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PATTERN FORMATION IN RAYLEIGH–BÉNARD CONVECTION∗

TAYLAN SENGUL† AND SHOUHONG WANG‡

Abstract. The main objective of this article is to study the three-dimensional Rayleigh-Bénard
convection in a rectangular domain from a pattern formation perspective. It is well known that as the
Rayleigh number crosses a critical threshold, the system undergoes a Type-I transition, characterized
by an attractor bifurcation. The bifurcated attractor is an (m−1)–dimensional homological sphere,
where m is the multiplicity of the first critical eigenvalue. When m=1, the structure of this attractor
is trivial. When m=2, it is known that the bifurcated attractor consists of steady states and
their connecting heteroclinic orbits. The main focus of this article is then on the pattern selection
mechanism and stability of rolls, rectangles, and mixed modes (including hexagons) for the case
where m=2. We derive in particular a complete classification of all transition scenarios, determining
the patterns of the bifurcated steady states, their stabilities, and the basin of attraction of the stable
ones. The theoretical results lead to interesting physical conclusions, which are in agreement with
known experimental results. For example, it is shown in this article that only the pure modes are
stable whereas the mixed modes are unstable.

Key words. Rayleigh-Bénard convection, pattern formation, rolls, rectangles, hexagons, dy-
namic transitions.
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1. Introduction

Over the years, the Rayleigh-Bénard convection problem, together with the Taylor
problem, has become one of the paradigms for studying nonequilibrium phase transi-
tions and pattern formation in nonlinear sciences. There is an extensive literature on
the subject; see e.g. reviews by Busse [1], Chandrasekhar [2], Cross & Hohenberg [3],
Getling [5], Koschmieder [6], Lappa [7], Ma & Wang [8], and the references therein.

The problem is complete from the dynamic transition perspective (Ma and Wang
[9, 10]). The main result in this direction is that the system always undergoes a
Type-I (continuous) transition as the instability driving mechanism, the Rayleigh
number, crosses a critical threshold Rc, thanks to the symmetry of the linear operator,
properties of the nonlinearity, and the asymptotic stability of the basic state at the
critical threshold. Moreover, the system has a bifurcated attractor which is an (m−
1)–dimensional homological sphere, where m is the number of critical eigenvalues of
the linear operator.

The main objective of this paper is to study pattern formation and the struc-
ture of the bifurcated attractor for the Rayleigh–Bénard convection. The structure
of the bifurcated attractor is trivial when m=1. Namely, the attractor consists of
two attracting steady states approximated by the critical mode with opposite flow
orientations.

When m≥2, the picture is far from being complete. There are some known
characteristics of this attractor such as the attractor must be homeomorphic to S1,
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and either contains four or eight steady states connected by heteroclinic orbits or is
a circle of steady states.

In general the relation between the two horizontal length scales for a given mul-
tiplicity m≥2 is nonlinear, as shown in figure 4.1. One of the main objectives of
this article is to present a general approach for studying transitions for m≥2. For
simplicity, we consider only the case where the wave numbers of the critical modes
are equal. Under this assumption we are able to give a complete characterization for
the case m=2; the general case m≥2 can be studied in a similar fashion.

Also, we remark that, for a given m≥2, the set of all (L1,L2) in the L1-L2 plane
is of measure zero; see figure 4.1. However, from a pattern formation point of view,
most interesting patterns appear in these non-generic cases. Meanwhile, when the
length scales are close to those length scales for which m=2, a critical mode at the
critical Rayleigh number Rc appears first, followed closely by a second critical mode
near Rc. This will lead to the similar transition scenarios as described in this article.

Depending on its horizontal wave indices ix and iy, a single critical mode can
be either a roll (when at least one of ix or iy is zero) or a rectangle (when both ix
and iy are non-zero), where ix and iy are non-negative integers which cannot vanish
together. Thus there are three possible cases: (a) one of the critical modes is a roll
while the other one is a rectangle, (b) both critical modes are rolls, (c) both critical
modes are rectangles.

In each case, we explicitly find nondimensional numbers which determine the
number, patterns, and stabilities of the bifurcated steady states. We also determine
the basin of attraction of each of the stable steady states.

In all the scenarios, we found that after the transition, only pure modes (rolls
or rectangles) are stable and the mixed modes are unstable. Our result is conclusive
when one of the critical modes is a roll type. When both critical modes are rectangles,
we only have computational evidence.

When both critical modes are rolls, the stable steady states after the transition
are rolls. When both critical modes are rectangles, computational evidence suggests
that the stable steady states after the transition are rectangles. When one critical
mode is a roll and the other one is a rectangle, the stable states after the transition
can be either only rolls or both rolls and rectangles.

The problem is usually studied in the infinitely extended horizontal domain set-
ting, which eliminates the effects of the boundaries in the horizontal directions. Our
setting is a 3D rectangular domain with free-slip boundary conditions for the velocity,
that is, the fluid can not cross the boundaries but is allowed to slip. The thermal
boundary conditions are adiabatically isolated side walls, so that no heat is transferred
through them, and perfectly conducting top and bottom boundaries.

Technically, the analysis is carried out using the dynamical transition theory (Ma
and Wang [8]). One key ingredient is the reduction of the original system to the center
manifold generated by the two unstable modes. The only modification that has been
made is, following Sengul and Wang [13], we expand the center manifold using a basis
which differs from the eigenfunctions of the original linear operator. This allows us to
circumvent the difficulties associated with determining the eigenpairs in terms of the
system parameters. We also make use of computer assistance, namely Mathematica,
which carries out numerous integrations which are due to the interactions of the
critical modes with the non-critical ones.

The paper is organized as follows: In Section 2, the governing equations and
the functional setting of the problem are introduced. Section 3 deals with the linear
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theory. We present our main results in Section 4. The proof of these theorems are
given in Section 5. In Section 6, we present the physical conclusions derived from our
theorems. Finally, Section 7 is the conclusion section.

2. Governing equations and the functional setting

With the Boussinesq approximation, the non-dimensional equations governing
the motion and the states of the Rayleigh-Bénard convection in a nondimensional
rectangular domain Ω=(0,L1)×(0,L2)×(0,1)⊂R

3 are given as follows (see [2] among
others):

∂u

∂t
+(u ·∇)u=Pr(−∇p+∆u+Rθk) ,

∂θ

∂t
+(u ·∇)θ=w+∆θ,

∇·u=0,

u(0)=u0, θ(0)=θ0.

(2.1)

The unknown functions are the velocity u=(u,v,w), the temperature θ, and the
pressure p. These unknowns represent a deviation from a motionless state basic steady
state with a constant positive vertical temperature gradient. In addition, k stands for
the unit vector in the z-direction.

The non-dimensional numbers in (2.1) are the Rayleigh number R, which is the
control parameter, and Pr, the Prandtl number.

The above system is supplemented with a set of boundary conditions. We use
the free-slip boundary conditions for the velocity on all the boundaries. Thermally,
the top and the bottom boundaries are assumed to be perfectly conducting and the
horizontal boundaries are adiabatically isolated. Namely, the boundary conditions
are as follows:

u=
∂v

∂x
=
∂w

∂x
=
∂θ

∂x
=0 at x=0,L1,

∂u

∂y
=v=

∂w

∂y
=
∂θ

∂y
=0 at y=0,L2,

∂u

∂z
=
∂v

∂z
=w=θ=0 atz=0,1.

