that the set of frequency of

the first oscillator {ω1(t)} is uniform bounded

|ω1(t)|≤ |Ω1|+K.

According to the Bolzano-Weierstrass Theorem, we can choose a sequence {t1k} such
that

lim
k→∞

ω1(t1k) =ω∞1 for some ω∞1 .

Since the set {ω2(t1k)} is uniformly bounded, we have

|ω2(t1k)|≤ |Ω2|+K.

Again, according to the Bolzano-Weierstrass theorem, we can choose a subsequence
{t2k} of {t1k} such that

lim
k→∞

ω1(t2k) =ω∞2 .

In a similar manner, we can choose a subsequence {tNk } of {tN−1
k } such that

lim
k→∞

θ̇N (tNk ) =ω∞N .

• Step B (Construction of limit points {θ∞i }): Based on a uniform boundedness
assumption, we know that the θi is bounded so we can apply the above iterative
argument to the θi again. Thus, we obtain that there is a subsequence {tN,Nk } of

{tN,N−1
k } such that

lim
k→∞

θi(t
N,N
k ) =θ∞i where θ∞i ∈ [0,

π

2
].

Finally, we set

τk := tN,Nk .

Therefore, we have

lim
k→∞

ωi(τk) =ω∞i and lim
k→∞

θi(τk) =θ∞i .

(ii) Thanks to Remark 3.1 (2), if i,j∈Ck for some k∈{1,. ..,`}, we have

lim
t→∞

θi(t) = lim
t→∞

θj(t).

This yields the desired estimate (ii).

We now return to the positive invariance of the set R in the following proposition.
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Proposition 3.3. Suppose that the framework (F) holds, and let θ=θ(t) be the
solution to the system (1.1) - (1.3) with initial data θ0∈R. Then we have

D∞θ := sup
t≥0

D(θ(t))<
π

2
.

Proof. The proof is rather lengthy, so we split it into two parts. In Part A, we

show that D∞θ ∈
[
0, π2

]
, and in Part B we show that D∞θ < π

2 .

Without loss of generality, we can assume that the initial phase configurations
and natural frequencies are ordered according to Proposition 3.1:

0<θN0≤···≤θ20≤θ10<
π

2
, ΩN ≤···≤Ω2≤Ω1, N ∈Cl, 1∈C1.

• Part A (Rough estimate): We claim

D(θ(t))<
π

2
, t≥0,

This implies that

D∞θ ≤
π

2
.

We then apply proof by contradiction. We set

Γ := {t∈ [0,∞) : D(θ(t))<
π

2
}, T∗ := supΓ.

Note that since 0∈Γ and D(θ(t)) is continuous, the set contains some small interval
[0,ε) for a small positive constant 0<ε�1.

We claim that:

T∗=∞.

The proof of claim: Suppose not, i.e., T∗<∞. Since D(θ(t)) is continuous, we should
have

lim
t→T∗−

D(θ(t)) =
π

2
. (3.3)

We set

θM := max
1≤i≤N

θi, θm := min
1≤i≤N

θi.

Next, we estimate the maximal and minimal fluctuations separately.
Case A (Maximal phase fluctuation): Since θM is Lipschitz continuous, it is differen-
tiable almost everywhere in time t. Furthermore, we can show that the nondifferen-
tiable points are countable and isolated based on the same argument stated in [11].
Thus, there exists at most a countable number of times 0 := t0<t1< ·· ·<t∞=T∗ such
that

θM is differentiable in the time interval (tk−1,tk), k= 1,2, ·· · .

We now use

sinx≤ 2

π
x, x∈

[
− π

2
,0
]
,
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−π
2
≤−D(θ(t))≤θi(t)−θM (t)≤0, a.e. t∈ [0,T∗),

to derive a differential inequality:

θ̇M = ΩM +
K

N

N∑
j=1

sin(θj−θM )

≤ΩM +
2K

Nπ

N∑
j=1

(θj−θM ), t∈ (tk−1,tk).

