COMMUN. MATH. SCI. (© 2013 International Press
Vol. 11, No. 2, pp. 345-360

ON THE UNCONDITIONALLY GRADIENT STABLE SCHEME FOR
THE CAHN-HILLIARD EQUATION AND ITS IMPLEMENTATION
WITH FOURIER METHOD*

ANDREW CHRISTLIEB', KEITH PROMISLOW?!, AND ZHENGFU XU#

Abstract. We implement a nonlinear unconditionally gradient stable scheme by Eyre, within
the Fourier method framework for the long-time numerical integration of the Allen-Cahn and Cahn-
Hilliard equations, which are gradient flows of the Allen-Cahn energy. We propose a new iterative
procedure to solve the nonlinear scheme. When the iterative scheme is applied to the Allen-Cahn
equation, we show that the nonlinear iteration is a contractive mapping in the L? norm for large
time steps. For the Cahn-Hilliard equation, we establish that the proposed iterative scheme converges
with a time step constraint. Further, we numerically demonstrate that the iterative scheme converges
for large time steps. The scheme allows for spectral accuracy in space and fast simulation of the
dynamics in high dimensions while preserving the discrete form of the energy law. For the general
potential well, we present the gradient stable scheme without introducing extra stabilizing terms.
Therefore, the numerical error introduced by the operator splitting is reduced to its minimum.
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1. Introduction
The Cahn-Hilliard equation,

up = —A (EAu—u® +u), (1.1)

was originally proposed as a model of phase separation and coarsening in mixtures
of binary alloys [3]. Supplemented with appropriate boundary conditions, the Cahn-
Hilliard equation on a domain Q@ € R can be viewed as an H~! gradient flow of the
Allen-Cahn energy

62
E(u) = /§|Vu|2 + i(uQ —1)%da. (1.2)
Q

It has been applied to a wide range of complicated problems involving moving inter-
faces in materials science and multi-phase fluid dynamics [14, 4, 22, 2]. There is also
literature on the theoretical study of the Cahn-Hilliard equation regarding existence,
regularity, and boundedness of the solution [8]. Numerical simulations have been
carried out with finite element [7, 16, 11, 12], spectral [21], and finite difference meth-
ods [13], the discontinuous Galerkin method [18], as well as the local discontinuous
Galerkin method [19]. The spatial discretization typically depends upon the bound-
ary conditions, the accuracy desired, and the shape of the domain in consideration.
However, in all these situations a major challenge arises in accurately resolving the
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long-time evolution that is dominated by a slow, diffusively driven coarsening process
in which phase-separated domains merge into larger domains. The coarsening dy-
namics exhibits the late-time asymptotic scaling with characteristic length L =~ ¢!/3
[1]. Therefore efficient time marching schemes play essential roles in observing the
late-time behavior of the system. An efficient numerical simulation of the end-stages
of coarsening demands large time steps. However, to accurately simulate the spin-
odal phase, small time steps are required. In most cases, an adaptive time stepping
strategy is employed to capture the scale separation.

An ideal numerical integration scheme should allow for a time step size only con-
strained by the accuracy requirement and not by stability. For the coarsening process
described by the Cahn-Hilliard equation, this requirement translates to small time
steps when there is active phase transition, and large time steps for the periods of
slow, diffusive mass transport. Several implicit nonlinear schemes have been designed
for the Cahn-Hilliard equation which are unconditionally gradient stable [16], such
that the discrete form of the energy decays in time, independent of time step size.
However, a second obstacle to time stepping arises from solving the nonlinear equation
in an implicit or semi-implicit scheme, namely the nonlinear equation may have mul-
tiple solutions. This multiplicity of roots manifests itself as a convergence issue which
can typically only be avoided by imposing a time step restriction to ensure a unique
solution. For the Cahn-Hilliard model considered in [16] this leads to a restriction of
the form k < Ce? with k as the time step size.

