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ON THE LOCAL EXISTENCE OF ANALYTIC SOLUTIONS TO THE

PRANDTL BOUNDARY LAYER EQUATIONS∗

IGOR KUKAVICA† AND VLAD VICOL‡

Abstract. We address the local well-posedness of the Prandtl boundary layer equations. Using
a new change of variables we allow for more general data than previously considered, that is, we
require the matching at the top of the boundary layer to be at a polynomial rather than exponential
rate. The proof is direct, via analytic energy estimates in the tangential variables.
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1. Introduction

The inviscid limit of the Navier-Stokes equations on a domain Ω∈R
d with a

boundary is one of the most challenging problems in mathematical fluid mechanics
(cf. [5, 6, 17, 18, 24, 25, 26, 34, 35] and references therein). Near the boundary of
the domain, the main difficulty is due to the incompatibility in boundary conditions
between the Navier-Stokes equations (uNS =0 on ∂Ω) and the Euler equations (uE ·
n=0 on ∂Ω, where n is the outward unit normal), giving rise to the boundary layer
separation. The foundations for the boundary layer theory were laid by Prandtl, who
in [30] made the ansatz uNS(x,ỹ,t)=(u(x,ỹ/

√
ν,t),

√
νw(x,ỹ/

√
ν,t)). Inserting this

velocity field in the Navier-Stokes equations and sending the kinematic viscosity ν
to zero, one formally obtains the Prandtl boundary layer equations for the unknown
velocity field (u,

√
νw),

∂tu−∂Y Y u+u∂xu+w∂Y u+∂xP =0, (1.1)

∂xu+∂Y w=0, (1.2)

∂Y P =0, (1.3)

in H={(x,Y )∈R
2 : Y >0}, where Y = ỹ/

√
ν is the normal variable in the boundary

layer. For details on the formal derivation of the Prandtl boundary layer equations we
refer the reader to [4, 12, 9, 29, 30] and references therein. For simplicity of the presen-
tation, in this paper we consider the two-dimensional setting, but all the methods and
results presented here extend to the three-dimensional case as well (cf. Remark 3.3
below). The system (1.1)–(1.3) is supplemented with the no-slip and the no-influx
boundary conditions

u(x,Y,t)|Y=0=0, (1.4)

w(x,Y,t)|Y =0=0, (1.5)
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for t>0, and the matching conditions with the Euler flow as Y →∞, via the Bernoulli
law

lim
Y→∞

u(x,Y,t)=U(x,t), (1.6)

∂xP (x,t)=−(∂t+U(x,t)∂x)U(x,t), (1.7)

for x∈R
2, t>0, where U(x,t) is the trace at ỹ=0 of the tangential component of the

Euler flow uE . Note that (1.3) and (1.7) determine ∂xP on H. The Prandtl equations
(1.1)–(1.7) are supplemented with an initial condition

u(x,Y,t)|t=0=u0(x,Y ) (1.8)

in H, which satisfies the compatibility condition with the Euler flow and the compat-
ibility arising from the boundary condition

u0(x,Y =0)=0, lim
Y→∞

u0(x,Y )=U(x,t)|t=0. (1.9)

From the mathematical point of view, the two basic problems that have to be
addressed for (1.1)–(1.8) are the well/ill-posedness of the equations (cf. [8, 10, 11, 12,
16, 23, 28, 31, 37]), and the rigorous justification of the singular asymptotics through
which the equations were derived in the inviscid limit (cf. [14, 15, 31, 32]). For a
complete survey of the mathematical and numerical results on the Prandtl boundary
layer equations, we refer the reader to [4, 9, 11, 29].

In this paper we address the issue of local well-posedness of the Prandtl boundary
layer equations. In establishing such results the main difficulty is to control the
loss of one x-derivative in the convection terms of (1.1). Whether such a control is
possible depends on the functional space in which we work in. In the general Sobolev-
space setting, the example of [10] exhibits a solution which develops a singularity
in finite time. Additionally, in [12, 15] it is proven that if one linearizes the system
(1.1)–(1.7) about certain unstable flows, the resulting linear equations are ill-posed
in Sobolev spaces. These strong instability results were used in [13] to prove that
the full, nonlinear equations cannot give rise to a Lipschitz continuous semigroup in
Sobolev spaces, suggesting that in order to obtain a well-posed problem one needs to
work either in function spaces that impose either more structure on the evolution, or
in spaces which are smoother than the Sobolev spaces.

The available well-posedness results for the Prandtl boundary layer equations fall
in one of the two categories: monotonicity in the Y variable (cf. [28, 29, 37]), or ana-
lyticity in the x variable, Sobolev regularity in the y variable, and exponential decay
of u(x,Y,t)−U(x,t) as Y →∞ (cf. [23, 31, 32]). Besides the local well-posedness of
(1.1)–(1.7) in the analytic setting, Sammartino and Caflisch [31, 32] also establish (by
using the abstract Cauchy-Kowalewski Theorem [1]) the convergence of the Navier-
Stokes solution to the Euler solution plus the Prandtl solution in the inviscid limit,
locally in time, thereby fully justifying the Prandtl equations in this setting.

The main result of this paper, Theorem 3.1 below, is to give a new local well-
posedness theorem in spaces of real-analytic functions for the Prandtl boundary
layer equations. The main improvement is that our proof does not require that
u(x,Y,t)−U(x,t) decays exponentially as Y →∞, which is not physically justified.
Instead, we only require that the matching between the Prandtl solution and the
Euler solution, at the top of the boundary layer, is given by a power law 1/Y 1+ǫ for
some ǫ>0. This is achieved by a suitable dynamic change of variables in the normal
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coordinate (cf. (2.4)–(2.5) below). At the cost of studying an elliptic problem (in Y )
with variable coefficients (in x), in the reformulated Prandtl equations (2.6)–(2.10)
the linear Y growth due to the boundary condition at the top of the boundary layer
is moved from the linear term onto the nonlinearity, which has faster decay in Y since
it is quadratic. Our proof is elementary, via higher order energy estimates, and does
not rely on the abstract Cauchy-Kowalewski Theorem. The analytic norm which we
use in this paper has a direct analogue for the Euler and Navier-Stokes equations
(cf. [21, 22]), making this proof amenable for studying the inviscid limit for solutions
which are analytic in x and decay algebraically in Y . We emphasize that analyticity is
a suitable tool for studying the physics of the inviscid limit via asymptotic expansions,
as was shown in the classical works of Sammartino and Caflisch [31, 32].

From the physical point of view a classical quantity in boundary layer theory is
the displacement thickness, which quantifies the effect of the boundary layer on the
Euler flow uE , and is defined as (cf. [3, 7, 33])

δ1(x)=

∫ ∞

0

(

1− u(x,Y )

U(x)

)

dY. (1.10)

More precisely, δ1 is the “distance through which streamlines just outside the bound-
ary layer are displaced laterally by the retardation of fluid in the boundary layer”
(cf. Batchelor [3, p. 311]). Therefore, the polynomial matching of order 1/Y 1+ǫ (for
any ǫ>0) considered in this paper is sharp, as any slower power-law decay is incon-
sistent with the definition of the displacement thickness (1.10). Polynomial matching
at the top of the boundary layer, but for the stationary problem and for Oleinik-type
data, was also considered in [27, 36].

The paper is organized as follows. In Section 2 we derive an equivalent formulation
of the Prandtl equations (more details are given in Appendix A). In Section 3 we
introduce the functional framework of the paper, state the main result, Theorem 3.1,
and give the a priori estimates needed to prove it assuming some a priori bounds on
the nonlinear, linear, and force terms appearing in (2.6) below. Sections 4, 5, and 6
are devoted to the proof of lemmas 3.1, 3.2, and 3.3 respectively.

