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WAVE PROPAGATION IN WAVEGUIDES WITH RANDOM

BOUNDARIES∗

RICARDO ALONSO† , LILIANA BORCEA‡ , AND JOSSELIN GARNIER§

Abstract. We give a detailed analysis of long range cumulative scattering effects from rough
boundaries in waveguides. We assume small random fluctuations of the boundaries and obtain a
quantitative statistical description of the wave field. The method of solution is based on coordinate
changes that straighten the boundaries. The resulting problem is similar from the mathematical
point of view to that of wave propagation in random waveguides with interior inhomogeneities. We
quantify the net effect of scattering at the random boundaries and show how it differs from that of
scattering by internal inhomogeneities.
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1. Introduction

We consider acoustic waves propagating in a waveguide with axis along the range
direction z. In general, the waveguide effect may be due to boundaries or the variation
of the wave speed with cross-range, as described for example in [13, 10]. We consider
here only the case of waves trapped by boundaries, and take for simplicity the case
of two-dimensional waveguides with cross-section D given by a bounded interval of
the cross-range x. The results extend to three-dimensional waveguides with bounded,
simply connected cross-section D⊂R

2.

The pressure field p(t,x,z) satisfies the wave equation

[
∂2
z +∂2

x−
1

c2(x)
∂2
t

]
p(t,x,z)=F (t,x,z), (1.1)

with wave speed c(x) and source excitation modeled by F (t,x,z). Since the equation
is linear, it suffices to consider a point-like source located at (x0,z=0) and emitting
a pulse signal f(t),

F (t,x,z)=f(t)δ(x−x0)δ(z). (1.2)

Solutions for distributed sources are easily obtained by superposing the wave fields
computed here.

The boundaries of the waveguide are rough in the sense that they have small
variations around the values x=0 and x=X, on a length scale comparable to the
wavelength. Explicitly, we let

B(z)≤x≤T (z), where |B(z)|≪X, |T (z)−X|≪X, (1.3)
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Fig. 1.1. Schematic of the problem setup. The source is at coordinates (x=x0,z=0) and emits

a pulse f(t) in a waveguide with fluctuating boundaries around the values x=0 and x=X.

and take either Dirichlet boundary conditions

p(t,x,z)=0, for x=B(z) and x=T (z), (1.4)

or mixed, Dirichlet and Neumann conditions

p(t,x=B(z),z)=0,
∂

∂n
p(t,x=T (z),z)=0, (1.5)

where n is the unit normal to the boundary x=T (z). We refer to figure 1.1 for an
illustration of the setup and the system of coordinates.

The goal of the paper is to quantify the long range effect of scattering at the rough
boundaries. More explicitly, to characterize in detail the statistics of the random field
p(t,x,z). This is useful in sensor array imaging, for designing robust source or target
localization methods, as shown recently in [3] in waveguides with internal inhomo-
geneities. Examples of other applications are in long range secure communications
and time reversal in shallow water or in tunnels [8, 14].

The paper is organized as follows. We begin in Section 2 with the case of ideal
waveguides, with straight boundaries B(z)=0 and T (z)=X, where energy propagates
via guided modes that do not interact with each other. Rough, randomly perturbed
boundaries are introduced in Section 3. The wave speed is assumed to be known and
to depend only on the cross-range. Randomly perturbed wave speeds due to internal
inhomogeneities are considered in detail in [13, 12, 4, 8, 5]. Our approach in Section 3
uses changes of coordinates that straighten the randomly perturbed boundaries. We
carry out the analysis in detail for the case of Dirichlet boundary conditions (1.4) in
sections 3 and 4, and discuss the results in Section 5. The extension to the mixed
boundary conditions (1.5) is presented in Section 6. We end in Section 7 with a
summary.

Our approach, based on changes of coordinates that straighten the boundary,
leads to a transformed problem that is similar from the mathematical point of view
to that in waveguides with interior inhomogeneities, so we can use the techniques
from [13, 12, 4, 8, 5] to obtain the long range statistical characterization of the wave
field in Section 4. However, the cumulative scattering effects of rough boundaries
are different from those of internal inhomogeneities, as described in Section 5. We
quantify these effects by estimating in a high frequency regime three important, mode
dependent length scales: the scattering mean free path, which is the distance over
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which the modes lose coherence; the transport mean free path, which is the distance
over which the waves forget the initial direction, and the equipartition distance, over
which the energy is uniformly distributed among the modes, independently of the
initial conditions at the source. We show that the random boundaries affect most
strongly the high order modes, which lose coherence rapidly, that is they have a short
scattering mean free path. Furthermore, these modes do not exchange efficiently
energy with the other modes, so they have a longer transport mean free path. The
lower order modes can travel much longer distances before they lose their coherence
and remarkably, their scattering mean free path is similar to the transport mean free
path and to the equipartition distance. That is to say, in waveguides with random
boundaries, when the waves travel distances that exceed the scattering mean free
path of the low order modes, not only all the modes are incoherent, but also the
energy is uniformly distributed among them. At such distances the wave field has
lost all information about the cross-range location of the source in the waveguide.
These results can be contrasted with the situation with waveguides with interior
random inhomogeneities, in which the main mechanism for the loss of coherence of
the fields is the exchange of energy between neighboring modes [13, 12, 4, 8, 5], so
the scattering mean free paths and the transport mean free paths are similar for all
the modes. The low order modes lose coherence much faster than in waveguides with
random boundaries, and the equipartition distance is longer than the scattering mean
free path of these modes.

2. Ideal waveguides

Ideal waveguides have straight boundaries x=0 and x=X. Using separation of
variables, we write the wave field as a superposition of waveguide modes. A waveguide
mode is a monochromatic wave P (t,x,z)= P̂ (ω,x,z)e−iωt with frequency ω, where

P̂ (ω,x,z) satisfies the Helmholtz equation
[
∂2
z +∂2

x+ω2/c2(x)
]
P̂ (ω,x,z)=0, z∈R, x∈ (0,X), (2.1)

and either Dirichlet or mixed, Dirichlet and Neumann homogeneous boundary con-
ditions. The operator ∂2

x+ω2/c2(x) with either of these conditions is self-adjoint
in L2(0,X), and its spectrum consists of an infinite number of discrete eigenvalues
{λj(ω)}j≥1, assumed sorted in descending order. There is a finite number N(ω) of
positive eigenvalues and an infinite number of negative eigenvalues. The eigenfunc-
tions φj(ω,x) are real and form an orthonormal set

∫ X

0

dxφj(ω,x)φl(ω,x)= δjl, j,l≥1, (2.2)

where δjl is the Kronecker delta symbol.
For example, in homogeneous waveguides with c(x)= co, and for the Dirichlet

boundary conditions, the eigenfunctions and eigenvalues are

φj(x)=

√
2

X
sin

(
πjx

X

)
, λj(ω)=

( π

X

)2 [
(kX/π)2−j2

]
, j=1,2, . . . , (2.3)

and the number of propagating modes is N(ω)= ⌊kX/π⌋, where ⌊y⌋ is the integer
part of y and k=ω/co is the wavenumber.

To simplify the analysis, we assume that the source emits a pulse f(t) with Fourier
transform

f̂(ω)=

∫ ∞

−∞
dteiωtf(t),
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supported in a frequency band in which the number of positive eigenvalues is fixed,
so we can set N(ω)=N . We also assume that there is no zero eigenvalue, and that
the eigenvalues are simple. The positive eigenvalues define the modal wavenumbers
βj(ω)=

√
λj(ω) of the forward and backward propagating modes

P̂j(ω,x,z)=φj(ω,x)e
±iβj(ω)z, j=1, . . . ,N.

The infinitely many remaining modes are evanescent

P̂j(ω,x,z)=φj(ω,x)e
−βj(ω)|z|, j >N,

with wavenumber βj(ω)=
√
−λj(ω).

The wave field p(t,x,z), due to the source located at (x0,0), is given by the

superposition of P̂j(ω,x,z),

p(t,x,z)

=

∫
dω

2π
e−iωt

[
N∑

j=1

âj,o(ω)√
βj(ω)

eiβj(ω)zφj(ω,x)+

∞∑

j=N+1

êj,o(ω)√
βj(ω)

e−βj(ω)zφj(ω,x)

]

1(0,∞)(z)

+

∫
dω

2π
e−iωt

[
N∑

j=1

â−
j,o(ω)√
βj(ω)

e−iβj(ω)zφj(ω,x)+
∞∑

j=N+1

ê−
j,o(ω)√
βj(ω)

eβj(ω)zφj(ω,x)

]

1(−∞,0)(z).