(2.2)

For the functional setting, we define the relevant function spaces:

H=
{

(u,θ)∈L2
(

Ω,R4
)

:∇·u=0,u ·n |∂Ω=0
}

,

H1=
{

(u,θ)∈H2
(

Ω,R4
)

:∇·u=0,u ·n |∂Ω=0,θ |z=0,1=0
}

.
(2.3)

For φ=(u,θ), let G :H1→H and LR :H1→H be defined by

LRφ=(PrP(∆u+Rθk),w+∆θ),

G(φ)=−(P(u ·∇)u,(u ·∇)θ),
(2.4)

with P denoting the Leray projection onto the divergence-free vectors. The equations
(2.1) and (2.2) can be put into the following functional form:

dφ

dt
=LRφ+G(φ), φ(0)=φ0. (2.5)
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The results concerning existence and uniqueness of (2.5) are classical and we refer
the interested readers to Foias, Manley, and Temam [4] for details. In particular, we
can define a semigroup

S(t) :φ0→φ(t).

Finally for φi=(ui,θi), i=1,2,3 we define the following trilinear forms, which will
be used in the proof of the main theorems:

G(φ1,φ2,φ3)=−
∫

Ω

(u1 ·∇)u2 ·u3−
∫

Ω

(u1 ·∇)θ2 ·θ3,

Gs(φ1,φ2,φ3)=G(φ1,φ2,φ3)+G(φ2,φ1,φ3).

(2.6)

3. Linear theory

We recall in this section the well-known linear theory of the problem.

3.1. Linear eigenvalue problem. We first study the eigenvalue problem

Pr(∆u+Rθk−∇p)=βu,
w+∆θ=βθ,

divu=0,

(3.1)

with the boundary conditions (2.2). Thanks to the boundary conditions, we can
represent the solutions φS =(uS ,θS), uS =(uS ,vS ,wS) by the separation of variables

uS =US sin(L
−1
1 sxπx)cos(L

−1
2 syπy)cos(szπz),

vS =VS cos(L
−1
1 sxπx)sin(L

−1
2 syπy)cos(szπz),

wS =WS cos(L
−1
1 sxπx)cos(L

−1
2 syπy)sin(szπz),

θS =ΘS cos(L
−1
1 sxπx)cos(L

−1
2 syπy)sin(szπz),

(3.2)

for S=(sx,sy,sz), where sx≥0, sy ≥0, sz ≥0. It is easy to see that only eigenvalues
βS , S∈Z can become positive, where

Z={(sx,sy,sz) |sx≥0, sy ≥0, sz ≥0, (sx,sy) 6=(0,0) and sz 6=0}.

For S=(sx,sy,sz)∈Z, the amplitudes of the horizontal velocity field can be found as

US =−sxπ
L1

szπ

α2
S

WS , VS =−syπ
L2

szπ

α2
S

WS .

We define αS , the horizontal wave number and γS , the full wave number by

αS =

√

s2xπ
2

L2
1

+
s2yπ

2

L2
2

, γS =

√

s2xπ
2

L2
1

+
s2yπ

2

L2
2

+s2zπ
2. (3.3)

Taking the divergence of the first equation in (3.1), we find

∆p=R
∂θ

∂z
.

Now, taking the Laplacian of the first equation, replacing ∆p by the above relation,
and using (3.2), we obtain

γ2S(Pr γ
2
S+β)WS−RPrα2

SΘS =0,

WS−(γ2S+β)ΘS =0.
(3.4)
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Fig. 3.1. The selection of critical horizontal wave indices in the L1–L2 plane. The same
coloring indicates equal wave indices.

For each S∈Z, the above equations have two solutions β1
S>β

2
S , which satisfy the

following equation:

γ2S(γ
2
S+β)(Pr γ

2
S+β)−RPrα2

S =0. (3.5)

We find the amplitudes of the normalized critical eigenvectors as

WS =β1
S(R)+γ

2
S , ΘS =1. (3.6)

Now solving (3.5) for R at β=0, the critical Rayleigh number can be defined as

Rc=min
S∈Z

RS , RS :=
γ6S
α2
S

. (3.7)

From (3.7), one sees that for a minimizer S=(sx,sy,sz) of RS , the vertical index sz
is 1. We will denote the set of critical indices S minimizing (3.7) by C:

C={S=(sx,sy,1)∈Z |RS ≤RS′ , ∀S′∈Z}.

For small length scale region, the map in figure 3.1 shows the horizontal critical wave
indices that are picked by the selection mechanism (3.7).

It is well known that we have the following PES condition:

β1
S(R)











<0, λ<Rc,

=0, λ=Rc,

>0, λ>Rc,

∀S∈C, (3.8)

ℜβ(Rc)<0, ∀β /∈{β1
S |S∈C}. (3.9)
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(a) A roll pattern with
wave index J=(0,jy ,1).

(b) A rectangle pattern
with wave index I=
(ix,iy ,1).

Fig. 3.2. Regions of positive and negative vertical velocity of a rectangular and a roll mode at
the mid-plane z=1/2.

By (3.5), corresponding to S=(sx,sy,sz)∈Z, there are two eigenvalues βi
S and two

corresponding eigenfunctions φiS , i=1,2. If a critical mode has wave index I then the
corresponding eigenfunction is φ1I , which we will simply denote by φI .

Depending on the horizontal wave indices, there are two types of critical modes
corresponding to two different patterns. If the wave index I=(ix,iy,1) of a critical
mode is such that one of the horizontal wave indices ix, iy is zero, the corresponding
eigenfunction has a roll pattern. When both horizontal indices are non-zero, the
corresponding eigenfunction has a rectangular pattern. Figure 3.2 shows a sketch of
these patterns.

3.2. Estimation of the critical wave number. As it will be shown, the
dynamic transitions depend on the critical wavenumber α. In the case of infinite
horizontal domains, the critical wave number is found to be α=π/

√
2≈2.22, corre-

sponding to a critical Rayleigh number Rc=27π4/4≈658. For rectangular domains,
the wave number is not constant and is a function of the length scales. The following
estimates will be important in the physical remarks section.

Lemma 3.1. Let α be the critical wave number minimizing (3.7). Then

α≥ π

21/3(22/3+1)1/2
≈1.55, for all L1,L2,

α<
22/3π√
1+22/3

≈3.10, if L1>21/3
√

1+22/3≈2.03,

α→ π√
2
, L1→∞.

Proof. To estimate the dependence of the wave number α on the length scales
L1, L2, we define

L(m)=((m+1)m)1/3((m+1)2/3+m2/3)1/2, m∈Z, m≥0.

The sequence L(m) gives those length scales of L1 for which the wave index changes,
assuming L2 is sufficiently small. As shown in Sengul and Wang [13], when L(m−1)<
L1<L(m) for some m≥1, we have the following bound on the critical wave number:

mπ

L(m)
<α<

mπ

L(m−1)
. (3.10)
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Fig. 3.3. The shaded region shows the possible values for the critical wave number α for a given
L1.

In particular,

α≥ π

L(1)
=

π

21/3(22/3+1)1/2

and

α≤ 2π

L(1)
=

22/3π√
1+22/3

, if L1>L(1).

Finally noticing that,

mπ

L(m)
→ π√

2
,

(m+1)π

L(m)
→ π√

2
, as m→∞,

we find that

α→ π√
2
, L1→∞.

The bounds on the critical wave number as a function of the length scale L1 which
is obtained from (3.10) is shown in figure 3.3.

4. Dynamic transitions and pattern selection

We study the case where two eigenvalues with indices I=(ix,iy,1) and J =
(jx,jy,1) are the first critical eigenvalues. This means that αI and αJ minimize
(3.7), thus the PES conditions (3.8), (3.9) are satisfied with C={I,J}. The crucial
assumption is that the corresponding wave numbers are equal, i.e.