Our work is motivated by the nonlinear semi-implicit scheme

= —EA%" T AT — Au™, (1.3)

proposed in [9]. The underlying idea is to split the right-hand side into contractive
and expansive operators, which correspond to convex and concave components of the
energy £. The contractive terms are treated implicitly while the expansive terms are
treated explicitly. In [17] it was shown that this formulation leads to an uncondi-
tionally gradient stable scheme for a finite difference discretization. We extend this
result to a finite element framework. Moreover we present the unconditionally gra-
dient stable scheme for the general potential well without adding stabilizing terms
which was suggested in [9]. For a family of semi-implicit parameterized #-schemes for
the Cahn-Hilliard equation, in [17], the authors identified the range of the parameters
for which the scheme is gradient stable. It is also pointed out in [17] with numerical
evidence that a linearized version of (1.3) suggested in [10] is not gradient stable.

The purpose of suggesting a linearized scheme, from our understanding, is only
to avoid solving the nonlinear problem (1.3). It is clear that even if the problem is
solved using a finite element or finite difference scheme, the computation of the New-
ton iteration in a three dimensional simulation will be expensive . When a high order
method, such as the Fourier method, is preferred for resolving the interfacial struc-
ture [5], the cost for the Newton iteration becomes unacceptable. In order to apply
spectrally accurate schemes to the nonlinear equation (1.3), in this paper we propose
a direct iterative scheme, which avoids construction of the non-sparse Jacobian and
solving a large linear system. The iterative scheme is based on contractive mapping,
which we will demonstrate later in Section 2. It is a common practice for a linear or
nonlinear discretized equation to be solved with an iteration method. In the case of
the Cahn-Hilliard equation, a simple iteration was suggested in [6] to find the solution
of a nonlinear stable scheme. However, the iterative scheme only converges for small
time steps.
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Here we would like to propose a novel iterative approach directly applied to (1.3)
which converges for large time step size. When the iterative scheme is applied to the
Allen-Cahn equation, we prove that the nonlinear iteration is a contractive mapping
in the L? norm for large time steps. For the Cahn-Hilliard equation, we can establish
that the proposed iterative scheme converges with a time step constraint. However,
we numerically demonstrate that the iterative scheme converges for large time steps.
The convergence is independent of the mesh size and the layer width €, although the
convergence rate depends on the time step size. Our approach is different from the
work in [15], where extra stabilizing terms were introduced in order to apply the semi-
implicit Fourier method (only the leading linear term being implicit). In this sense,
our approach is more accurate in handling time discretization since numerical error
due to operator splitting is reduced to its minimum. Even though the iterative scheme
is implemented within the Fourier method framework in our numerical simulation, it
can be easily used within other frameworks such as finite element or finite difference.
Since we are solving the equation (1.3) directly, the discrete energy law, which the
total energy computed numerically always decreases, is preserved.

The rest of the paper is organized as follows. In Section 2, we will review the
semi-implicit nonlinear scheme and its basic properties. We give a simple proof that
the scheme is unconditionally gradient stable and the nonlinear problem has a unique
solution in the classical Sobolev space. We propose an iterative method which can be
used to solve (1.3) conveniently. We prove (under a small time step assumption) that
the iteration is a contractive mapping under L? norm. However, the purpose of our
iterative scheme is to simulate the problem with large time steps. To illustrate the
idea, we show that the iteration is a contractive mapping when applied to the Allen-
Cahn equation, with large time steps independent of ¢ and mesh size. We present
the gradient stable scheme for the general potential well. In Section 3, we provide
numerical evidence that indeed the nonlinear iteration converges for the Cahn-Hilliard
equations even for very large time steps. Numerically, we extend our discussion to
the impact of numerical error on the simulated dynamics, when large time steps are
used.

2. Splitting and stability analysis

In this section we consider the Allen-Cahn and Cahn-Hilliard equations, and the
semi-implicit time integration proposed in [9] to solve them. The important feature of
the Allen-Cahn and Cahn-Hilliard equations is that they are viewed as the gradient
flow of the Allen-Cahn energy functional (1.2). The Allen-Cahn and Cahn-Hilliard
equations read as

du

i EAu—ud +u (2.1)

