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SCALING LAWS FOR DROPLETS SPREADING UNDER
CONTACT-LINE FRICTION∗

MARIA CHIRICOTTO† AND LORENZO GIACOMELLI‡

Abstract. This manuscript is concerned with the spreading of a liquid droplet on a plane solid
surface. The focus is on effective conditions which relate the speed of the contact line (where liquid,
solid, and vapor meet) to the microscopic contact angle. One such condition has been recently
proposed by Weiqing Ren and Weinan E [Phys. Fluids 19, 022101, 2007]: it includes into the model
the effect of frictional forces at the contact line, which arise from unbalanced components of the
Young’s stress. In lubrication approximation, the spreading of thin droplets may be modeled by
a class of free boundary problems for fourth order nonlinear degenerate parabolic equations. For
speed-dependent contact angle conditions of rather general form, a matched asymptotic study of
these problems is worked out, relating the macroscopic contact angle to the speed of the contact
line. For the specific model of Ren and E, ODE arguments are then applied to infer the intermediate
scaling laws and their timescales of validity: in complete wetting, they depend crucially on the relative
strength of surface friction (at the liquid-solid interface) versus contact-line friction; in partial wetting,
they also depend on the magnitude of the static contact-angle.

Key words. Moving contact line, droplets, thin film equations, fourth order degenerate
parabolic equations, free boundary problems, lubrication theory, matched asymptotic expansions,
intermediate scaling laws.
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1. Introduction and results

1.1. The model. Understanding the dynamics of wetting phenomena of
droplets on solid substrates is still an ongoing challenge. The difficulty comes from
the classical theory of fluids. Indeed, in the Navier-Stokes equations, the constant vis-
cosity coupled with a no-slip boundary condition at the liquid-solid interface results
in a nonphysical singularity at moving contact lines, i.e. an infinite rate of energy dis-
sipation [19, 10]. Many models have been proposed in order to remove this singularity
(see e.g. [9, 21, 5]). All of them introduce at least one “microscopic” lengthscale in
the problem. The most common approach is to introduce effective slip conditions at
the liquid-solid interface; the simplest slippage model, the so-called Navier slip, reads
as

U =µBUζ at the liquid-solid interface, ζ=0. (1.1)

Here we adopt a two-dimensional framework, (ξ,ζ)∈R×R+ with the solid substrate
at ζ=0, U denotes the horizontal component of the velocity field within the liquid
phase, µ denotes the liquid’s viscosity and µB≥0 is the so-called slip length. The
ratio 1/B is to be understood as a friction coefficient between the liquid and the solid.

Away from the contact line where the liquid, the solid and the surrounding vapor
meet, slippage models for single-phase flows have survived an extensive crosscheck
by MD simulations (see e.g. [27] and the discussion in [22, 23]). However, recent
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investigations by Qian, Wang, and Sheng [22] and by Ren and E [23] have confirmed
that, near the contact line region, slippage models such as (1.1) cease to provide a
valid description of the dynamics; there, the main driving force which is responsible
for the slip is the unbalanced Young’s stress. Of particular interest in this note is the
contribution by Ren and E [23] and by Ren, Hu, and E [25] (see also [24]). There, by
a combination of molecular dynamics and continuum thermodynamics, an effective
continuum model is derived, in which the unbalanced Young’s stress results from the
deviation of the contact angle Θ from its static value ΘS . Such deviation drives the
motion of the contact line in a way which, in the simplest case of a linear friction law,
reads as follows:

Dγ(cosΘ−cosΘS) = UCL if ΘS >0 (partial wetting),

Dγ(cosΘ−1) = max{UCL,0} if ΘS =0 (complete wetting).
(1.2)

Here UCL is the speed of the contact line, γ denotes the liquid-vapor surface tension,
and 1/D is an effective friction coefficient at the contact line. Note that the dynamic
contact angle is strictly larger than the static one if the wet region expands, smaller
(or equal, in complete wetting) if it contracts.

All together, (1.1) and (1.2) introduce two parameters in the problem, B and
D, which account for the effective friction at the liquid-solid and liquid-solid-vapor
interfaces, respectively. The general goal of this note is to discuss the effect of these
parameters on the evolution of a droplet, assumed for simplicity to be symmetric,
which spreads over a horizontal substrate. To this aim, it is convenient to argue in
the regime of lubrication approximation, which we introduce now.

1.2. Lubrication approximation and its dissipative structure. Lu-
brication approximation (see e.g. [21]) is a tool to reduce the complexity of the
Navier-Stokes system while retaining the effects of both capillary forces and frictional
forces (viscous friction in the bulk, surface friction at the liquid-solid interface, and
contact-line friction at the liquid-solid-vapor interface). Lubrication approximation is
based on a separation of the (macroscopic) lengthscales, which (in the presence of a
contact line) has been rigorously justified in two model cases [13, 20]. Namely, the
typical vertical lengthscale Z is assumed to be much smaller than the typical horizon-
tal lengthscale X, and the typical timescale is chosen so to retain the effects of both
surface tension and viscosity:

ε=
Z

X
≪1, T =

3µ

γ

X4

Z3
.

Introducing new independent variables according to the above scaling,

(t,x,z) :=

(

τ

T
,
ξ

X
,
ζ

Z

)

,

and performing a careful asymptotic expansion in ε (see e.g. [21, 7, 25]), one obtains
a limiting evolution which consists in a fourth order free boundary problem for the
normalized height of the liquid film, h(t,x), and the extent of the wetted region,
(−s(t),s(t)) (for simplicity, we assume h to be symmetric with respect to x=0):















ht+(hu)x=0, u=(h2+bh)hxxx in (0,s(t)),

h=0, d
dts(t)= lim

x→s(t)−
u at x=s(t),

hx=hxxx=0 at x=0,

(1.3)
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and the free boundary condition (1.2) translates into

d
(

h2
x−θ2S

)

=

{

ds
dt if θS >0,

max
{

ds
dt ,0

}

if θS =0
at x=s(t). (1.4)

Here u represents the normalized mean horizontal velocity of the liquid phase,

b=
3µB

Z
, d=

3DµX

2Z
, and θS =

ΘS

ε
, (1.5)

where θS is a normalized static contact angle.
Now, it follows from a simple asymptotic expansion near x=s(t) that the equation

in (1.3) does not possess receding traveling waves with zero contact angle (see [4, 6]
for the general structure of traveling waves for thin-film equations); in other words,
ds
dt ≥0 whenever hx=0 at the contact line. Therefore (1.4) simplifies to

d
(

h2
x−θ2S

)