α=αI =αJ .

Since I 6=J , without loss of generality we can assume that ix>jx which ensures that
iy<jy. By (3.3), we must have the following linear relation between the length scales:

L1=

√

i2x−j2x
j2y− i2y

L2.

Thus two critical eigenmodes are possible only when L1 and L2 lie on a line emanating
from the origin in figure 4.1. There are three possible cases depending on the structure
of the critical eigenmodes, which are completely described by our main theorems:
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Fig. 4.1. The first two critical modes with (a) a rectangle and a roll pattern, (b) both roll
patterns, (c) both rectangle patterns.

(a) a rectangle and a roll mode respectively (described by Theorem 4.1),

(b) both roll modes (described by Theorem 4.2),

(c) both rectangle modes (described by Theorem 4.3).

These possible cases are illustrated by figure 4.1 in the small length scale regime.

Before presenting our results, we first summarize some of the known results which
apply in the above setting (see Ma and Wang [9, 10]):

i) As the Rayleigh number R crosses Rc, the system undergoes a Type-I (con-
tinuous) transition.

ii) There is an attractor ΣR bifurcated on R>Rc such that for any φ0∈H \Γ,

dist(φ0,ΣR)→0, as t→∞,

where Γ is the stable manifold of φ=0 with codim=2.

iii) ΣR is homeomorphic to S1 and comprises steady states and the heteroclinic
orbits connecting these steady states.

iv) There are four or eight bifurcated steady states. Half of the bifurcated steady
states are minimal attractors and the rest are saddle points.

The dynamic transitions depend on the following positive parameter which in
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(a) When a<c. (b) When c<a.

Fig. 4.2. The structure of the attractor after the transition R>Rc for different parameter
regions when the first two critical modes are a roll and a rectangle.

turn is a function of the parameters Pr, L1, and L2:

κS =

{

1
16

Pr
1+Prγ

4, S=(0,0,2),
π2(4α2−α2

S)2

(RS−Rc)α6

Rc

27(1+Pr)

(

Pr−1γ2Sγ
2+2γ4+PrRSα

2γ−2
S

)

, S 6=(0,0,2).
(4.1)

Here, α is the critical wave number, γ2=α2+π2, and Rc=γ
6/α2 is the critical

Rayleigh number. Moreover, for S=(sx,sy,sz), (sx,sy) 6=(0,0):

α2
S =

s2xπ
2

L2
1

+
s2yπ

2

L2
2

, γ2S =α2
S+s

2
zπ

2, RS =
γ6S
α2
S

.

Also we let

g=
Prα2

(Pr+1)γ4
.

4.1. One of the critical modes is a roll, the other is a rectangle. We
first consider the case where an eigenmode with a roll structure and an eigenmode
with a rectangle structure are the first critical eigenmodes.

Theorem 4.1. Assume that I=(ix,iy,1) and J =(0,jy,1) (ix≥1, jy>iy ≥1) are the
first critical indices with identical wave numbers, αI =αJ . Consider the following
numbers:

a=κ0,0,2+κ2ix,0,2+κ0,2iy,2,

b=κ0,0,2,

c=κ0,0,2+2κix,iy+jy,2+2κix,−iy+jy,2.

(4.2)

For R>Rc, let us define the following steady state solutions:

ψi=g
√

R−Rc(XiφI +YiφJ)+o((R−Rc)
1/2), i=1, . . . ,8,

where

Xi=(−1)ia−1/2, Yi=0, i=1,2, (rectangle pattern)

Xi=0, Yi=(−1)i(2b)−1/2, i=3,4, (roll pattern)
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Xi=

√

c−b
c2−ab , Yi=(−1)i

√

c−a
2(c2−ab) , i=5,6, (mixed pattern)

Xi=−
√

c−b
c2−ab , Yi=(−1)i

√

c−a
2(c2−ab) , i=7,8. (mixed pattern)

There are two possible transition scenarios:

i) If a<c then the topological structure of the system after the transition is as
in figure 4.2(a). In particular,

1) ΣR contains eight steady states ψi, i=1, . . . ,8.

2) ψ1, ψ2 (rectangles) and ψ3, ψ4 (rolls) are minimal attractors of ΣR,
whereas ψ5, ψ6, ψ7, and ψ8 (mixed) are unstable.

3) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪4

i=1Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=1, . . . ,4.

4) The projection of Ui onto the space spanned by φI , φJ is approximately
a sectorial region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=1, . . . ,4,

ω1,1=π−ω, ω1,2=π+ω, ω2,1=−ω, ω2,2=ω,

ω3,1=π+ω, ω3,2=2π−ω, ω4,1=ω, ω4,2=π−ω,

where

ω=arctan

√

c−a
2(c−b) . (4.3)

ii) If c<a then the topological structure of the system after the transition is as
in figure 4.2(b). In particular,

a) ΣR contains four steady states ψi, i=1, . . . ,4.

b) ψ3, ψ4 (rolls) are minimal attractors of ΣR, whereas the ψ1, ψ2 (rectan-
gles) are unstable steady states.

c) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪4

i=3Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=3,4.

d) The projection of Ui onto the space spanned by φI , φJ is a sectorial
region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=3,4,

ω3,1=π, ω3,2=2π, ω4,1=0, ω4,2=π.

Remark 4.1. In the special case jy =2iy, the mixed solution corresponds to a regular
hexagonal pattern. In this case we find a<c, hence the first scenario in Theorem 4.1
is valid; see Remark 5.1.
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Fig. 4.3. The structure of the attractor after the transition R>Rc, when the first two critical
modes are both roll type.

4.2. The first two critical modes are both rolls. In this section we
consider two critical modes both having a roll structure. Under the assumption that
the wave numbers are equal, one of the rolls must be aligned in the x-direction and
the other one aligned in the y-direction.

Theorem 4.2. Assume that I=(ix,0,1) and J =(0,jy,1) (ix≥1, jy ≥1) are the first
critical indices with identical wave numbers, αI =αJ . Consider the following numbers:

b=2κ0,0,2,

d=2κ0,0,2+8κix,jy,2.
(4.4)

For R>Rc, we define

ψi=g
√

R−Rc(XiφI +YiφJ)+o((R−Rc)
1/2), i=1, . . . ,8,

where

Xi=(−1)ib−1/2, Yi=0, i=1,2, (roll pattern)

Xi=0, Yi=(−1)ib−1/2, i=3,4, (roll pattern)

Xi=(b+d)−1/2, Yi=(−1)iXi, i=5,6, (mixed pattern)

Xi=−(b+d)−1/2, Yi=(−1)iXi, i=7,8. (mixed pattern)

Then the topological structure of the system after the transition is as in figure 4.2.
In particular,

1) ΣR contains eight steady states ψi, i=1, . . . ,8.

2) ψ1, ψ2, ψ3, ψ4 (rolls) are minimal attractors of ΣR, whereas ψ5, ψ6, ψ7, and
ψ8 (mixed) are unstable.

3) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of 0,
such that Ū =∪4

i=1Ūi, with Ui pairwise disjoint, and where Ui is the basin of
attraction of ψi, i=1, . . . ,4.

4) The projection of Ui onto the space spanned by φI , φJ is approximately a
sectorial region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=1, . . . ,4,

ω1,1=3π/4, ω1,2=5π/4, ω2,1=−π/4, ω2,2=π/4,

ω3,1=5π/4, ω3,2=7π/4, ω4,1=π/4, ω4,2=3π/4.
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(a) When a<e and f <e. (b) When e<a and e<f .

(c) When f <e<a. (d) When a<e<f .