and

du _ —E2A% + A(u® — u), (2.2)
dt
respectively, with proper boundary and initial conditions. The total energy of the
system defined by (1.2) experiences L? and H~! energy decay when its dynamics
are associated with (2.1) and (2.2). It is important to design efficient and accurate
numerical schemes which preserve the corresponding energy law. From now on, for
simplicity, we will assume periodic boundary conditions on a rectangular domain,
without loss of generality of our approach. In this paper, we focus on the discussion
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of the Ginzburg-Landau double-well potential 1 (u? — 1)2. We will use this potential
well as an example to illustrate our approach. We see no difficulty in generalizing
our approach to the other forms of the potential well. In the following discussion, we
will focus on the Cahn-Hilliard equation and mention the Allen-Cahn equation when
necessary. We now introduce notations which will be used throughout the paper.
We will use (-,-) for the standard L? inner product and || - || for the L? norm. We
denote the L norm by || - ||oo. H?(Q2) and H' () are the standard Sobolev spaces.
Let Uy, be a partition of the domain €2 and H, 1(£2) be the corresponding continuous

finite element subspace of H'(Q) given the partition U, - Here r is the order of the
polynomial on the segment k.

2.1. Stability and solvability. A scheme applied to (2.2) is unconditionally
gradient stable if the following discrete form of the energy law is preserved for any
time step k:

E(u™) < (™).

The scheme of interest is the nonlinear semi-implicit scheme for the Cahn-Hilliard
equation proposed in [9]:

un—i— 1 _ u™

- = —EA%" T AT — Aum, (2.3)

where k is the time step. We look for the solution u"*! in the Sobolev space H?()
such that

<W% 6) = —(Au"t Ag) — (V™) — V', Vo) (24)

holds for any ¢ € H?(Q2). We would like to give a simple proof that (2.3) is uncondi-
tionally gradient stable without considering the spatial discretization (for the highly
dissipative equation, spatial discretization has less impact on the time step size re-
striction), namely &£(u"*1) < £(u™) for any n and time step k. To prove stability, we
introduce the operator A~!, which is defined such that

A u=f, /ud:c =0
is equivalent to

(Af,v) = (u,v)

for any v € L?(f2). Notice the mapping is not unique in H?. Letting ¢ = A~ (u"*! —
u™), which is well defined since [u"™ —u"dz = 0 due to the fact that (2.4) is in
conservative form with periodic boundary conditions, we have

1
kHv 2—1(un+1 U”)||8 E2<2,uln—|-17un—i-1 un>
+{((u" 1)3 — "t — u™). (2.5)
Therefore

—62<Au"+1,u”+1 _ un> 4 <(un+1)3 _ un, un+1 _ un> S 0.
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Integrating by parts, we have

eQ(Vu”'H,V(u”'H _ un)) + <(un+1)3 _ un7un+1 _ un> < 0.

2

ByusingaQ—ab:%—g—i—

(a—b)?

5—, it follows after a simple calculation that

1 n 1 n n n n
E(IVa I = IV ) + () - @ =), 1)
1 n 1 n
51111 = 5l < o.

Using the same identity, we observe that the term (u"*1)3. (4! —u") is larger than

(un+1)2 (% (un+1)2 o

l(un)Z) > l(un+1)4 o

2 =1 (w)*.

Combining the last two inequalities, we conclude that
E(u™) — (™) <0,
and therefore the nonlinear semi-implicit scheme is unconditionally gradient stable.

One can prove the uniqueness of the solution to (2.3) in a similar way, as follows.

LEMMA 2.1. The time discretized problem (2.4) has at most one solution in H?(S).

Proof. Assuming u"t! = w, v are both solutions, by subtraction

(T 0) = —A(Aw —v), A¢) — (V(w® = v*), V)
holds for any ¢ € H%(Q). Let ¢ = A~} (w — v). Then the above expression reads as
follows:

1 _
—zlIva Hw = w)ll§ = ElIV(w = v)[[§ = (w® —v*,w—v) >0, (2.6)

thus w = v. 0

This proves the uniqueness of the solution to (2.4).

To summarize, when solved by the finite element method, (2.4) produces a unique
energy descent solution for any time step size. The Newton iteration applied to this
nonlinear equation should also converge to the correct solution. However the spectral
Fourier method has the advantage of not only easy implementation, but also usually
providing more accurate results for interface problems using fewer grid points than
the finite element and finite difference methods. This advantage is discussed in [16].
The nonlinear terms in (2.4) are the only obstacle to applying the Fourier method.
Therefore, we propose an iterative method to solve (2.3).