2. Reformulation of the Prandtl boundary layer equations

In this section we introduce a change of variables Y 7→y and u 7→v which homog-
enizes the boundary condition at Y =∞ and removes the resulting high order terms.
Denote by A(x,t) the unique real-analytic solution of the initial value problem

∂tA(x,t)+U(x,t)∂xA(x,t)=A(x,t)∂xU(x,t), (2.1)

A(x,t)|t=0=1, (2.2)

on R× [0,T ], for some T >0. The existence and uniqueness (in the class of real analytic
functions) of A(x,t) on [0,T ] follows from the classical Cauchy-Kowalewski Theorem
since the functions U(x,t) and ∂xU(x,t) are assumed to be uniformly real-analytic
on [0,T ], with radius of analyticity bounded from below by some τE >0. By possibly
reducing T we may assume that 1/2≤A(x,t)≤2 on R× [0,T ] (this is possible since U
and ∂xU belong to L∞(R× [0,T ])). Let the uniform radius of real-analyticity of the
function A(x,t) be bounded from below by some τ∗>0, which depends on τE and the
analytic norm on U and ∂xU on [0,T ]. It is convenient to introduce the real-analytic
function

a(x,t)= logA(x,t), (2.3)
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so that we have ∂xA/A=∂xa. Define the functions

φ(y)= 〈y〉−θ

and

Φ(y)=

∫ y

0

φ(ζ)dζ,

where

〈y〉=
√

1+y2,

and θ>0 is a parameter to be determined. We make the change of variables

y=Y A(x,t), (2.4)

v(x,y,t)=u(x,Y,t)−(1−φ(y))U(x,t). (2.5)

Under this change of variables, the Prandtl system (1.1)–(1.8) reads

∂tv−A2∂yyv+N(v)+L(v)=F, (2.6)

where we denoted

N(v)=v∂xv−∂xW (v)∂yv+∂xaW (v)∂yv, (2.7)

W (v)(x,y)=

∫ y

0

v(x,ζ)dζ, (2.8)

L(v)=∂xW (v)∂yφU

+∂xv(1−φ)U+∂yv (Φ∂xU−∂xaΦU)−W (v)∂xa∂yφU+v(1−φ)∂xU, (2.9)

F =(φ(1−φ)+Φ∂yφ)U∂xU−∂xa∂yφΦU
2−A2∂yyφU−φ∂xP (2.10)

(cf. Appendix A for details). The system (2.6)–(2.10) is supplemented with the bound-
ary conditions

v(x,y,t)|y=0=u(x,Y,t)|Y=0−(1−φ(0))U(x,t)=0, (2.11)

lim
y→∞

v(x,y,t)= lim
Y→∞

u(x,Y,t)−U(x,t)=0, (2.12)

for all (x,t)∈R× [0,∞), and the initial condition

v(x,y,t)|t=0=v0(x,y)=u0(x,Y )−(1−φ(y))U0(x). (2.13)

The initial datum is assumed to satisfy the compatibility conditions arising from
(2.11)–(2.12), and hence

v0(x,y)|y=0=0,

lim
y→∞

v0(x,y)=0.

Moreover, we assume that v0 is analytic in the x variable, with uniform radius of ana-
lyticity at least τ0>0. Analyticity in x is also assumed for the trace of the tangential
component of the Euler flow U(x,t), and the pressure of the Euler flow P (x,t). In the
two-dimensional case, if the initial data for the Euler flow is real-analytic, it remains
real-analytic for all time (cf. [2, 20, 21, 22]), and its radius of analyticity at time t
is bounded from below by C exp(−exp(Ct)), for some positive constant C depending
on the initial data. In the three-dimensional case the persistence of real-analyticity
holds (cf. [2, 21, 22]), i.e., a solution remains analytic as long as it is regular.
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3. A priori estimates

We shall consider the x-analytic norm with y-weight given by

ρ(y)= 〈y〉α

for some α>0 to be fixed later. Namely, for a function V (x,y) and a number τ0>0
we denote

‖V ‖2Xτ0
=

∑

m≥0

‖ρ(y)∂m
x V (x,y)‖2L2(H)τ

2m
0 M2

m,

where the analytic weights Mm are defined as

Mm=
(m+1)r

m!
(3.1)

for some r>0 to be determined. If v(x,y,t) and τ(t) have t-dependence, we similarly
denote

‖v(t)‖2Xτ(t)
=

∑

m≥0

‖ρ(y)∂m
x v(x,y,t)‖2L2(H)τ(t)

2mM2
m. (3.2)

If the t dependence is clear from the context we will omit it. Since the weight ρ(y)
does not depend on x, the analytic norm may also be written as

‖v‖2Xτ
=

∑

m≥0

‖ρv‖2
Ḣm

x

τ2mM2
m.

For a positive number τ >0 we write v∈Xτ if ‖v‖Xτ
<∞. The main result of this

paper is the following theorem.

Theorem 3.1. Fix real numbers α>1/2, θ>α+1/2, and r>1. Assume that the

initial datum for the underlying Euler flow is uniformly real analytic, with radius of

analyticity at least τE >0 and analytic norm bounded by GE >0. There exists τ0=
τ0(r,τE ,GE)>0 such that for all v0∈Xτ0 there is T∗=T∗(r,α,θ,τE ,GE ,τ0,‖v0‖Xτ0

)>
0 such that the initial value problem (2.6)–(2.13) has a unique real-analytic solution

on [0,T∗].

Remark 3.2. The above theorem shows that solutions may be constructed even if
the initial datum v0 decays only as 〈y〉−α−1/2−ǫ for arbitrary α>1/2 and ǫ>0, so
that v0〈y〉α∈L2

y([0,∞)). This improves on the previous works [12, 23, 31, 32] which
require the initial data for the Prandtl system to match the underlying Euler flow
exponentially at Y =∞.

Remark 3.3. Although we have stated the main theorem in two dimensions, i.e.
x∈R, the same theorem holds in the three-dimensional case x∈R

2. The relevant
modifications needed are to redefine ‖v‖2Xτ

as

∑

m≥0

∑

|α|=m

‖ρ(y)∂α
x v(x,y,t)‖2L2(H)τ

2m(t)M2
m,

and to let the function A(x,t) from the change of variables (2.4) solve the PDE

∂tA(x,t)+(U(x,t) ·∇x)A(x,t)=(A(x,t) ·∇x)U(x,t).
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Other modifications, such as the different exponents in Agmon’s inequality, are
straightforward.

Remark 3.4. The proof consists of a priori estimates which can be made formal
via the standard Picard iteration procedure. This is possible since we are working in
spaces of real-analytic functions.

We now turn to the a priori estimates needed to prove Theorem 3.1. From the
Definition (3.2), we have formally

1

2

d

dt
‖v‖2Xτ

+(−τ̇)‖v‖2Yτ
=

∑

m≥0

(

1

2

d

dt
‖ρv‖2

Ḣm
x

)

τ2mM2
m, (3.3)

where we omitted the time time dependence of v and τ , and have denoted

‖v‖2Yτ
=

∑

m≥1

‖ρv‖2
Ḣm

x

τ2m−1mM2
m. (3.4)

The heart of the matter consists of estimating the term on the right side of (3.3) via
Sobolev energy estimates. We fix m≥0, apply ∂m

x to (2.6), multiply the resulting
equality by ρ2∂m

x v, and integrate it over the half plane to obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 −〈∂m
x (A2∂yyv),ρ

2∂m
x v〉= 〈ρ∂m

x (F −N(v)−L(v)),ρ∂m
x v〉. (3.5)

In the dissipative term we use the Leibniz rule to distribute the derivative in x, and
then integrate by parts in y to obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 +‖Aρ∂y∂m
x v‖2L2

=−2〈A∂yρ∂m
x v,Aρ∂y∂

m
x v〉−

m
∑

j=1

(

m

j

)

〈A−2∂j
x(A

2)Aρ∂y∂
m−j
x v,Aρ∂y∂

m
x v〉

−2

m
∑

j=1

(

m

j

)

〈A−1∂j
x(A

2)A∂yρ∂y∂
m−j
x v,ρ∂m

x v〉+〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉.