Fig. 4.4. The structure of the attractor after the transition R>Rc for different parameter
regions, when the first two critical modes are both rectangle type.

4.3. The first two critical modes are both rectangles. In this section
we consider two critical modes both having a rectangular pattern with equal wave
numbers, αI =αJ .

Theorem 4.3. Assume that I=(ix,iy,1), J =(jx,jy,1) (ix 6=0, iy 6=0, jx 6=0, jy 6=0,
ix 6= jx, iy 6= jy) are the first critical indices with identical wave numbers, αI =αJ .
Consider the following numbers:

a=κ0,0,2+κ2ix,0,2+κ0,2iy,2,

e=κ0,0,2+κix+jx,iy+jy,2+κix−jx,iy+jy,2+κix+jx,−iy+jy,2+κix−jx,−iy+jy,2,

f =κ0,0,2+κ2jx,0,2+κ0,2jy,2.

(4.5)

For R>Rc, let us define the following steady state solutions:

ψi=g
√

R−Rc(XiφI +YiφJ)+o((R−Rc)
1/2), i=1, . . . ,8,

where

Xi=(−1)ia−1/2, Yi=0, i=1,2, (rectangle pattern)

Xi=0, Yi=(−1)if−1/2, i=3,4, (rectangle pattern)

Xi=

√

e−f
e2−af , Yi=(−1)i

√

e−a
2(e2−af) , i=5,6, (mixed pattern)
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Xi=−
√

e−f
e2−af , Yi=(−1)i

√

e−a
2(e2−af) , i=7,8. (mixed pattern)

There are four possible transition scenarios:

i) If a<e and f <e then the topological structure of the system after the tran-
sition is as in figure 4.4(a). In particular,

1) ΣR contains eight steady states ψi, i=1, . . . ,8.

2) ψ1, ψ2, ψ3, ψ4 (rectangles) are minimal attractors of ΣR, whereas ψ5,
ψ6, ψ7, and ψ8 (mixed) are unstable.

3) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪4

i=1Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=1, . . . ,4.

4) The projection of Ui onto the space spanned by φI , φJ is approximately
a sectorial region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=1, . . . ,4,

ω1,1=π−ω, ω1,2=π+ω, ω2,1=−ω, ω2,2=ω,

ω3,1=π+ω, ω3,2=2π−ω, ω4,1=ω, ω4,2=π−ω,

where ω=arctan
√

e−a
e−f .

ii) If e<a and e<f then the topological structure of the system after the tran-
sition is as in figure 4.4(b). In particular,

a) ΣR contains eight steady states ψi, i=1, . . . ,8.

b) ψ5, ψ6, ψ7, ψ8 (mixed) are minimal attractors of ΣR, whereas ψ1, ψ2,
ψ3, ψ4 (rectangles) are unstable.

c) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪8

i=5Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=5, . . . ,8.

d) The projection of Ui onto the space spanned by φI , φJ is a sectorial
region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=5, . . . ,8,

ω5,1=0, ω5,2=π/2, ω6,1=3π/2, ω6,2=2π,

ω7,1=π, ω7,2=3π/2, ω8,1=π/2, ω8,2=π.

iii) If f <e<a then the topological structure of the system after the transition
is as in figure 4.4(c). In particular,

a) ΣR contains four steady states ψi, i=1, . . . ,4.

b) ψ1, ψ2 (rectangles) are minimal attractors of ΣR, whereas ψ3, ψ4 (rect-
angles) are unstable steady states.

c) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪2

i=1Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=1,2.
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d) The projection of Ui onto the space spanned by φI , φJ is a sectorial
region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=1,2,

ω1,1=π/2, ω1,2=3π/2, ω2,1=−π/2, ω2,2=π/2.

iv) If a<e<f then the topological structure of the system after the transition
is as in figure 4.4(d). In particular,

a) ΣR contains four steady states ψi, i=1, . . . ,4.

b) ψ3, ψ4 (rectangles) are minimal attractors of ΣR, whereas the ψ1, ψ2

(rectangles) are unstable steady states.

c) There is a neighborhood U \Γ of 0, where Γ is the stable manifold of
0, such that Ū =∪4

i=3Ūi, with Ui pairwise disjoint, and where Ui is the
basin of attraction of ψi, i=3,4.

d) The projection of Ui onto the space spanned by φI , φJ is a sectorial
region given by

Ui∩{XφI +Y φJ |ωi,1<arg(X,Y )<ωi,2}, i=3,4,

ω3,1=π, ω3,2=2π, ω4,1=0, ω4,2=π.

5. Proof of the main theorems

First we give the preliminary setting that will be used in the proof of the main
theorems.

The first step is to find the adjoint critical eigenvectors. The adjoint equation of
(3.1) is

Pr(∆u∗−∇p∗)+θ∗k= β̄u∗,

∆θ∗+RPrw∗= β̄θ∗,

divu∗=0.

(5.1)

The eigenfunctions of (5.1) can be represented by the separation of variables (3.2).
Also the eigenvalues of (5.1) are same as the eigenvalues of (3.1), i.e. β̄ satisfies (3.5).
We find the amplitudes of the critical adjoint eigenvectors as

W ∗
S =β1

S(R)+γ
2
S , Θ∗

S =RPr, (5.2)

where β1
S(R) satisfies the PES condition (3.8).

Let I and J be the indices of the critical modes, i.e. C={I,J} in (3.8). We will
denote

φI =φ
1
I , φJ =φ

1
J , β(R)=β1

I (R)=β
1
J(R).

To study the dynamics on the center manifold, we write:

φ=φc+Φ(x,y),

in (2.5), where Φ is the center manifold function and

φc=xφI +yφJ .
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Multiplying the governing evolution equation (2.5) by the adjoint eigenvectors
φ∗I and φ∗J , we see that the amplitudes of the critical modes satisfy the following
equations:

dx

dt
=β(R)x+

1

〈φI ,φ∗I〉
〈G(φ),φ∗I〉 ,

dy

dt
=β(R)y+

1

〈φJ ,φ∗J〉
〈G(φ),φ∗J 〉 .

(5.3)

The pairing 〈·, ·〉 denotes the L2(Ω) inner product.
By (3.8) and (3.5),

β(R)=g(R−Rc)+o((R−Rc)
2), as R→Rc, (5.4)

with

g=
dβ

dR
|R=Rc

=
Prα2

(Pr+1)γ4
6=0.

We write the phase space as

H=E1⊕E2, E1=span{φI ,φJ}, E2=E
⊥
1 .

As the linear part of (5.3) is diagonal, we have the following approximation of
the center manifold (see Ma and Wang [8]):

−LRΦ(x,y)=P2G(φc)+o(2), (5.5)

where LR=LR |E2
, P2 is the projection onto E2, and

o(n)=o(|(x,y)|n)+O(|(x,y)|n |β (R)|) .

We know that the center manifold is tangent to E1, so we have

Φ(x,y) :=Φ2(x,y)+o(2), (5.6)

where Φ2∈E2 consists of quadratic terms. By direct computation we can show that
there is no nonlinear interaction between the critical modes, i.e.

〈G(φc),φ∗K〉= 〈G(φc,φc),φ∗K〉=0, K ∈C. (5.7)

This implies that for K ∈C,

〈G(φc+Φ),φ∗K〉= 〈G(φc,Φ2)+G(Φ,φ
c),φ∗K〉+o(3)

= 〈Gs(φ
c,Φ2),φ

∗
K〉+o(3). (5.8)

Here Gs is as defined by (2.6). By (5.6), (5.7), and the bilinearity of G, we can write
(5.3) as

dx

dt
=β(R)x+pI(x,y)+o(3),

dy

dt
=β(R)y+pJ(x,y)+o(3),

(5.9)
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where for K ∈C, pK(x,y) is a cubic polynomial given by

pK(x,y)=
1

〈φK ,φ∗K〉 〈Gs(φ
c,Φ2),φ

∗
K〉.

