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SCATTERING OF ELECTROMAGNETIC WAVES BY THIN HIGH

CONTRAST DIELECTRICS: EFFECTS OF THE OBJECT

BOUNDARY∗

DAVID M. AMBROSE† AND SHARI MOSKOW‡

Abstract. We study the scattered field from a thin high contrast dielectric volume of finite
extent. The waves are modeled by the full three dimensional time-harmonic Maxwell equations
while accounting for material boundaries. We derive a formulation of Lippmann-Schwinger type for
a dielectric scatterer; this formulation has an additional surface term to account for the material
discontinuities. The layer potential operator resulting from this surface term is shown to converge
in a weak sense to an explicitly computable limit as the thickness of the domain approaches zero.
By properly accounting for the boundary effects, we show two results about the thin high contrast
limit: First, the normal component of the electric field’s interior trace on the lateral boundary
approaches zero. Second, the third component of the electric field (which corresponds to the direction
perpendicular to the slab) goes to zero inside the slab. We propose a new two-dimensional limiting
equation as a first-order computational technique.
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1. Introduction

In electromagnetic scattering theory, volume integral formulations for Maxwell’s
equations are frequently very helpful for studying certain asymptotic regimes or in-
verse problems. However, these formulations can lead to difficulties dealing with
material jump discontinuities, and a typical approach is to smooth out such disconti-
nuities. Here we are motivated by the study of thin photonic band gap materials, in
which the magnitude of such a jump may not lend itself to regularization. Further-
more, even when regularization is suitable, it can be quite difficult to take the limit as
the regularization vanishes. Here we propose instead to start with a formulation for
the full Maxwell’s equations which takes the jumps into account. We then perform
an asymptotic analysis which does not require regularization.

In the paper [9], Santosa, Zhang, and the second author proposed an approximate
method to compute scattered fields from thin high contrast dielectric structures, using
the Helmholtz equation. In this model, the squared index of refraction is assumed to
be on the order of the reciprocal of the thickness of the structure, represented by a
small parameter h. The method starts with the time-harmonic wave equations, and
applies a perturbation approach based on expansions with respect to this small h. (We
remind the reader that if the index of refraction were bounded the object would dis-
appear in the limit.) This asymptotic approach was extended to Maxwell’s equations
in the presence of smoothly varying dielectrics in [1]. The advantage of these methods
is that they reduce the complexity of the computation by one dimension (i.e., a three-
dimensional volume integral equation reduces to a set of two-dimensional integral
equations). This leads to a highly efficient computational method for obtaining the
scattered field anywhere in R

3 : one can first inexpensively solve for the field using the
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dimensionally reduced system inside the scatterer, and then use this approximation
as input into a Lippmann-Schwinger form. In the current paper, we study the same
scattering problem, using the full three-dimensional Maxwell time-harmonic system,
allowing for jumps in the material with respect to a constant background. We find
that surface terms arising from material jumps do indeed impact the resulting system
and approximations.

In our first theorem, we derive a generalized Lippmann-Schwinger equation for a
Maxwell scatterer in the presence of jump discontinuities. The proof uses the Maxwell
scattering formulations from [7] and [8], originally derived for factorization methods in
inverse problems. In the absence of discontinuities, this formulation developed in the
current work reduces to the Lippmann-Schwinger form studied in [1]. The generalized
version has a surface integral on the jumps, unlike the original equation which has
only volume integrals. The discontinuities that this formulation allows for can be from
the external boundary of the scattering object and the background, or could just as
well be from internal discontinuities such as a periodic array of air holes.

The new surface term corresponds to an integral operator that depends on our
small parameter h. Correct asymptotic analysis will require that we understand the
limiting behavior of this operator as the thickness of the domain vanishes. We compute
the limit of this operator viewed on a fixed, scaled domain. The operators are of layer
potential type, but converge to one that is instead algebraic in nature. This is what
we show in our second theorem.

We restrict the electric field to its interior limit up to the object boundary using
the integral formulation. In the high contrast case, we again take the limit as the
thickness is going to zero, now with the dielectric constant simultaneously going to
infinity. Under certain uniform regularity assumptions on the field, we show that the
normal component of the field on the boundary of the object goes to zero. That is,
in the limiting sense, the wave is trapped in the object. Next, we show that the third
component of the electric field, which corresponds to the direction perpendicular to
the scatterer, goes to zero inside of the scatterer. These two results about this high
contrast media model are new, since this behavior was not observed in the models in
[9] or [1]. Other previous work on thin dielectrics can be found in [2] and [10].

This paper is organized as follows. In Section 2, we give the precise setup for
the thin high contrast dielectric scattering problem. We then derive the Lippmann-
Schwinger form which we will use to analyze the problem, and prove that any regular
enough solution to the differential equation satisfies it. Section 3 contains a study of
the boundary integral operator which arises from the surface term on the jumps. The
theorems about the trapping of the wave and the convergence of the perpendicular
component are in Section 4. Finally, in Section 5 we discuss the implications of this
work for asymptotic expansions and the related computational technique.

2. Problem formulation

2.1. Derivation. Let E∈R
3 denote the electric field, which is governed

by Maxwell’s equations with a variable index of refraction and with the magnetic
permeability, µ, given by µ=1. After eliminating the magnetic field this yields the
following equation for E:

∇×∇×E−k2n2(x)E=0, (2.1)

where k>0 is the normalized frequency and n2(x) is the squared index of refraction.
We assume that we have a cylindrical structure of small thickness h on which the
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index of refraction is large. We incorporate this thin high contrast structure into the
definition of n2(x):

n2(x)=







1 for |x3|>h/2,
ε0(x1,x2)/h for |x3|<h/2, (x1,x2)∈Ω,
1 for |x3|<h/2, (x1,x2) 6∈Ω,

(2.2)

where Ω is a bounded domain in R
2 with smooth boundary. We denote the region of

the dielectric object by

Ωh=Ω×(−h/2,h/2).
We assume that ε0 is smooth inside of Ωh, but here n2(x) has a jump discontinuity
across ∂Ωh. Note that nowhere do we assume Ω is convex, and therefore the structure
may contain holes whose boundaries are part of ∂Ωh.

The total field, E, can be written as E=Ei+Es, where Ei is a given incident
wave satisfying the background equation

∇×∇×Ei−k2Ei=0, (2.3)

and Es is the scattered field which satisfies the Sommerfeld radiation condition. The
3×3 tensor

G(x,y)=φ(x,y)I+
1

k2
∇ydivy(φ(x,y)I) (2.4)

is the free space fundamental solution for the operator

∇×∇× − k2

on R
3, or the so-called dyadic Green’s function. Here φ is the free space Helmholtz

fundamental solution:

φ(x,y)=
1

4π

eik|x−y|

|x−y| . (2.5)

With this dyadic Green’s function we have the following Lippmann-Schwinger
form for the equation for E:

E(x)=Ei(x)+k
2

∫

Ωh

G(x,y)q(y)E(y)dy, (2.6)

where

q(y)=n2(y)−1=
ε0(y1,y2)

h
−1.