(3.6)

The integration by parts in y is formally justified by introducing a smooth cut-off
function η(y) such that η≡1 on 0≤y≤1 and η≡0 on y≥2. For any R>0 we have
(ignoring A(x,t) since it doesn’t depend on y)

∫

u∂yyuρ(y)η(y/R)dy=

∫

∂yu∂yuρ(y)η(y/R)dy− 1

2

∫

u2∂yyρη(y/R)dy

− 1

R

∫

u2∂yρ(y)∂yη(y/R)dy− 1

2R2

∫

u2ρ(y)∂yyη(y/R)dy.

Due to our choice of ρ one may pass R→∞ in the above equation, so that the last
two terms on the right side of the above identity vanish, justifying the integration by
parts in (3.6). We recall that ρ(y)= 〈y〉α, and hence

∂yρ(y)≤α〈y〉α−1≤ α

〈y〉ρ(y)≤αρ(y) (3.7)
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for all y≥0. From (3.6) and (3.7), using ‖A‖L∞ ≤2 and ‖A−1‖L∞ ≤2 on [0,T ], we
obtain

1

2

d

dt
‖ρ∂m

x v‖2L2 +‖Aρ∂y∂m
x v‖2L2

≤|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|+4α‖ρ∂m
x v‖L2‖Aρ∂y∂m

x v‖L2

+4
m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞‖Aρ∂y∂m−j
x v‖L2‖Aρ∂y∂m

x v‖L2

+4α

m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2 . (3.8)

Before estimating the force, linear, and nonlinear terms on the right side of (3.8), we
first check that the last three terms on the right side of (3.8) can be suitably treated.
Inserting the estimate (3.8) into (3.3), we obtain

1

2

d

dt
‖v‖2Xτ

+(−τ̇)‖v‖2Yτ
+‖v‖2Zτ

≤C
∑

m≥0

XmZm+
∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m

+C
∑

m≥1

m
∑

j=1

(

m

j

)

‖∂j
x(A

2)‖L∞Zm−j(Zm+Xm)τ jMmM−1
m−j (3.9)

for some dimensional constant C>0, where we have introduced the norm

‖v‖2Zτ
=

∑

m≥0

‖Aρ∂y∂m
x v‖2L2τ2mM2

m,

and

Xm=‖ρ∂m
x v‖L2τmMm, (3.10)

Ym=‖ρ∂m
x v‖L2τm−1/2m1/2Mm, (3.11)

Zm=‖Aρ∂y∂m
x v‖L2τmMm, (3.12)

so that we have, conveniently,

‖v‖2Xτ
=

∑

m≥0

X2
m, (3.13)

‖v‖2Yτ
=

∑

m≥1

Y 2
m, (3.14)

‖v‖2Zτ
=

∑

m≥0

Z2
m. (3.15)

In order to estimate ∂j
x(A

2) we assume that the Euler flow U does not blow up on
[0,T ], and that U(x,0) is a real-analytic function of x. As a consequence of these
two assumptions we have that for all t∈ [0,T ] the analyticity radius of the functions
U(·,t) and ∂xU(·,t) are bounded from below by some strictly positive constant τE
(cf. [2, 21, 22]). More precisely, there exists a constant GE ≥1 such that

‖∂j
xU‖L∞([0,T ];L∞)+‖∂j

x(∂xU)‖L∞([0,T ];L∞)≤GE
j!

τ jE
(3.16)
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for all j≥0. From the Cauchy-Kowalewski Theorem we have that there exists 0<
τ∗= τ∗(τE ,M,r)≤ τE/2 and G≥2GE such that

‖∂j
x(A

2)‖L∞([0,T ];L∞)≤G
1

τ j∗Mj

, (3.17)

for all j≥0, where Mj is as defined in (3.1). In fact, by possibly decreasing τ∗ and
increasing G we may also assume that

‖∂j
xa‖L∞([0,T ];L∞)≤G

1

τ j∗Mj

(3.18)

for all j≥0. Therefore, inserting (3.17) into (3.9) we obtain

1

2

d

dt
‖v‖2Xτ

+(−τ̇)‖v‖2Yτ
+‖v‖2Zτ

≤C
∑

m≥0

XmZm+
∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m

+CG
∑

m≥1

m
∑

j=1

(

m

j

)

1

τ j∗Mj

Zm−j(Zm+Xm)τ jMmM−1
m−j

≤C‖v‖Xτ
‖v‖Zτ

+
∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m

+CG
∑

m≥1

m
∑

j=1

(

τ

τ∗

)j

Zm−j(Zm+Xm)
m!Mm

j!Mj(m−j)!Mm−j
.

Note that by (3.1) we have

m!Mm

j!Mj(m−j)!Mm−j
=

(m+1)r

(j+1)r(m−j+1)r
≤C (3.19)

for all 0≤ j≤m, for some sufficiently large constant C=C(r)>0. Therefore, using
the discrete Young inequality

‖f ·(g∗h)‖ℓ1 ≤‖f‖ℓ2‖g‖ℓ1‖h‖ℓ2 ,
and the assumption that τ(t) is decreasing, with τ(0)= τ0≤ τ∗/2, we obtain

1

2

d

dt
‖v‖2Xτ

+‖v‖2Zτ
≤C‖v‖Xτ

‖v‖Zτ
+

∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m

+CG‖v‖Zτ
(‖v‖Zτ

+‖v‖Xτ
)
∑

j≥1

(

τ0
τ∗

)j

≤C‖v‖Xτ
‖v‖Zτ

+
∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m

+C0G
τ0

τ∗−τ0
‖v‖Zτ

(‖v‖Zτ
+‖v‖Xτ

), (3.20)

for some fixed sufficiently large positive constant C0=C0(r). Therefore, in order to ab-
sorb the ‖v‖2Zτ

term on the right side of the equation, we choose τ0= τ0(r,τ∗,G,C0)=
τ0(r,τE ,GE ,C0)>0 such that

C0G
τ0

τ∗−τ0
≤ 1

4
, (3.21)
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that is τ0≤ τ∗/(1+4C0G), and we immediately obtain from (3.20) and the Cauchy-
Schwarz inequality that

1

2

d

dt
‖v‖2Xτ

+(−τ̇)‖v‖2Yτ
+

1

2
‖v‖2Zτ

≤C1‖v‖2Xτ
+

∑

m≥0

|〈ρ∂m
x (F −N(v)−L(v)),ρ∂m

x v〉|τ2mM2
m, (3.22)

for some positive constant C1=C1(r). It is left to find suitable bounds for the right
side of (3.22). To this end we have the following lemmas.

Lemma 3.1. Let α>1/2. We have the estimate

N =
∑

m≥0

|〈ρ∂m
x (N(v)),ρ∂m

x v〉|τ2mM2
m≤Cτ−1‖v‖Zτ

(

‖v‖2Xτ
+‖v‖2Yτ

)

(3.23)

for some positive constant C depending on r>1, the underlying Euler flow, and τ0.

Lemma 3.2. Let α>1/2 and θ>1 be such that θ>α−1/2. We have the bound

L=
∑

m≥0

|〈ρ∂m
x (L(v)),ρ∂m

x v〉|τ2mM2
m≤Cτ−1‖v‖Xτ

(‖v‖Xτ
+‖v‖Zτ

)+C‖v‖2Yτ
(3.24)

for some sufficiently large positive constant C depending on r, the analyticity radius,

and the analytic norm of the underlying Euler flow.