Case B (Minimal fluctuation): We use the same argument from Case A to find

θ̇m≥Ωm+
2K

Nπ

N∑
j=1

(θj−θm), t∈ (tk−1,tk).

We now combine Case A-Case B to yield

Ḋ(θ(t))≤D(Ω)− 2K

π
D(θ(t)) =D(Ω)− 2D(Ω)

π
D(θ(t)), a.e. t,

and we use the continuity of D(θ(t)) to obtain

D(θ(t))≤D(θ0)e−
2D(Ω)t
π +

π

2
[1−e−

2D(Ω)t
π ]

=
π

2
+
(
D(θ0)− π

2

)
e−

2D(Ω)t
π .

(3.4)

In (3.4), we take t→T∗− and obtain

lim
t→T∗−

D(θ(t))≤ π
2

+
(
D(θ0)− π

2

)
e−

2D(Ω)T∗
π <

π

2
.

This is contradictory to (3.3). Therefore, we have

T∗=∞, D(θ(t))<
π

2
, t≥0.

• Part B (Refined estimate): We claim that

sup
t≥0

D(θ(t)) =
π

2
does not hold.

Suppose it holds, so that a sequence {tn} exists that satisfies

lim
n→∞

D(θ(tn)) =
π

2
. (3.5)

By the Assumption (3.5) and Lemma 3.2, there exists a subsequence {tnk} of {tn}
such that for all i∈{1,. ..,N}

lim
k→∞

θ̇i(tnk) =ω∞i and lim
k→∞

θi(tnk) =θ∞i ,

and

θ∞i =θ∞j for all i,j∈Ck,
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where θ∞i ∈ [0, π2 ]. We set

θ̃∞k :=θ∞i for all i∈Ck.

In particular, we have

lim
k→∞

θ1(tnk) =
π

2
and lim

k→∞
θN (tnk) = 0.

From Part A, we also have

lim
k→∞

θ̇1(tnk)≥0 and lim
k→∞

θ̇N (tnk)≤0.

Note that

θ̇1(t) = Ω1 +
K

N

[∑
j∈C1

sin(θj−θ1)+

`−1∑
k=2

∑
j∈Ck

sin(θj−θ1)+
∑
j∈C`

sin(θj−θ1)
]
.

Thus, we use

lim
t→∞

(θj−θ1)(t) = 0, j∈C1, and lim
t→∞

(θj−θ1)(t) =−π
2
, j∈C`

to derive the following relation:

0≤ lim
k→∞

θ̇1(tnk) = Ω1−
K

N

`−1∑
k=2

|Ck|cos θ̃∞k −
K

N
|C`|, (3.6)

where |Ck| denotes the cardinality of the set Ck, i.e.,

∑̀
k=1

|Ck|=N.

Similarly, we also obtain

0≥ lim
k→∞

θ̇N (tnk) = ΩN +
K

N

`−1∑
k=2

|Ck|sin θ̃∞k +
K

N
|C1|. (3.7)

We now combine (3.6), (3.7), and Ω1−ΩN =D(Ω) =K to derive

0≤ lim
k→∞

θ̇1(tnk)− lim
k→∞

θ̇N (tnk)

=D(Ω)−K
N

`−1∑
k=2

|Ck|(sin θ̃∞k +cos θ̃∞k )−K
N

(|C1|+ |C`|).
(3.8)

Again, we use K=D(Ω) to yield

K

N

`−1∑
k=2

|Ck|
(
sin θ̃∞k +cos θ̃∞k

)
≤D(Ω)−K

N

(
|C1|+ |C`|

)
=
K

N

`−1∑
k=2

|Ck|

≤ K
N

`−1∑
k=2

|Ck|.
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Since `(Ω)≥3 and by Lemma A.2 (ii), we have

`−1∑
k=2

|Ck|<
`−1∑
k=2

|Ck|
(
sin θ̃∞k +cos θ̃∞k

)
≤
`−1∑
k=2

|Ck|.

This provides the contradiction and yields the desired result.

Remark 3.2. Note that the contradiction in Part B is due to the fact that

`−1∑
k=2

|Ck|>0,

which only makes sense for `(Ω)≥3. Indeed, when `(Ω) = 2, it follows from [12] that

sup
t>0

D(θ(t)) =
π

2
.