Note that this form is a 3×3 system of integral equations for the three components
of E. Plugging in the formula for G, we find

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)q(y)E(y)dy+

∫

Ωh

∇ydivy(φ(x,y)I)q(y)E(y)dy. (2.7)

Let us assume, just for the time being, that the above form makes perfect sense
despite the singular integral in the last term. Using the equation (2.1) for E, we can
write E as being proportional to a curl:

E=
∇×∇×E
k2(1+q(y))

. (2.8)
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Using (2.8) and integrating by parts yields

∫

Ωh

∇ydivy(φ(x,y)I)q(y)E(y)dy

=
1

k2

∫

Ωh

∇ydivy(φ(x,y)I)
q(y)

1+q(y)
∇×∇×E(y)dy

=− 1

k2

∫

Ωh

divy(φ(x,y)I)∇
(

q(y)

1+q(y)

)

∇×∇×E(y)dy

+
1

k2

∫

∂Ωh

divy(φ(x,y)I)
q(y)

1+q(y)
(∇×∇×E(y) ·ν)−dσy

=−
∫

Ωh

divy(φ(x,y)I)∇
(

q(y)

1+q(y)

)

(1+q(y))E(y)dy

+

∫

∂Ωh

divy(φ(x,y)I)q(y)(E(y) ·ν)−dσy,

where we have used the fact that a curl of a gradient is zero. Here ν is the outward
unit normal to ∂Ωh. A simple calculation shows that

(1+q)∇
(

q

1+q

)

=
∇q

(1+q)
. (2.9)

Applying this in (2.7) yields

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)q(y)E(y)dy−
∫

Ωh

divy(φ(x,y)I)
∇q(y)
1+q(y)

E(y)dy

+

∫

∂Ωh

divy(φ(x,y)I)q(y)(E(y) ·ν)−dσy. (2.10)

Since

divy(φ(x,y)I)=∇yφ(x,y)=−∇xφ(x,y),

we have

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)q(y)E(y)dy

+∇x

∫

Ωh

φ(x,y)
∇q(y)
1+q(y)

E(y)dy+

∫

∂Ωh

∇yφ(x,y)q(y)(E(y) ·ν)−dσy. (2.11)

Note that without the last boundary term, this is precisely the formulation used in
[1] for the case of smooth n2(x), which is derived from the Stratton-Chu formulas [3].
The last term appears here because there is a jump between the thin dielectric object
and the homogeneous background. Replacing q we have

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)

(

ε0(y)

h
−1

)

E(y)dy+∇x

∫

Ωh

φ(x,y)
∇ε0(y)
ε0(y)

·E(y)dy

+

∫

∂Ωh

∇yφ(x,y)

(

ε0(y)

h
−1

)

(E(y) ·ν)−dσy. (2.12)
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Of the three integral kernel terms in the right hand side of the formulation for E
above, the first is the same that occurs for the special case of the Helmholtz equation,
and its asymptotics with respect to h were first analyzed in [9]. The second, as was
previously mentioned, occurs in the formulation for Maxwell’s equations for smooth
n∈R

3, and was first analyzed in [1]. Here we now take into account the jump between
the scatterer and the background, and this leads to the final boundary integral term
above. It is the analysis of this term and the resulting limiting equations for E as
h→0 that are the primary subject of the remaining sections of this paper.

2.2. Justification of integral formulation. Thanks to the statement of
Theorem 9 in [8] (which was proved in [6]), we have that if E∈Hloc(curl,R

3) is a
solution of (2.1) with the radiation conditions, then its restriction to Ωh satisfies

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)q(y)E(y)dy+∇xdivx

∫

Ωh

φ(x,y)q(y)E(y)dy. (2.13)

In fact, we also have from [6] that this integral equation has a unique solution in
H(curl,Ωh), and this solution can be extended by the right hand side to a radiating
solution of (2.1) in all of R3. Now, let us assume for simplicity that this solution E
is also smooth inside and up to the boundary ∂Ωh from the interior (but not across
∂Ωh). Consider

divx

∫

Ωh

φ(x,y)q(y)E(y) dy=

∫

Ωh

∇xφ(x,y) ·E(y)q(y) dy, (2.14)

where we have interchanged integral and derivative since the kernel is only weakly
singular. Since

∇xφ(x,y)=−∇yφ(x,y),

we integrate by parts to get

divx

∫

Ωh

φ(x,y)q(y)E(y)dy

=−
∫

Ωh

∇yφ(x,y) ·E(y)q(y)dy

=

∫

Ωh

φ(x,y)div(E(y)q(y))dy−
∫

∂Ωh

φ(x,y)q(y)(E ·ν)−dσy, (2.15)

where (E ·ν)− represents the limit on the boundary from the interior of Ωh. Using
(2.8) and (2.9) and the fact the divergence of a curl is zero,

div(E(y)q(y))=
∇q(y)
1+q(y)

E(y),

and hence

∇xdivx

∫

Ωh

φ(x,y)q(y)E(y)dy

=∇x

∫

Ωh

φ(x,y)
∇q(y)
1+q(y)

E(y)dy−∇x

∫

∂Ωh

φ(x,y)q(y)(E ·ν)−dσy
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=∇x

∫

Ωh

φ(x,y)
∇q(y)
1+q(y)

E(y)dy+

∫

∂Ωh

∇yφ(x,y)q(y)(E ·ν)−dσy,

where we have again interchanged derivative and integral and replaced the x derivative
with the negative of the derivative with respect to y. Note that for any x in the interior
of Ωh the boundary integral is not singular and the interchange is completely justified.
We have shown the following:

Theorem 2.1. Let E∈Hloc(curl,R
3) be the unique radiating solution to (2.1). As-

sume that we additionally have E∈C0(Ωh)∩H1(Ωh). Then for interior x∈Ωh, E(x)
satisfies the integral equation

E(x)=Ei(x)+k
2

∫

Ωh

φ(x,y)
(

n2(y)−1
)

E(y)dy

+∇x

∫

Ωh

φ(x,y)
∇n2(y)
n2(y)

·E(y)dy+

∫

∂Ωh

∇yφ(x,y)
(

n2(y)−1
)−

(E(y) ·νy)−dσy.