Lemma 3.3. Let α>1/2 and θ>1 be such that θ>α+1/2. We have the bound

F =
∑

m≥0

|〈ρ∂m
x F,ρ∂m

x v〉|τ2mM2
m≤C‖v‖Xτ

(3.25)

for a suitable constant C>0 depending on the underlying Euler flow, α, and θ.

The proofs of lemmas 3.1, 3.2, and 3.3 are given in sections 4, 5, and 6 below.
Assuming that the above three lemmas hold, we may conclude the a priori estimates
needed to prove the local existence of solutions to (2.6)–(2.10). From (3.22)–(3.25)
and the Cauchy-Schwarz inequality we obtain

1

2

d

dt
‖v‖2Xτ

+(−τ̇)‖v‖2Yτ
+

1

2
‖v‖2Zτ

≤C∗(1+τ−2)‖v‖2Xτ
+C∗τ

−1‖v‖Zτ
‖v‖2Xτ

+C∗‖v‖Xτ
+C∗‖v‖2Yτ

+C∗τ
−1‖v‖Zτ

‖v‖2Yτ

(3.26)

for some positive constant C∗ depending on the underlying Euler flow, α, and θ. Let
the analyticity radius τ(t) satisfy the differential inequality

τ̇+2C∗+2C∗τ
−1‖v‖Zτ

≤0, (3.27)

with initial data τ(0)= τ0. In particular it suffices to let

d

dt
(τ2)+4C∗τ0+4C∗‖v‖Zτ

=0,

which gives
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τ(t)2= τ20 −4C∗τ0t−4C∗

∫ t

0

‖v(s)‖Zτ(s)
ds

≥ τ20 −4C∗τ0t−4C∗t
1/2

(
∫ t

0

‖v(s)‖2Zτ(s)
ds

)1/2

. (3.28)

The above estimate shows that at least for some short time T∗=T∗(C∗,τ0,‖v0‖Xτ0
)

we have τ(t)>τ0/4 on [0,T∗], since by combining (3.26) with (3.27) we have

1

2

d

dt
‖v‖2Xτ

+
1

2
‖v‖2Zτ

≤C∗(1+16τ−2
0 )‖v‖2Xτ

+4C∗τ
−1
0 ‖v‖Zτ

‖v‖2Xτ
+C∗‖v‖Xτ

≤C∗(1+16τ−2
0 )‖v‖2Xτ

+
1

4
‖v‖2Zτ

+16C2
∗τ

−2
0 ‖v‖4Xτ

+C∗‖v‖Xτ

(3.29)

on [0,T∗], and therefore, if T∗ is chosen sufficiently small, we have

∫ t

0

‖v(s)‖2Zτ(s)
ds≤2‖v0‖Xτ0

.

This concludes the proof of the a priori estimates, proving Theorem 3.1.

4. The bound of the nonlinear term

In this section we prove Lemma 3.1. We first write the nonlinear term as

N =
∑

m≥0

|〈ρ∂m
x N(v),ρ∂m

x v〉|τ2mM2
m≤N0+N1+N2+N3, (4.1)

where

N0= |〈ρN(v),ρv〉| ,
N1=

∑

m≥1

|〈ρ∂m
x (v∂xv),ρ∂

m
x v〉|τ2mM2

m,

N2=
∑

m≥1

|〈ρ∂m
x (∂xW (v)∂yv),ρ∂

m
x v〉|τ2mM2

m,

N3=
∑

m≥1

|〈ρ∂m
x (∂xaW (v)∂yv),ρ∂

m
x v〉|τ2mM2

m.

The following lemmas shall be used throughout the rest of the paper.

Lemma 4.1. With ρ(y)= 〈y〉α, where α>1/2, we have the bound

‖∂k
xv‖L∞

y L2
x
≤C‖Aρ∂y∂k

xv‖L2
x,y

(4.2)

for all integers k≥0, all t∈ [0,T ], and some positive constant C=C(α).

Proof. For any k≥0, the function ∂k
xv vanishes at y=0, and thus

∂k
xv(x,y)=

∫ y

0

∂y∂
k
xv(x,ζ)dζ=

1

A(x)

∫ y

0

A(x)ρ(ζ)∂y∂
k
xv(x,ζ)ρ(ζ)

−1dζ.
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Taking the L2 norm in the x variable, and then the L∞ norm in the y variable, gives

‖∂k
xv‖L∞

y L2
x
≤‖A−1‖L∞

∫ ∞

0

‖Aρ(ζ)∂y∂k
xv(·,ζ)‖L2

x
ρ(ζ)−1dζ

≤2‖Aρ∂y∂k
xv‖L2

x,y
‖ρ−1‖L2

y
,

since ‖A−1‖L∞ ≤2. This concludes the proof of the lemma if ρ−1∈L2([0,∞)), which
is ensured by choosing α>1/2.

Using the Agmon inequality, Lemma 4.1 implies

‖∂k
xv‖L∞

x,y
≤C‖Aρ∂y∂k

xv‖1/2L2
x,y

‖Aρ∂y∂k+1
x v‖1/2L2

x,y

(4.3)

for all k≥0.

Lemma 4.2. With ρ(y)= 〈y〉α, where α>1/2, we have the bound

‖∂k
xW (v)‖L∞

y L2
x
≤C‖ρ∂k

xv‖L2
x,y

(4.4)

for all integers k≥0, t∈ [0,T ], where C=C(α) is a sufficiently large constant.

Proof. We recall from (2.8) that W (v)(x,y)=
∫ y

0
v(x,ζ)dζ. As in the proof of

Lemma 4.1, we estimate

‖∂k
xW (v)(·,y)‖L2

x
≤
∫ y

0

‖∂k
xv(·,ζ)‖L2

x
dζ=

∫ y

0

‖ρ(ζ)∂k
xv(·,ζ)‖L2

x
ρ(ζ)−1dζ

≤
∫ ∞

0

‖ρ(ζ)∂k
xv(·,ζ)‖L2

x
ρ(ζ)−1dζ

≤‖ρ∂k
xv‖L2

x,y
‖ρ−1‖L2

y
.

Hence, we obtain

‖∂k
xW (v)‖L∞

y L2
x
≤C(α)‖ρ∂k

xv‖L2
x,y

,

provided ρ−1∈L2([0,∞)). This is ensured by α>1/2 and the proof of the lemma is
concluded.

Using Agmon’s inequality in the x variable, Lemma 4.2 implies

‖∂k
xW (v)‖L∞

x,y
≤C‖ρ∂k

xv‖1/2L2
x,y

‖ρ∂k+1
x v‖1/2L2

x,y

(4.5)

for some positive constant C. We now proceed by estimating the four terms on the
far right side of (4.1).

4.1. N0 bound. The term N0 is bounded using the Hölder inequality as

N0≤‖ρv‖L2 (‖ρv∂xv‖L2 +‖ρ∂xW (v)∂yv‖L2 +‖ρ∂xaW (v)∂yv‖L2)

≤‖ρv‖L2

(

‖ρ∂xv‖L2‖v‖L∞ +‖A−1‖L∞‖Aρ∂yv‖L2‖∂xW (v)‖L∞

+‖A−1‖L∞‖∂xa‖L∞‖Aρ∂yv‖L2‖W (v)‖L∞

)

.