4. Exponential complete synchronization
In this section, we provide the proof of Theorem 2.2.
Since

|θ̇i(t)− θ̇j(t)|≤D(ω(t)),

it suffices to show that D(ω(t)) converges to zero exponentially fast to obtain the
desired result. To show this, we will derive a Gronwall type inequality for D(ω):

d

dt
D(ω(t))≤−K(cosD∞θ )D(ω(t)), a.e. t. (4.1)

Derivation of (4.1): Basically, we follow the same arguments stated in [11] to derive
the Gronwall inequality (4.1) for D(ω). To do this, we set

ωM := max
1≤i≤N

ωi, ωm := min
1≤i≤N

ωi.

Case A (Maximal frequency fluctuation): Since ωM is Lipschitz continuous, it is
differentiable in time t almost everywhere. Next, using the same arguments in the
case of θM in the proof of Proposition 3.3, it follows that there exist at most a
countable number of times 0 := t0<t1<t2< ·· · such that

ωM is differentiable in the time interval (tk−1,tk), k= 1,2, ·· ·.

For a given time zone (tk−1,tk), k= 1,·· ·, we choose an index i such that

ωi(t) =ωM (t), t∈ (tk−1,tk).

We use the result of Proposition 3.2,

|θj(t)−θi(t)|≤D(θ(t))≤D∞θ <
π

2
,

to get

cos(θj(t)−θi(t))≥ cosD∞θ , t∈ (tk−1,tk). (4.2)



396 SYNCHRONIZATION OF KURAMOTO OSCILLATORS

We differentiate the system (1.1) with respect to t and use (4.2) to find

dωi
dt

=
K

N

N∑
j=1

cos(θj−θi)(ωj−ωi)

≤ K cosD∞θ
N

N∑
j=1

(ωj−ωi)

=−K(cosD∞θ )ωi, t∈ (tk−1,tk),

where we used the following relations:

(ωj−ωi)≤0,

N∑
j=1

ωj =

N∑
i=1

θ̇i=

N∑
i=1

Ωi+
K

N

N∑
i,j=1

sin(θj−θi) =

N∑
j=1

Ωj = 0.

Thus, we have

dωM
dt
≤−K(cosD∞θ )ωM , a.e. t.

Case B (Minimal frequency fluctuation): In this case, we apply the same argument
as that used in Case A to find

dωm
dt
≥−K(cosD∞θ )ωm, a.e. t.

Finally, we combine Case A and Case B to obtain the desired Gronwall’s inequality.
The standard Gronwall’s inequality yields

D(ω(t))≤D(ω(0))exp
(
−K(cosD∞θ )t

)
, t≥0.

which denotes that complete frequency synchronization occurs asymptotically. This
completes the proof of Theorem 2.2 (ii).

Next, we discuss the optimal speed of the relaxation of D(θ). To achieve this, we
set

El := sin(θM −θm)+sin(θm−θl)+sin(θl−θM ).

If the asymptotic CFS of the Kuramoto model occurs, then for any ε>0 we have

|El(t)−E∞l |≤ε, t≥T (ε) and E∞l <0,

where E∞l is given by the formula

E∞l := sin(θ∞M −θ∞m )+sin(θ∞m −θ∞l )+sin(θ∞l −θ∞M ),

and E∞l <0 follows from Lemma A.2 (i). Therefore, asymptotically we find the fol-
lowing from (3.1):

Ḋ(θ)≈D(Ω)
(

1− 1

N

∑
l 6=M,m

(|E∞l |+ε)
)

︸ ︷︷ ︸
:=Λ(D(Ω),E∞l ,ε)

−D(Ω)sin(D(θ)), t�1. (4.3)
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Based on this observation, we have estimates for the optimal decay rate of D(θ).