=
ds

dt
at x=s(t). (1.6)

The free boundary problem (1.3)-(1.6) preserves the dissipative structure of the
original system: as formally shown in [7], a sufficiently smooth solution to (1.3)-(1.6)
satisfies

d

dt

∫ s(t)

0

1

2
(h2

x+θ2S)dx=− 1

2d

(

ds

dt

)2

−
∫ s(t)

0

u2

h+b
dx. (1.7)

The integral on the left-hand side corresponds, to leading order in lubrication approxi-
mation, to the surface energy of the droplet, and accounts (via θS and the Young’s law)
for all three surface tension coefficients (liquid/solid, liquid/vapor, and solid/vapor)
which enter into the system (see e.g. [3]). The two terms at the right-hand side of
(1.7) encode the two different means of free energy dissipation: the latter, which is
standard in this field, represents viscous friction both in the liquid’s bulk and at the
liquid/solid interface; the former instead represents friction at the contact line and
is specific to the free boundary condition proposed in [23]. As expected, it vanishes
when the effective friction coefficient 1/d does.

1.3. Scaling laws without contact-line friction. For the ease of presen-
tation, in what follows we assume (where not otherwise stated) that the droplet has
unit mass,

M =1

(the general case can be easily recovered by scaling; see Section 3). In classical models,
(1.6) is replaced by its frictionless counterpart, 1/d=0:

hx≡−θS at x=s(t), (1.8)

which amounts to assume an instantaneous enforcement of equilibrium at the contact
line. In this case, the droplet’s dynamics are known to be influenced only logarithmi-
cally by the slippage model, at least at intermediate timescales. This fact has been
first observed by Hocking for θS >0 (see also Cox [8] for the case of rough surfaces) by
matched asymptotic methods. More precisely, in [17] a relation is obtained between
the contact-line velocity and the macroscopic contact angle, θM , defined there as the
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slope of the unique even arc of parabola having the same mass and support at its
zero:

p(s,x)=
3

4s3
(s2−x2)+, θM = |∂xp(s,s)|=

3

2s2
. (1.9)

In the present two-dimensional case, it reads as follows:

θ3M ∼θ3S+3s′ log

(

sθ

b

)

. (1.10)

In the case θS =0, the same logarithmic correction was obtained by Hocking in [18]
and leads to the following scaling law for the speed of the contact line, which is often
referred to as the logarithmic correction to Tanner’s law [26]:

s∼
(

t

log
(

1
b7t

)

)1/7

. (1.11)

The scaling law (1.11) was then inferred in [2] by a different formal argument which
used quasi-selfsimilar solutions, and rigorously derived in [12] for the boundary of the
“macroscopic support”, (−a(t),a(t))={h(t, ·)>b}, i.e. replacing s(t) by a(t) in (1.9)
and (1.11). In the latter two contributions, the time window of validity of (1.11) is
also obtained:

s70 log

(

1

bs0

)

≪ t≪ b−7. (1.12)

Note that the appearance of an intermediate timescale is real: on one hand, it takes a
certain time for the droplet to forget its initial shape; on the other hand, for large times
h≪ b on the whole support, hence the evolution is governed by slippage alone and s
will scale like t1/6. Again in complete wetting, analogous logarithmic corrections were
obtained by de Gennes [9] for a related model in which the contact angle condition is
replaced by the action of van der Waals forces.

1.4. Scaling laws with contact-line friction. In the presence of contact-
line friction the situation is more complicated, since the scaling laws will depend
not only on whether θS is zero or not, but also on the relation between the two
parameters b and d. In particular, due to the presence of two parameters, more than
one intermediate scaling law should be expected in general. Indeed, in [25], formal
considerations based on the dissipation relation (1.7) have been worked out in the
complete wetting regime, ΘS =0. Three timescales are identified:

- an early stage, dominated by contact-line friction, where s(t)∼ t1/5;

- a moderate stage, dominated by viscous friction, where s(t)∼ t1/7;

- a final stage, dominated by surface friction, where s(t)∼ t1/6.

Such behavior has been validated by numerical simulations of (1.3)-(1.6). The goal
of this contribution is to give a more precise and more quantitative description of
these scaling laws, in the spirit of (1.10), (1.11), and (1.12), covering also the case
of partial wetting (see Section 2.4). As a by-product, we will obtain a matched
asymptotic expansion of solutions to (1.3)-(1.6) for a wide class of free boundary
conditions relating the speed and the contact angle.

We point out that our analysis is confined to the case in which lubrication ap-
proximation is valid in the entire film, including the contact line region. This may
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not be true due to various circumstances. Among them is the case of a static contact
angle ΘS which is not “small” (in the sense of (1.5)). In this case our analysis is
not applicable and a different argument has to be used in order to infer the scaling
laws. The numerical results in [23, Section VII] suggest that long-time relations of
the form (1.10) will remain valid. We should also point out that our analysis neglects
the effect of disjoining/conjoining pressure, which adds a surface potential term to the
expression for u in (1.3); we refer to [25] both for the details and for related scaling
laws in complete wetting.

2. Results and outline
In Section 3 we rewrite (1.3)-(1.6) in dimensionless form. This highlights the

crucial role of the parameter

k=
dM

b2
,

which may be seen as a measure of the relative strength of surface friction versus
contact-line friction. In summarizing the results of our analysis, we assume once
again that M =1 and we disregard universal constants.

2.1. Scaling laws in complete wetting. If θS =0, we will argue that

(A) for a stronger contact-line friction, d. b2, the droplet displays an early
timescale dominated by contact-line friction and a final timescale dominated
by surface friction:

s∼
{

(dt)1/5 if
s5
0

d ≪ t≪ b5

d6 (and s0≪ b
d ),

(bt)
1/6

if t≫ b5

d6 ;
(2.1)

(B) for a stronger surface friction, b2≪d, the droplet displays an early timescale
dominated by contact-line friction, a moderate timescale dominated by vis-
cous friction, and a final timescale dominated by surface friction:

s∼



















(dt)1/5 if
s5
0

d ≪ t≪ 1
d7/2 log5/2 d

b2
(and s20≪ 1

d log d
b2
),

(

t
log 1

b7t

)1/7

if 1
d7/2 log5/2 d

b2
≪ t≪ b−7,

(bt)1/6 if t≫ b−7.