We apply (4.3), (4.5), and recall the notation (3.10)–(3.12) to obtain

N0≤Cτ−1
(

X0Y1Z
1/2
0 Z

1/2
1 +X0Z0Y

1/2
1 Y

1/2
2 +τ3/4X0Z0X

1/2
0 Y

1/2
1

)

≤Cτ−1
(

‖v‖Xτ
‖v‖Yτ

‖v‖Zτ
+‖v‖3/2Xτ

‖v‖1/2Yτ
‖v‖Zτ

)

(4.6)

for some positive constant C=C(α,G,τE ,τ0).
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4.2. N1 bound. In order to bound N1, we use the Leibniz rule and the
Cauchy-Schwarz inequality to get

N1≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv∂

m−j+1
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m. (4.7)

For 0≤ j≤ [m/2] we bound (using the Hölder inequality, (4.2), and the Agmon in-
equality in the x variable)

‖ρ∂j
xv∂

m−j+1
x v‖L2 ≤‖∂j

xv‖L∞‖ρ∂m−j+1
x v‖L2

≤C‖Aρ∂y∂j
xv‖1/2L2 ‖Aρ∂y∂j+1

x v‖1/2L2 ‖ρ∂m−j+1
x v‖L2 , (4.8)

and similarly, for [m/2]+1≤ j≤m, we have

‖ρ∂j
xv∂

m−j+1
x v‖L2 ≤‖ρ∂j

xv‖L2‖∂m−j+1
x v‖L∞

≤C‖ρ∂j
xv‖L2‖Aρ∂y∂m−j+1

x v‖1/2L2 ‖Aρ∂y∂m−j+2
x v‖1/2L2 , (4.9)

for some sufficiently large constant C=C(α,G). Inserting (4.8) and (4.9) into (4.7)
we obtain that N1 is bounded by

Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Z
1/2
j Z

1/2
j+1Ym−j+1Ym

(

m
j

)

Mm

M
1/2
j M

1/2
j+1Mm−j+1(m−j+1)1/2m1/2

+Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

YjZ
1/2
m−j+1Z

1/2
m−j+2Ym

(

m
j

)

Mm

MjM
1/2
m−j+1M

1/2
m−j+2(j+1)1/2m1/2

.

(4.10)

Using the Definition (3.1) of the analytic weights Mm, we may bound

(

m

j

)

Mm

M
1/2
j M

1/2
j+1Mm−j+1(m−j+1)1/2m1/2

≤ (m+1)rj1/2(m−j+1)

(j+1)r(m−j+1)r(m−j+1)1/2m1/2

≤C(j+1)1/2−r (4.11)

for all 0≤ j≤m/2, and similarly

(

m

j

)

Mm

MjM
1/2
m−j+1M

1/2
m−j+2(j+1)1/2m1/2

≤ (m+1)r(m−j+2)3/2

(j+1)r(m−j+1)r(j+1)1/2m1/2

≤C(m−j+1)1/2−r (4.12)

for all m/2≤ j≤m, and some positive constant C=C(r)>0. From (4.10), (4.11),
and (4.12) we obtain

N1≤Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Z
1/2
j Z

1/2
j+1Ym−j+1Ym(j+1)1/2−r

+Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

YjZ
1/2
m−j+1Z

1/2
m−j+2Ym(m−j+1)1/2−r. (4.13)
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Using (4.13) and the discrete Young and Hölder inequalities

‖f ·(g∗h)‖ℓ1 ≤C‖f‖ℓ2‖g‖ℓ1‖h‖ℓ2 , (4.14)

with fk=Yk, gk=Z
1/2
k Z

1/2
k+1(k+1)1/2−r, hk=Yk+1 for the first term on the right side

of (4.13) and respectively fk=Yk, gk=Z
1/2
k+1Z

1/2
k+2(k+1)1/2−r, hk=Yk for the second

term on the right side of (4.13), we obtain

N1≤Cτ−1/2‖v‖Zτ
‖v‖2Yτ

, (4.15)

provided r−1/2>1/2, i.e., r>1, so that {k1/2−r}∞k=1∈ ℓ2.

4.3. N2 bound. In order to bound N2, we write

N2≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x W (v)∂y∂

m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

[m/2]
∑

j=0

(

m

j

)

‖A−1‖L∞‖∂j+1
x W (v)‖L∞‖Aρ∂y∂m−j

x v‖L2‖ρ∂m
x v‖L2τ2mM2

m

+
∑

m≥1

m
∑

j=[m/2]+1

(

m

j

)

‖∂j+1
x W (v)‖L∞

y L2
x
‖ρ∂y∂m−j

x v‖L2
yL

∞

x
‖ρ∂m

x v‖L2τ2mM2
m.

(4.16)

Using (4.5), we obtain

N2≤C
∑

m≥1

[m/2]
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖1/2L2 ‖ρ∂j+2

x v‖1/2L2 ‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

+C
∑

m≥1

m
∑

j=[m/2]+1

(

m

j

)

‖ρ∂j+1
x v‖L2‖Aρ∂y∂m−j

x v‖1/2L2

×‖Aρ∂y∂m−j+1
x v‖1/2L2 ‖ρ∂m

x v‖L2τ2mM2
m. (4.17)

Using the notation (3.10)–(3.12) the above inequality yields that N2 is bounded by

Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Y
1/2
j+1Y

1/2
j+2Zm−jYm

(

m
j

)

Mm

M
1/2
j+1M

1/2
j+2Mm−j(j+1)1/2m1/2

+Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

Yj+1Z
1/2
m−jZ

1/2
m−j+1Ym

(

m
j

)

Mm

Mj+1M
1/2
m−jM

1/2
m−j+1(j+1)1/2m1/2

,

(4.18)

where C=C(α,r,G) is a sufficiently large constant. Using the explicit definition of
Mm in (3.1), we get the bound

(

m

j

)

Mm

M
1/2
j+1M

1/2
j+2Mm−j(j+1)1/2m1/2

≤ (m+1)r(j+1)3/2

(j+1)r+1/2(m−j+1)rm1/2
≤C(j+2)1/2−r

(4.19)
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for all 0≤ j≤m/2, and

(

m

j

)

Mm

Mj+1M
1/2
m−jM

1/2
m−j+1(j+1)1/2m1/2

≤ (m+1)r(j+1)(m−j+1)1/2

(j+1)r(m−j+1)r(j+1)1/2m1/2

≤C(m−j+1)1/2−r (4.20)

for all m/2≤ j≤m, where C=C(r) is a positive constant. We have thus proven that

N2≤Cτ−1/2
∑

m≥1

[m/2]
∑

j=0

Y
1/2
j+1Y

1/2
j+2Zm−jYm(j+1)1/2−r

+Cτ−1/2
∑

m≥1

m
∑

j=[m/2]+1

Yj+1Z
1/2
m−jZ

1/2
m−j+1Ym(m−j+1)1/2−r, (4.21)

and so, by the discrete Hölder and Young inequalities (cf. (4.14)), we obtain

N2≤Cτ−1/2‖v‖Zτ
‖v‖2Yτ

(4.22)

as long as r>1, for some positive constant C=C(τ0,α,r,τE ,G)>0.

4.4. N3 bound. It is left to bound N3. In this term a slight complication
arises since we need to take higher derivatives of ∂xa. In order to deal with this we
use (3.18), and recall that τ ≤ τ0≪ τ∗<τE . From the Leibniz rule, (3.18), and (4.5),
we get

N3≤
∑

m≥1

m
∑

j=0

j
∑

k=0

(

m

j

)(

j

k

)

‖∂k+1
x a‖L∞‖∂j−k

x W (v)ρ∂y∂
m−j
x v‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤C
∑

m≥1

m
∑

j=0

j
∑

k=0

m!

(m−j)!(j−k)!(k+1)r
‖A−1‖L∞‖∂j−k

x W (v)‖L∞

×‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2m−k−1M2
m

≤C
∑

m≥1

m
∑

j=0

j
∑

k=0

m!