The first term is supported at positive range, and it consists of forward going modes
with amplitudes âj,o/

√
βj and evanescent modes with amplitudes êj,o/

√
βj . The

second term is supported at negative range, and it consists of backward going and
evanescent modes. The modes do not interact with each other and their amplitudes

âj,o(ω)= â−
j,o(ω)=

f̂(ω)

2i
√

βj(ω)
φj(ω,x0), j=1, . . . ,N,

êj,o(ω)= ê−j,o(ω)=− f̂(ω)

2
√

βj(ω)
φj(ω,x0), j >N (2.4)

are determined by the source excitation (1.2), which gives the jump conditions at
z=0,

p̂(ω,x,z=0+)− p̂(ω,x,z=0−)=0,

∂z p̂(ω,x,z=0+)−∂z p̂(ω,x,z=0−)= f̂(ω)δ(x−x0). (2.5)

We show next how to use the solution in the ideal waveguides as a reference for
defining the wave field in the case of randomly perturbed boundaries.

3. Waveguides with randomly perturbed boundaries

We consider a randomly perturbed section of an ideal waveguide, over the range
interval z∈ [0,L/ε2]. There are no perturbations for z<0 and z>L/ε2. The domain
of the perturbed section is denoted by

Ωε=
{
(x,z)∈R

2, B(z)≤x≤T (z), 0<z<L/ε2
}
, (3.1)

where

B(z)= εXµ(z), T (z)=X[1+εν(z)], ε≪1. (3.2)
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Here ν and µ are independent, zero-mean, stationary, and ergodic random processes
in z, with covariance function

Rν(z)=E[ν(z+s)ν(s)] and Rµ(z)=E[µ(z+s)µ(s)]. (3.3)

We assume that ν(z) and µ(z) are bounded, at least twice differentiable with almost
sure bounded derivatives, and have enough decorrelation1. The covariance functions
are normalized so that Rν(0) and Rµ(0) are of order one, and the magnitude of the
fluctuations is scaled by the small, dimensionless parameter ε.

That the random fluctuations are confined to the range interval z∈ (0,L/ε2),
with L an order one length scale, can be motivated as follows: By the hyperbolicity
of the wave equation, we know that if we observe p(t,x,z) over a finite time window
t∈ (0,T ε), the wave field is affected only by the medium within a finite range Lε from
the source, directly proportional to the observation time T ε. We wish to choose T ε

large enough in order to capture the cumulative long range effects of scattering from
the randomly perturbed boundaries. It turns out that these effects become significant
over time scales of order 1/ε2, so we take Lε=L/ε2. Furthermore, we are interested
in the wave field to the right of the source, at positive range. We will see that the
backscattered field is small and can be neglected when the conditions of the forward
scattering approximation are satisfied (see subsection 4.3). Thus, the medium on the
left of the source has negligible influence on p(t,x,z) for z>0, and we may suppose
that the boundaries are unperturbed at negative range. The analysis can be carried
out when the conditions of the forward scattering approximation are not satisfied, at
considerable complication of the calculations, as was done in [9] for waveguides with
internal inhomogeneities.

We assume here and in sections 4 and 5 the Dirichlet boundary conditions (1.4).
The extensions to the mixed boundary conditions (1.5) are presented in Section 6.
The main result of this section is a closed system of random differential equations for
the propagating waveguide modes, which describes the cumulative effect of scattering
of the wave field by the random boundaries. We derive it in the following subsections
and we analyze its solution in the long range limit in Section 4.

3.1. Change of coordinates. We reformulate the problem in the randomly
perturbed waveguide region Ωε by changing coordinates that straighten the bound-
aries,

x=B(z)+[T (z)−B(z)]
ξ

X
, ξ∈ [0,X]. (3.4)

We take this coordinate change because it is simple, but we show later, in Section
4.4.2, that the result is independent of the choice of the change of coordinates. In the
new coordinate system, let

u(t,ξ,z)=p

(
t,B(z)+[T (z)−B(z)]

ξ

X
,z

)
, p(t,x,z)=u

(
t,
(x−B(z))X

T (z)−B(z)
,z

)
. (3.5)

We obtain using the chain rule that the Fourier transform û(ω,ξ,z) satisfies the
equation

Lεû(ω,ξ,z)=0, (3.6)

1Explicitly, they are ϕ-mixing processes with ϕ∈L1/2(R+), as stated in [15, 4.6.2].
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for z∈ (0,L/ε2) and ξ∈ (0,X), where

Lε=∂2
z +

[
1+[(X−ξ)B′+ξT ′]2

]

(T −B)2
X2∂2

ξ −
2[(X−ξ)B′+ξT ′]

T −B
X∂2

ξz

+

{
2B′(T ′−B′)

(T −B)2
− B′′

T −B
+

ξ

X

[
2

(
T ′−B′

T −B

)2

− T ′′−B′′

T −B

]}
X∂ξ

+
ω2

c2
(
B+(T −B)ξ/X

) . (3.7)

Here the prime stands for the z-derivative, and the boundary conditions at ξ=0 and
X are

û(ω,0,z)= û(ω,X,z)=0. (3.8)

Substituting Definition (3.2) of B(z) and T (z), and expanding the coefficients in (3.7)
in series of ε, we obtain that

(
L0+εL1+ε2L2+ · · ·

)
û(ω,ξ,z)=0, (3.9)

where

L0=∂2
z +∂2

ξ +ω2/c2(ξ) (3.10)

is the unperturbed Helmholtz operator. The first- and second-order perturbation
operators are given by

L1+εL2= qε(ξ,z)∂2
ξz+Mε(ω,ξ,z), (3.11)

with coefficient

qε(ξ,z)=−2[(X−ξ)µ′(z)+ξν′(z)][1−ε(ν(z)−µ(z))] , (3.12)

and differential operator

Mε=−
{
2(ν−µ)−3ε(ν−µ)

2−ε [(X−ξ)µ′+ξν′]
2
}
∂2
ξ

−{[(X−ξ)µ′′+ξν′′] [1−ε(ν−µ)]−2ε(ν′−µ′)[(X−ξ)µ′+ξν′]}∂ξ

+ω2 [(X−ξ)µ+ξν]∂ξ(c
−2)+

εω2

2
[(X−ξ)µ+ξν]

2
∂2
ξ (c

−2). (3.13)

The dots in (3.9) denote small corrections in the expansion of Lε. These corrections
have the form of a sum of the same partial derivatives as in L0+εL1+ε2L2 but with
coefficients which come from the third-order corrections of the expansions (in ε) of
the rational expressions containing B, T , B′, T ′, B′′, T ′′, and of c2(B+(T −B)ξ/X)
in (3.7). These coefficients can be bounded by O(ε3) provided µ(z) and ν(z) have
almost sure bounded second-order derivatives (in z) and the deterministic velocity
profile c(x) has bounded third-order derivatives (in x), which we assume from now
on. As a result the corrections in (3.9) will give rise to O(ε3) terms in the forthcoming
equations (3.17-3.18-...) but they will be negligible as ε→0 over the long range scale
L/ε2 considered here.
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3.2. Wave decomposition and mode coupling. Equation (3.9) is not
separable, and its solution is not a superposition of independent waveguide modes,
as was the case in ideal waveguides. However, we have a perturbation problem, and
we can use the completeness of the set of eigenfunctions {φj(ω,ξ)}j≥1 in the ideal
waveguide to decompose û in its propagating and evanescent components,

û(ω,ξ,z)=

N∑

j=1

φj(ω,ξ)ûj(ω,z)+

∞∑

j=N+1

φj(ω,ξ)v̂j(ω,z). (3.14)

The propagating components ûj(ω,z) are decomposed further in the forward and

backward going parts, with amplitudes âj(ω,z) and b̂j(ω,z) defined by

ûj(ω,z)=
1√
βj(ω)

(
âj(ω,z)e

iβj(ω)z+ b̂j(ω,z)e
−iβj(ω)z

)
, j=1, . . . ,N, (3.15)

∂zûj(ω,z)= i
√

βj(ω)
(
âj(ω,z)e

iβj(ω)z− b̂j(ω,z)e
−iβj(ω)z

)
, j=1, . . . ,N. (3.16)

This choice is motivated by the behavior of the solution in ideal waveguides, where
the amplitudes (âj , b̂j) are independent of range and completely determined by the
source excitation. The expression (3.14) of the wave field is similar to that in ideal
waveguides, except that we have both forward and backward going modes, in addition
to the evanescent modes, and the amplitudes of the modes are random functions of z.