2.2. Nonlinear iteration: contractive mapping. Generally, to solve the
nonlinear problem (2.3), we define

Gu™™) = u™ — ™ + kAT — EA(uT)? 4 EAU". (2.7)
To solve G(u™*1) = 0, the Newton iteration requires the Frechet derivative defined as

G (u" v = v + ke A% — kA3(u" )%, (2.8)
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with v as the perturbation. The Newton iteration will then be
G'(u")(u —u") = —Gu") = —(u" —u" + ke A%u" — kA" + kAu™).  (2.9)

Notice that G'(u") depends on u”, the space variables, making the Fourier method im-
practical considering the heavy cost of convolution in space. To have a fast simulation,
instead of using G’ (u"), we seek its approximation

G'(u" v = v+ ke? A%y — kC A, (2.10)

with properly chosen C' > 0. The principle employed to choose the constant C' will
be discussed later. Therefore the G’(u”) does not depend on u” at all. This makes
the fast Fourier method applicable. The Newton iteration is changed to the following
fixed point iteration:

(14 kA% — ECA™ = EA(U")? — kCAU" + u™ — kAu™. (2.11)

We shall prove that (2.11) is contractive mapping with an improved time step size k.
The proof is in the finite element framework, even though our implementation is in
the Fourier method framework. First we redefine the problem (2.11) as

(2.12)

U—-kCAU — kAP = v,
P+ AU =u? - Cu—w,

with v = u™ and ||v||op = a. For the partition [ J,, , in the finite element solution space
H} () we look for a pair U, P such that

{(U, ¢) + kC(VU,V¢) + k(VP, V) = (v, ), (2.13)

(P,y)) — X(VU, V) = (u® — Cu—v,9)
holds for any ¢,v € H}(Q). We define a mapping I1,, : H}(Q) — HL(Q), v € H}(Q),
U =T11,(u). We would like to show that

LEMMA 2.2. For given ||v||o = «, there exists a constant § > 0 and C > 0 such that
1, maps from the ball S = {u € H{(Q) : ||ullo < 2a} into itself if k < Be?hs. hs is
the mesh size related parameter.

Proof. Let ¢ = €2U and ¢ = kP in (2.13). We have the following:

E||U|2 + kCe*||VU||Z + ke2(VP,VU) = (v, U), (2.14)
E||P||2 — ke2(VU,VP) = k(u® — Cu — v, P). '
Adding the two equations in (2.14), we have
2 2
SIUIB + kO VUIE + HIPIE < Sl + k(u® = Cu—v,P), (2.15)
or
2 2 2k 2 2 2k 3
U113+ 2KCIVUE + FIPIR < ol + 55 {u® = Cu v, P). (2.16)

Using Young’s inequality, it follows that

k
10115 + 2kCIIVU[G < [ol[§ + Zllu® = Cu = vI[5. (2.17)
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By inverse estimates in the finite element space, we have that there is a C > 0,
independent of hs and « such that ||julle < C~'ah(5_1/2 for ||ullo < 2a, where hs only
depends on the mesh size. C only depends on the degree of the underlying polynomial.
Here we can choose C = (C~'ah5_1/2)2, so that

IUII5 + 2kC||VU[5 < []0]3 +
) 8kC2 2 2ka?
+ =+ .

2 H HO

<a = = (2.18)
It suffices to require that 8kC? + 2k < 3¢€2, or equivalently k < SCQH < Be%hs for
some [ > 0. O

Similarly we can show
LEMMA 2.3. II, is a contractive mapping if k < Be2hs for some 3 > 0.

The proof is very similar to the above, hence we will not repeat it. However, we
would like to add comments here on this estimate:

1. The estimate is based on the “non-optimal” inverse maximal value estimate
on a bounded L? subset of the finite element space H} (). Computationally, a rela-
tively larger k might be allowed.

2. The estimate is restrictive considering the €2hs constraint, even though the
term 2kC||VU||2 on the left hand side gives a larger convergence radius. Unfortu-
nately the result is the best we have obtained to date and it is not much better than
the conclusion in [6].