So to fully determine the reduced equation (5.9), we have to compute Φ2 given by
(5.6). In dynamic transition problems, the center manifold is generally expanded
using the eigenfunctions of the original linear operator. However, following Sengul
and Wang [13], we will expand the center manifold using a different basis. Namely
we will consider the eigenfunctions uS of the Stokes equation for the velocity together
with eigenfunctions θS of the Laplace equation. The main advantage of such an
expansion is that the eigenvalues and eigenfunctions are independent of the system
parameters, namely the Prandtl number Pr and the Rayleigh number R, while still
spanning the same functional space (2.3) which leads to computational advantages.

For this reason we turn to the following eigenvalue problem with the boundary
conditions (2.2) of the original problem:

∆uS−∇p=ρuS ,

∆θS =ρθS ,

divuS =0.

By the classical theory of elliptic operators, the eigenvectors {e1S =(uS ,0), e
2
S =(0,θS)}

form a basis of the phase space H. Moreover, eS can be expressed by the same
separation of variables (3.2). There are three cases to be considered.

• If (sx,sy)=(0,0) and sz 6=0, then e1S =0 and

e2S =(0,θS), ΘS =1.

• If s2x+s
2
y 6=0 and sz =0, then there are eigenmodes which have the form

e=(u,0) with u=(u,v,0). For such modes, it can be verified by direct com-
putation that

〈G(φc),e〉=0.

Thus by (5.5), such modes will not be present in the lowest order approxima-
tion of the center manifold function.

• If s2x+s
2
y 6=0 and sz 6=0, then the multiplicity of an eigenvalue is two and the

eigenvectors are

e1S =(uS ,0), WS =1,

e2S =(0,θS), ΘS =1.

The following lemma is crucial in the computation of (5.5).

Lemma 5.1. For i=1,2,

P2e
i
S = eiS for S /∈C,

〈P2G(φ
c),eiS〉=0 for S∈C.

(5.10)

Proof. First note that

E1=span{φ1I ,φ1J}⊂ span{e1S ,e2S |S∈C}.
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Thus

E2=E
⊥
1 ⊃ span{e1S ,e2S |S /∈C}.

Thus we have the first equation in (5.10).
Since

span{φ1S ,φ2S |S∈C}=span{e1S ,e2S |S∈C},

there must exist constants cS,1 6=0, cS,2 6=0 such that

P2e
1
S = cS,1φ

2
S , P2e

2
S = cS,2φ

2
S , for S∈C.

Since by direct computation we have

〈P2G(φ
c),φ2S〉=0, for S∈C,

we also have second equation in (5.10).
Now we write

Φ2=
∑

S∈S,i=1,2

Φi
S(x,y)e

i
S , (5.11)

where S denotes some index set which will be specified later. Here Φi
S are quadratic

polynomials in x and y. To find Φ2 we need to compute Φi
S , which will be done in

Lemma 5.2 and Lemma 5.3.
Let

Zroll
α ={K=(k,0,1) or K=(0,k,1) :k 6=0, αK =α},

Zrec
α ={K=(k1,k2,1) :k1 6=0, k2 6=0,αK =α}.

Lemma 5.2. For S1=(0,0,2) we have

ΦS1
=[Φ1

S1
,Φ2

S1
]T =[0,ΦI

S1
x2+ΦJ

S1
y2]T ,

where for K ∈{I,J},

ΦK
S1

=

{

− γ2

16π , if K ∈Zrec
α ,

− γ2

8π , if K ∈Zroll
α .

(5.12)

Also for K1∈Zrec
α ,K2∈Zroll

α ,

Gs(φK1
,eS1

,φ∗K1
)=

1

2
Gs(φK2

,eS1
,φ∗K2

)=
L1L2πγ

2Rc

8
[0,Pr]T . (5.13)

Proof. If (sx,sy)=(0,0) and sz 6=0 then, by (5.5), for K ∈{I,J} we have

ΦK
S =

〈G(φK ,φK),e2S〉
〈e2S ,L∗

Re
2
S〉

=
〈G(φK ,φK),e2S〉
−s2zπ2〈e2S ,e2S〉

. (5.14)

Note that

〈e2S ,e2S〉=
∫

Ω

sin22πz=
L1L2

2
. (5.15)
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For K1∈Zrec
α ,K2∈Zroll

α , a direct computation yields

G(φK1
,φK1

,eS1
)=

1

2
G(φK2

,φK2
,eS1

)=
−L1L2πγ

2

8
[0,1]T . (5.16)

Here Gs is the trilinear operator defined in (2.6). Now, (5.12) follows from (5.14),
(5.15), and (5.16). Also, (5.13) follows from an easy computation.

Lemma 5.3. If S /∈C, S=(sx,sy,sz), (sx,sy) 6=(0,0), and sz 6=0, then

ΦS =

[

Φ1
S

Φ2
S

]

=− 1

vS
AS

−1

[

〈G(φc),e1S〉
〈G(φc),e2S〉

]

. (5.17)

Here

AS =

(

−Pr γ4Sα
−2
S RPr

1 −γ2S

)

(5.18)

and

vS =











L1L2

4
, if (sx,sy) 6=(0,0), sx=0 or sy =0,

L1L2

8
, if sxsy 6=0,

(5.19)

Proof. Let

Aij
S =

1

vS
〈ejS ,L∗

Re
i
S〉, i,j=1,2, (5.20)

that is,

AS =
1

vS

(

〈e1S ,L∗
Re

1
S〉 〈e2S ,L∗

Re
1
S〉

〈e1S ,L∗
Re

2
S〉 〈e2S ,L∗

Re
2
S〉

)

.

Note that

〈e1S ,e1S〉=vS
γ2S
α2
S

, 〈e1S ,e2S〉=0,

〈e2S ,e1S〉=0, 〈e2S ,e2S〉=vS ,

(5.21)

where

vS =

∫ L1

0

∫ L2

0

∫ 1

0

cos2
sxπx1
L1

cos2
syπx2
L2

cos2szπx3.

Clearly vS is equal to the definition in (5.19). By (5.1), we have

L∗
Re

1
S =(Pr∆e1S+RPre2S),

L∗
Re

2
S =(0,0,cos(L−1

1 sxπx)cos(L
−1
2 syπy)sin(szπz),0)+∆e2S .

(5.22)

Using the fact that ∆eiS =−γ2S , i=1,2 and

〈e1S ,(0,0,cos(L−1
1 sxπx)cos(L

−1
2 syπy)sin(szπz),0)〉=vS ,

〈e2S ,(0,0,cos(L−1
1 sxπx)cos(L

−1
2 syπy)sin(szπz),0)〉=0,
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it is easy to compute AS by (5.20), (5.21), and (5.22), and show that it is indeed
given by (5.18). Now we take the inner product of (5.5) by eiS , i=1,2. Writing

Φ=
∑

K

Φ1
Ke

1
K+Φ2

Ke
2
K ,

the inner product of left hand side of (5.5) by eiS becomes

〈LRΦ,e
i
S〉=

∑

K

∑

j=1,2

Φj
K〈ejK ,L∗

Re
i
S〉=

∑

j=1,2

Φj
S〈e

j
S ,L∗

Re
i
S〉=vS

∑

j=1,2

Aij
S Φ

j
S . (5.23)

For the inner product of eiS by the right hand side of (5.5) we use Lemma 5.1. This
finishes the proof.