(2.16)

Additionally, let ν be the outward unit normal to ∂Ωh, and (E(x) ·ν)− be the limit
on the boundary from the interior of the normal component of E. Then, for x∈∂Ωh,
(E(x) ·ν)− satisfies

(E(x) ·ν)−=Ei(x) ·ν+k2ν ·
∫

Ωh

φ(x,y)
(

n2(y)−1
)

E(y)dy

+ν ·∇x

∫

Ωh

φ(x,y)
∇n2(y)
n2(y)

·E(y)dy+
1

2
(n2(x)−1)−(E(x) ·ν)−

−
∫

∂Ωh

∂νx
φ(x,y)

(

n2(y)−1
)−

(E(y) ·νy)−dσy. (2.17)

The statement (2.17) follows from the fact that the normal component of the last
term in (2.16) is the negative of a normal derivative of a single layer potential, and
hence has a jump across the boundary of Ωh; see, for example, Theorem 3.28 of [4].
We also note that the representation (2.16) extends Theorem 9.1 of [3] to the case
where n2(x) is piecewise smooth; the last term accounts for the jump in n2 across
∂Ωh.

Remark 2.1. Note that in the above theorem we need to assume that E∈C0(Ωh).
We expect that this will be the case for any fixed h>0, although we are not aware of
a specific result to this effect. In future work the authors intend to make a detailed
study of the regularity of solutions of Maxwell’s equations for this geometry. This
future study may also explore the extent to which we are able to relax assumptions
on the domain, such as the smoothness of the boundary ∂Ω. We also remark that
the specific cylindrical geometry is not necessary for the above theorem; the theorem
holds as long as E satisfies the required regularity assumption inside the scatterer.

3. The boundary layer potential operator and its limit

Crucial to the above formulation (2.16) for Maxwell’s equations is the last term
on the right hand side, which involves E ·ν on the boundary of the scatterer. In order
to correctly understand this term, we need the boundary formulation (2.17), which
contains the surface operator

−
∫

∂Ωh

∂νx
φ(x,y)

(

n2(y)−1
)−

(E(y) ·νy)−dσy.
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We note that this term plays a crucial role for any scatterer, not just the high contrast
model presented here. It has a nontrivial limit for thin domains, which we analyze in
this section.

Consider the linear operator

T ∗
h :C0(∂Ωh)→C0(∂Ωh)

defined by

(T ∗
hf)(x)=

∫

∂Ωh

∂νx
φ(x,y)f(y) dσy. (3.1)

This is the dual of a double layer potential operator. We can show that when viewed
on an appropriately scaled domain, the operators T ∗

h converge in a weak sense to an
operator T ∗

0 . To be precise, define the scaled domain

S=Ω×(−1/2,1/2)

associated with the change of variables to ỹ given by

y=(ỹ1, ỹ2,hỹ3), (3.2)

and for any given f(y), let

f̃(ỹ)=f(y).

In what follows we will not want to require that functions are continuous at the corner
curves of the pillbox, so we define the space

C0
P =C0

(

Ω×
{1

2

})

⊕C0
(

Ω×
{

− 1

2

})

⊕C0
(

∂Ω×
[

− 1

2
,
1

2

])

(3.3)

of piecewise continuous functions on ∂S. That is, C0
P is the space of functions

which are separately continuous on the closures of the top, bottom, and lateral side
of the scaled domain. Then define

T̃ ∗
h :C0

P →C0
P

by

T̃ ∗
h f̃ =T

∗
hf.

Note that the elements of C0
P are not actually functions on ∂S since they could be

multiply defined on the corner curves ∂Ω×{1/2} and ∂Ω×{−1/2}. To be precise,
any f̃ ∈C0

P is a triple

f̃ =(f1,f2,f3)

where the first two components are functions on (x1,x2)∈Ω (representing the top
and bottom respectively), and the third component is a function on (x1,x2,x̃3)∈
∂Ω× [−1/2,1/2] (representing the lateral side). For the sake of clarity of exposition,
however, in what follows we sometimes abuse notation and identify elements of C0

P

with functions on ∂S.
Given this notation, we can write
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(T̃ ∗
h f̃)(x̃)=

∫

Ω×{ 1

2
}

∂νx
φ(x,y)f1(ỹ)dỹ+

∫

Ω×{− 1

2
}

∂νx
φ(x,y)f2(ỹ)dỹ

+h

∫

∂Ω×(− 1

2
, 1
2
)

∂νx
φ(x,y)f3(ỹ)dσỹ, (3.4)

where we note that the area element dỹ=dy1dy2 in the top and bottom pieces is
unchanged in the new variables. In order to compute the limit of {T̃ ∗

h} as h approaches
0, it is more straightforward to compute the limit of its L2-based adjoint. The adjoint
of T ∗

h is the complex conjugate of the usual double layer potential operator

(Thf)(x)=

∫

∂Ωh

∂νy
φ(y,x)f(y)dσy, (3.5)

which we also rescale to get

(T̃hf̃)(x̃)=

∫

Ω×{ 1

2
}

∂y3
φ(y,x)f1(ỹ) dỹ−

∫

Ω×{− 1

2
}

∂y3
φ(y,x)f2(ỹ) dỹ

+h

∫

∂Ω×(− 1

2
, 1
2
)

∂νy
φ(y,x)f3(ỹ) dσỹ. (3.6)

While the true Banach space adjoint is defined on the larger dual space (C0
P )

∗,
we consider its natural restriction to the piecewise continuous functions in C0

P and
compute its weak limit.

Theorem 3.1. The scaled double layer potential operators (3.6) defined on piecewise
continuous functions on the boundary of the scaled domain ∂S,

T̃h :C
0
P →C0

P ,

for C0
P defined by (3.3), converge pointwise weakly to a bounded operator

T̃0 :C
0
P →C0

P ,

in the sense that

〈T̃hf,g〉→〈T̃0f,g〉

for any f,g∈C0
P , where 〈,〉 is the L2(∂S) inner product. For a given f ∈C0

P , T̃0f is
defined by

T̃0





f1
f2
f3



=





0 1/2 0
1/2 0 0

−1/4R 1/4R 0









f1
f2
f3



 ,

where the operator

R :C0(Ω)→C0(∂Ω×(−1/2,1/2))

is a restriction operator to ∂Ω followed by a constant extension in the x̃3 direction.

Proof. We will complete the proof in two steps. First, we will demonstrate
that T̃hf has the desired limit, pointwise in x. Second, we will demonstrate the weak
convergence.
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Step 1: Pointwise convergence of T̃hf : Let us assume first that (x1,x2)∈Ω\∂Ω
and x3=h/2, (x̃3=1/2). That is, we will first find the limit for (T̃hf̃) restricted to
the interior top portion of the scaled domain. In what follows we may use either x3
or h/2, but they are always equal in this part of the calculation.