(2.2)

The scaling laws in (B) quantify those predicted in [25]. A main difference may be
noted:

• for a stronger contact-line friction, case (A), the system bypasses the moderate
timescale dominated by viscous friction.

One also notices that

• for a stronger surface friction, case (B), the moderate regime is logarithmically
corrected by surface friction, as in the case of zero contact-line friction (see
(1.11)-(1.12));

• all timescales, besides the final one, depend both on surface and on contact-
line friction.

As already pointed out in Section 1.3, the lower bounds on the initial times are real:
they correspond to the time that the system needs to “forget” its initial shape and to
relax to a quasi-static configuration.
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2.2. A heuristic argument and its limitation. In Section 4 we look at
the case of complete wetting, θS =0, and we present a variant of a simple heuristic
argument, based on the dissipation relation (1.7), which has already been used in
this framework (see the discussion in Section 4). Though this argument is already
capable to predict (2.1) and (2.2), it relies on quite a heavy hypothesis: the quasi-
static equilibrium configuration of h (see (1.9) and (4.1) below) must be postulated
up to the contact-line. This assumption may not be true in general; for instance, it is
certainly false in the case of a null contact-line friction, 1/d=0, since the condition
hx=0, as given by (1.8), is incompatible with (1.9). In Remark 4.1 we argue that
the heuristic argument lacks self-consistency (in the sense that the conclusions are
incompatible with that assumption) when the evolution is not driven by contact-line
friction. This points to the necessity of working out a matched asymptotic study of
(1.3)-(1.6) which avoids such a strong postulate.

2.3. Matched asymptotic analysis. After the works of Hocking [17, 18] and
of Cox [8], matched asymptotic with speed-dependent contact angle conditions have
been extensively performed in the past [15, 11, 16]. However, none of them includes
(1.6), and the scaling assumptions used are not always sharp or easy to reconstruct.
Hence, here we extend, modify, and simplify the asymptotic in a way which includes
(1.6) and keeps track of all the assumptions used. Up to the extent we need for (1.6),
we may argue for a rather general relation between speed and contact angle,

|hx(t,s(t))|=θ=θ(s′(t),θS), θRθS for s′R0, (2.3)

which makes the results potentially applicable to different boundary conditions and
therefore, we believe, of independent interest. The asymptotic is based on the as-
sumptions that the evolution is “slow” and quasi-static, and yields the following: if

0≤s6s′≪1 and bs≪1, (2.4)

then

θ3M ∼







θ3+3s′ log
(

sθ
b

)

if b≪sθ and s′≪θ3,

3s′ log
(

s(s′)1/3

b

)

if b3≪s3s′ and s′≫θ3,
(2.5)

where θM is defined as in (1.9). The first assumption in (2.4) says that the droplet
spreads and spreads slowly; in particular, it rules out of the analysis an initial timescale
during which the evolution is governed by the droplet’s initial shape. The second one
ensures (via mass conservation) that h(t, ·)≫ b on most of its support, which motivates
calling θM a macroscopic contact angle. Of course, (2.5) recovers the earlier results
in [17, 18] when θ≡θS . In Section 5 we also obtain an asymptotic relation between s
and θ, valid when h≪ b but the evolution is “slow” and quasi-static:

(

3

2s2

)3

∼θ3 if bs≫1, s5s′≪ b, and θ>0. (2.6)

In Section 6 and Section 7 we consider the specific contact-angle condition (1.6)
in the regime of complete wetting, and we use ODE arguments to pass from (2.5) and
(2.6) to the early and moderate scaling laws in (2.1) and (2.2). In the particular case
1/d=0, (1.11)-(1.12) are also recovered. The scaling laws for long time are obtained
in Section 8 by a different asymptotic which assumes a quasi-selfsimilar profile of the
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solution. As a consequence, one may conclude that θM and θ are indeed “relatively
close” to each other, which a-posteriori justifies the heuristic argument described in
Section 2.2.

2.4. Scaling laws in partial wetting. In the case of partial wetting, θS >0,
the profile of a spreading droplet converges (exponentially, see Section 9) to the unique
steady state with given mass and contact angle θS as t→+∞: assuming M =1,

h→ 3

4s3∞
(s2∞−x2)+ and s↑s∞=

√

3

2θS
as t→+∞.

We focus on the most interesting case of

θS ≫ b2, i.e. bs∞≪1,

which guarantees the persistence for all times of a macroscopic profile. In Section 9
we argue that, for sufficiently large times, the system evolves in accordance with the
Cox-Hocking relation (1.10) between the effective and the microscopic contact angle.
Hence, also in partial wetting the contact-line friction plays no role for large times.
However, it turns out that there are still intermediate timescales which are influenced
by contact-line friction. We illustrate the results in words for M =1, neglecting a
(logarithmically short) transition timescale (the reader is referred to Section 9 for the
precise statements):

(i) if d≪θS , then (1.10) is preceded by an early timescale dominated by contact-
line friction;

(ii) if θS ≪d, then (1.10) is preceded by an early timescale dominated by contact-
line friction and a moderate timescale dominated by viscous friction.

These results identify the ratio d/θS as the threshold parameter in the partial wetting
regime. In addition, the upper bounds on the timescales permit one to quantify the
time in which (1.10) takes over; again up to a logarithmic correction, the analysis in
Section 9 shows that

(1.10) ⇐⇒ t≫







1

dθ
5/2
S

if d≪θS ,
1

θ
7/2
S log1/6

(

θS
b2

) if θS ≪d.

3. Dimensionless form
It is convenient to scale all quantities in such a way that the mass is 1 and the

equation is parameter-free:

x=
M

b
x̂ and s=

M

b
ŝ, h= bĥ, t=

M4

b7
t̂.

In particular, the nonlinearity m(h)=h3+bh2 turns into m(ĥ)= ĥ3+ ĥ2: the transi-

tion between the two regimes of m, h∼ b, in the new variables occurs at ĥ∼1. The
free boundary condition (1.6) reads as

dM

b2

(

ĥ2
x̂−

M2

b4
θ2S

)

=
dŝ

dt̂
at x̂= ŝ(t̂).