(m−j)!(j−k)!(k+1)r
‖ρ∂j−k

x v‖1/2L2 ‖ρ∂j−k+1
x v‖1/2L2

×‖Aρ∂y∂m−j
x v‖L2‖ρ∂m

x v‖L2τ2m−k−1M2
m (4.23)

for some constant C=C(G,τE ,τ0)>0 that depends on the analyticity radius and
the analytic norm of the underlying Euler flow. Using the notation introduced in
(3.10)–(3.12), the above estimate becomes

N3≤Cτ−3/4
∑

m≥1

m
∑

j=0

j
∑

k=0

X
1/2
j−kY

1/2
j−k+1Zm−jYmΓm,j,k (4.24)

for some positive constant C=C(G,τE ,τ0), where

Γm,j,k=
m!

(m−j)!(j−k)!
· Mm

(k+1)rM
1/2
j−kM

1/2
j−k+1(j−k+1)1/4Mm−jm1/2

. (4.25)
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Using the explicit definition of Mm, we obtain that

Γm,j,k≤C
(m+1)r(j−k+1)1/4

(k+1)r(j−k+1)r(m−j+1)rm1/2

≤C
(m+1)r

(k+1)r(j−k+1)r(m−j+1)rm1/4

≤C







(k+1)−r−1/4, j≤m/2
(k+1)−r−1/4, j≥m/2,k≤ j/2
(m−j+1)−r−1/4, j≥m/2,k≥ j/2,

(4.26)

for some positive constant C=C(r). If r>1 it then follows from (4.24), (4.26), and
the discrete Hölder and Young inequalities that

N3≤Cτ−3/4‖v‖1/2Xτ
‖v‖Zτ

‖v‖3/2Yτ
(4.27)

for some positive constant C. Lastly, combining (4.6), (4.15), (4.22), and (4.27) we
obtain

N ≤Cτ−1‖v‖Zτ

(

‖v‖Xτ
‖v‖Yτ

+‖v‖3/2Xτ
‖v‖1/2Yτ

+‖v‖2Yτ
+‖v‖1/2Xτ

‖v‖3/2Yτ

)

≤Cτ−1‖v‖Zτ

(

‖v‖2Xτ
+‖v‖2Yτ

)

(4.28)

for some positive constant C depending on r>1, the underlying Euler flow, and τ0.
This concludes the bounds on the nonlinear term.

5. The bound of the linear term

In this section we bound

L=
∑

m≥0

‖ρ∂m
x L(v)‖L2‖ρ∂m

x v‖L2τ2mM2
m≤L0+L1+L2+L3+L4+L5+L6, (5.1)

where by (2.9) we have

L(v)=∂xW (v)∂yφU+∂xv(1−φ)U+∂yvΦ∂xU

−∂yvΦ∂xaU−W (v)∂yφ∂xaU+v(1−φ)∂xU

=L1+L2+L3+L4+L5+L6, (5.2)

and where we denoted

Li=
∑

m≥1

‖ρ∂m
x Li‖L2‖ρ∂m

x v‖L2τ2mM2
m (5.3)

for each i∈{1, . . . ,6}, and

L0=‖ρL(v)‖L2‖ρv‖L2 . (5.4)

From (3.16)–(3.18) and the Leibniz rule, we may prove that the functions U(·,t),
∂xU(·,t), and ∂xa(·,t)U(·,t) have radius of analyticity at least τ∗>0 on [0,T ], i.e.,
upon possibly increasing G we have

‖∂k
xU‖L∞([0,T ];L∞)+‖∂k

x(∂xU)‖L∞([0,T ];L∞)+‖∂k
x(∂xaU)‖L∞([0,T ];L∞)≤

G

τk∗Mk
(5.5)
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for all k≥0. Recalling from (3.21) that τ∗ was chosen to satisfy τ∗/(1+C0G)≥ τ0≥ τ ,
we may write

τ(t)

τ∗
≤ 1

2
(5.6)

for all t∈ [0,T ]. Also, note that we have |∂yφ(y)|≤C/〈y〉θ+1, and since ρ(y)= 〈y〉α,
we have ρ∂yφ∈L2

y([0,∞)) if and only if θ>α−1/2. Lastly, Φ∈L∞
y ([0,∞)) whenever

θ>1.

5.1. L0 bound. Using the Hölder inequality and Lemma 4.2, we have

L0≤C‖ρv‖L2

(

‖∂xW (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖U‖L∞

x
+‖ρ∂xv‖L2‖1−φ‖L∞

y
‖U‖L∞

x

+‖ρA∂yv‖L2‖A−1‖L∞

x
‖Φ‖L∞

y
‖∂xU‖L∞

x

+‖ρA∂yv‖L2‖A−1‖L∞

x
‖Φ‖L∞

y
‖∂xaU‖L∞

x

+‖W (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂xaU‖L∞

x
+‖ρv‖L2‖1−φ‖L∞

y
‖∂xU‖L∞

x

)

≤Cτ−1X0 (X1+Z0+X0)

≤Cτ−1‖v‖Xτ
(‖v‖Xτ

+‖v‖Zτ
) , (5.7)

for some positive constant C=C(r,G,τ∗). Here we used θ>α−1/2>0, so that 1−
φ,Φ∈L∞

y and ρ∂yφ∈L2
y.

5.2. L1 bound. In order to bound

L1=
∑

m≥1

‖ρ∂m
x (∂xW (v)∂yφU)‖L2‖ρ∂m

x v‖L2τ2mM2
m,

we use the Leibniz rule and the Hölder inequality to obtain

L1≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖∂j+1
x W (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂m−j

x U‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m.

From Lemma 4.2 and (5.5), after recalling the notation (3.10)–(3.12), we obtain

L1≤CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤CG
∑

m≥1

m
∑

j=0

Yj+1Ym

(

τ

τ∗

)m−j((
m

j

)

M2
m

Mj+1(j+1)1/2Mmm1/2Mm−j

)

. (5.8)

Using the definition of Mm we may bound
(

m

j

)

M2
m

Mj+1(j+1)1/2Mmm1/2Mm−j
≤ m!Mm

j!Mj(m−j)!Mm−j

j

(j+1)1/2m1/2
≤C (5.9)

for some C=C(r)>0, for all 0≤ j≤m. Since by (5.6) we have τ/τ∗≤1/2, (5.8) and
the above estimate and give

L1≤C
∑

m≥1

m
∑

j=0

Yj+1Ym
1

2m−j
≤C‖u‖2Yτ

(5.10)

for some constant C=C(G,r)>0, by using the discrete Young and Hölder inequalities.
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5.3. L2 bound. From the Leibniz rule and the Hölder inequality we have

L2=
∑

m≥1

‖ρ∂m
x (∂xv(1−φ)U)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2‖1−φ‖L∞

y
‖∂m−j

x U‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.11)

From (5.5) and the above estimate we obtain

L2≤CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j+1
x v‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤CG
∑

m≥1

m
∑

j=0

Yj+1Ym

(

τ

τ∗

)m−j((
m

j

)

M2
m

Mj+1(j+1)1/2Mmm1/2Mm−j

)

, (5.12)

which bounds L2 from above exactly by the right side of (5.8), and we obtain

L2≤C‖u‖2Yτ
(5.13)

for some constant C=C(G,r)>0.