We begin with (3.6). Since (x1,x2) is away from the lateral side, the last term is
not singular and goes to zero O(h). Hence

(T̃hf̃)(x̃)=

∫

Ω

∂φ

∂y3
(y1,y2,h/2,x1,x2,h/2)f1(y) dy1dy2

−
∫

Ω

∂φ

∂y3
(y1,y2,−h/2,x1,x2,h/2)f2(y) dy1dy2+O(h). (3.7)

Notice that for x3=y3, we have ∂φ̄
∂y3

(x,y)=0; this implies that the first integral is

identically zero. With the approximation f2(y1,y2)≈f2(x1,x2) in mind, we define the
remainder term R1 by the following equation:

(T̃hf)(x̃)=−f2(x1,x2)
∫

Ω

∂φ

∂y3
(y1,y2,−h/2,x1,x2,h/2) dσy+R1. (3.8)

To see that the remainder R1 goes to zero with h for continuous f2, consider

∂φ

∂y3
=− 1

4π

∂

∂y3







e−ik|x−y|

(

(x1−y1)2+(x2−y2)2+
(

h
2 −hỹ3

)2
)1/2






. (3.9)

Since

e−ik|x−y|≈1− ik|x−y|,

we have that

∂φ

∂y3

∣

∣

∣

(y,x)
=− 1

4π

x3−hỹ3
(

(x1−y1)2+(x2−y2)2+
(

h
2 −hỹ3

)2
)3/2

+O

(

x3−hỹ3
|x−y|2

)

.

Since x3=h/2, the remainder term will yield factors of h multiplying kernels which
are integrable in the limit as h→0. So, when we make the replacement f2(y1,y2)≈
f2(x1,x2), the remaining term is of the form

1

4π

∫

Ω

h(f2(x1,x2)−f2(y1,y2))
((x1−y1)2+(x2−y2)2+h2)3/2

dy1dy2. (3.10)

Now, if f2 is a C1 function, this integral clearly goes to zero with h since in this case

|f2(x1,x2)−f2(y1,y2)|=O(|x−y|)

and the integrand is only weakly singular in the limit as h→0. So, let us approximate
f2 by a sequence of C1 functions, {fn2 }, that will converge to f2 in the uniform norm
as n→∞. Then, we write the following:

∫

Ω

h(f2(x)−f2(y))
((x1−y1)2+(x2−y2)2+h2)3/2

dy1dy2



302 SCATTERING BY THIN DIELECTRICS

=(f2(x)−fn2 (x))
∫

Ω

h

((x1−y1)2+(x2−y2)2+h2)3/2
dy1dy2

+

∫

Ω

h(fn2 (x)−fn2 (y))
((x1−y1)2+(x2−y2)2+h2)3/2

dy1dy2

+

∫

Ω

h(fn2 (y)−f2(y))
((x1−y1)2+(x2−y2)2+h2)3/2

dy1dy2= I+II+III. (3.11)

One can check that by integrating around a small ball, the integral

∫

Ω

h

((x1−y1)2+(x2−y2)2+h2)3/2
dy1dy2

is bounded as h→0. So, for any ǫ>0 we can choose n large enough so that terms I
and III are smaller than ǫ/3 for any h∈ (0,1]. Then, since fn2 is C1, we can choose
h small enough that II is also less than ǫ/3, so that the whole integral in (3.11) is
less than ǫ. This establishes that R1 does go to zero when h goes to zero, as claimed;
furthermore, this convergence is uniform in x. We then have

(T̃hf)(x̃)=
1

4π
f2(x1,x2)

∫

Ω

x3+h/2
(

(x1−y1)2+(x2−y2)2+(h2 +
h
2 )

2
)3/2

dy1dy2+R2,

where again R2 goes to zero with h. Since (x1,x2)∈Ω\∂Ω, there exists δ>0 such
that the ball of radius δ centered at (x1,x2), Bδ ⊆Ω\∂Ω. We notice that outside of
this ball, the integral will go to zero with h. We are then left with

(T̃hf)(x̃)=
1

4π
f2(x1,x2)

∫

Bδ

h

((x1−y1)2+(x2−y2)2+h2)3/2
dy1dy2+R3,

where R3 goes to zero with h. This integral can be calculated explicitly with polar
co-ordinates. The result is

(T̃hf̃)(x̃)=f2(x1,x2)(−h/2)(r2+h2)−1/2

∣

∣

∣

∣

∣

r=δ

r=0

+R3.

We can evaluate this and include the r= δ contribution into the remainder, finding

(T̃hf̃)(x̃)=
f2(x1,x2)

2
+R4,

where R4 goes to zero with h. A similar calculation yields that for x on the bottom
in the interior of Ω, (x1,x2)∈Ω\∂Ω,x3=−h/2,

(T̃hf̃)(x̃)=
f1(x1,x2)

2
+R5,

where R5 goes to zero with h.
Let us next consider x̃∈∂Ω×(−1/2,1/2). Although the last term in (3.4) has a

singularity, it still goes to zero because of the factor of h in front, and the fact that if
x and y are both on the lateral boundary,

(x−y) ·νy =O(|x−y|2),
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since x−y is close to tangential when x−y is small [4]. However, now neither the
integral over the top nor the bottom is identically zero and both will contribute to
the limit. Hence, we can write

(T̃hf)(x̃)

=− 1

4π
f1(x1,x2)

∫

Ω

x3−h/2
(

(x1−y1)2+(x2−y2)2+(x3−h/2)2
)3/2

dy1dy2

+
1

4π
f2(x1,x2)

∫

Ω

x3+h/2
(

(x1−y1)2+(x2−y2)2+(x3+h/2)
2
)3/2

dy1dy2+R6.

Now, since (x1,x2)∈∂Ω, we can no longer take a ball contained in Ω about this point.
However, for ∂Ω smooth, we can take a half-ball of radius δ about (x1,x2) with flat
side tangential to ∂Ω; call this Hδ. Introduction of this half-ball does introduce an
error term unless the boundary is actually flat at (x1,x2); however, this term can be
made arbitrarily small by choosing δ small, since ∂Ω is smooth. The remainder of
both of these integrals will go to zero with h :

(T̃hf)(x̃)

=− 1

4π
f1(x1,x2)

∫

Hδ

h(x̃3−1/2)
(

(x1−y1)2+(x2−y2)2+(h(x̃3−1/2))
2
)3/2

dy1dy2

+
1

4π
f2(x1,x2)

∫

Hδ

h(x̃3+1/2)
(

(x1−y1)2+(x2−y2)2+(h(x̃3+1/2))
2
)3/2

dy1dy2+R7.

This yields

(T̃hf)(x̃)=(f1(x1,x2))(h/4)(x̃3−1/2)(r2+(h(x̃3−1/2))2)−1/2

∣

∣

∣

∣

∣

r=δ

r=0

−(f2(x1,x2))(h/4)(x̃3+1/2)(r2+(h(x̃3+1/2))2)−1/2

∣

∣

∣

∣

∣

r=δ

r=0

+R7. (3.12)

Again, the r= δ term goes in with the remainder, so as h→0, this converges to

−1/4f1+1/4f2.

Step 2: Convergence of 〈T̃hf,g〉: Looking at the formula (3.6), we introduce the
auxiliary operators S1,h, S2,h, and S3,h, so that T̃h=S1,h+S2,h+S3,h. Here, S1,h is
the integral over the top surface, S2,h is the integral over the bottom surface, and S3,h

is the integral over the lateral surface. For j∈{1,2,3}, we will show that 〈Sj,hf,g〉
converges to 〈Sj,0f,g〉, where Sj,0 are the relevant pieces of T̃0.