Notice that

detAS =Pr(RS−R),
where

RS =
γ6S
α2
S

. (5.24)

Since RS>Rc for S /∈C, the determinant of A is always positive when R is close to
Rc. This guarantees that (5.17) can be solved for Φ1

S and Φ2
S .

Finally note that if S=(sx,sy,sz) is a critical index with (sx,sy) 6=(0,0) and sz 6=0
at R=Rc we have

〈φS ,φ∗S〉=
∫

Ω

uSu
∗
S+vSv

∗
S+wSw

∗
S+θSθ

∗
S

=vS

(

(s2zπ
2

α2
S

+1
)

WSW
∗
S +ΘSΘ

∗
S

)

=vS

(

γ2S
α2
S

(γ2S+β(R))
2+RPr

)

∣

∣

∣

∣

∣

R=Rc

=vS(Pr+1)Rc.

(5.25)

Notation 5.1. We will use the following notation:

G(φI ,φJ ,eS)=

[

G(φI ,φJ ,e
1
S)

G(φI ,φJ ,e
2
S)

]

.

We also define the following indices, which will be used throughout the proofs:

S1=(0,0,2), S2=(2ix,0,2), S3=(0,2iy,2), S4=(ix,iy+jy,2),

S5=(ix,jy− iy,2), S6=(ix,jy,2), S7=(ix+jx,iy+jy,2),

S8=(ix−jx,iy+jy,2), S9=(ix+jx,−iy+jy,2),
S10=(ix−jx,−iy+jy,2), S11=(2jx,0,2), S12=(0,2jy,2).

(5.26)
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5.1. Proof of Theorem 4.1. Assume that I=(ix,iy,1) and J =(0,jy,1),
(ix≥1, jy>iy ≥1) are the first critical indices with identical wave numbers, αI =αJ .
Using (5.5), we find that the lowest order approximation of the center manifold is
spanned by the eigenvectors having indices Si as given in (5.26):

Φ(x,y)=x2(ΦI
S1
eS1

+
∑

S=S2,S3

ΦSeS)+xy
∑

S=S4,S5

ΦSeS+y
2ΦJ

S1
eS1

.

Here

ΦS1
=x2ΦI

S1
+y2ΦJ

S1
,

where according to (5.12) we have

ΦJ
S1

=2ΦI
S1
.

The cubic polynomials in (5.9) are as follows:

pI =x(a1x
2+a2y

2), pJ =y(b1x
2+b2y

2),

a1=
1

〈φI ,φ∗I〉



ΦI
S1
Gs(φI ,eS1

,φ∗I)+
∑

i=2,3

ΦSi
Gs(φI ,eSi

,φ∗I)



 ,

a2=
1

〈φI ,φ∗I〉



ΦJ
S1
Gs(φI ,eS1

,φ∗I)+
∑

i=4,5

ΦSi
Gs(φJ ,eSi

,φ∗I)



 ,

b1=
1

〈φJ ,φ∗J 〉



ΦI
S1
Gs(φJ ,eS1

,φ∗J )+
∑

i=4,5

ΦSi
Gs(φI ,eSi

,φ∗J)



 ,

b2=
1

〈φJ ,φ∗J 〉
ΦJ

S1
Gs(φJ ,eS1

,φ∗J ).

(5.27)

As evident from the formulas (5.17) and (5.27), an important part of the proof
is a careful calculation of the nonlinear interactions between the set of critical modes
and the set of resonant modes with the wave numbers given by (5.26). This involves
the exact calculation of dozens if not hundreds of triple integrals of the form (2.6).
For this purpose, we used the symbolic integration capabilities of Mathematica.

All the terms involving S1 above can be computed using the Lemma 5.2. By
direct computation,

Gs(φI ,eS ,φ
∗
J )=Gs(φJ ,eS ,φ

∗
I), S=S4, S5. (5.28)

Putting (5.12), (5.28), and (5.25) into (5.27) we find that

a2=2b1. (5.29)

By direct computation we can obtain the following:

G(φI ,φI ,eS)=−1

2
ηS

[

α−2

γ−4

]

, S=S2,S3,

Gs(φI ,φJ ,eS)=−ηS
[

α−2

γ−4

]

, S=S4,S5,

(5.30)
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Gs(φI ,eS ,φ
∗
I)=

1

2
ηS

[

α−2

PrRcγ
−4

]

, S=S2,S3,

Gs(φJ ,eS ,φ
∗
I)=

1

2
ηS

[

α−2

PrRcγ
−4

]

, S=S4,S5,

(5.31)

where

ηS =
L1L2π(4α

2−α2
S)γ

6

32α2
. (5.32)

Using (5.14), (5.17), and (5.30), we find

ΦS =

[

Φ1
S

Φ2
S

]

=
1

16

π(4α2−α2
S)γ

2

Prα4(Rc−RS)

[

PrRcα
2+γ4γ2S

Pr RS

γ2

S

α2+γ4

]

, S=S2,S3,

ΦS =

[

Φ1
S

Φ2
S

]

=
1

4

π(4α2−α2
S)γ

2

Prα4(Rc−RS)

[

PrRcα
2+γ4γ2S

Pr RS

γ2

S

α2+γ4

]

, S=S4,S5.

(5.33)

Now putting (5.31), (5.33), (5.16), (5.12) into (5.27), using (5.29), the equation
(5.9) becomes

dx

dt
=β(R)x−x(ax2+2cy2)+o(3),

dy

dt
=β(R)y−y(cx2+2by2)+o(3),

(5.34)

where a, b, and c are as defined in (4.2). Note also that κSi
>0 in (4.1) since Rc<RSi

,
i=1, . . . ,5 and we have the following relations:

0<b<a, 0<b<c. (5.35)

Now we consider the approximate steady state equations of (5.34):

β(R)x−x(ax2+2cy2)=0,

β(R)y−y(cx2+2by2)=0.
(5.36)

Let us define

ω2 :=
c−a

2(c−b) . (5.37)

There are two cases to consider.

i) If c<a, then the equations (5.36) have only four straight line orbits on the
lines y=0 and x=0. And the following solutions of (5.36) are bifurcated on
β>0:

X±=
(

±
√

β

a
,0
)

, Y±=
(

0,±
√

β

2b

)

. (5.38)

ii) If c>a then there are four additional straight line orbits on the lines y=±ωx.
Note that in this case, by (5.35), c2−ab>0 and there are four additional
solutions bifurcated on β>0 which are given by

Zi
±=(−1)i(1,±ω)

√

β
c−b
c2−ab , i=1,2. (5.39)
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Now the Jacobian of the vector field in (5.36) is

J =

(

β−3ax2−2cy2 −4cyx
−2cyx β−cx2−6by2

)

. (5.40)

The Jordan canonical forms of the Jacobian matrix evaluated at the steady states in
(5.38) and (5.39) are as follows:

J(X±)=2β

(

−1 0
0 a−c

2a

)

, J(Y±)=2β

(

b−c
2b 0
0 −1

)

,

J(Zi
±)∼2β

(−1 0

0 (b−c)(c−a)
ab−c2

)

, i=1,2.

(5.41)

The stability of the steady states can be found by using (5.41). Since c>b, Y± are
always stable on R>Rc. If c>a then X± are stable and Z± are unstable on R>Rc.
On the other hand if c<a then X± are unstable and Z± are not bifurcated on R>Rc.
Thus we have two transition scenarios and the results are shown in figure 4.2.