Corollary 4.1. (Optimal speed of the relaxation of D(θ)) Suppose that the frame-
work (F) holds, and let θ=θ(t) be the solution to the system (1.1) - (1.3) with the
initial data θ0∈R. Thus, CFS occurs asymptotically and, more precisely, we have
the following optimal convergence rates of D(θ(t)):

• Case A
(

2tan−1

[
D(Ω)−

√
D(Ω)2−Λ2

Λ

]
−D(θ(t))<0

)
:

D(θ(t))

= 2tan−1
[ 1

Λ

{
D(Ω)−

√
D(Ω)2−Λ2 tanh

(1

2
(t
√
D(Ω)2−Λ2 +C(T (ε)))

)}]
.

(4.4)

• Case B
(

2tan−1

[
D(Ω)−

√
D(Ω)2−Λ2

Λ

]
−D(θ(t))>0

)
:

D(θ(t))

= 2tan−1
[ 1

Λ

{
D(Ω)−

√
D(Ω)2−Λ2 coth

(1

2
(t
√
D(Ω)2−Λ2 +C(T (ε)))

)}]
,

(4.5)

where

C(T (ε)) = log

∣∣∣∣∣Λtan D(θ(T (ε)))
2 −D(Ω)−

√
D(Ω)2−Λ2

Λtan D(θ(T (ε)))
2 −D(Ω)+

√
D(Ω)2−Λ2

∣∣∣∣∣−T (ε)
√
D(Ω)2−Λ2.

Proof. We first obtain the asymptotic CFS of the Kuramoto oscillators from
Theorem 2.2. Then, it follows from (4.3) and Case 1 in Lemma A.1 that

t
√
D(Ω)2−Λ2−T (ε)

√
D(Ω)2−Λ2

≈ log

∣∣∣∣∣Λtan D(θ(t))
2 −D(Ω)−

√
D(Ω)2−Λ2

Λtan D(θ(t))
2 −D(Ω)+

√
D(Ω)2−Λ2

∣∣∣∣∣
− log

∣∣∣∣∣Λtan D(θ(T (ε)))
2 −D(Ω)−

√
D(Ω)2−Λ2

Λtan D(θ(T (ε)))
2 −D(Ω)+

√
D(Ω)2−Λ2

∣∣∣∣∣.
(4.6)

Next, we divide the equation (4.6) into two cases A and B. By simple calculations,
we obtain the desired results.

5. Numerical simulations
In this section, we provide several numerical results for the relaxation behavior of

the phase and frequency diameters. In all of the numerical simulations, we used the
fourth order Runge-Kutta method with N = 100. It follows from [6] that the coupling
strength K should be larger than

Kl :=
ND(Ω)

2(N−1)

for the CFS, i.e., CFS does not occur for K≤Kl. Of course, this does not mean that
the CFS occurs for K>Kl. Therefore, the analytical results for CFS included in this
paper are available for the regime K≥D(Ω). Thus, it is not clear what will happen
with K ∈ (Kl,D(Ω)) from the CFS perspective. Below, we address this issue using
several numerical simulations.
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(a)

(b) Kl<K<D(Ω)

(c) Kl<K<D(Ω)

(d) K =D(Ω)

Fig. 5.1: `(Ω) =100: (a) The time for the CFS versus the coupling strength K. (b) The be-
havior of D(ω(t)) on a log-scale and D(θ(t)) when Kl<K= 1.1590<D(Ω). (c) The behavior
of D(ω(t)) on a log-scale and D(θ(t)) when Kl<K= 1.3521<D(Ω). (d) The behavior of
D(ω(t)) on a log-scale and D(θ(t)) when K=D(Ω).
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In the simulations shown in figure 5.1, the natural frequencies were chosen ran-
domly from a uniform distribution of [-1,1] so that

`(Ω) = 100 and D(Ω) = 1.9316,

and the initial phase configuration was also selected uniformly at random from the
interval [0, π2 ], so that

D(θ0) = 1.5336,

In figure 5.1, we varied K from 0 to 2D(Ω) with the increment D(Ω)
10 .

In figure 5.1 (a), we took the time where the frequency diameter was less than 10−7

by varying the coupling strength K>Kl= 0.9756. Using these settings, we observed
that the CFS did not occur when

K≤1.1590.