We begin with S3,h, since this is the most intricate piece of the weak convergence
argument. We need to prove

h

∫

∂Ωh

g(x)

∫

∂Ω×[− 1

2
, 1
2
]

f3(y)∂νy
φ̄(x,y) dσydx→0 as h→0.
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We will consider this first for x∈Ω×{ 1
2}, and then we will consider x on the other

pieces of the boundary. Towards this end, we consider here

I=h

∫

Ω×{ 1

2
}

g1(x)

(

∫

∂Ω×[− 1

2
, 1
2
]

f3(y)∂νy
φ̄(x,y) dy

)

dx.

We bound f3 and g1 by their infinity norms, and we change the order of integration:

|I|≤h|g1|∞|f3|∞
∫

∂Ω×[− 1

2
, 1
2
]

∫

Ω×{ 1

2
}

|∂νy
φ̄(x,y)| dxdy.

We rewrite the integral over the lateral boundary as being an arclength integral over
∂Ω and an integral with respect to y3 :

|I|≤h|g1|∞|f3|∞
∫ 1

2

− 1

2

∫

∂Ω

∫

Ω×{ 1

2
}

|∂νy
φ̄(x,(y1(s),y2(s),hỹ3))| dxdsdỹ3.

On the lateral boundary, the y3 direction is tangential, so the normal vector is only
in the y1 and y2 directions. Therefore,

|∂νy
φ̄(x,y)|≤

∣

∣

∣

∣

∂φ̄

∂y1
(x,y)

∣

∣

∣

∣

+

∣

∣

∣

∣

∂φ̄

∂y2
(x,y)

∣

∣

∣

∣

.

Based on this, we write I= I1+I2, so that Ij is the contribution from ∂φ̄
∂yj

. We can

calculate

∂φ̄

∂y1
(x,y)=− 1

4π

e−ik
√

(x1−y1)2+(x2−y2)2+h2(x̃3−ỹ3)2

((x1−y1)2+(x2−y2)2+h2(x̃3− ỹ3)2)3/2
(x1−y1)

− ik

4π

e−ik
√

(x1−y1)2+(x2−y2)2+h2(x̃3−ỹ3)2

(x1−y1)2+(x2−y2)2+h2(x̃3− ỹ3)2
(x1−y1). (3.13)

For a fixed s and fixed ỹ3, we use polar coordinates for x.We have x1−y1(s)= rcos(θ)
and x2−y2(s)= rsin(θ). We then have the following inequality:

∣

∣

∣

∣

∂φ̄

∂y1
(x,y)

∣

∣

∣

∣

≤ c r

(r2+h2(x̃3− ỹ3)2)3/2
+c

r

r2+h2(x̃3− ỹ3)2
.

If we choose R to be the diameter of Ω, then Ω is a subset of the (two-dimensional)
ball centered at (y1(s),y2(s)) with radius R; therefore,

|I1|≤ ch|g1|∞|f3|∞

∫ 1

2

− 1

2

∫

∂Ω

∫ 2π

0

∫ R

0

r2

(r2+h2(x̃3− ỹ3)2)3/2
+

r2

r2+h2(x̃3− ỹ3)2
drdθdsdỹ3.

In this last integral, notice that the integrand does not depend on s or θ. Since s and
θ are both taken from a bounded interval, we can bound these integrals by a constant
times the remaining integrals. We get

|I1|≤ ch|g1|∞|f3|∞
∫ 1

2

− 1

2

∫ R

0

r2

(r2+h2(x̃3− ỹ3)2)3/2
+

r2

r2+h2(x̃3− ỹ3)2
drdỹ3.
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We have the following indefinite integral:

∫

r2

(r2+α2)3/2
dr=ln

(

r+
√

r2+α2
)

− r√
r2+α2

+c.

Using this antiderivative, we have

|I1|≤ ch|f3|∞|g1|∞
∫ 1

2

− 1

2

1+ | ln(h(x̃3− ỹ3))| dỹ3.

Since the natural logarithm is integrable, we conclude that

|I1|≤ ch(| ln(h)|+1)|f3|∞|g1|∞.

Of course, we have the same bound for I2. This implies

|I|≤ ch(| ln(h)|+1)|f3|∞|g1|∞.

Clearly, then, I goes to zero as h goes to zero. If we had integrated over the bottom
surface instead, we would find the same conclusion. Also, when x∈∂Ω×(− 1

2 ,
1
2 ), we

see from the pointwise convergence argument that S3,hf(x) converges uniformly to
zero. Taking all of this together, we have 〈S3,hf,g〉 converges to zero as h→0.

We turn now to considering S1,h. First, notice that if x∈Ω×{ 1
2}, then S1,hf(x)=

0. Let K⊆Ω be a compact subset of Ω, such that K∩∂Ω=∅. Then, by examining
the pointwise convergence argument, we can see that S1,hf(x) converges uniformly
for x∈K×{− 1

2}. More generally, for x∈Ω×{− 1
2}, we have the following uniform

bound:

|S1f(x)|≤C
∫

Ω×{ 1

2
}

|∂y3
φ̄(x,y)||f1(ỹ)| dỹ (3.14)

≤C|f1|∞
∫

Ω

h

((x1−y1)2+(x2−y2)2+h2)3/2
dy1dy2 (3.15)

≤C|f1|∞. (3.16)

This uniform bound implies that the integral

∫

(Ω\K)×{− 1

2
}

g2(x)

∫

Ω×{ 1

2
}

∂y3
φ̄(x,y)f1(y) dydx

can be made small by choosing K appropriately. Furthermore, for x∈∂Ω×(− 1
2 ,

1
2 ),

we see from the pointwise convergence argument that the convergence of S1,hf(x) is
uniform. We have now established the convergence of 〈S1,hf,g〉 as h goes to zero.
The weak convergence argument for S2,h is the same as for S1,h. This completes the
proof.

Remark 3.1. The weak pointwise convergence of T̃h to T̃0 automatically implies the
weak pointwise convergence of the adjoints, that is,

〈T̃ ∗
hf,g〉→〈T̃ ∗

0 f,g〉

for any f,g∈C0
P , where T̃

∗
0 is the adjoint of T̃0.
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In the boundary equation (2.17), the last two terms become

(

1

2
I−T ∗

h

)

(

(n2−1)−(E ·ν)−
)

.

This motivates the following lemma, which will be useful in the next section.

Lemma 3.2. Let T ∗
h be given by (3.1) and let T ∗

0 be its scaled pointwise limit as given
in Theorem 3.1. For any fixed h, assume that −k2 is not a Neumann eigenvalue for
the Laplacian on Ωh. Then the operator

(

−1

2
I+T ∗

h

)

is invertible. However, the scaled limiting operator

(

−1

2
I+ T̃ ∗

0

)

is not invertible, and it has a null space consisting of all functions on ∂S which have
equal values on the top and bottom and are zero on the lateral boundary.