Remark 5.1. In the particular case jy =2iy, the equations in (5.34) can be reduced
further. In this case we have αS2

=αS4
and αS3

=αS5
, which implies that γS2

=γS4

and γS3
=γS5

. This in turn implies κS2
=κS4

and κS3
=κS5

, and we get the relation
2a= b+c. This implies c>a since c−a=a−b>0.

5.2. Proof of Theorem 4.2. We point out the differences from the previous
proof. We have I=(ix,0,1) and J =(0,jy,1) (ix≥1, jy ≥1) as the first critical indices
with identical wave numbers, αI =αJ . First, the center manifold is given by

Φ(x,y)=x2ΦI
S1
φS1

+xyΦS6
eS6

+y2ΦJ
S1
eS1

+o(2).

Using this approximation, the cubic polynomials in (5.9) are as follows:

pI =x(a1x
2+a2y

2), pJ =y(b1x
2+b2y

2),

a1=
1

〈φI ,φ∗I〉
ΦI

S1
Gs(φI ,eS1

,φ∗I),

a2=
1

〈φI ,φ∗I〉
(

ΦJ
S1
Gs(φI ,eS1

,φ∗I)+ΦS6
Gs(φJ ,eS6

,φ∗I)
)

,

b1=
1

〈φJ ,φ∗J 〉
(

ΦI
S1
Gs(φJ ,eS1

,φ∗J )+ΦS6
Gs(φI ,eS6

,φ∗J)
)

,

b2=
1

〈φJ ,φ∗J 〉
ΦJ

S1
Gs(φJ ,eS1

,φ∗J ).

(5.42)

The coefficients a1 and b2 are equal to b2 in the proof of the first theorem. Thus we
only need to find a2 and b1. A quick computation shows that

Gs(φI ,eS6
,φ∗J)=Gs(φJ ,eS6

,φ∗I), (5.43)

which shows that

a2= b1. (5.44)

By direct computation we can obtain the following:

Gs(φI ,φJ ,eS)=−2ηS

[

α−2

γ−4

]

, S=S6, (5.45)
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Gs(φJ ,eS ,φ
∗
I)=ηS

[

α−2

PrRcγ
−4

]

, S=S6, (5.46)

where η is given by (5.32). Using (5.14), (5.17), and (5.45), we find

ΦS =

[

Φ1
S

Φ2
S

]

=
1

2

π(4α2−α2
S)γ

2

Prα4(Rc−RS)

[

PrRcα
2+γ4γ2S

Pr RS

γ2

S

α2+γ4

]

, S=S6. (5.47)

Using (5.44), the equations (5.9) become:

dx

dt
=β(R)x−x(bx2+dy2)+o(3),

dy

dt
=β(R)y−y(dx2+by2)+o(3).

(5.48)

Here b>0 and d>0 are defined in (4.4). Since κ>0, we always have b<d. Now we
consider the approximate steady state equations of (5.48):

β(R)x−x(bx2+dy2)=0,

β(R)y−y(dx2+by2)=0.
(5.49)

The equations (5.49) have always eight straight line orbits on the lines y=0, x=0,
and y=±x. The eight solutions of (5.49) which are bifurcated on β>0 are

X±=
(

±
√

β

b
,0
)

, Y±=
(

0,±
√

β

b

)

,

Zi
±=(−1)i(1,±1)

√

β

b+d
, i=1,2.

(5.50)

The Jordan canonical forms of the Jacobian matrix evaluated at the steady states
in (5.50) are as follows:

J(X±)=2β

(

−1 0
0 b−d

2b

)

, J(Y±)=2β

(

b−d
2b 0
0 −1

)

,

J(Zi
±)∼2β

(−1 0
0 d−b

d+b

)

, i=1,2.

(5.51)

Using (5.51) we can find that, since b<d, X± and Y± are stable and Zi
±, i=1,2 are

unstable on R>Rc . That finishes the proof.

5.3. Proof of Theorem 4.3. Again we point out the differences from the
previous proofs. We have I=(ix,iy,1), J =(jx,jy,1) (ix 6=0, iy 6=0, jx 6=0, jy 6=0)
as the first critical indices with identical wave numbers, αI =αJ . First, the center
manifold is given by

Φ(x,y)=x2(ΦI
S1
φS1

+
∑

S=S2,S3

ΦSeS)+xy
∑

S=S7,S8,S9,S10

ΦSeS

+y2(ΦJ
S1
φS1

+
∑

S=S2,S3

ΦSeS)+o(2).
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Using this approximation, the cubic polynomials in (5.9) are as follows:

pI =x(a1x
2+a2y

2), pJ =y(b1x
2+b2y

2),

a1=
1

〈φI ,φ∗I〉
(ΦI

S1
Gs(φI ,eS1

,φ∗I)+
∑

i=2,3

ΦSi
Gs(φI ,eSi

,φ∗I)),

a2=
1

〈φI ,φ∗I〉
(ΦJ

S1
Gs(φI ,eS1

,φ∗I)+
∑

i=7,...,10

ΦSi
Gs(φJ ,eSi

,φ∗I)),

b1=
1

〈φJ ,φ∗J〉
(ΦI

S1
Gs(φJ ,eS1

,φ∗J )+
∑

i=7,...,10

ΦSi
Gs(φI ,eSi

,φ∗J)),

b2=
1

〈φJ ,φ∗J〉
(ΦJ

S1
Gs(φJ ,eS1

,φ∗J )+
∑

i=11,12

ΦSi
Gs(φJ ,eSi

,φ∗J)).

(5.52)

a1 and b2 are computed in the same way as a1 in the proof of the first theorem. So
we need only find a2 and b1. Also using

Gs(φI ,eS ,φ
∗
J)=Gs(φJ ,eS ,φ

∗
I), S=S7,S8,S9,S10, (5.53)

we find that

a2= b1. (5.54)

By direct computation we can obtain the following:

Gs(φI ,φJ ,eS)=−1

2
ηS

[

α−2

γ−4

]

, S=S7,S8,S9,S10, (5.55)

Gs(φJ ,eS ,φ
∗
I)=

1

4
ηS

[

α−2

PrRcγ
−4

]

, S=S7,S8,S9,S10. (5.56)

where η is given by (5.32). Using (5.14), (5.17), and (5.55), we find

ΦS =

[

Φ1
S

Φ2
S

]

=
1

8

π(4α2−α2
S)γ

2

Prα4(Rc−RS)

[

PrRcα
2+γ4γ2S

Pr RS

γ2

S

α2+γ4

]

, S=S7,S8,S9,S10. (5.57)

Using (5.54), the equations (5.9) become

dx

dt
=β(R)x−x(ax2+ey2)+o(3),

dy

dt
=β(R)y−y(ex2+fy2)+o(3).

(5.58)

Here a, e, and f are positive numbers defined in (4.5).
Now we consider the approximate steady state equations of (5.58):

β(R)x−x(ax2+ey2)=0,

β(R)y−y(ex2+fy2)=0.
(5.59)

The analysis of the equations (5.59) is similar to the analysis of the equations (5.36)
given in the proof of Theorem 4.1. Thus we omit the details.
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Fig. 6.1. The selection of the horizontal wave indices (ix,iy).

6. Physical remarks

In this section we will use the main theorems to derive some physical conclusions.
Before going into details, we have to make a remark about the critical wave num-

ber α since it is one of the parameters determining the transition numbers. Although
α depends on the length scales, thanks to Lemma 3.1, we have certain bounds on its
range of values. To recall, these are:

i) α>1.55 regardless of the length scale.

ii) If one of the length scales is greater than 2.03 then α<3.10.