Hence, introducing the parameters

αS =
M

b2
θS , k=

dM

b2
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and removing all hats, (1.3)-(1.6) read as














ht+(hu)x=0, u=(h2+h)hxxx, h>0 in (0,s(t)),

hx=hxxx=0 at x=0,

h=0, s′(t)= lim
x→s(t)−

u(t,x)=k
(

h2
x−α2

S

)

at x=s(t),

(3.1)

and the dissipation relation (1.7) transforms into

d

dt

∫ s(t)

0

1

2
(h2

x+α2
S)dx=− 1

2k
(s′(t))2−

∫ s(t)

0

u2

h+1
dx. (3.2)

4. A heuristic argument and its limitation
In this section we consider the case of complete wetting:

αS =0.

In the case of null contact-line friction, 1/d=0, the scaling law (1.11) was first
observed by Hocking [18] and then rigorously derived in [12] for the boundary a(t)
of the “macroscopic support”, (−a(t),a(t))={h(t, ·)>b}. While Hocking uses careful
matched asymptotic expansions, the heuristic behind the rigorous results in [12] is
much simpler: it relies on the energy dissipation mechanism encoded by (3.2) and
is inspired by that used by de Gennes in [9]; more recently, Glasner [14] has given
a detailed interpretation to this heuristic in terms of gradient flows. The heuristic
in [12] is based on assuming that the evolution is quasi-static on the macroscopic

support and that most of the energy is contained and dissipated there (though near
its boundary): this allows one to obtain an ODE for a single unknown, a(t), thus
avoiding all the subtleties of “matching” with a microscopic region near the contact
line.

If instead 1/d>0, (3.2) contains a term which acts at the contact line, and which
therefore already contains the unknown s′(t) (or equivalently, hx|x=s(t)). Hence, in
revisiting the aforementioned heuristic, in order to get a closed ODE one is forced to
use s(t) instead of a(t) as the unknown, i.e. to argue in the whole support (−s(t),s(t))
rather than just on the macroscopic one. In particular, one has to assume that the
evolution is quasi-static in the whole support, in the sense that the droplet’s profile
is, at leading order, in equilibrium given its mass and its whole support:

h∼ 1

s3
(s2−x2) for x∈ (−s,s) (4.1)

(here and after we disregard universal constants). Then, by a simple computation,

d

dt

∫ s

0

h2
xdx∼− s′

s4
.

In order to compute the rate of dissipation in (0,s(t)), we pick the simplest possible
form of the velocity field u such that u=0 at x=0 and u=s′(t) at x=s(t):

u∼ xs′

s
.

Then
∫ s

0

u2

h+1
dx∼ s′2

s2

(

∫

{h≥1}

x2

h
dx+

∫

{h≤1}

x2dx

)

.
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In view of (4.1), the first integral on the right-hand side is zero if s≫1. Simple
computations using (4.1) then yield

∫ s

0

u2

h+1
dx∼

{

s2(s′)2 log 1
s if s≪1,

s(s′)2 if s≫1.
(4.2)

Plugging (4.1) and (4.2) into (3.2) we obtain

− s′

s4
∼







− (s′)2

k −s2(s′)2 log 1
s if s≪1,

− (s′)2

k −s(s′)2 if s≫1,

that is,

1

s′
∼
{

s4

k +s6 log 1
s if s≪1,

s4

k +s5 if s≫1.
(4.3)

We note that

s4

k
≫s6 log

1

s
⇐⇒ 1

k
≫s2 log

1

s2
, (4.4)

s4

k
≫s5 ⇐⇒ 1

k
≫s. (4.5)

Hence we must distinguish two cases.

(1). If k≪1, then (4.4) is always satisfied for s≪1, and (4.3) reads as

1

s′
∼
{

s4

k if s≪ 1
k ,

s5 if s≫ 1
k .

(4.6)

We assume that s0≪1/k, so that both the regimes in (4.6) are seen. Then, solving
(4.6) renders

s∼
{

s0+(kt)1/5∼ (kt)1/5 if
s5
0

k ≪ t≪ 1
k6 ,

t1/6 if t≫ 1
k6 .

(4.7)

(2). If k≫1, then (4.5) is never satisfied for s≫1, whereas for s≪1 (4.4) may
be inverted as follows:

(4.4) ⇐⇒ 1

k logk
≫s2.

Therefore (4.3) reads as

1

s′
∼











s4

k if s2≪ 1
k logk ,

s6 log 1
s if 1

k logk ≪s2≪1,

s5 if s≫1.

(4.8)

Assuming that s20≪ 1
k logk and solving this ODE (see Section 7.2 for details) yields

s∼



















s0+(kt)1/5∼ (kt)1/5 if
s5
0

k ≪ t≪ 1
k7/2 log5/2k

,
(

t
log 1

t

)1/7

if 1
k7/2 log5/2k

≪ t≪1,

t1/6 if t≫1.

(4.9)
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Returning to the original variables, (4.7) and (4.9) coincide with (2.1) and (2.2),
respectively.

Remark 4.1. It must be pointed out that assuming (4.1) implicitly postulates that

hx|x=s(t)
(4.1)∼ − 1

s2
. (4.10)

Indeed, one can easily check that the equivalent formulation of (3.2) (with αS =0),

d

dt

∫ s(t)

0

1

2
h2
xdx

(3.2),(3.1)
= −k

2
h4
x|x=s(t)−

∫ s(t)

0

u2

h+1
dx,

with the contact-angle given by (4.10), leads exactly to the same asymptotic, (4.6)
and (4.8). On the other hand, rewriting (4.10) in the form

s′(t)
(3.1)
= kh2

x|x=s(t)
(4.10)∼ k

s4(t)

and comparing it with (4.6) and (4.8), one immediately sees that the heuristic argu-
ment is self-consistent only along those time-scales in which s′ depends on k.

Remark 4.1 points to the need for a more careful asymptotic analysis which avoids
postulating (4.1). We will work it out in the rest of this paper.

5. Matched asymptotic and the macroscopic contact angle
We work under the more general boundary condition (2.3), which in the dimen-

sionless form of Section 3 reads as

|hx(t,s(t))|=α(s′(t),αS), α(s′,αS)RαS for s′R0. (5.1)

Note that the contact-angle condition in (3.1) is included in (5.1) by letting

α(s′,αS)=

√

s′

k
+α2

S . (5.2)

The asymptotic is based on two main assumptions:

(I) the evolution within the liquid’s bulk is “quasi-static”;

(II) the evolution within the liquid’s bulk is “slow”.