5.4. L3 bound. As above, from the Leibniz rule and the Hölder inequality
we obtain

L3=
∑

m≥1

‖ρ∂m
x (∂yvΦ∂xU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂y∂j
xvΦ∂

m−j+1
x U‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤2
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2‖Φ‖L∞

y
‖∂m−j

x (∂xU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m (5.14)

since ‖1/A‖L∞

x
≤2 on [0,T ]. Inserting estimate (5.5) into the bound (5.14) above, we

get

L3≤CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤CG
∑

m≥1

m
∑

j=0

ZjXm

(

τ

τ∗

)m−j((
m

j

)

Mm

MjMm−j

)

. (5.15)

Recall that we have m!Mm/(j!Mj(m−j)!Mm−j)≤C by (3.19), and therefore the
estimate (5.15) combined with the discrete Young and Hölder inequalities gives

L3≤C
∑

m≥1

m
∑

j=0

ZjXm
1

2m−j
≤C‖v‖Xτ

‖v‖Zτ
(5.16)

for some positive constant C=C(r,G).
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5.5. L4 bound. Similarly to (5.14) we obtain

L4≤2
∑

m≥1

m
∑

j=0

(

m

j

)

‖Aρ∂y∂j
xv‖L2‖Φ‖L∞

y
‖∂m−j

x (∂xaU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.17)

Using (5.5) to bound ‖∂m−j
x (∂xaU)‖L∞

x
, and (3.19) to treat the combinatorial remain-

der, we conclude that

L4≤C‖v‖Xτ
‖v‖Zτ

(5.18)

for some positive constant C=C(r,G).

5.6. L5 bound. In order to bound L5 we use the Leibniz rule and Hölder
inequalities and obtain

L5=
∑

m≥1

‖ρ∂m
x (W (v)∂yφ∂xaU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖∂j
xW (v)‖L∞

y L2
x
‖ρ∂yφ‖L2

y
‖∂m−j

x (∂xaU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m.

(5.19)

Using Lemma 4.2 and (5.5), estimate (5.19) implies

L5≤CG
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv‖L2

1

τm−j
∗ Mm−j

‖ρ∂m
x v‖L2τ2mM2

m

≤CG
∑

m≥1

m
∑

j=0

XjXm

(

τ

τ∗

)m−j((
m

j

)

Mm

MjMm−j

)

. (5.20)

From (3.19), (5.6), the discrete Young and Hölder inequalities, and the above estimate,
we have

L5≤C
∑

m≥1

m
∑

j=0

XjXm
1

2m−j
≤C‖v‖2Xτ

(5.21)

for some positive constant C=C(r,G).

5.7. L6 bound. As in (5.19), we have the bound

L6=
∑

m≥1

‖ρ∂m
x (v(1−φ)∂xU)‖L2‖ρ∂m

x v‖L2τ2mM2
m

≤
∑

m≥1

m
∑

j=0

(

m

j

)

‖ρ∂j
xv‖L2‖1−φ‖L∞

y
‖∂m−j

x (∂xU)‖L∞

x
‖ρ∂m

x v‖L2τ2mM2
m. (5.22)

From (3.19), (5.5), and (5.6), similarly to (5.21) we obtain

L6≤C‖v‖2Xτ
(5.23)

for some positive constant C=C(r,G).
We summarize the bounds on the linear term L by collecting the upper bounds

of (5.7), (5.10), (5.13), (5.16), (5.18), (5.21), and (5.23), as

L≤Cτ−1‖v‖Xτ
(‖v‖Xτ

+‖v‖Zτ
)+C‖v‖2Yτ

(5.24)

for some sufficiently large positive constant C depending on r, the analyticity radius,
and the analytic norm of the underlying Euler flow.
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6. The bound on the force term

In this section we bound

F =
∑

m≥0

|〈ρ∂m
x F,ρ∂m

x v〉|τ2mM2
m≤F1+F2+F3+F4,

where by (2.10) we have

F =(φ(1−φ)+Φ∂yφ)U∂xU−∂yφΦ∂xaU
2−∂yyφA

2U−φ∂xP =F1+F2+F3+F4,

and we have denoted

Fi=
∑

m≥0

‖ρ∂m
x Fi‖L2‖ρ∂m

x v‖L2τ2mM2
m (6.1)

for all i∈{1, . . . ,4}. To simplify the analysis, as in (5.5), from (3.16)–(3.18) and
the Leibniz rule we may assume that the functions U(·,t)∂xU(·,t), ∂xa(·,t)U2(·,t),
A2(·,t)U(·,t), and ∂xP (·,t) are real-analytic for all t∈ [0,T ], with uniform analyticity
radius bounded from below by τ∗. That is, by possibly increasing G we may assume
that

‖∂j
x(U∂xU)‖L2

x
+‖∂j

x(∂xaU
2)‖L2

x
+‖∂j

x(A
2U)‖L2

x
+‖∂j

x(∂xP )‖L2
x
≤ G

τ j∗Mj

(6.2)

for all j≥0 and all t∈ [0,T ]. Here Mj is as defined in (3.1), and for all t∈ [0,T ] we
additionally have

τ(t)

τ∗
≤ 1

2
. (6.3)

6.1. F1 bound. From the definition of F1 (cf. (6.1)) and the Hölder inequality
we have

F1≤
∑

m≥0

(

‖ρφ(1−φ)‖L2
y
+‖ρΦ∂yφ‖L2

y

)

‖∂m
x (U∂xU)‖L2

x
‖ρ∂m

x v‖L2τ2mM2
m. (6.4)

In order to bound the L2
y-terms we first note that

‖ρφ(1−φ)‖L2
y
≤‖ρφ‖L2

y
‖1−φ‖L∞

y
≤C(α,θ) (6.5)

as long as ρ(y)φ(y)=1/〈y〉θ−α∈L2
y, i.e., if we impose that θ>α+1/2. Similarly, as

long as θ>α−1/2 we have ρ∂yφ∈L2
y, and if additionally θ>1, we have Φ∈L∞

y , so
that

‖ρΦ∂yφ‖L2
y
≤‖ρ∂yφ‖L2

y
‖Φ‖L∞

y
≤C(α,θ). (6.6)

Combining (6.2)–(6.6) we obtain

F1≤CG
∑

m≥0

1

τm∗ Mm
‖ρ∂m

x v‖L2τ2mM2
m≤CG

∑

m≥0

(

τ

τ∗

)m

Xm≤CG
∑

m≥0

1

2m
Xm,

(6.7)

so that from the discrete Cauchy-Schwartz inequality we have

F1≤C‖v‖Xτ
(6.8)

for some sufficiently large constant C=C(G,α,θ)>0.
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6.2. F2 bound. We obtain from the Hölder inequality that

F2=
∑

m≥0

‖ρ∂m
x (∂yφΦ∂xaU

2)‖L2‖ρ∂m
x v‖L2τ2mM2

m

≤
∑

m≥0

‖ρ∂yφ‖L2
y
‖Φ‖L∞

y
‖∂m

x (∂xaU
2)‖L2

x
‖ρ∂m

x v‖L2τ2mM2
m. (6.9)

Assuming that θ>α−1/2 and θ>1, we have

‖ρ∂yφ‖L2
y
‖Φ‖L∞

y
≤C(α,θ)

and therefore, by using (6.2)–(6.3) we obtain (similarly to (6.7)) that

F2≤CG
∑

m≥0

1

τm∗ Mm
‖ρ∂m

x v‖L2τ2mM2
m≤CG

∑

m≥0

1

2m
Xm. (6.10)

Thus we obtain by the Cauchy-Schwarz inequality that

F2≤C‖v‖Xτ
(6.11)

for some sufficiently large constant C=C(G,α,θ)>0.

6.3. F3 bound. In order to bound F3 we observe that

ρ(y)∂yyφ(y)= 〈y〉α
(

θ(2+θ)
y2

〈y〉4+θ
−θ

1

〈y〉2+θ

)

,

so that

|ρ(y)∂yyφ(y)|≤θ(2+θ)
1

〈y〉2+θ−α

for all y≥0. Therefore, if θ>α−3/2 we have that ρ∂yyφ∈L2
y([0,∞)), and hence

similarly to (6.8) we obtain

F3≤
∑

m≥0

‖ρ∂yyφ‖L2
y
‖∂m

x (A2U)‖L2
x
‖ρ∂m

x v‖L2τ2mM2
m≤C‖v‖Xτ

(6.12)

for some positive constant C=C(G,α,θ). In the above estimate we also used (6.2)
and (6.3).