In figure 5.1.(b), we can see that the frequency diameter D(ω(t)) did not converge
to zero when

Kl<K= 1.1590<D(Ω).

In contrast, figure 5.1.(c) shows that D(ω(t)) decays exponentially to zero, although
the limit of D(θ(t)) was higher than π

2 for K= 1.3521(<D(Ω)). Thus, if there is
a coupling strength K such that the frequency diameter converges algebraically, it
should lie between 1.1590 and 1.3521.

In figure 5.1 (d), D(ω) converges to zero exponentially for K=D(Ω) and

D∞= 1.1055<
π

2
.

This is consistent with the analytic result in Theorem 2.2 (i).

6. Conclusion
In this paper, we provided an admissible class of initial configurations that led to

the exponential synchronization of the Kuramoto model at the coupling strength K=
D(Ω). In the special case where Kuramoto’s ensemble consists of two distinct natural
frequencies, Ha and Kang [12] showed that asymptotic CFS occurs algebraically at the
order of (1+ t)−1 given the initial configurations in R. In contrast, when `(Ω)≥3, we
showed that the relaxation rate to the phase-locked states was at least exponentially
fast. It would be very interesting to find the coupling strength K that guarantees a
slow relaxation (algebraic decay rate) for some classes of initial phase configurations.
We will leave this interesting issue to future work.
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Appendix A. Elementary estimates. In this section, we present several ele-
mentary estimates that are used in the proof of CFS.

Consider the Adler equation:

ẏ= Ω−K siny, t>0, y(0) =y0, (A.1)
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where Ω and K are positive constants. In the following lemma, we explicitly present
the implicit form of the solution to equation (A.1).

Lemma A.1. [5] The Adler equation has a global solution that satisfies
(i) Case 1 (0≤Ω<K):

t
√
K2−Ω2 = log

∣∣∣∣∣Ωtan y(t)
2 −K−

√
K2−Ω2

Ωtan y(t)
2 −K+

√
K2−Ω2

∣∣∣∣∣− log

∣∣∣∣∣Ωtan y0

2 −K−
√
K2−Ω2

Ωtan y0

2 −K+
√
K2−Ω2

∣∣∣∣∣.
(ii) Case 2 (Ω =K):

y(t) = 2arctan

[
2tan y0

2 +Ω
(

1−tan y0

2

)
t

2+Ω
(

1−tan y0

2

)
t

]
.

(iii) Case 3 (K<Ω):

y(t) = 2arctan
[ 1

R∞

{√
(R∞)2−1

× tan
{Kt

2

√
(R∞)2−1+tan−1

(R∞ tan y0

2 −1√
(R∞)2−1

)}
+1
}]
, R∞ :=

Ω

K
.

Lemma A.2. The following elementary estimates hold.
(i) Let θi, i= 1,2,3 be the three values in [−π,π) that satisfy

θi≤0, i= 1,2 θ1 +θ2 +θ3 = 0.

Thus, we have

sinθ1 +sinθ2 +sinθ3≤0,

where the equality holds if and only if θ1θ2 = 0.
(ii) For θ∈ [0, π2 ],

sinθ+cosθ≥1,

and the equality holds if and only if θ= 0 or θ= π
2 .

Proof.
(i) We use the elementary properties of trigonometric functions to show that

sinθ1 +sinθ2 +sinθ3 = sinθ1 +sinθ2−sin(θ1 +θ2)
= sinθ1(1−cosθ2)+sinθ2(1−cosθ1)
≤0, (∵ sinθ1, sinθ2≤0).

Note that the equality holds if and only if

sinθ1(1−cosθ2) = 0 sinθ2(1−cosθ1) = 0 ⇐⇒ θ1θ2 = 0.

(ii) Since θ+ π
4 ∈
[
π
4 ,

3π
4

]
, it is easy to see that

sinθ+cosθ=
√

2sin
(
θ+

π

4

)
≥
√

2
1√
2

= 1, θ∈
[
0,
π

2

]
,

and the equality holds if and only if θ= 0, π2 .
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