The former is of a qualitative nature. In order to make it more precise, it is convenient
to introduce a variable transformation which differs from those used in earlier studies
and yields sharp scaling assumptions. It fixes the free boundary and preserves mass:

h(t,x)=
1

s(t)
H(t,y), y=

x

s(t)
∈ (0,1).

Then

s6s′(yH)y−s7Ht=((H3+sH2)Hyyy)y in (0,∞)×(0,1). (5.3)

A quasi-static evolution of the liquid’s bulk means that, except maybe for a region
where H≪1, H depends on time only through the modulations given by s and s′.
Hence (5.3) reads as

(s6s′)(yH)y ∼ ((H3+sH2)Hyyy)y,
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which may be integrated once with respect to y (from y=0), obtaining

(s6s′)yH∼ (H3+sH2)Hyyy in (0,1). (5.4)

We now think of H and its derivatives to be O(1); then (5.4) shows a scaling-wise
natural way to quantify the notion of a “slow” evolution within the liquid’s bulk:

s6s′≪1 if s≪1 (5.5)

and

s5s′≪1 if s≫1. (5.6)

Note that four conditions are to be imposed for H, whereas (5.4) is of third order;
we’ll use

Hy|y=0=0, H|y=1=0,

∫ s(t)

0

H(s(t),x)dx=
1

2
(5.7)

to determine H, and

Hy|y=1=−αs2 (5.8)

to determine a relation between s and s′. Provided (5.5) holds, we obtain the following
asymptotic:

(

3

2s2

)3

∼
{

α3+3s′ log(sα) if 1≪sα and s′≪α3,

3s′ log(s(s′)1/3) if 1≪s3s′ and s′≫α3.
(5.9)

If instead (5.6) holds, then

(

3

2s2

)3

∼α3 if α>0. (5.10)

Returning to the original variables we obtain (2.5) and (2.6). In the rest of the section
we provide the details for both. The first one is by far less obvious.

5.1. Slow evolution with a macroscopic profile: the outer expansion.
We first consider the case s≪1, which in view of mass conservation implies that

H≫1 in the liquid’s bulk, i.e., a macroscopic profile exists. Since s≪1, (5.4) and
(5.8) simplify to

(s6s′)yH∼H3Hyyy in (0,1) (5.11)

and

Hy|y=1=0, (5.12)

respectively. In view of (5.5), we expand H in powers of s6s′:

H=H0(y)+(s6s′)H1(y)+ lower order terms.

At zeroth order, (5.11) and (5.7) read as
{

(H0)yyy =0 in (0,1),

(H0)y|y=0=0, H0|y=1=0,
∫ 1

0
H0(y)dy=

1
2 .

(5.13)
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A simple calculation shows that the solution of (5.13) is

H0(y)=
3

4
(1−y2).

Since the contact-angle condition (5.12) can not be satisfied, we proceed to first order.
For H1, we obtain

{

(H1)yyy =
y
H2

0

= 16y
9(1−y2)2 in (0,1),

(H1)y|y=0, H1|y=1=0,
∫ 1

0
H1(y)dy=0.

Three integrations yield, after lengthy but straightforward computations,

H1(y)=
8−9B

18
(1−y2)+

4

9
((1+y)log(1+y)+(1−y)log(1−y)−2log2) ,

where B=(H1)yy(0) must be determined via the mass constraint. After an additional
calculus exercise, one sees that B=−4/9, and therefore

Hy ∼ (H0+s6s′H1)y =−3

2
y+s6s′

(

−4

3
y+

4

9
log

(

1+y

1−y

))

∼−3

2
+

4

9
s6s′ log

(

1

1−y

)

as y→1. (5.14)

Since Hy has a logarithmic singularity as y→1, we can not impose the contact-angle
condition (5.12). This points to the necessity of an inner expansion which permits to
cancel the singularity by a suitable matching. Before proceeding we observe that, in
terms of the original variables, (5.14) reads as

hx∼− 3

2s2
+

4

9
s4s′ log

(

s

s−x

)

for
s

s−x
≫1. (5.15)

5.2. Slow evolution with a macroscopic profile: the inner expansion.
Near the free boundary we follow [17, 18] and use the scaling of a traveling wave,

h(t,x)=f(ξ), ξ=s(t)−x.

We impose the touchdown condition, f(0)=0, the contact angle condition, fξ =α at
ξ=0, and the kinematic condition, f =fu=0 at ξ=0. Then, after one integration,
we see that for each t>0















fξξξ =− s′

f2+f
for ξ >0,

f =0 at ξ=0,

fξ =α at ξ=0.

(5.16)

In order to achieve a matching with the solution in the outer region, fξ must be
no more than logarithmically large at infinity. This singles out the unique solution
of (5.16) such that fξξ →0 as ξ→+∞, as given by Theorem 1.1 in [7]. A simple
asymptotic expansion of (5.16) shows that this solution is such that

f(ξ)∼ (3s′)1/3ξ(logξ)1/3 as ξ→+∞ if s′>0. (5.17)
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In order to infer the asymptotic form of fξ up to order 0 in ξ, we distinguish two
regimes:

(1). β= s′

α3 ≪1. In this case we rescale (5.16) according to ξ̂=αξ, so that

fξ̂ξ̂ξ̂ =− β

f2+f
, fξ̂(0)=1,

and we linearize around β=0: f =f0+βf1+ .... At leading order in β we have

f0= ξ̂. (5.18)

At first order in β we have

(f1)ξ̂ξ̂ξ̂ =− 1

ξ̂2+ ξ̂
for ξ >0, f1(0)=(f1)ξ̂(0)=0.

After two integrations (using the boundary conditions), we obtain

(f1)ξ̂ =(1+ ξ̂)log(1+ ξ̂)− ξ̂ log ξ̂=(1+ ξ̂)

(

log ξ̂+log

(

1+
1

ξ̂

))

− ξ̂ log ξ̂

∼1+log ξ̂ as ξ̂→+∞. (5.19)

Recombining (5.18) and (5.19), we see that

fξ̂ ∼ (f0+βf1)ξ ∼1+β
(

1+log ξ̂
)

for ξ̂≫1.