Taking a look into figure 3.3, one sees that the only case which is not covered by
taking α in the range 1.55<α<3.10 is that of two critical rolls with indices I=(1,0,1)
and J =(0,1,1), which happens when L1=L2<1.69.

There are only three possible cases when two modes with equal wave numbers be-
come unstable simultaneously. Namely these two critical modes can be a rectangular
and a roll mode, both roll modes, or both rectangular modes. We investigate each
case separately.

6.1. The first two critical modes are a roll and a rectangle. We
first consider two critical wave indices I=(ix,iy,1) of a rectangular pattern and J =
(0,jy,1) of a roll pattern with equal wave numbers α=αI =αJ ; see figure 3.2. We
define the following number:

A=
jy
iy
.

Since we are assuming that αI =αJ , we have 1≤ iy<jy and A>1. Notice that A
is the ratio of the number of rolls to the number of the rectangle columns in the
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Fig. 6.2. The shaded regions show the parameter regimes where c<a when two critical indices
are I=(ix,iy ,1) and J=(0,jy ,1). Here A= jy/iy.

Fig. 6.3. The parameters a−e and f−e in the small Prandtl number regime.

direction of rolls. Figure 6.1 shows that the possible values of A in the small length
scale regime max{L1,L2}<5.5 are 4/3, 3/2, 2, 3, 4.

Now to use Theorem 4.1 to describe the pattern selection after the transition,
we have to compute the transition numbers a and c given by (4.2). These numbers
depend on three parameters Pr, L1, and L2. Equivalently one can use Pr, A, and α
as the parameters determining a, b, and c.

Using

αS2
=2

√

α2− α2

A2
, αS3

=2
α

A
, αS4

=

√

2α
(

α+
α

A

)

, αS5
=

√

2α
(

α− α

A

)

,

in (4.2), we can compute the numerical values of a and c for a given value of A, α,
and Pr.

There are two possible cases, depending on whether a<c or c<a. In figure 6.2,
the regions where c<a is shown for several parameter regimes. The results show that
both transition scenarios described by Theorem 2.1 are possible. In particular there
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are two parameter regimes such that c<a, namely when Pr<0.2 and 1<A<1.4 and
for large A or large Pr.

Now some remarks are in order about the basin of attraction of the rolls and
rectangles. When a<c, both rectangles and rolls are stable but their basins of at-
traction, which are sectorial regions, depend on an angle ω which depends on Pr,
α, and A. In the particular case A=2, the mixed modes have a hexagonal pattern
and we find that a<c. Moreover, ω is independent of α and Pr and is found to be
ω=arctan1/2≈26.57◦. So in this case the basin of attraction of rolls consists of two
sectors each of which has an angle of π−2ω≈126.87◦ while the basin for the rectan-
gles have an angle of 2ω≈53.13◦. This means that rolls will attract a wider region of
initial conditions than rectangles do.

6.2. The first two critical modes are both rolls. Now we consider two
roll type critical modes. By the assumption of equal wave numbers, the rolls must be
perpendicular to each other, i.e. I=(ix,0,1) and J =(0,jy,1). In this case after the
first dynamic transition, the rolls are always stable and the mixed states are always
unstable. Moreover, rolls with index I and rolls with index J have uniform attraction
basins.

6.3. The first two critical modes are both rectangles. Now we consider
the case where the first two critical modes both have rectangle patterns, i.e. I=
(ix,iy,1) and J =(jx,jy,1) (ix>jx≥1, jy>iy ≥1) are the first critical wave indices.
In this case, the dynamic transitions depend on the numbers a, e, and f given by
Theorem 4.3. To calculate these numbers we define the parameters A and B:

A=
jy
iy
>1, B=

ix
jx
>1.

Using the definition, we find that

α2
2ix,0=4

B2(A2−1)

B2A2−1
α2, α2

0,2iy =4
B2−1

B2A2−1
α2,

α2
2jx,0=4

A2(B2−1)

B2A2−1
α2, α2

0,2jy =4
A2−1

B2A2−1
α2,

α2
ix+(−1)mjx,(−1)niy+jy

=2

(

α2+
(−1)m

4B
α2
2ix,0+A

(−1)n

4
α2
0,2iy

)

, m,n=1,2.

Using this, we computed a, e, and f for several choices of Pr, α, B, and C. Our
numerical calculations revealed that a<e and f <e for a vast amount of parameter
choices. This means that the transition scenario is described in figure 4.4(a). Then
the rectangles with index I and J are both stable and the mixed modes are unstable.

However, the other transition scenarios can also be possible, as we observed that
f <e<a when the Prandtl number is small, one of A or B is less than 2, and A 6=B.
For an example see figure 6.3. In this case the transition scenario is described in figure
4.4(c). Hence only rectangles with index I are stable and the rectangles with index
J are unstable.

In particular, our numerical investigations suggest that one or both of the pure
modes (rectangles) are stable while the mixed modes are unstable.

The physical conclusions described by our theorems are in agreement with the
previous experimental and theoretical results. It has been predicted that for the
Boussinesq system driven solely by buoyancy, the mixed solutions are not stable af-
ter the first transition and the stability of mixed modes, such as hexagons, after the



342 PATTERN FORMATION IN RAYLEIGH–BÉNARD CONVECTION

transition is linked to a multitude of other factors such as the existence of tempera-
ture dependent surface tension or temperature-dependent viscosity or time dependent
heating; see Busse [1], Getling [5], Koschmieder [6], Lappa [7], Palm [11], and Sengul
& Wang [12]. However, we also note here that the mixed solutions are saddles which
are connected to the stable steady states by heteroclinic orbits. Thus if the initial
conditions are close to the mixed states at the onset of the convection, these mixed
states will still be observable as transients, although in the long run the system will
tend to the stable states.

7. Conclusions

In this paper, we discuss the dynamic transitions of Rayleigh-Bénard (RB) con-
vection from a perspective of pattern formation. We focus on the case when two
eigenvalues cross the imaginary axis simultaneously. This allows us to compare the
stability of a pattern with respect to perturbations of other pattern types. Our main
assumption is that the wave numbers of the critical modes are equal. Under this
assumption, we classify all the possible transition scenarios and determine in each
case the preferred patterns and their basins of attraction depending on the system
parameters.

The pattern of a simple critical mode is either a rectangle or a roll. Thus there are
three possible cases when there are two critical modes: (a) one mode is rectangular,
the other mode is a roll, (b) both modes are rolls, (c) both modes are rectangles.

The following are some general characteristics of the transition for the RB con-
vection which are already known (Ma and Wang [9, 10]):

1) The transition is Type-I. In particular, there is an attractor ΣR bifurcating
on R>Rc.

2) ΣR is homeomorphic to S1, and comprises the steady states and their con-
necting heteroclinic orbits.

The following are the results due to our main theorems:

3) In all the scenarios, we found that only pure modes (rolls or rectangles) are
stable and the mixed modes are unstable. Our result is conclusive (analytical
proof) when one of the critical modes is a roll type. When both critical modes
are rectangles, we only have computational evidence.

4) When both critical modes are rolls, the stable steady states after the tran-
sition are rolls. When both critical modes are rectangles, computational
evidence suggests that the stable steady states after the transition are rect-
angles. When one critical mode is a roll and the other one is a rectangle,
the stable states after the transition can be either only rolls or both rolls and
rectangles.

5) When both rolls and rectangles are stable after the transition, these states
have non-uniform sectorial basin of attractions. In the particular case, where
the mixed states have a regular hexagonal pattern, the angle of the sector
for rolls is 126.87◦ while the angle of the sector for the rectangles is 53.13◦.
Thus rolls attract a wider range of initial conditions, making them a more
preferable type of pattern.
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