The modes are coupled due to scattering at the random boundaries, as described
by the following system of random differential equations obtained by substituting
(3.14) in (3.9), and using the orthogonality relation (2.2) of the eigenfunctions:

∂z âj = iε

N∑

l=1

[
Cε

jl âle
i(βl−βj)z+Cε

jl b̂le
−i(βl+βj)z

]

+
iε

2
√

βj

∞∑

l=N+1

e−iβjz
(
Qε

jl∂z v̂l+Mε
jl v̂l
)
+O(ε3), (3.17)

∂z b̂j =−iε

N∑

l=1

[
Cε

jl âle
i(βl+βj)z+Cε

jl b̂le
−i(βl−βj)z

]

− iε

2
√

βj

∞∑

l=N+1

eiβjz
(
Qε

jl∂z v̂l+Mε
jl v̂l
)
+O(ε3). (3.18)

The bar denotes complex conjugation, and the coefficients are defined below. Note
that, from now on, we do not write explicitly the ω-dependence in the equations,
except in the statements of the propositions and theorems.

The forward going amplitudes are determined at z=0 by the source excitation
(recall (2.4))

âj(0)= âj,o, j=1, . . . ,N, (3.19)

and we have

b̂j

( L

ε2

)
=0, j=1, . . . ,N, (3.20)
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because there is no incoming wave at the end of the domain. The equations for the
amplitudes of the evanescent modes indexed by j >N are

(
∂2
z −β2

j

)
v̂j

=−ε
N∑

l=1

2
√

βj

[
Cε

jl âle
iβlz+Cε

jl b̂le
−iβlz

]
−ε

∞∑

l=N+1

(
Qε

jl∂z v̂l+Mε
jl v̂l
)
+O(ε3),

(3.21)

and we complement them with the decay condition at infinity

lim
z→±∞

v̂j(z)=0, j >N. (3.22)

The coefficients

Cε
jl(z)=C

(1)
jl (z)+εC

(2)
jl (z), for j≥1 and l=1, . . . ,N (3.23)

are defined by

C
(1)
jl (z)=

1

2
√

βjβl

∫ X

0

dξφj(ξ)Al(ξ,z)φl(ξ), (3.24)

C
(2)
jl (z)=

1

2
√

βjβl

∫ X

0

dξφj(ξ)Bl(ξ,z)φl(ξ), (3.25)

in terms of the linear differential operators

Al(ξ,z)=−2(ν−µ)∂2
ξ −2iβl [(X−ξ)µ′+ξν′]∂ξ− [(X−ξ)µ′′+ξν′′]∂ξ

+ω2 [(X−ξ)µ+ξν]∂ξ(c
−2), (3.26)

and

Bl(ξ,z)=
{
3(ν−µ)2+[(X−ξ)µ′+ξν′]

2
}
∂2
ξ +2iβl(ν−µ)[(X−ξ)µ′+ξν′]∂ξ

+{(ν−µ)[(X−ξ)µ′′+ξν′′]+2(ν′−µ′)[(X−ξ)µ′+ξν′]}∂ξ

+
ω2

2
[(X−ξ)µ+ξν]

2
∂2
ξ (c

−2). (3.27)

We also let, for j≥1 and l>N ,

Qε
jl(z)=

∫ X

0

dξqε(ξ,z)φj(ξ)∂ξφl(ξ)=Q
(1)
jl (z)+εQ

(2)
jl (z),

Mε
jl(z)=

∫ X

0

dξφj(ξ)Mε(ξ,z)φl(ξ)=M
(1)
jl (z)+εM

(2)
jl (z). (3.28)

3.3. Analysis of the evanescent modes. We solve equations (3.21) with
radiation conditions (3.22) in order to express the amplitude of the evanescent modes
in terms of the amplitudes of the propagating modes. The substitution of this ex-
pression in (3.17)-(3.18) gives a closed system of equations for the amplitudes of the
propagating modes, as obtained in the next section.

We begin by rewriting (3.21) in short as

(
∂2
z −β2

j

)
v̂j+ε

∞∑

l=N+1

(
Qε

jl∂z v̂l+Mε
jl v̂l
)
=−εgεj , j >N, (3.29)
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where

gεj (z)=g
(1)
j (z)+εg

(2)
j (z)+O(ε3), j >N, (3.30)

and

g
(r)
j (z)=2

√
βj

N∑

l=1

[
C

(r)
jl (z) âl(z)e

iβlz+C
(r)
jl (z) b̂l(z)e

−iβlz
]
, r=1,2 and j >N.

(3.31)
Using the Green’s function Gj(z)= e−βj |z|/(2βj), which satisfies

∂2
zGj−β2

jGj =−δ(z), lim
|z|→∞

Gj =0, j >N, (3.32)

and by integrating by parts, we get

[(I−εΨ)v̂]j (z)=
ε

2βj

∫ ∞

−∞
dse−βj |s|gεj (z+s), j >N. (3.33)

Here I is the identity and Ψ is the linear integral operator

[Ψv̂]j(z)=
1

2βj

∞∑

l=N+1

∫ ∞

−∞
dse−βj |s|(Mε

jl−∂zQ
ε
jl

)
(z+s)v̂l(z+s)

+
1

2

∞∑

l=N+1

∫ ∞

−∞
dse−βj |s|sgn(s)Qε

jl(z+s)v̂l(z+s), (3.34)

which acts on the infinite vector v̂=(v̂N+1, v̂N+2, . . .) and returns an infinite vector
with entries indexed by j, for j >N. The solvability of Equation (3.33) follows from
the following lemma proved in Appendix A.

Lemma 3.1. Let LN be the space of square summable sequences of L2(R) functions
with linear weights, equipped with the norm

‖v̂‖LN
=

√√√√
∞∑

j=N+1

(
j‖v̂j‖L2(R)

)2
.

The linear operator Ψ:LN →LN , defined component wise by (3.34), is bounded.

Thus, the inverse operator is

(I−εΨ)−1= I+εΨ+ · · · ,

and the solution of (3.33) is given by

v̂j(z)=
ε

2βj

∫ ∞

−∞
dse−βj |s|g(1)j (z+s)+O(ε2). (3.35)

Using Definition (3.31) and the fact that the z derivatives of âl and b̂l are of order ε,
we get

v̂j(z)=
ε√
βj

N∑

l=1

âl(z)e
iβlz

∫ ∞

−∞
dse−βj |s|+iβlsC

(1)
jl (z+s)
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+
ε√
βj

N∑

l=1

b̂l(z)e
−iβlz

∫ ∞

−∞
dse−βj |s|−iβlsC

(1)
jl (z+s)+O(ε2). (3.36)

We also need

ŵj(z)=∂z v̂j(z), (3.37)

which we compute by taking a z derivative in (3.29) and using the radiation condition
ŵj(z)→0 as |z|→∞. The resulting equation is similar to (3.33):

[
(I−εΨ̃)w

]
j
(z)=

ε

2

∫ ∞

−∞
dse−βj |s|

[
sgn(s)gεj (z+s)+

∞∑

l=N+1

Mε
jl(z+s)v̂l(z+s)

]
, (3.38)

where we integrated by parts and introduced the linear integral operator

[Ψ̃ŵ]j(z)=
1

2

∞∑

l=N+1

∫ ∞

−∞
dse−βj |s|sgn(s)Qε

jl(z+s)ŵl(z+s). (3.39)

This operator is very similar to Ψ and it is bounded, as follows from the proof in
Appendix A. Moreover, substituting expression (3.36) of v̂l in (3.38) we obtain, after
a calculation that is similar to that in Appendix A, that the series in the index l is
convergent. Therefore, the solution of (3.38) is

ŵj(z)=
ε

2

∫ ∞

−∞
dse−βj |s|sgn(s)gεj (z+s)+O(ε2) (3.40)

and, more explicitly,

∂z v̂j(z)= ε
√

βj

N∑

l=1

âl(z)e
iβlz

∫ ∞

−∞
dse−βj |s|+iβlssgn(s)C

(1)
jl (z+s)

+ε
√
βj

N∑

l=1

b̂l(z)e
−iβlz

∫ ∞

−∞
dse−βj |s|−iβlssgn(s)C

(1)
jl (z+s)+O(ε2).