6.4. F4 bound. Similarly to (6.8), it follows from ρφ∈L2
y([0,∞)) whenever

θ>α+1/2, (6.2), and (6.3) that

F4≤C‖v‖Xτ
(6.13)

for some positive constant C=C(G,α,θ).
Combining the estimates (6.8), (6.11), (6.12), and (6.13) we obtain that also

F ≤C‖v‖Xτ
(6.14)

for a suitable constant C>0 depending on the underlying Euler flow, α, and θ.

Appendix A. Details regarding the change of variables. Here we provide
details on how the Prandtl equations (1.1)–(1.8) become the system (2.6)–(2.10),
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under the change of variables (2.4)–(2.5). First, in order to use the assumption
u(x,Y )−U(x)→0 as Y →∞ for every x∈R, we substitute

ũ(x,Y,t)=u(x,Y,t)−U(x,t), (A.1)

w̃(x,Y,t)=−∂x

∫ Y

0

ũ(x,ζ,t)dζ. (A.2)

From the incompressibility condition (1.2), the boundary condition (1.5), and the
substitutions (A.1)–(A.2) we obtain

w(x,Y )=−∂x

∫ Y

0

u(x,ζ)dζ=−Y ∂xU+ w̃(x,Y ).

Therefore, (1.1) now reads

∂tũ−Y ∂xU∂Y ũ−∂Y Y ũ+ ũ∂xũ+ w̃∂Y ũ+(U∂xũ+ ũ∂xU)=−∂tU−U∂xU−∂xP =0,
(A.3)

since (U,P ) is the trace of a solution to the Euler equations. The boundary conditions
for ũ are

ũ(x,Y,t)|Y=0=−U(x,t), (A.4)

lim
Y→∞

ũ(x,Y,t)=0. (A.5)

The formulation (A.3)–(A.5) was successfully used in [4, 23, 31, 32] to obtain a local
in time analytic solution of the Prandtl equations which vanishes exponentially as
Y →∞. The need for this exponential decay is due to the term Y ∂xU∂Y ũ on the left
side of (A.3). In order to obtain solutions which decay only algebraically for large Y
we introduce the second change of variables

y=Y A(x,t), (A.6)

v̄(x,y,t)= ũ(x,Y,t), (A.7)

w̄(x,y,t)= w̃(x,Y,t), (A.8)

where A(x,t)>0 is a real-analytic function on R× [0,T ], to be determined (cf. (A.19)–
(A.20) below). Note that the change of variables (A.6)–(A.8) does not change the
boundary conditions as we still have (we used here that A(x,t)>0)

v̄(x,y,t)|y=0=−U(x,t), (A.9)

lim
y→∞

v̄(x,y,t)=0, (A.10)

for all x∈R and t≥0. By the chain rule, from (A.6)–(A.7) we obtain

∂tũ=∂tv̄+
y∂tA

A
∂y v̄, (A.11)

∂Y ũ=A∂y v̄, (A.12)

∂Y Y ũ=A2∂yy v̄, (A.13)

∂xũ=∂xv̄+
y∂xA

A
∂y v̄. (A.14)
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The incompressibility condition ∂xũ+∂Y w̃=0 now reads

∂xv̄+
y∂xA

A
∂y v̄+A∂yw̄=0.

Using that w̄(x,0,t)= w̃(x,0,t)=0, the above relation implies

w̄(x,y,t)=− 1

A(x,t)
∂x

∫ y

0

v̄(x,ζ,t)dζ− y∂xA(x,t)

A2(x,t)
v̄(x,y,t)+

∂xA(x,t)

A2(x,t)

∫ y

0

v̄(x,ζ,t)dζ

and, after denoting

W (v̄)(x,y,t)=

∫ y

0

v̄(x,ζ,t)dζ, (A.15)

the definition of w̄ becomes

w̄=− 1

A
∂xW (v̄)− y∂xA

A2
v̄+

∂xA

A2
W (v̄). (A.16)

Combining the identities (A.11)–(A.14) with (A.3) and (A.16), we obtain the evolution
equation for v̄:

∂tv̄+
y∂tA

A
∂y v̄−A2∂yy v̄−y∂xU∂y v̄+ v̄

(

∂xv̄+
y∂xA

A
∂y v̄

)

−
(

∂xW (v̄)+
y∂xA

A
v̄− ∂xA

A
W (v̄)

)

∂y v̄+U∂xv̄+
y∂xA

A
U∂y v̄+ v̄∂xU =0,

which may be rewritten as

∂tv̄−A2∂yy v̄+y

(

∂tA

A
−∂xU+

∂xA

A
U

)

∂y v̄

+ v̄∂xv̄−∂xW (v̄)∂y v̄+
∂xA

A
W (v̄)∂y v̄+U∂xv̄+ v̄∂xU =0. (A.17)

We have made the change of variables Y 7→y such that for a suitable choice of the
function A(x,t) we have

∂tA

A
−∂xU+

∂xA

A
U =0. (A.18)

Indeed, letting A(x,t) be the a solution of the initial value problem

∂tA+U∂xA=A∂xU, (A.19)

A(x,0)=1, (A.20)

on R× [0,T ], we have that (A.18) holds, and therefore (A.17) becomes

∂tv̄−A2∂yy v̄+ v̄∂xv̄−∂xW (v̄)∂y v̄+
∂xA

A
W (v̄)∂y v̄+U∂xv̄+ v̄∂xU =0. (A.21)

We note that the since U(x,t) (and hence also ∂xU(x,t)) is a real-analytic function,
we obtain from the Cauchy-Kowalewski Theorem that if T is sufficiently small, there
exists a unique real-analytic solution A(x,t) to (A.19)–(A.20). Using characteristics,
one may solve for A(x,t) explicitly in terms of the flow map associated to the transport
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equation ∂tA+U∂xA=0, and it is not hard to check that by possibly reducing T we
have A(x,t)≥1/2 on R× [0,T ]. The third change of variables

v(x,y,t)= v̄(x,y,t)+φ(y)U(x,t), (A.22)

where φ(y)=1/〈y〉θ for some θ>0, is made so that the boundary terms of v at both
Y =0 and Y =∞ vanish, that is

v(x,y,t)|y=0=0 and lim
y→∞

v(x,y,t)=0

for all (x,t)∈R× [0,T ]. Using (A.21), the evolution equation satisfied by v is

∂tv−φ∂tU−A2 (∂yyv−∂yyφU)

+(v−φU)(∂xv−φ∂xU)−(∂xW (v)−Φ∂xU)(∂yv−∂yφU)

+
∂xA

A
(W (v)−ΦU)(∂yv−∂yφU)+U(∂xv−φ∂xU)+(v−φU)∂xU =0,

which after a short computation may be rewritten as

∂tv−A2∂yyv+N(v)+L(v)=F, (A.23)

where

N(v)=v∂xv−∂xW (v)∂yv+∂xaW (v)∂yv, (A.24)

L(v)=∂xW (v)∂yφU+∂xv(1−φ)U

+∂yv

(

Φ∂xU− ∂xA

A
ΦU

)

−W (v)
∂xA

A
∂yφU+v(1−φ)∂xU, (A.25)

F =(φ(1−φ)+Φ∂yφ)U∂xU− ∂xA

A
∂yφΦU

2−A2∂yyφU−φ∂xP, (A.26)

and Φ(y)=
∫ y

0
φ(ζ)dζ.
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