Proof. Recall that since for fixed h, T ∗
h is the dual of a double layer potential,

it is well known that − 1
2I+T

∗
h is Fredholm. Therefore, it is invertible if it has trivial

null space. Suppose β∈C0(∂Ωh) such that

−1

2
β+T ∗

hβ=0.

Define w to be the single layer potential with moment β,

w(x)=

∫

∂Ωh

φ(x,y)β(y)dσy,

defined for any x∈R
3. By standard potential theory we have that the interior limit

for the normal derivative of w satisfies

(∂νw)
−=−1

2
β+T ∗

hβ=0, (3.17)

that w satisfies the Helmholtz equation

∆w+k2w=0

both in the interior Ωh and the exterior R3 \Ωh, and we have that the jumps across
the boundary of Ωh are given by

[w]=0 (3.18)

and
[∂w

∂ν

]

=β. (3.19)

Assuming −k2 is not a Neumann eigenvalue for the Laplacian on Ωh, since w sat-
isfies (3.17), it must be identically zero inside of Ωh. Since the jump (3.18) is zero,
this means that on the exterior, w satisfies the Dirichlet problem for the Helmholtz
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equation with zero boundary data. So, w must be identically zero on the exterior by
Theorem 3.7 of [3]. Hence w is identically zero on R

3. Hence its normal derivative
jump across ∂Ωh must be zero, so from (3.19) we have β=0. Therefore we have that
the null space is trivial and the operator − 1

2I+T
∗
h is invertible.

For the limiting operator, the proof is simple algebra. Using the notation in the
previous theorem, we calculate

(

−1

2
I+ T̃ ∗

0

)

f =





− 1
2

1
2 − 1

4R
∗

1
2 − 1

2
1
4R

∗

0 0 − 1
2









f1
f2
f3



 ,

where R∗ is the adjoint of the restriction and extension operator, and its range is in
the dual space to continuous functions on Ω . One can calculate that for continuous
f3,

R∗f3=

(

∫ 1/2

−1/2

f3dx̃3

)

δ∂Ω,

a Dirac mass on the boundary multiplied by the x̃3 average of f3. We see directly
that the null space consists of all f such that f1=f2 and f3=0.

4. Limiting behavior of E
Theorem 2.1 gives us a Lippman-Schwinger type of formulation for any Maxwell

scatterer with regular enough boundary. In particular, when the index of refraction is
of the specific form (2.2), it is useful for analyzing the behavior of the electric field as
h→0. In this section we show two theorems about the asymptotic behavior of E in
this case. The first is that, on the lateral boundary of the domain, the interior limit
of the normal component of the electric field, (E ·ν)−, goes to zero. The second result
is that with some assumptions of uniform boundedness, the third component of the
electric field, E3, goes to zero with h. These two results together show that the high
contrast structure does indeed “trap” the wave, in the sense that the flow out of the
scatterer is small with respect to h.

Before stating these theorems, let us define some operators to more compactly

describe the system (2.16). Set, for f ∈
[

L2(Ωh)
]3
,

Khf =

∫

Ωh

φ(x,y)

(

ε0(y)

h
−1

)

f(y) dy, (4.1)

Shf =∇x

∫

Ωh

φ(x,y)
∇ε0(y)
ε0(y)

·f(y) dy, (4.2)

Lhf =

∫

∂Ω×(−h/2,h/2)

∇yφ(x,y)

(

ε0(y)

h
−1

)

f(y) ·ν dσy, (4.3)

Qhf =

∫

Ω×{h/2}

∇yφ(x,y)

(

ε0(y)

h
−1

)

f3(y) dy1dy2

−
∫

Ω×{−h/2}

∇yφ(x,y)

(

ε0(y)

h
−1

)

f3(y) dy1dy2, (4.4)
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where ν=(ν1,ν2,0) is the outward unit normal to the lateral boundary L=∂Ω×
(−h/2,h/2), and f3(y) is the third component of the vector-valued f . With this
notation, E satisfies

E=Ei+k
2KhE+ShE+LhE+QhE, (4.5)

where Kh is the operator coming from the Helmholtz-like term, Sh is the operator
coming from the smooth variation in n in the interior, Lh is the operator resulting
from the lateral boundary of the object, and finally Qh is the operator coming from
the top and bottom boundary of the object (combined). From [9], we know that

‖Khf‖∞≤C‖f‖∞, (4.6)

while from [1] we have

‖Shf‖∞≤Ch| logh|‖f‖∞, (4.7)

where in both cases C is independent of h. Similar to C0
P , define the piecewise Cα

space on the scaled boundary:

Cα
P =Cα

(

Ω×
{1

2

})

⊕Cα
(

Ω×
{−1

2

})

⊕Cα
(

∂Ω×
[

− 1

2
,
1

2

])

.

Also, we represent all functions in the scaled variables (3.2) with a tilde, that is,

Ẽ(ỹ)=E(y).

Theorem 4.1. Let E solve (2.16) with n2(x) defined by (2.2), and let (E ·ν)− be
the interior limit of E ·ν on the boundary. Assume that ε0∈C0(Ω̄h) is such that ε0
is bounded away from zero. Assume that E is bounded in C0(Ωh) independently of h,
and that (Ẽ ·ν)− is bounded in Cα

P independently of h, for some α>0. Then we have
that

(Ẽ ·ν)−→0, (4.8)

uniformly on the lateral boundary ∂Ω×(−1/2,1/2), as h→0.

Proof. Consider (2.17) with n2(x)= ε0(x)/h in the interior of Ωh. Multiplying
everything by h and collecting what appear to be O(1) terms, we have that

1

2
ε0(E ·ν)−−

∫

∂Ωh

∂νxφε0(E ·νy)
−
dσy =h(Ei ·ν−

3

2
(E ·ν)−+k

2(Kh
E) ·ν+(Sh

E) ·ν).

(4.9)

Note that by the uniform boundedness assumption on E and bounds (4.6) and (4.7),
the right hand side is continuous on Ωh and O(h) in L∞(∂Ωh). Consider, for x∈∂Ωh,

ψh(x)= ε0(x)(E ·ν)−(x).