(3.41)

3.4. The closed system of equations for the propagating modes. The
substitution of equations (3.36) and (3.41) in (3.17) and (3.18) gives the main result
of this section: a closed system of differential equations for the propagating mode
amplitudes. We write it in compact form using the 2N -vector

X(z)=

[
â(z)

b̂(z)

]
, (3.42)

obtained by concatenating vectors â(z) and b̂(z) with components âj(z) and b̂j(z),
for j=1, . . . ,N . We have

∂zX(z)= εH(z)X(z)+ε2G(z)X(z)+O(ε3), (3.43)

with 2N×2N complex matrices given in block form by

Hega(z)=

[
H(a)(z) H(b)(z)

H(b)(z) H(a)(z)

]
, G(z)=

[
G(a)(z) G(b)(z)

G(b)(z) G(a)(z)

]
. (3.44)
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The entries of the blocks in H are

H
(a)
jl (z)= iC

(1)
jl (z)ei(βl−βj)z, H

(b)
jl (z)= iC

(1)
jl (z)e−i(βl+βj)z, (3.45)

and the entries of the blocks in G are

G
(a)
jl (z)= iei(βl−βj)zC

(2)
jl (z)+ iei(βl−βj)z

∞∑

l′=N+1

M
(1)

jl′ (z)

2
√

βjβl′

∫ ∞

−∞

dse−βl′ |s|+iβlsC
(1)

l′l (z+s)

+iei(βl−βj)z
∞∑

l′=N+1

Q
(1)

jl′ (z)

2
√

βjβl′

∫ ∞

−∞

dse−βl′ |s|+iβlsβl′ sgn(s)C
(1)

l′l (z+s), (3.46)

G
(b)
jl (z)= ie−i(βl+βj)zC

(2)
jl (z)− ie−i(βl+βj)z

∞∑

l′=N+1

M
(1)

jl′ (z)

2
√

βjβl′

∫ ∞

−∞

dse−βl′ |s|−iβlsC
(1)

l′l (z+s)

+ie−i(βl+βj)z
∞∑

l′=N+1

Q
(1)

jl′ (z)

2
√

βjβl′

∫ ∞

−∞

dse−βl′ |s|−iβlsβl′ sgn(s)C
(1)

l′l (z+s). (3.47)

The coefficients in (3.45)-(3.47) are defined in terms of the random functions ν(z),
µ(z), their derivatives, and the following integrals:

cν,jl=
1

2
√

βjβl

∫ X

0

dξφj(ξ)
[
−2∂2

ξ +ω2ξ∂ξc
−2(ξ)

]
φl(ξ), (3.48)

cµ,jl=
1

2
√

βjβl

∫ X

0

dξφj(ξ)
[
2∂2

ξ +ω2(X−ξ)∂ξc
−2(ξ)

]
φl(ξ), (3.49)

dν,jl=− 1

2
√

βjβl

∫ X

0

dξξφj(ξ)∂ξφl(ξ), (3.50)

dµ,jl=− 1

2
√

βjβl

∫ X

0

dξ (X−ξ)φj(ξ)∂ξφl(ξ), (3.51)

which satisfy the symmetry relations

cν,jl= cν,lj ,

cµ,jl= cµ,lj ,

dν,jl+dν,lj =
δjl

2
√

βjβl

,

dµ,jl+dµ,lj =− δjl

2
√

βjβl

. (3.52)

We have from (3.24) that

C
(1)
jl (z)=ν(z)cν,jl+[ν′′(z)+2iβlν

′(z)]dν,jl+µ(z)cµ,jl+[µ′′(z)+2iβlµ
′(z)]dµ,jl,

(3.53)

and from (3.28), (3.12), (3.13) that

Q
(1)
jl′ (z)

2
√

βjβl′
=2[ν′(z)dν,jl′ +µ′(z)dµ,jl′ ] ,

M
(1)
jl′ (z)

2
√

βjβl′
=ν(z)cν,jl′ +µ(z)cµ,jl′ +ν′′(z)dν,jl′ +µ′′(z)dµ,jl′ . (3.54)
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4. The long range limit

In this section we use the system (3.43) to quantify the cumulative scattering
effects at the random boundaries. We begin with the long range scaling chosen so that
these effects are significant. Then, we explain why the backward going amplitudes are
small and can be neglected. This is the forward scattering approximation, which gives
a closed system of random differential equations for the amplitudes {âj}j=1,...,N . We
use this system to derive the main result of the section, which says that the amplitudes
{âj}j=1,...,N converge in distribution as ε→0 to a diffusion Markov process, whose
generator we compute explicitly. This allows us to calculate all the statistical moments
of the wave field.

4.1. Long range scaling. It is clear from (3.42) that since the right hand
side is small, of order ε, there is no net effect of scattering from the boundaries over
ranges of order one. If we considered ranges of order 1/ε, the resulting equation
would have an order one right hand side given by H(z/ε)X(z/ε), but this becomes
negligible as well for ε→0 because the expectation of H(z/ε) is zero [5, Chapter 6].
We need longer ranges, of order 1/ε2, to see the effect of scattering from the randomly
perturbed boundaries.

Let then âεj , b̂
ε
j be the rescaled amplitudes

âεj(z)= âj

( z

ε2

)
, b̂εj(z)= b̂j

( z

ε2

)
, j=1, . . . ,N, (4.1)

and obtain from (3.43) that Xε(z)=X(z/ε2) satisfies the equation

dXε(z)

dz
=

1

ε
H
( z

ε2

)
X

ε(z)+G
( z

ε2

)
X

ε(z), 0<z<L, (4.2)

with boundary conditions

âεj(0)= âj,o, b̂εj(L)=0, j=1, . . . ,N. (4.3)

We can solve this using the complex valued, random propagator matrix Pε(z)∈
C

2N×2N , which is the solution of the initial value problem

dPε(z)

dz
=

1

ε
H
( z

ε2

)
Pε(z)+G

( z

ε2

)
Pε(z) for z>0, and Pε(0)= I. (4.4)

The solution is

X
ε(z)=Pε(z)

[
â0

b̂
ε(0)

]
,

and b̂
ε(0) can be eliminated from the boundary identity

[
â
ε(L)
0

]
=Pε(L)

[
â0

b̂
ε(0)

]
. (4.5)

Furthermore, it follows from the symmetry relations (3.44) satisfied by the matrices
H and G that the propagator has the block form

Pε(z)=

[
Pε,a(z) Pε,b(z)

Pε,b(z) Pε,a(z)

]
, (4.6)

where Pε,a(z) and Pε,b(z) are N×N complex matrices. The first block Pε,a describes
the coupling between different forward going modes, while Pε,b describes the coupling
between forward going and backward going modes.
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4.2. The diffusion approximation. The limit Pε as ε→0 can be obtained
and identified as a multi-dimensional diffusion process, meaning that the entries of
the limit matrix satisfy a system of linear stochastic equations. This follows from the
application of the diffusion approximation theorem proved in [18], which applies to
systems of the general form

dX ε(z)

dz
=

1

ε
F
(
X ε(z),Y

( z

ε2

)
,
z

ε2

)
+G

(
X ε(z),Y

( z

ε2

)
,
z

ε2

)
for z>0, and X ε(0)=Xo, (4.7)

for a vector or matrix X ε(z) with real entries. The system is driven by a stationary,
mean zero and mixing random process Y(z). The functions F(χ,y,τ) and G(χ,y,τ)
are assumed at most linearly growing and smooth in χ, and the dependence in τ
is periodic or almost periodic [5, Section 6.5]. The function F(χ,y,τ) must also be
centered: For any fixed χ and τ , E[F(χ,Y(0),τ)]=0.

The diffusion approximation theorem states that as ε→0, X ε(z) converges in dis-
tribution to the diffusion Markov process X (z) with generator L, acting on sufficiently
smooth functions ϕ(χ) as

Lϕ(χ)= lim
T→∞

1

T

∫ T

0

dτ

∫ ∞

0

dzE [F(χ,Y(0),τ) ·∇χ [F(χ,Y(z),τ) ·∇χϕ(χ)]]

+ lim
T→∞

1

T

∫ T

0

dτE [G(χ,Y(0),τ) ·∇χϕ(χ)] . (4.8)

To apply it to the initial value problem (4.4) for the complex 2N×2N matrix Pε(z),
we let X ε(z) be the matrix obtained by concatenating the absolute values and phases
of the entries in Pε(z). The driving random process Y is given by µ(z), ν(z), and
their derivatives, which are stationary, mean zero, and mixing by assumption. The
expression of functions F and G follows from (4.4) and the chain rule. The dependence
on the fast variable τ = z/ε2 is in the arguments of the cos and sin functions, the real
and imaginary parts of the complex exponentials in (3.45)-(3.47).