3. The idea of adding the term —kCAU is to linearize a contractive operator.

4. The numerical results show that there is no obvious restriction by € and the
mesh size hs.

5. The iterative approach can be applied to most of the 6 schemes discussed in
[17] and for the general double-well potential with the stabilized splitting.

If we apply this technique to the Allen-Cahn equation, we can gain insight into
how this technique works. Consider the dynamics described by the Allen-Cahn equa-
tion (2.1). Its corresponding nonlinear semi-implicit scheme is

— U

. = EAu™T — (W) £ um, (2.19)

Now, we apply the technique in (2.11) to the semi-discretized equation (2.19):
(1 — kA + kO™ = —k(u")? + kCu”™ 4+ u™ + ku™. (2.20)

Again, let U = v™t!, u = u", v = u™. For convenience, we consider this problem in
the finite element formulation

(U, ¢) + ke*(VU, V) + kC(U, ¢) = k((C — u®)u, ¢) + (1 + k) (v,8). (2.21)

We shall focus on the contractive property only. Assuming ||v|lo = o and S = {u €
HE Q) : ||ullo < 2a}, by (2.21) we define a mapping U = II,(u). We would like to
show the following result.
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LEMMA 2.4. II, maps S onto itself with C = maz{3||u||%, | v € S} for k <1, with
l|ul|oo < Carhis *'? for ||ulo < 2a.

Proof. Let ¢ = U. It follows that

)
(U~ +k),U) + keé||VU||2 + kC(U — ¢ C“ u,U) = 0. (2.22)
Therefore,
1 14 k)2 kC kC
1013 = T keyvoiz + o - Bz <o, (229

2 2 2
since 0 < C_T”z < 1. To prove the lemma it suffices to require W < 402
or (k+1)? <4,i.e k < 1. Thus II, maps S into itself. 0
Next we show it is indeed contractive.
LEMMA 2.5. 11, is a contractive mapping in S when k < 1.

Proof.  Let U,, U, be the solutions corresponding to u,w € S. By subtraction
and the Mean Value Theorem,

(Uy = Uy, @) + k€2 (V(Uy — Uy), Vo) + kC(Uy — Uy, &)
C —u*)u — (C —w*)w, d) (2.24)
C — 3% (u —w), ¢).

Let ¢ = U, — U,. Noticing that C_TW < 1, a simple calculation gives

kC kC

HUu—UwH?)"'THUu_UwH%S7”1‘_1‘]”(2)7 (2.25)

which simply implies that
kC/2 \'?
u — Vw < - ’ 2.2
10~ Ul < () llu—wll (226)
and thus the mapping is contractive. 0
kC/2

From (2.26) we can find the contraction rate <1+kC/2)1/2’ which depends on
the point-wise maximal value and time step size. However, it is not straightforward to
establish such an estimate for the Cahn-Hilliard equation, even though numerically
we observe a similar convergence rate in that case. There should be no difficulty
in generalizing this iterative approach to the class of 6 schemes [17] for the Cahn-
Hilliard equation. In the next section, for general potential wells W (u), we will discuss
the gradient splitting, without introducing stabilizing terms, and the corresponding
iterative scheme.

2.3. Gradient stable scheme for general Cahn-Hilliard equation. For
the more general potential-well, the Cahn-Hilliard equation reads as

d
ditL = —2A%u 4 R Aud 4+ 1 Au? 4+ A, (2.27)

where v, > 0 to ensure existence of a minimum energy. The parameters are normally
decided by the background material. Without loss of generality, we assume v; > 0,7 =
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0,1,2. To implement the contractive and expansive splitting without introducing
extra stabilizing terms, we rewrite (2.27) as

% = — A%+ v Aud + v AHT (u) + H™ (u))? + v Au, (2.28)
with
0
Htwy =" "“=% 2.29
(w) {0’ e (229)
and
0, u>0
H™ = ’ =7 2.30
() {u, u < 0. (2:30)

After splitting the gradients, the equation (2.28) can be rewritten as

d

ditl = —EA%u+ yAuP + AHT (u)? + v AH ™ (u)? + yoAu. (2.31)

Noticing that H+(u)? and H~(u)? are the gradients of the twice differentiable con-
3 — 3

vex and concave energy forms }ﬁ% and w respectively, the unconditionally

gradient stable semi-implicit scheme can be designed as

un+1 —un

- _ _62A2un+1 + 72A(un+1)3

+y AHT (") 4y AH ™ (u™)? 4+ yoAu™ T (2.32)