Then ψh(x) satisfies the Fredholm equation

−1

2
ψh+T

∗
hψh= eh, (4.10)

where T ∗
h is the operator (3.1), the unscaled version of the dual of operator from

Theorem 3.1. Also, eh is the negative of the right hand side of (4.9) above. Rescaling
in x3, we have

(

− 1

2
I+ T̃ ∗

h

)

ψ̃h= ẽh. (4.11)
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Note that by our assumptions, the {ψ̃h} are uniformly bounded in Cα separately
on each piece of ∂S. By the Arzela-Ascoli Theorem, there exists a subsequence with
a uniform limit; call this limit ψ̃0. For any f ∈C0

P ,

〈(

− 1

2
I+ T̃ ∗

h

)

ψ̃h,f
〉

= 〈ẽh,f〉 (4.12)

where the inner product is the usual one for L2(∂S). By taking the dual of the
operator, this gives

〈

ψ̃h,
(

− 1

2
I+ T̃h

)

f
〉

= 〈ẽh,f〉, (4.13)

where T̃h is the dual to T̃ ∗
h , as in Theorem 3.1. Also from this theorem we know that

T̃h converges pointwise weakly to T̃0. By adding and subtracting we have

〈

ψ̃h,
(

− 1

2
I+ T̃0

)

f
〉

= 〈ψ̃h,(T̃0− T̃h)f〉+〈ẽh,f〉 (4.14)

= 〈ψ̃h− ψ̃0,(T̃0− T̃h)f〉+〈ψ̃0,(T̃0− T̃h)f〉+〈ẽh,f〉. (4.15)

Notice that since T̃hf converges weakly, the Principle of Uniform Boundedness implies
that it is bounded uniformly with respect to h . This can also be seen directly by the
weak convergence proof of the operators. Therefore, if we let h→0, everything on the
right-hand side goes to zero and we have

〈

ψ̃0,
(

− 1

2
I+ T̃0

)

f
〉

=0, (4.16)

which implies that

〈(

− 1

2
I+ T̃ ∗

0

)

ψ̃0,f
〉

=0 (4.17)

for any f ∈C0
P . Hence ψ̃0 lies in the null space of (− 1

2I+ T̃
∗
0 ). From Lemma 3.1 this

implies that ψ̃0 is zero on the lateral boundary (and equal on the top and bottom).
Therefore any sequence of {Ẽ ·ν} has a subsequence which converges uniformly to
zero on the lateral boundary; this implies the conclusion of the theorem.

Theorem 4.2. Let E3∈Cα(Ωh) for some 0<α≤1 be the solution to (2.16) such
that

‖E3‖Cα(Ωh)≤Mα,

where Mα is independent of h. Then, pointwise for x∈Ωh, there exists C depending
on α and possibly x such that, for α<1, we have

|E3(x)|≤CMαh
α,

and for α=1 we have

|E3(x)|≤CM1h| logh|,

where C is independent of h.
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Proof. We will examine the term in (4.5) which we expect will blow up and
multiply it by h. We first fix x3=0 and compute that

h(QhE)3=

∫

Ω

∂φ

∂y3
(x,y)(n0(y)−h)E3(y)|y3=h/2 dy1dy2

−
∫

Ω

∂φ

∂y3
(x,y)(n0(y)−h)E3(y)|y3=−h/2 dy1dy2

=(n0(x)−h)E3(x)

∫

Ω

(

∂φ

∂y3
(x,y)|y3=h/2−

∂φ

∂y3
(x,y)|y3=−h/2

)

dy1dy2

+

∫

Ω

∂φ

∂y3
(x,y)[(n0(y)−h)E3(y)−(n0(x)−h)E3(x)] |y3=h/2 dy1dy2

+

∫

Ω

∂φ

∂y3
(x,y)[(n0(y)−h)E3(y)−(n0(x)−h)E3(x)] |y3=−h/2 dy1dy2.

(4.18)

From the Hölder condition on E and the smoothness assumption on n0,

|(n0(y)−h)E3(y)−(n0(x)−h)E3(x)|≤Cα|x−y|α.

This implies

∫

Ω

∂φ

∂y3
(x,y)|y3=h/2 [(n0(y)−h)E3(y)−(n0(x)−h)E3(x)] dy1dy2

≤C
∫

Ω

∣

∣

∣

∣

∂φ

∂y3
(x,y)|y3=h/2

∣

∣

∣

∣

|x−y|α dy1dy2.

If we define r to be the two-dimensional distance

r= |(x1,x2)−(y1,y2)|,

we see that
∣

∣

∣

∣

∂φ

∂y3
(x,y)

∣

∣

∣

y3=h/2

∣

∣

∣

∣

≤Ch 1

(r2+h2)3/2
,

so for some C independent of h, we have (letting R be sufficiently large)

∫

Ω

∣

∣

∣

∣

∂φ

∂y3
(x,y)|y3=h/2

∣

∣

∣

∣

|x−y|αdy1dy2≤Ch
∫

Ω

rα

(r2+h2)3/2
dy1dy2

≤Ch
∫ R

0

r1+α

(r2+h2)3/2
dr. (4.19)

A computation yields that for 0<α<1,

∫ R

0

r1+α

(r2+h2)3/2
dr≤Chα−1+O(1),

and for α=1,

∫ R

0

r2

(r2+h2)3/2
dr≤C| logh|+O(1).
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The same bound also holds for the last term in the right hand side of (4.18). This
then gives that, for 0<α<1,

h(QhE)3=(n0(x)−h)E3(x)

∫

Ω

(

∂φ

∂y3
(x,y)|y3=h/2−

∂φ

∂y3
(x,y)|y3=−h/2

)

dy1dy2+O(hα).

Set

Ih=

∫

Ω

(

∂φ

∂y3
(x,y)|y3=h/2−

∂φ

∂y3
(x,y)|y3=−h/2

)

dy1dy2.

Using the above in the third component of (4.5) we have

(n0(x)−h)E3(x)Ih=hE3−h(Ei)3−hk2(ThE)3−h(ShE)3+h(L
hE)+O(hα).

(4.20)
Now, we will show that Ih is actually bounded from below away from zero. We

recall the definition of φ :

φ(x,y)=
1

4π

eik|x−y|

|x−y| .

We take the derivative of this with respect to y3 to get

∂φ(x,y)

∂y3
=

1

4π

eik|x−y|

|x−y|3 (x3−y3)−
ik

4π

eik|x−y|

|x−y|2 (x3−y3).

Next, we set x3=0 so that

∂φ(x,y)

∂y3

∣

∣

∣

∣

∣

x3=0

=− y3
4π

eik|x−y|

|x−y|3

∣

∣

∣

∣

∣

x3=0

+
iky3
4π

eik|x−y|

|x−y|2

∣

∣

∣

∣

∣

x3=0

.

We let r=
√

(x1−y1)2+(x2−y2)2, plug in y3=h/2 and y3=−h/2, and subtract to
obtain

∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=h/2

− ∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=−h/2

=− h

4π

eik(r
2+h2/4)

(r2+h2/4)3/2
+
ikh

4π

eik(r
2+h2/4)

(r2+h2/4)
.