4.3. The forward scattering approximation. When we use the diffusion-
approximation theorem in [18], we obtain that the limit entries of Pε,b(z) are coupled
to the limit entries of Pε,a(z) through the coefficients

R̂ν(βj+βl)=2

∫ ∞

0

dzRν(z)cos[(βj+βl)z],

R̂µ(βj+βl)=2

∫ ∞

0

dzRµ(z)cos[(βj+βl)z],

for j,l=1, . . . ,N . Here R̂ν and R̂µ are the power spectral densities of the processes
ν and µ, the Fourier transform of their covariance functions. They are evaluated at
the sum of the wavenumbers βj+βl because the phase factors present in the matrix
H(b)(z) are ±(βj+βl)z. The limit entries of Pε,a(z) are coupled to each other through

the power spectral densities evaluated at the difference of the wavenumbers, R̂ν(βj−
βl) and R̂µ(βj−βl), for j,l=1, . . . ,N , because the phase factors in the matrix H(a)(z)
are ±(βj−βl)z. Thus, if we assume that the power spectral densities are small at
large frequencies, we may make the approximation

R̂ν(βj+βl)≈0, R̂µ(βj+βl)≈0, for j,l=1, . . . ,N, (4.9)
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which implies that we can neglect coupling between the forward and backward prop-
agating modes as ε→0. The forward going modes remain coupled to each other, be-
cause at least some combinations of the indexes j,l, for instance those with |j− l|=1,

give non-zero coupling coefficients R̂ν(βj−βl) and R̂µ(βj−βl).
Because the backward going mode amplitudes satisfy the homogeneous end con-

dition b̂εj(L)=0, and because they are asymptotically uncoupled from {âεj}j=1,...,N ,
we can set them to zero. This is the forward scattering approximation, where the
forward propagating mode amplitudes satisfy the closed system

dâε

dz
=

1

ε
H(a)

( z

ε2

)
â
ε+G(a)

( z

ε2

)
â
ε for z>0, and âεj(z=0)= âj,o. (4.10)

Remark 4.1. Note that the matrix H(a) is not skew Hermitian, which implies that
for a given ε there is no conservation of energy of the forward propagating modes over
the randomly perturbed region,

N∑

j=1

|âεj(L)|2 6=
N∑

j=1

|âj,o|2.

This is due to the local exchange of energy between the propagating and evanescent
modes. However, we will see that the energy of the forward propagating modes is
conserved in the limit ε→0.

4.4. The coupled mode diffusion process. We now apply the diffusion
approximation theorem to the system (4.10) and obtain, after a long calculation, that
we do not include for brevity, the main result of this section.

Theorem 4.2. The complex mode amplitudes {âεj(ω,z)}j=1,...,N converge in distribu-
tion as ε→0 to a diffusion Markov process process {âj(ω,z)}j=1,...,N with generator
L given below.

Let us write the limit process as

âj(ω,z)=Pj(ω,z)
1/2eiθj(ω,z), j=1, . . . ,N,

in terms of the power |âj |2=Pj and the phase θj . Then we can express the infinites-
imal generator L of the limit diffusion as the sum of two operators

L=LP +Lθ. (4.11)

The first is a partial differential operator in the powers

LP =

N∑

j,l=1
j 6= l

Γ
(c)
jl (ω)

[
PlPj

(
∂

∂Pj
− ∂

∂Pl

)
∂

∂Pj
+(Pl−Pj)

∂

∂Pj

]
, (4.12)

with matrix Γ(c)(ω) of coefficients that are non-negative off the diagonal, and sum to
zero in the rows, i.e.

Γ
(c)
jj (ω)=−

∑

l 6=j

Γ
(c)
jl (ω). (4.13)
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The off-diagonal entries are defined by the power spectral densities of the fluctuations
ν and µ, and the derivatives of the eigenfunctions at the boundaries,

Γ
(c)
jl (ω)=

X2

4βj(ω)βl(ω)

{
[∂ξφj(ω,X)∂ξφl(ω,X)]

2 R̂ν [βj(ω)−βl(ω)]

+[∂ξφj(ω,0)∂ξφl(ω,0)]
2 R̂µ[βj(ω)−βl(ω)]

}
, j 6= l . (4.14)

The second partial differential operator is with respect to the phases

Lθ=
1

4

N∑

j,l=1
j 6= l

Γ
(c)
jl (ω)

[
Pj

Pl

∂2

∂θ2l
+

Pl

Pj

∂2

∂θ2j
+2

∂2

∂θj∂θl

]
+

1

2

N∑

j,l=1

Γ
(0)
jl (ω)

∂2

∂θj∂θl

+
1

2

N∑

j,l=1
j 6= l

Γ
(s)
jl (ω)

∂

∂θj
+

N∑

j=1

κj(ω)
∂

∂θj
, (4.15)

with nonnegative coefficients

Γ
(0)
jl (ω)=

X2

4βj(ω)βl(ω)

{
[∂ξφj(ω,X)∂ξφl(ω,X)]2 R̂ν(0)+[∂ξφj(ω,0)∂ξφl(ω,0)]

2 R̂µ(0)
}

(4.16)

and

Γ
(s)
jl (ω)=

X2

4βj(ω)βl(ω)

{
[∂ξφj(ω,X)∂ξφl(ω,X)]2γν,jl(ω)+[∂ξφj(ω,0)∂ξφl(ω,0)]

2γµ,jl(ω)
}
,

(4.17)

for j 6= l, where

γν,jl(ω)=2

∫ ∞

0

dz sin[(βj(ω)−βl(ω))z]Rν(z) , (4.18)

γµ,jl(ω)=2

∫ ∞

0

dz sin[(βj(ω)−βl(ω))z]Rµ(z). (4.19)

The diagonal part of Γ(s)(ω) is defined by

Γ
(s)
jj (ω)=−

∑

l 6=j

Γ
(s)
jl (ω). (4.20)

All the terms in the generator except for the last one in (4.15) are due to the direct
coupling of the propagating modes. The coefficient κj in the last term is

κj(ω)=κ
(a)
j (ω)+κ

(e)
j (ω), (4.21)

with the first part due to the direct coupling of the propagating modes and given by

κ
(a)
j =Rν(0)

{∫ X

0

dξ

[
ω2

4βj
ξ2φ2

j ∂
2
ξ c

−2− 3

2βj
(∂ξφj)

2

]

+
N∑

l 6=j,l=1

(βl+βj)
[
d2ν,jl(β

2
l −β2

j )+2dν,jlcν,jl
]
}



248 WAVE PROPAGATION IN WAVEGUIDES WITH RANDOM BOUNDARIES

−R′′
ν (0)





1

4βj
− 1

2βj

∫ X

0

dξξ2(∂ξφj)
2+

N∑

l 6=j,l=1

(βl−βj)d
2
ν,jl




 + µ terms, (4.22)

with the abbreviation “µ terms” for the similar contribution of the µ process. The
coupling via the evanescent modes determines the second term in (4.21), and it is
given by

κ
(e)
j =

∞∑

l=N+1

X2 [∂ξφj(X)∂ξφl(X)]2

2βjβl(β2
j +β2

l )
2

∫ ∞

0

dse−βlsR′′
ν (s)

[
(β2

l −β2
j )cos(βjs)−2βjβl sin(βjs)

]

+

∞∑

l=N+1

2βl

[

−d2ν,ljR′′
ν (0)+

c2ν,lj
β2
j +β2

l

Rν(0)

]

+µ terms. (4.23)

4.4.1. Discussion. We now describe some properties of the diffusion process
â:

1. Note that the coefficients of the partial derivatives in Pj of the infinitesimal
generator L depend only on {Pl}l=1,...,N . This means that the mode powers
{|âεj(ω,z)|2}j=1,...,N converge in distribution as ε→0 to the diffusion Markov

process {|âj(ω,z)|2=Pj(ω,z)}j=1,...,N , with generator LP .

2. As we remarked before, the evanescent modes influence only the coefficient
κj(ω) which appears in Lθ but not in LP . This means that the evanescent
modes do not change the energies of the propagating modes in the limit
ε→0. They also do not affect the coupling of the modes of the limit process,
because κj is in the diagonal part of (4.15). The only effect of the evanescent
modes is a net dispersion (frequency-dependent phase modulation) for each
propagating mode.

3. The generator L can also be written in the equivalent form [5, Section 20.3]

L=
1

4

∑

j,l=1
j 6= l

Γ
(c)
jl (ω)

(
AjlAjl+AjlAjl

)
+

1

2

N∑

j,l=1

Γ
(0)
jl (ω)AjjAll

+
i

4

∑

j,l=1
j 6= l

Γ
(s)
jl (ω)(Ajj−All)+ i

N∑

j=1

κj(ω)Ajj , (4.24)

in terms of the differential operators

Ajl= âj
∂

∂âl
− âl

∂

∂âj
=−Alj . (4.25)

Here the complex derivatives are defined in the standard way: if z=x+ iy,
then ∂z =(1/2)(∂x− i∂y) and ∂z =(1/2)(∂x+ i∂y).

4. The coefficients of the second derivatives in (4.24) are homogeneous of degree
two, while the coefficients of the first derivatives are homogeneous of degree
one. This implies that we can write closed ordinary differential equations in
the limit ε→0 for the moments of any order of {âεj}j=1,...,N .
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5. Because

L
(

N∑

l=1

|âl|2
)
=0, (4.26)

we have conservation of energy of the limit diffusion process. More explicitly,
the process is supported on the sphere in C

N with center at zero and radius
Ro determined by the initial condition

R2
o=

N∑

l=1

|âl,o(ω)|2.