Recalling that β≪1, in terms of the outer variable the previous expression reads as
follows:

−hx∼α+
s′

α2
log(α(s−x)) for α(s−x)≫1. (5.20)

(2). β= s′

α3 ≫1. In this case we scale (5.16) according to ξ̂=(s′)1/3ξ, so that

fξ̂ξ̂ξ̂ =− 1

f2+f
, fξ̂(0)=

1

β1/3
.

At leading order in β−1/3 we obtain that











fξ̂ξ̂ξ̂ =− 1
f2+f in (0,+∞),

f(0)=fξ̂(0)=0, lim
ξ̂→+∞

fξ̂ξ̂(ξ̂)=0.
(5.21)

Theorem 1.1 in [7] guarantees that (5.21) has a unique solution, and the asymptotic
in (5.17) yields

fξ̂ ∼ log1/3(ξ̂3) as ξ̂→+∞.

In terms of the outer variables, this means that

−hx∼
(

s′ log
(

s′(s−x)3
))1/3

for s′(s−x)3≫1. (5.22)
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5.3. Slow evolution with a macroscopic profile: the matching. In the
outer region, where h≫1, the velocity field u=(h2+h)hxxx∼h2hxxx has the same
scaling of h3

x. Therefore, in order to get a relation between the velocity and the
macroscopic contact angle, it is natural to cube the expressions obtained for hx. For
the outer profile, at order one in s6s′ we find from (5.15) that

h3
x∼−

(

3

2s2

)3

+3s′ log

(

s

s−x

)

for (s−x)≪s. (5.23)

For the inner profile, (5.20) (at order one in s′/α3) and (5.22) yield

h3
x∼







−α3−3s′ log(α(s−x)) for (s−x)≫ 1
α if s′≪α3,

−3s′ log
(

(s′)1/3(s−x)
)

for (s−x)≫ 1
(s′)1/3

if s′≫α3.
(5.24)

Having carefully tracked the scaling assumptions both in the outer and in the inner
region allows one to simplify the matching with respect to [17, 18]. Indeed, we just
have to notice that the range of validity of the expansions (5.23) and (5.24) overlap
if 1≪sα when s′≪α3, and if s3s′≫1 when s′≫α3. In these cases we may equate
them, and after a cancellation of the log(s−x) terms we obtain (5.9).

5.4. Slow evolution without macroscopic profile. Since s≫1, H3+
sH2∼sH2, so that (5.4) takes the form

(s5s′)y∼HHyyy.

Because of (5.6), we expand H in powers of s5s′: H=H0+(s5s′)H1+lower order
terms. At zeroth order, as in Section 5.1, we recover

H0(y)=
3

4
(1−y2).

This solution meets the boundary condition (H0)y =−αs2 provided α>0, and in
terms of the original variables we obtain (5.10).

6. Intermediate scaling law in complete wetting without contact-line
friction

As a first example, which we shall anyway need later on, we recover the well-
known logarithmic correction to Tanner’s law stated in (1.11)-(1.12) in the case that
α≡0. We will neglect universal constants.

Since α≡0, only the second regime in (5.9) is relevant. Hence, if

s≪1, (6.1)

and if
s6s′≪1, s3s′≫1, (6.2)

then
1

s6
∼s′ log

(

s3s′
)

. (6.3)

We now analyze (6.1)-(6.3) in the (s,s′) plane. First of all, we make (6.3) explicit (in
what follows we shall often use this type of argument; we provide its details here once
for all):

1

s6
∼s′ log

(

s3s′
)

⇐⇒ 1

s3
∼s3s′ log

(

s3s′
) (6.2)
≫ 1
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⇐⇒ 1

s3 log
(

1
s3

) ∼s3s′

⇐⇒ s′∼ 1

s6 log
(

1
s

) . (6.4)

Then we observe that

s6s′≪1
(6.4)⇐⇒ 1

log
(

1
s

)≪1 ⇐⇒ s≪1,

1≪s3s′
(6.4)⇐⇒ s3 log

(

1

s

)

≪1 ⇐⇒ s≪1.

Hence (6.1)-(6.3) are equivalent to (6.1) and (6.4). If (6.1) is initially true, i.e. s0 :=
s(0)≪1, we may integrate (6.4): since

(

s7 log

(

1

s

))′
(6.1)∼ s6 log

(

1

s

)

s′,

we obtain

s7 log

(

1

s

)

∼ t provided s70 log

(

1

s0

)

≪ t. (6.5)

We now check for how long (6.1) remains true:

s≪1 ⇐⇒ s7≪1 ⇐⇒ t

log
(

1
t

)≪1 ⇐⇒ t≪1,

and in this case (6.5) may be inverted as before, yielding

s7∼ t

log
(

1
t

) provided s70 log

(

1

s0

)

≪ t≪1 and s0≪1. (6.6)

Note that the time window is not empty since s0≪1. Returning to the original
variables we recover (1.11)-(1.12). Large timescales will be analyzed in Section 8.

7. Intermediate scaling laws in complete wetting with contact-line fric-
tion

We now focus on the specific boundary condition proposed in [23] in the case of
complete wetting, αS =0. In view of (5.2), we then have

α=
√

s′/k. (7.1)

We will neglect universal constants, and argue that:

(I) if k.1 and s0≪ 1
k , then

s(t)∼ (kt)1/5 if
s50
k
≪ t≪ 1

k6
; (7.2)

(II) if k≫1 and s20≪ 1
k logk , then

s(t)∼











(kt)1/5 if
s5
0

k ≪ t≪ 1
k7/2 log5/2k

,
(

t

log( 1

t )

)1/7

if 1
k7/2 log5/2k

≪ t≪1.
(7.3)
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Note that the time windows in (7.2) and (7.3)1 are not empty in view of the assump-
tions on s0. Returning to the original variables and letting M =1 we obtain the early
and moderate timescales in (2.1) and (2.2). Large timescales will be analyzed in the
next section.

The rest of the section is devoted to showing that (5.9) and (5.10) imply (7.2)
and (7.3). In Section 7.1 we show that, under (7.1), (5.9) and (5.10) are equivalent to

s′∼ k

s4
if s≪ 1

k
for k.1, (7.4)

s′∼
{ k

s4 if s2≪ 1
k logk ,

1

s6 log( 1

s )
if 1

k logk ≪s2≪1,
for k≫1. (7.5)

In Section 7.2 we easily infer (7.2) and (7.3) from (7.4) and (7.5).