For a different group of constants v;,7 = 0, 1,2, the scheme can be written out cor-
respondently. The proof that the scheme (2.32) is unconditionally gradient stable is
same as the symmetric potential-well case after observing that the (H* (u))? falls into
the category of being a contractive or expansive gradient, respectively. We will not
repeat it here. To solve the nonlinear equation with the Fourier method, there is no
essential difficulty to extend the iterative approach (2.11) to the nonlinear scheme
(2.32).

2.4. Accuracy and other issues. Usually the semi-implicit scheme based
on convex-concave splitting is less accurate than the forward and backward Euler
schemes. The semi-implicit nonlinear scheme described in this paper produces at
most a first order accurate solution. The splitting error of the semi-implicit method
can impact the accuracies of the simulated dynamics. However, first, since the scheme
preserves the discrete energy law, the impact of the splitting error is not detrimental;
second, for a long time evolution system, when the simulation is close to steady
state, the accuracy of the time discretization is no longer as important. The space
discretization accuracy determines the resolution of the interface. In our case the
Fourier method produces the fine resolution of interfacial structures. The estimate of
the contraction rate indicates that the convergence is slower than Newton iterations.
The trade off is that a high resolution Fourier method can be easily applied. Within
the Fourier method framework, compared with the Newton iteration, the iterative
method does not require solving a large linear system with non-sparse matrix. This is
a very appealing advantage when solving three dimensional problems. In one and two



354 GRADIENT STABLE SCHEME FOR THE CAHN-HILLIARD EQUATION

dimensions, the simulation can be run on a PC to obtain results at almost every desired
time stage. For the three dimensional simulation, since most of the computational
cost is in the FFT operation, parallel FFT will be the ideal choice to speed up the
simulation.

3. Numerical result

In the simulation, we use the discrete Fourier method with adaptive time steps.
The adaptive time stepping strategy is based on the computation of the right hand
side of equation (2.2). After each time-marching step, we compute the right hand
side of (2.2), denoted by R(u™). We measure the maximal value of R(u™), which is an
indicator of how far the current state is away from steady state (the minimal energy

, 'y) , with the

freedom of choice of 7 > 0. The constant v, which is 107° in our simulation, is set to
be the minimal time step to avoid excessively small time steps.

morphology). The time step size is determined by k = max(W

[loo

Time = 0.000001,k = 0.000001 Time = 0.443852,k = 0.005855

Fig. 3.1: Test 1: Phase separation and grain coarsening at early stage.

Test 1: Time steps. In this experiment, we choose 7 = 0.5 at the early
simulation stage and 7 = 100 at the later stage. The constant C' in the iterative
scheme (2.11) is chosen to be 3|[u™||%,, which is slightly larger than 3. The initial
condition is set to be randomly created data such that —1 < u < 1 on the rectangular

region [—m, 7] X [—m, 7]. We impose periodic boundary conditions (other boundary
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Time = 954.256483 k = 1.375028 Time = 9747.917660,k = 17.827580

(b)

Time = 12871.732773,k = 4.384672

Sa

Fig. 3.2: Test 1: Late-time evolution with adapted large time steps.

conditions can be implemented in the pseudo-spectral method framework) to illustrate
the effect of our approach.

In figure 3.1, we plot the contours of the solution for the early stage phase sep-
aration. We observe the active coarsening process which leads to radically changing
small time steps due to the accuracy requirement in figure 3.3a. Figure 3.3b shows
that the total energy decays with time. In figure 3.2, which demonstrates the late-
time evolution, we can observe the slow coarsening process. Figure 3.3c shows that
a large adapted time step size (k is about 100) is used to speed up the simulation.
In figure 3.3d, it is shown numerically that the total energy decays at a very slow
pace. Consistent with the underlying physics of the model, we observe that the mass
of small grains is transported to large grains diffusively subject to the minimizing of
surface area or the total energy. The main point here is that even when large time
steps are used, the nonlinear iteration given by (2.11) still converges to the energy
descent solution. The resolution of the interface structure can be compared with the
result obtained by other high order methods, for example [19].