Since L is not self-adjoint on the sphere, the process is not reversible. But
the uniform measure on the sphere is invariant, and the generator is strongly
elliptic. From the theory of irreducible Markov processes with compact state
space, we know that the process is ergodic and thus â(z) converges for large
z to the uniform distribution over the sphere of radius Ro. This can be used
to compute the limit distribution of the mode powers (|âj |2)j=1,...,N for large
z, which is the uniform distribution over the set

HN =
{
{Pj}j=1,...,N , Pj ≥0,

N∑

j=1

Pj =R2
o

}
. (4.27)

We carry out a more detailed analysis that is valid for any z in the next
section.

4.4.2. Independence of the change of coordinates that flatten the

boundaries. The coefficients (4.14), (4.16), and (4.17) of the generator L have sim-
ple expressions and are determined only by the covariance functions of the fluctuations
ν(z) and µ(z) and the boundary values of the derivatives of the eigenfunctions φj(ω,ξ)
in the unperturbed waveguide. The dispersion coefficient κj has a more complicated
expression (4.21)-(4.23), which involves integrals of products of the eigenfunctions
and their derivatives with powers of ξ or X−ξ. These factors in ξ are present in our
change of coordinates

ℓε(z,ξ)=B(z)+[T (z)−B(z)]
ξ

X
= ξ+ε [(X−ξ)µ(z)+ξν(z)] , (4.28)

so it is natural to ask if the generator L depends on the change of coordinates. We
show here that this is not the case.

Let F ε(z,ξ)∈C1 ([0,∞)× [0,X]) be a general change of coordinates satisfying

F ε(z,ξ)=

{
X(1+εν(z)) for ξ=X,

εXµ(z) for ξ=0
(4.29)

for each ε>0, and converging uniformly to the identity mapping as ε→0,

sup
z≥0

sup
ξ∈[0,X]

|F ε(z,ξ)−ξ|=O(ε), sup
z≥0

sup
ξ∈[0,X]

|∂zF ε(z,ξ)|=O(ε). (4.30)

Note that (4.30) is not restrictive in our context since (µ(z),ν(z)) and their derivatives
are uniformly bounded. Define the wavefield

ŵ(ω,ξ,z)= p̂(ω,F ε(z,ξ),z) , (4.31)
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and decompose it into the waveguide modes, as we did for û(ω,ξ,z)= p̂(ω,ℓε(z,ξ),z) .
We have the following result proved in Appendix B.

Theorem 4.3. The amplitudes of the propagating modes of the wave field (4.31)
converge in distribution as ε→0 to the same limit diffusion as in Theorem 4.2.

4.4.3. The loss of coherence of the wave field. From Theorem 4.2 and
the expression (4.24) of the generator we get by direct calculation the following result
for the mean mode amplitudes.

Proposition 4.4. As ε→0, E[âεj(ω,z)] converges to the expectation of the limit
diffusion âj(ω,z), given by

E[âj(ω,z)]= âj,o(ω)exp

{[
Γ
(c)
jj (ω)−Γ

(0)
jj (ω)

2

]
z+ i

[
Γ
(s)
jj (ω)

2
+κj(ω)

]
z

}
. (4.32)

As we remarked before, Γ
(c)
jj −Γ

(0)
jj is negative, so the mean mode amplitudes decay

exponentially with the range z. Furthermore, we see from (4.14) and (4.16) that

Γ
(c)
jj −Γ

(0)
jj is the sum of terms proportional to (∂ξφj(X))

2
/βj and (∂ξφj(0))

2
/βj .

These terms increase with j, and they can be very large when j∼N . Thus, the mean
amplitudes of the high order modes decay faster in z than the ones of the low order
modes. We return to this point in Section 5, where we estimate the net attenuation
of the wave field in the high frequency regime N≫1.

That the mean field decays exponentially with range implies that the wave field
loses its coherence, and energy is transferred to its incoherent part — the fluctuations.
The incoherent part of the amplitude of the j-th mode is âεj−E[âεj ], and its intensity is

given by the variance E[|âεj |2]−
∣∣E[âεj ]

∣∣2. The mode is incoherent if its mean amplitude
is dominated by the fluctuations, that is if

[
E[|âεj |2]−

∣∣E[âεj ]
∣∣2
]1/2

≫
∣∣E[âεj ]

∣∣ .

We know that the right hand side converges to (4.32) as ε→0. We calculate next the
limit of the mean powers E[|âεj |2].

4.4.4. Coupled power equations and equipartition of energy. As we
remarked in Section 4.4.1, the mode powers |âεj(ω,z)|2, for j=1, . . . ,N , converge in
distribution as ε→0 to the diffusion Markov process (Pj(ω,z))j=1,...,N supported in
the set (4.27), and with infinitesimal generator LP . We use this result to calculate
the limit of the mean mode powers

P
(1)
j (ω,z)=E[Pj(ω,z)]= lim

ε→0
E[|âεj(ω,z)|2].

Proposition 4.5. As ε→0, E[|âεj(ω,z)|2] converges to P
(1)
j (ω,z), the solution of the

coupled linear system

dP
(1)
j

dz
=

N∑

j=1

Γ
(c)
jn (ω)

(
P (1)
n −P

(1)
j

)
, z >0, (4.33)

with initial condition P
(1)
j (ω,z=0)= |âj,o(ω)|2, for j=1, . . . ,N .
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Matrix Γ(c)(ω) is symmetric, with rows summing to zero, by definition. Thus, we can
rewrite (4.33) in vector-matrix form

dP (1)

dz
=Γ(c)(ω)P (1), z >0, and P

(1)(ω,0)=P
(1)
o (ω), (4.34)

with P
(1)(ω,z)=

(
P

(1)
1 (ω,z), . . . ,P

(1)
n (ω,z)

)T
and P

(1)
o (ω) the vector with components

|âj,o(ω)|2, for j=1, . . . ,N . The solution is given by the matrix exponential

P
(1)(ω,z)=exp

[
Γ(c)(ω)z

]
P

(1)
o (ω). (4.35)

We know from (4.14) that the off-diagonal entries in Γ(c)(ω) are nonnegative. If we
assume that they are positive, which is equivalent to asking that the power spectral
densities of ν and µ do not vanish at the arguments βj−βl, for all j,l=1, . . . ,N , we
can apply the Perron-Frobenius theorem to conclude that zero is a simple eigenvalue
of Γ(c)(ω), and that all the other eigenvalues are negative,

ΛN (ω)≤···≤Λ2(ω)<0.

This shows that as the range z grows, the vector P
(1)(z) tends to the null space of

Γ(c), the span of the vector (1, . . . ,1)T . That is to say, the mode powers converge to
the uniform distribution in the set (4.27) at exponential rate

sup
j=1,...,N

∣∣∣P (1)
j (ω,z)− R2

o(ω)

N

∣∣∣≤Ce−|Λ2(ω)|z. (4.36)

As z→∞, we have equipartition of energy among the propagating modes.

4.4.5. Fluctuations of the mode powers. To estimate the fluctuations of
the mode powers, we use again Theorem 4.2 to compute the fourth order moments of
the mode amplitudes:

P
(2)
jl (ω,z)= lim

ε→0
E
[
|âεj(ω,z)|2|âεl (ω,z)|2

]
=E[Pj(ω,z)Pl(ω,z)].

Using the generator LP , we get the following coupled system of ordinary differential
equations for limit moments:

dP
(2)
jj

dz
=

N∑

n=1
n 6= j

Γ
(c)
jn (ω)

(
4P

(2)
jn −2P

(2)
jj

)
,

dP
(2)
jl

dz
=−2Γ

(c)
jl (ω)P

(2)
jl +

N∑

n=1

Γ
(c)
ln (ω)

(
P

(2)
jn −P

(2)
jl

)

+

N∑

n=1

Γ
(c)
jn (ω)

(
P

(2)
ln −P

(2)
jl

)
, j 6= l,z >0,

(4.37)

with initial conditions

P
(2)
jl (ω,0)= |âj,o(ω)|2|âl,o(ω)|2. (4.38)
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The solution of this system can be written again in terms of the exponential of the
evolution matrix.