7.1. The ODEs for s. Plugging (7.1) into (5.9), we obtain that if

s≪1 (7.6)

and
s6s′≪1, (7.7)

then

1

s6
∼







(

s′

k

)3/2

+ 3
2s

′ log
(

s2s′

k

)

if k≪s2s′ and k3≪s′,

s′ log
(

s3s′
)

if 1≪s3s′ and s′≪k3.
(7.8)

The relation in (7.8)1 may be split into two regimes:

1

s6
∼











(

s′

k

)3/2

if
(

s′

k3

)1/2

≫ log
(

s2s′

k

)

,

s′ log
(

s2s′

k

)

if
(

s′

k3

)1/2

≪ log
(

s2s′

k

)

.

Therefore (7.8) is equivalent to

1

s6
∼



























(

s′

k

)3/2

if k≪s2s′ and
(

s′

k3

)1/2

≫ log
(

s2s′

k

)

,

s′ log
(

s2s′

k

)

if k≪s2s′ and 1≪
(

s′

k3

)1/2

≪ log
(

s2s′

k

)

,

s′ log
(

s3s′
)

if 1≪s3s′ and s′≪k3.

(7.9)

Plugging (7.1) into (5.10), we obtain

1

s6
∼
(

s′

k

)3/2

if α>0, s5s′≪1, and s≫1. (7.10)

We now analyze each regime in (7.9) and (7.10).

• Within (7.9)1, we have

1

s6
∼
(

s′

k

)3/2

⇐⇒ s′∼ k

s4
. (7.11)
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Hence

k≪s2s′
(7.11)⇐⇒ k≪ k

s2
⇐⇒ (7.6),

(

s′

k3

)1/2

≫ log

(

s2s′

k

)

(7.11)⇐⇒ 1

ks2
≫ log

(

1

s2

)

⇐⇒ s2 log

(

1

s

)

≪ 1

k
, (7.12)

and (7.7) is absorbed by (7.6) and (7.12):

s6s′≪1
(7.11)⇐⇒ s2≪ 1

k

(7.6)⇐= (7.12).

We now distinguish two cases. If k.1, (7.6) guarantees that (7.12) holds, and (7.4)
follows for s≪1 (the window 1≪s≪ 1

k in (7.4) will follow from (7.10)). If k≫1, we
may rewrite the constraint in (7.12) as

s2 log

(

1

s

)

≪ 1

k
⇐⇒ s2≪ 1

k logk
≪1. (7.13)

Hence (7.13) enforces (7.6) and (7.5)1 follows.

• Within (7.9)2 we have

1

s6
∼s′ log

(

s2s′

k

)

⇐⇒ 1

ks4
∼ s2s′

k
log

(

s2s′

k

)

.

Then

ks4≪1 ⇐⇒ s2s′≫k, (7.14)

and in this case

1

s6
∼s′ log

(

s2s′

k

)

⇐⇒ s2s′

k
∼ 1

ks4 log
(

1
ks4

)

⇐⇒ s′∼ 1

s6 log
(

1
ks4

) . (7.15)

In particular,

(

s′

k3

)1/2

≪ log

(

s2s′

k

)

(7.15)⇐⇒ 1

k3s6 log
(

1
ks4

)≪ log2

(

1

ks4 log
(

1
ks4

)

)

(7.14)⇐⇒ 1

k3s6
≪ log3

(

1

ks4

)

(7.14)⇐⇒ 1

k
≪s2 log

1

s2
. (7.16)

Together with (7.6), (7.16) implies that (7.9)2 is seen only if 1≪k. In this case, the
constraints in (7.9)2 may be written as follows:

1≪
(

s′

k3

)1/2

≪ log

(

s2s′

k

)

(7.16),(7.15)⇐⇒ 1

s2
log1/3

1

s
≪ 1

ks4
≪ 1

s2
log

1

s
(7.17)
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(7.6)⇐⇒ 1

k3 log3k
≪ s6 ≪ 1

k3 logk
. (7.18)

By (7.17) we deduce that log
(

1
ks4

)

∼ log
(

1
s

)

. Therefore (7.15) reads as

s′∼ 1

s6 log
(

1
s

) , (7.19)

and holds provided (7.6), (7.7), (7.14), and (7.18) are satisfied. Noting that (7.6) is
implied by (7.18) (since k≫1) and that

(7.7) ⇐⇒ s6s′≪1
(7.19)⇐⇒ (7.6),

(7.14) ⇐⇒ ks4≪1⇐⇒k3/2s6≪1 ⇐= (7.18),

we conclude that

s′∼ 1

s6 log
(

1
s

) if
1

k3 log3k
≪ s6 ≪ 1

k3 logk
and k≫1. (7.20)

• For (7.9)3 we argue exactly as in Section 6; we obtain that (7.19) holds provided
s′≪k3 and (7.6) are satisfied. Now

s′≪k3 ⇐⇒ 1

k3
≪s6 log

(

1

s

)

.

Because of (7.6), also (7.9)3 is seen only if 1≪k, and in this case

s′≪k3 ⇐⇒ s6≫ 1

k3 logk
. (7.21)

Combining (7.6), (7.20), and (7.21) we obtain (7.5)2.

• Within (7.10), we have

s′∼ k

s4
if α>0, s5s′≪1 and s≫1.

Since

s5s′∼ks≪1 ⇐⇒ s≪ 1

k
,

the regime in (7.10) is not empty only if k≪1, and (7.4) follows for 1≪s≪ 1
k .

7.2. The timescales. We now infer from (7.4) and (7.5) the scaling laws for
s given by (7.2) and (7.3).

(I) If k.1 and s0≪1/k, it follows from (7.4) that

s5∼s50+5kt∼kt provided t≫ s50
k
,

and

s≪ 1

k
⇐⇒ t≪ 1

k6
,

whence (7.2).
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(II) If k≫1, we assume that s20≪ 1
k logk , so that both regimes in (7.5) are seen.