Rewriting this and adding and subtracting 1 from the first exponential we have

∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=h/2

− ∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=−h/2

=− h

4π

1

(r2+h2/4)3/2
+
ikh

4π

eik(r
2+h2/4)

(r2+h2/4)
− h

4π

(eik(r
2+h2/4)−1)

(r2+h2/4)3/2
. (4.21)

Since (x1,x2) is in the interior of Ω, there exists δ>0 such that Bδ(x1,x2)⊆Ω.
We therefore write

Ih(x1,x2,0)=A1+A2+A3+

∫

Ω\Bδ(x1,x2)







∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=h/2

−
∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=−h/2






dy1dy2;

we write it in this fashion since we have three terms on the right-hand side of (4.21),
and we write the region of integration as Ω=Bδ(x1,x2)

⋃

(Ω\Bδ(x1,x2)) .
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Using (4.21), we can see that the integral over the complement of the ball goes
to zero with h, that is

∫

Ω\Bδ(x1,x2)







∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=h/2

− ∂φ(x,y)

∂y3

∣

∣

∣

∣

∣ x3=0,
y3=−h/2






dy1dy2=O(h).

We can bound A1 by switching to polar coordinates as follows:

A1=−
∫

Bδ(x1,x2)

h

4π

1

(r2+h2/4)3/2
dy1dy2=−h

2

∫ δ

0

r

(r2+h2/4)3/2
dr

=
h

2

1
√

r2+h2/4

∣

∣

∣

∣

∣

δ

0

=−1+O(h). (4.22)

For A2 we start by stating its definition:

A2=

∫

Bδ(x1,x2)

ikh

4π

eik(r
2+h2/4)

r2+h2/4
dy1dy2.

We switch to polar coordinates, and we bound the absolute value of this as

|A2|≤
kh

2

∫ δ

0

r

r2+h2/4
dr=

kh

4
ln(r2+h2/4)

∣

∣

∣

∣

∣

δ

0

=O(h ln(h)).

We need finally to bound A3. The definition of A3 is

A3=−
∫

Bδ(x1,x2)

h

4π

(eik(r
2+h2/4)−1)

(r2+h2/4)3/2
dy1dy2.

By either the Cauchy or Lagrange form of the remainder in Taylor’s Theorem, there
exists a constant, C, such that |eik(r2+h2/4)−1|≤C(r2+h2/4). We again use polar
coordinates. We estimate the absolute value of A3 as

|A3|≤
Ch

2

∫ δ

0

r

(r2+h2)1/2
dr=O(h).

Taking these calculations together, we have shown that

Ih(x1,x2,0)=−1+O(h ln(h)).

Hence from (4.20) we have that for 0<α<1

n0(x)E3(x1,x2,0)=O(hα),

and for α=1

n0(x)E3(x1,x2,0)=O(h logh).

Using the Cα boundedness of E3, the same bounds hold on all of Ωh.
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5. Discussion

We have derived and used the formulation in Theorem 2.1 to analyze the behavior
of a thin high contrast dielectric. This formulation treats any jumps in the material
with a surface integral, and we have shown that the surface terms force the normal
component of the electric field to go to zero on the boundary of the thin high contrast
domain, so they are indeed playing a crucial role. Here we discuss the implications
for the limiting equations and further asymptotic expansions in h. If we assume that

E(y)=E(0)(y1,y2)+hE
(1)(y)+O(h2),

and we plug this into (2.16) and let h→0, then from [9] we know that the first integral
term becomes

k2
∫

Ω

φ((x1,x2,0),(y1,y2,0))ε0(y1,y2)E
(0)(y1,y2)dy1dy2,

and from [1] we know that the second integral term is O(h logh), so it disappears in
the highest order limit. For the surface integral term,

∫

∂Ωh

∇yφ(x,y)

(

ε0(y)

h
−1

)

(E(y) ·ν)−dσy, (5.1)

the situation is more complicated. This term has of course three vector components,
and in each of these components we have terms corresponding to the top, bottom,
and lateral sides of the scatterer. In the first two components, the integral over the
top and bottom parts of the boundary cancel with each other in the limit (this will
be described in detail in a forthcoming work). The limit of the first two components
of (5.1) therefore correspond to an integral over the lateral side, which becomes the
curve integral

∫

∂Ω

∇yφ(x,y)ε0E
(0) ·νdsy. (5.2)

If x is in the interior of Ω, this term has no singularity, and by Theorem 4.1 it should
disappear to first order, yielding the same limiting equations as in the Helmholtz and
smooth cases [1], [9]. The limit in the first two components became nice because there
was cancellation between the top and bottom parts of the surface integral as they get
close to each other. However, for the third component, the top and bottom terms are
the same sign and do not cancel in the limit, and get more singular as they approach;
it is on the order of E3/h. This is another way to see that E3 goes to zero in the
interior of the scatterer, since it allows the equations to balance. Hence the analysis
(formally) yields the limiting system

E
(0)
1 (x1,x2)=(Ei)1(x1,x2,0)+k

2

∫

Ω

φε0E
(0)
1 , (5.3)

E
(0)
2 (x1,x2)=(Ei)2(x1,x2,0)+k

2

∫

Ω

φε0E
(0)
2 , (5.4)

E
(0)
3 (x2,x2)=0. (5.5)

We propose the following first-order approximation to the field anywhere in R
3 : solve

the above two dimensional system for E(0), and insert this solution E(0) into the right
hand side of (2.6) to compute the field elsewhere. This should be very efficient, and
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much more accurate than the commonly used Born approximation of just inserting the
incident wave Ei. We have indeed shown that (under certain regularity assumptions
on E), the perpendicular component of E to the slab, E3, goes to zero inside the slab.
This dimensionally reduced system will also be useful for approximating resonances
as in [5], and for inversion methods such as in [11].

We have also shown here that on the lateral boundary to the slab, the interior
normal component (E ·ν)−→0 in Theorem 4.1. This normal component to ∂Ω now
involves a combination of E1 and E2. However, the solution to (5.3),(5.4) is unique
(see [9]), and cannot in general satisfy that the normal component on ∂Ω is zero for
arbitrary Ei. This implies that any convergence of E→E(0) can not be uniform in
general: some sort of boundary layer must exist near ∂Ω. This makes sense, since the
kernel in (5.2) becomes singular as x approaches the boundary of Ω, and this term
can no longer be discarded.

We now comment on how the results here relate to the previous results in [9] and
[1]. The former only considered a scalar Helmholtz system, and there the first-order
limiting system for the polarized field is the same as (5.3), and the convergence is
uniform and O(h). In [1], full Maxwell is considered, but there the squared index
of refraction is assumed to be everywhere C2. In particular, the effects of material
jumps between Ωh and the background are not considered. Our analysis here includes
jumps, such as holes in Ω, and no smoothing at the edge is required. It implies that,
up to first order in the interior of Ω, one gets the same limiting system for the first
two components, but the surface term does force a different limit (namely zero) for
the third component E3. The surface term also plays a role in boundary behavior and
will be crucial for deriving accurate corrections. Further asymptotic analysis of the
boundary and the next order corrections will be the subject of a forthcoming paper.
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