It is straightforward to check that the function 1+δjl is a stationary solution

of (4.37). Using the positivity of Γ
(c)
jl (ω) for j 6= l, we conclude that this stationary

solution is asymptotically stable, meaning that the solution P
(2)
jl (ω,z) converges as

z→∞ to

P
(2)
jl (ω,z)

z→∞−→





1

N(N+1)
R4

o(ω) if j 6= l,

2

N(N+1)
R4

o(ω) if j= l,

where R2
o(ω)=

∑N
j=1 |âj,o(ω)|2. This implies that the correlation of Pj(ω,z) and

Pl(ω,z) converges to −1/(N−1) if j 6= l and to (N−1)/(N+1) if j= l as z→∞. We
see from the j 6= l result that if, in addition, the number of modes N becomes large,
then the mode powers become uncorrelated. The j= l result shows that, whatever
the number of modes N , the mode powers Pj are not statistically stable quantities in
the limit z→∞, since

Var(Pj(ω,z))

E[Pj(ω,z)]2
z→∞−→ N−1

N+1
.

5. Estimation of net diffusion

To illustrate the random boundary cumulative scattering effect over long ranges,

we quantify in this section the diffusion coefficients Γ
(c)
jl and Γ

(0)
jl in the generator L

of the limit process. In particular, we calculate the mode-dependent net attenuation
rate

Kj(ω)=
Γ
(0)
jj (ω)−Γ

(c)
jj (ω)

2
, (5.1)

which determines the coherent (mean) amplitudes as shown in (4.32). The attenuation
rate gives the range scale over which the j-th mode becomes essentially incoherent,
because equations (4.32) and (4.35) give

|E [âj(ω,z)]|√
E

[
|âj(ω,z)|2

]
−|E [âj(ω,z)]|2

≪1 if z≫K−1
j .

The reciprocal of the attenuation rate can therefore be interpreted as a scattering
mean free path. The scattering mean free path is classically defined as the propagation
distance beyond which the wave loses its coherence [20]. Here it is mode-dependent.

Note that the attenuation rate Kj(ω) is the sum of two terms. The first one

involves the phase diffusion coefficient Γ
(0)
jj in the generator Lθ, and determines the

range scale over which the cumulative random phase of the amplitude âj becomes
significant, thus giving exponential damping of the expected field E[âj ]. The second
term is the mode-dependent energy exchange rate

Jj(ω)=−
Γ
(c)
jj (ω)

2
, (5.2)

given by the power diffusion coefficients in the generator LP . Each waveguide mode
can be associated with a direction of incidence at the unperturbed boundary, and
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energy is exchanged between modes when they scatter, because of the fluctuation of
the angles of incidence at the random boundaries. We can interpret the reciprocal of
the energy exchange rate as a transport mean free path, which is classically defined
as the distance beyond which the wave forgets its initial direction [20].

The third important length scale is the equipartition distance 1/|Λ2(ω)|, defined
in terms of the second largest eigenvalue of the matrix Γ(c)(ω). It is the distance over
which the energy becomes uniformly distributed over the modes, independently of the
initial excitation at the source, as shown in Equation (4.36).

5.1. Estimates for a waveguide with constant wave speed. To give
sharp estimates of Kj and Jj for j=1, . . . ,N , we assume in this section a waveguide
with constant wave speed c(ξ)= co and a high frequency regime N≫1. Note from

(4.13) that the magnitude of Γ
(c)
jj depends on the rate of decay of the power spectral

densities R̂ν(β) and R̂µ(β) with respect to the argument β. We already made the
assumption (4.9) on the decay of the power spectral densities in order to justify the

forward scattering approximation. In particular, we assumed that R̂ν(β)≃R̂µ(β)≃0
for all β≥2βN . Thus, for a given mode index j, we expect large terms in the sum in
(4.13) for indices l satisfying

|βj−βl|.2βN =
2π

X

√
2αN, (5.3)

where we used the definition

βj =
π

X

√
(N+α)2−j2, j=1, . . . ,N, and

kX

π
=N+α, for α∈ (0,1). (5.4)

Still, it is difficult to get a precise estimate of Γ
(c)
jj given by (4.13), unless we make

further assumptions on Rν and Rµ. For the calculations in this section we take the
Gaussian covariance functions

Rν(z)=exp

(
− z2

2ℓ2ν

)
and Rµ(z)=exp

(
− z2

2ℓ2µ

)
, (5.5)

and we take for convenience equal correlation lengths ℓν = ℓµ= ℓ. The power spectral
densities are

R̂ν(β)= R̂µ(β)=
√
2πℓexp

(
−β2ℓ2

2

)
, (5.6)

and they are negligible for β≥3/ℓ. Since N = ⌊kX/π⌋, we see that (5.3) becomes

|βj−βl|≤
3

ℓ
.

2π

X

√
2αN or, equivalently, kℓ&

3

2
√
2α

√
N≫1. (5.7)

Thus, Assumption (4.9) amounts to having correlation lengths that are larger than the
wavelength. The attenuation and exchange energy rates (5.1) and (5.2) are estimated
in detailed in Appendix C. We summarize the results in the following proposition, in
the case2

√
N .kℓ≪N. (5.8)

2The case kℓ&N is also discussed in Appendix C.
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Proposition 5.1. The attenuation rate Kj(ω) increases monotonically with the mode
index j. The energy exchange rate Jj(ω) increases monotonically with the mode index

j up to the high modes of order N where it can decay if kℓ≫
√
N . For the low order

modes we have

Jj(ω)X≈Kj(ω)X∼ (kℓ)−1/2, j∼1. (5.9)

For the intermediate modes we have

Jj(ω)X≈Kj(ω)X∼N2 (j/N)3√
1−(j/N)2

, 1≪ j≪N. (5.10)

For the high order modes we have

Jj(ω)X∼ N3

kℓ
, Kj(ω)X∼kℓN2, j∼N, (5.11)

for kℓ∼
√
N , but when kℓ≫

√
N ,

Jj(ω)X≪Kj(ω)X∼kℓN2, j∼N. (5.12)

The results summarized in Proposition 5.1 show that scattering from the random
boundaries has a much stronger effect on the high order modes than the low order
ones. This is intuitive, because the modes with large index bounce more often from
the boundaries. The damping rate Kj is very large, of order N2kℓ for j∼N , which
means that the amplitudes of these modes become incoherent quickly, over scaled3

ranges z∼XN−2(kℓ)−1≪X. The modes with index j∼1 keep their coherence over
ranges z=O(X), because their mean amplitudes are essentially undamped, that is
KjX≪1 for j∼1. However, the modes lose their coherence eventually because the
damping becomes visible at longer ranges, that is z>X(kℓ)1/2.

Note that the scattering mean free paths and the transport mean free paths are
approximately the same for the low and intermediate index modes, but not for the
high ones. The energy exchange rate for the high order modes may be much smaller
than the attenuation rate in high frequency regimes with kℓ≫

√
N . These modes

reach the boundary many times over a correlation length, at almost the same angle
of incidence, so the exchange of energy is not efficient and it occurs only between
neighboring modes. There is however a significant cumulative random phase in âj
for j∼N , given by the addition of the correlated phases gathered over the multiple
scattering events. This significant phase causes the loss of coherence of the amplitudes
of the high order modes, the strong damping of E[âj ].

Note also that a direct calculation4 of the second largest eigenvalue of Γ(c)(ω)
gives that

|Λ2(ω)|≈ |Γ(c)
11 (ω)|∼ (kℓ)−1/2.

Thus, the equipartition distance is similar to the scattering mean free path of the
first mode. This mode can travel longer distances than the others before it loses its
coherence, but once that happens, the waves have entered the equipartition regime,
where the energy is uniformly distributed among all the modes. The waves forget the
initial condition at the source.

3Recall from Section 4.1 that the range is actually z/ε2.
4By direct calculation we mean numerical calculation of the eigenvalue. We find that for N ≥20

and for kℓ&
√
N , |Λ2(ω)|≈ |Γ(c)

11 (ω)| with a relative error that is less than 1%.
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5.2. Comparison with waveguides with internal random inhomo-

geneities. When we compare the results in Proposition 5.1 with those in [5,
Chapter 20] for random waveguides with interior inhomogeneities but straight bound-
aries, we see that even though the random amplitudes of the propagating modes
converge to a Markov diffusion process with the same form of the generator as (4.24),
the net effects on coherence and energy exchange are different in terms of their de-
pendence with respect to the modes.

Let us look in detail at the attenuation rate that determines the range scale over
which the amplitudes of the propagating modes lose coherence. To distinguish it from
(5.1), we denote the attenuation rate by K̃j and the energy exchange rate by J̃j , and
recall from [5, Section 20.3.1] that they are given by

K̃j =
k4R̂jj(0)

8β2
j

+ J̃j , J̃j =

N∑

l=1
l 6= j

k4

8βjβl
R̂jl (βj−βl) . (5.13)

Here R̂jl(z) is the Fourier transform (power spectral density) of the covariance func-
tion Rjl(z) of the stationary random processes

Cjl(z)=

∫ X

0

dxφj(x)φl(x)ν(x,z),

the projection on the eigenfunctions of the random fluctuations ν(x,z) of the wave
speed.