According to (7.5)1, we have

s5∼s50+5kt∼kt provided t≫ s50
k
, (7.22)

which holds as long as

s2≪ 1

k logk

(7.22)⇐⇒ t≪
(

1

k7 log5k

)1/2

=: t1. (7.23)

As t∼ t1, the free boundary enters the second regime in (7.5), which has already been
analyzed in Section 6; it follows from (6.6) that

s(t)∼
(

t

log
(

1
t

)

)1/7

if max

{

t1,s
7
1 log

(

1

s1

)}

≪ t≪1 and s1≪1, (7.24)

with initial condition s1 :=s(t1)=(kt1)
1/5. Note that s1≪1 since k≫1 and t1 is

given by (7.23). Since

s71 log

(

1

s1

)

(7.5)∼ s51
k

(7.22)∼ t1,

the lower bounds on t in (7.24) coincide. Therefore we conclude that

s(t)∼
(

t

log
(

1
t

)

)1/7

if t1≪ t≪1. (7.25)

Gathering (7.22), (7.23), and (7.25) we obtain (7.3).

8. Long time scaling laws in complete wetting
The asymptotic of this section is based on two main assumptions:

(I) the timescale is “large”;

(II) the evolution is “quasi-selfsimilar”.

We will argue that

s(t)∼ t1/6 if t≫max

{

1,
1

k6

}

. (8.1)

Comparing (8.1) with (7.2) and (7.3), we see that the whole remaining range of
timescales is covered by (8.1). In terms of the original variables, we obtain the final
timescale in (2.1) and (2.2).

We now motivate (8.1). In complete wetting, h→0 as t→+∞; hence h≪1
everywhere for sufficiently large times, and conservation of mass implies that

s≫1, (8.2)

which partially encodes (I). Since h3+h2∼h2 everywhere, we may replace the equa-
tion in (3.1) with

ht+(h2hxxx)x=0. (8.3)
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Following (I), we introduce the selfsimilar variable transformation of (8.3) which pre-
serves mass:

h= t−1/6f(t,y), y=xt−1/6∈ (0,a(t)), where a(t)= t−1/6s(t).

Then
{

1
6 (yf)y− tft=(f2fyyy)y, f >0 in (0,a),

fy|y=0=fyyy|y=0=0, f |y=a=0,
∫ a

0
fdy=1/2,

(8.4)

while the boundary condition reads as

f2
y |y=a=

1

kt1/6

(

lim
y→a(t)

ffyyy

)

. (8.5)

Since (8.5) is not time independent, an exact selfsimilar profile does not exist. How-
ever, if

kt1/6≫1 (8.6)

(which completes (I)), the contact-angle condition is only a perturbation of fy|y=a=0.
Hence we assume that f is quasi-selfsimilar in the sense that it has an expansion of
the form

f(t,y)=f0(y)+(k6t)−1f1(y)+ . . . ,

which encodes (II). Then, at leading order, (8.4) reads as

{

1
6yf0=f2

0 f0yyy, f >0 in (0,a),

f0y|y=0=f0yyy|y=0=0, f0|y=a=0, f0y|y=a=0,
∫ a

0
f0(y)dy=1/2.

(8.7)

As is well-known [1], (8.7) has a unique solution (f0,a). Therefore, recalling (8.2) and
(8.6), we obtain (8.1).

9. Partial wetting with contact line friction
In the case of partial wetting, αS >0, the profile of a spreading droplet converges

to the unique steady state with mass 1 and contact angles αS as t→+∞:

h→ 3

4s3∞
(s2∞−x2)+, s↑s∞=

√

3

2αS
, s′→0 as t→+∞. (9.1)

We focus on the most interesting case of

αS ≫1
(9.1)⇐⇒ s≤s∞≪1, (9.2)

which guarantees the persistence for all times of a macroscopic profile. Because of
s≪1, (5.10) may be ignored and we only have to look at (5.9), which we rewrite for
the reader’s convenience:

(

3

2s2

)3

∼
{

α3+3s′ log(sα) if 1≪sα and s′≪α3,

3s′ log(s(s′)1/3) if 1≪s3s′ and s′≫α3.
(9.3)
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In view of (9.1), for sufficiently large times (9.3) reduces to

(

3

2s2

)3

∼α3
S+3s′ log(sαS), (9.4)

which is equivalent to the well-known Cox-Hocking relation between the effective and
the microscopic contact angle. In terms of the original variables, it coincides with
(1.10).

The relation (9.4) yields an exponential convergence of s to s∞. Indeed, let

s=

√

3

2αS
ŝ, t=

√

27

2α7
S

logαS t̂.

In view of (9.1) and (9.2), log(αSs)∼ log(
√
αS) as t→+∞. Hence (9.4) reads as

dŝ

dt̂
∼ 1− ŝ6

ŝ6
.

An integration shows that 1− ŝ(t̂)∼ e−6t̂ as t̂→+∞, i.e.

√

3

2αS
−s(t)∼ e−Dt as t→+∞, D :=

√

8α7
S

3log2αS

.

In order to infer the timescale of validity of (9.4), we have to give a closer look to
(9.3) in order to identify the intermediate scaling laws which precede (9.4). We will
argue that

(i) if |k logk|.αS , then

s(t)∼ (kt)1/5 for
s50
k
≪ t≪ 1

kα
5/2
S

;

(ii) if k.αS ≪k logk, then

s(t)∼











(kt)1/5 if
s5
0

k ≪ t≪ 1
k7/2 log5/2k

,
(

t

log( 1

t )

)1/7

if 1
k7/2 log5/2k

≪ t≪ 1

k7/6α
7/3
S log1/6(α2

Sk)
=: t2.

(iii) if αS ≪k, then

s(t)∼











(kt)1/5 if
s5
0

k ≪ t≪ 1
k7/2 log5/2k

,
(

t

log( 1

t )

)1/7

if 1
k7/2 log5/2k

≪ t≪ 1

α
7/2
S log1/6αS

.

Preliminarily we observe that

α=

√

s′

k
+α2

S ∼







(

s′

k

)1/2

if s′≫kα2
S ,

αS if s′≪kα2
S .

(9.5)
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Because of (9.5), (9.3) coincides with the case of complete wetting as long as s′≫
kα2

S . Therefore (7.2) and (7.3) hold under the additional constraints that s≪1 and
s′≫kα2

S ; imposing them, a few simple computations yield (i), (ii), and (iii) up to
t= t2. When s′≪kα2

S , then α∼αS and (9.3)1 coincides with (9.4). Instead, (9.3)2
yields

s(t)∼
(

t

log
(

1
t

)

)1/7

if
1

k7/2 log5/2k
≪ t≪1,

with the additional constraints that α3
S ≪s′≪kα2

S and that s3s′≫1. Hence this
regime is seen only if αS ≪k; in this case, a few more computations imposing the
bounds on the speed yield (iii).
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