Test 2: Refinement study. In this numerical test, we would like to show
that the solution given by the iteration method converges while the time steps are
decreased. We start from initial condition with four shaped pieces and simulate
the coarsening process to the time 7" = 1. For 7 = 0.4, we use the previously
described adaptive time stepping strategy to obtain the initial time steps. During
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0.03 1.8
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0.02 1 1.2
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0.005
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Nl oo
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Time Time
(a) Adapted time steps at early phase sepa- (b) Energy descent at early stage
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70 0.04
60 0.035
50
0.03
x 40
w 0.025
30
0.02
20
10 ] 0.015
% 05 1 15 2 0015 05 1 15 2
Time x10* Time x10*
(c) Large adapted time steps at late time (d) Energy decent at late time

Fig. 3.3: Test 1: Energy descent with adapted time steps.

each refinement, we divide each time step by 2 to obtain refined time steps. In figure
3.4c, we can observe that the solution converges while refining. The convergence rate
in figure 3.4d is close to first order , which is expected since the scheme is at most
first order accurate in time discretization.

Test 3: Numerical error on the dynamics. In our first numerical test, we
concluded that the time step constraint can be eliminated by the unconditionally
gradient stable scheme. The iteration method itself also allows for large time steps.
Therefore, the method gives us the flexibility to choose time steps based on the ac-
curacy requirement. Here we cautiously extend our discussion to the impact of large
time steps on the dynamics under simulation. Without doubt, in general, a less accu-
rate time integration strategy and large time steps lead to a less accurate approximate
solution to the PDEs under consideration. However, we would like to show through
this numerical test that the numerical dynamics associated with a pre-defined energy
form, produced by an energy descent scheme, are still accurate while large time steps
are used. To illustrate this point, we start with a non-trivial initial data in figure
3.5a. We run the numerical simulation with three sets of time steps, 7 = 0.5, 2, 32,
which vary significantly.

For the three different time steps, we obtain similar schematic evolution of the
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Fig. 3.4: Test 2: Refinement study and order of accuracy.

system, which is shown in the four contour plots in figure 3.5.

The curves in figure 3.6a show that the dynamics is stretched to a longer time to
complete the ripening, due to numerical error caused by large time steps. Nonethe-
less, the evolution of the energy is very similar for these three different time steps.
Moreover, figure 3.6b shows that taking large time steps requires fewer steps, and
therefore less computational work to reach the minimal energy state. To verify that
the computation is still accurate with large time steps, we plot the evolution of the
mass center in figures 3.6c, 3.6d. We find that for widely different time steps, the
final ripening states are very close, with a difference on the 1073 level. The trajectory
of the mass center is given in figure 3.7. We can observe that the trajectories do not
digress far away from each other for widely varied time steps. In this sense, we deem
that the scheme is still accurate for large time steps.

4. Conclusion

We reviewed some basic properties of a nonlinear semi-implicit scheme for phase
field models. The scheme is proven to be unconditionally gradient stable, allowing
large time-marching steps suited for efficient simulation of the long time evolution.
In the framework of the Fourier method, we proposed a novel iteration method to
compute the updated solution at each time step. We proved that the iteration itself
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Time = 0.000020,k = 0.000010 Time = 0.655356,k = 0.021787

Time = 40.409764 k = 0.012747 Time = 259.680331,k = 3.277975

(c) (d)

Fig. 3.5: Test 3: Schematic coarsening when 7 = 0.5.

indeed is a contractive mapping for the Cahn-Hilliard equation under a time step
size constraint. The proof relies on the estimate of the point-wise maximal value.
For the Allen-Cahn equation, we showed that the proposed iterative method is a
contractive mapping for large time steps, without obvious dependence on the layer
width of the interface and the mesh size. Numerical results provided concrete evidence
that the scheme works for simulation of the Cahn-Hilliard equation with large time
steps. The technique is easy to implement and can be applied to general potential
wells. Numerically, we discussed the impact of the numerical error on the dynamics
associated with the pre-defined energy form.
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Fig. 3.6: Test 3: Energy for large time steps and history of mass centers.
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Fig. 3.7: Test 3: Evolution of mass center for different time steps.
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