For our comparison we assume isotropic, stationary fluctuations with mean zero
and Gaussian covariance function

R(x,z)=E [ν(x,z)ν(0,0)]= e−
x2+z2

2ℓ2 ,

so the power spectral densities are

R̂jl(β)≈
πℓ2

X
e−

(kℓ)2

2 (Xβ
πN )

2
[
e−

(kℓ)2

2 ( j
N − l

N )
2

+e−
(kℓ)2

2 ( j
N + l

N )
2

+δjl

]
. (5.14)

Thus, (5.13) becomes

K̃j =
π(kℓ)2

8X

2+e−2(kℓ)2(j/N)2

(1+α/N)
2−(j/N)2

+ J̃j ,

J̃j =
π(kℓ)2

8X

N∑

l=1
l 6= j

{
e
−

(kℓ)2

2 [
√

(1+α/N)2−(j/N)2−

√
(1+α/N)2−(l/N)2]

2

√

[(1+α/N)2−(j/N)2][(1+α/N)2−(l/N)2]

×
[
e−

(kℓ)2

2 ( j
N − l

N )
2

+e−
(kℓ)2

2 ( j
N + l

N )
2
]}

,

and their estimates can be obtained using the same techniques as in Appendix C. We
give here the results when kℓ satisfies (5.8). For the low order modes we have

K̃jX≈ π(kℓ)2

8

[
2+e−2(kℓ)2/N2

+
N
√
π/2

kℓ

]
∼
[
(kℓ)2+Nkℓ

]
∼Nkℓ&N3/2, j∼1,
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J̃jX≈ π(kℓ)2

8

N
√

π/2

kℓ
∼Nkℓ&N3/2, j∼1,

and for the high order modes we have

K̃jX≈ πN(kℓ)2

8α

[
1+

√
πN

2
√
2kℓ

]
=
[
N(kℓ)2+N2kℓ

]
∼N2kℓ&N5/2, j∼N,

J̃jX≈ πN(kℓ)2

8α

√
πN

2
√
2kℓ

=N2kℓ&N5/2, j∼N.

Thus, we see that in waveguides with internal random inhomogeneities the low or-
der modes lose coherence much faster than in waveguides with random boundaries.
Explicitly, coherence is lost over scaled ranges

z.XN−3/2≪X.

The high order modes, with index j∼N , lose coherence over the range scale

z.XN−5/2≪X.

Moreover, the main mechanism for the loss of coherence is the exchange of energy
between neighboring modes. That is to say, the transport mean free path is equivalent
to the scattering mean free path for all the modes in random waveguides with interior
inhomogeneities. Finally, direct (numerical) calculation shows that

O
(
(kℓ)−2

)
≤ |Λ2|

|J̃1|
≤O

(
(kℓ)−3/2

)
,

so the equipartition distance is larger by a factor of at least O
(
N3/4

)
than the scat-

tering or transport mean free path.

6. Mixed boundary conditions

Up to now we have described in detail the wave field in waveguides with random
boundaries and Dirichlet boundary conditions (1.4). In this section we extend the
results to the case of mixed boundary conditions (1.5), with Dirichlet condition at
x=B(z) and Neumann condition at x=T (z). All permutations of Dirichlet/Neumann
conditions are of course possible, and the results can be readily extended.

Similar to what we stated in Section 2, the operator ∂2
x+ω2c−2(x) acting on func-

tions in (0,X), with Dirichlet boundary condition at x=0 and Neumann boundary
condition x=X, is self-adjoint in L2(0,X). Its spectrum is an infinite number of dis-
crete eigenvalues λj(ω), for j=1,2, . . . , and we sort them in decreasing order. There
is a finite number N(ω) of positive eigenvalues and an infinite number of negative
eigenvalues. We assume as in Section 2 that N(ω)=N is constant over the frequency
band, and that the eigenvalues are simple. The modal wavenumbers are as before,
βj(ω)=

√
|λj(ω)|. The eigenfunctions φj(ω,x) are real and form an orthonormal set.

For example, in the case of a constant wave speed c(x)= co, we have

λj =k2−
[
(j−1/2)π

X

]2
, φj(x)=

√
2

X
sin

(
(j−1/2)πx

X

)
, j=1,2, . . . , (6.1)

and the number of propagating modes is given by N =
⌊
kX
π + 1

2

⌋
.
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6.1. Change of coordinates. We proceed as before and straighten the
boundaries using a change of coordinates that is slightly more complicated than before,
due to the Neumann condition at x=T (z), where the normal is along the vector
(1,−T ′(z)). We let

p(t,x,z)=u
(
t,X (x,z),Z(x,z)

)
, (6.2)

where

X (x,z)=X
x−B(z)

T (z)−B(z)
, (6.3)

Z(x,z)= z+xT ′(z)+Q(z), Q(z)=−
∫ z

0

dsT (s)T ′′(s). (6.4)

In the new frame we get that ξ=X (x,z)∈ [0,X], with Dirichlet condition at ξ=0,

u(t,ξ=0,ζ)=0. (6.5)

For the Neumann condition at ξ=X we use the chain rule, and rewrite

∂νp(t,x=T (z),z)=
[
∂x−T ′(z)∂z

]
p(t,x=T (z),z)=0

as

∂ξu(t,ξ=X,ζ=Z(T (z),z))
[
−∂xX +T ′(z)∂zX

]
(x=T (z),z)

+∂ζu(t,ξ=X,ζ=Z(T (z),z))
[
−∂xZ+T ′(z)∂zZ

]
(x=T (z),z)=0.

This is the standard Neumann condition

∂ξu(t,ξ=X,ζ)=0, (6.6)

because

[
−∂xZ+T ′(z)∂zZ

]
(x=T (z),z)=−T ′(z)+T ′(z)

[
1+T (z)T ′′(z)+Q′(z)

]
=0,

and

[
−∂xX +T ′(z)∂zX

]
(x=T (z),z)=−X+[T ′(z)]2

T (z)−B(z)
6=0.

Now, the method of solution is as before. Using that ε is small, we obtain a
perturbed wave equation for û, which we expand as

L0û+εL1û+ε2L2û=O(ε3), (6.7)

with leading order operator

L0=∂2
ζ +∂2

ξ +ω2/c2(ξ),

and perturbation

L1=−2(ν−µ)∂2
ξ +2(X−ξ)(ν′−µ′)∂ζξ−2X(X−ξ)ν′′∂2

ζ −X(X−ξ)ν′′′∂ζ

−
[
Xµ′′+ξ(ν′′−µ′′)

]
∂ξ+ω2(∂ξc

−2(ξ))
[
Xµ+(ν−µ)ξ

]
. (6.8)
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6.2. Coupled amplitude equations. We proceed as in Section 3.2. We find
that the complex mode amplitudes satisfy (3.17)-(3.18) with ζ instead of z, where the
ζ-dependent coupling coefficients are

Cε
jl(ζ)= εC

(1)
jl (ζ)+ε2C

(2)
jl (ζ)+O(ε3), (6.9)

C
(1)
jl (ζ)= cν,jlν(ζ)+ iβldν,jlν

′(ζ)+eν,jlν
′′(ζ)+ iβlfν,jlν

′′′(ζ)

+cµ,jlµ(ζ)+dµ,jl
(
2iβlµ

′(ζ)+µ′′(ζ)
)
, (6.10)

with

cν,jl=
1

2
√

βjβl

[( ω2

c(X)2
−β2

l

)
φj(X)φl(X)+(β2

j −β2
j )

∫ X

0

dξξφl∂ξφj

]
, (6.11)

dν,jl=
1

2
√

βjβl

[
2

∫ 2

0

dξ (X−ξ)φj∂ξφl

]
, (6.12)

eν,jl=
1

2
√

βjβl

[
−
∫ X

0

dξ (X−ξ)φjξ∂ξφl+2β2
l

∫ X

0

dξ(X−ξ)φjφl

]
, (6.13)

fν,jl=
1

2
√

βjβl

[
−
∫ X

0

dξ (X−ξ)φjφl

]
, (6.14)

and coefficients cµ,jl and dµ,jl defined by (3.49) and (3.51). Similar formulas hold for

C
(2)
jl (ζ).

In the following we neglect for simplicity the evanescent modes, which only add a
dispersive (frequency dependent phase modulation) net effect in the problem. These
modes can be included in the analysis using a similar method to that in Section 3.3.

6.3. The coupled mode diffusion process. As we have done in Section
4, we study under the forward scattering approximation the long range limit of the
forward propagating mode amplitudes.

First, we give a lemma which shows that the description of the wave field in the
variables (x,z) or (ξ,ζ) is asymptotically equivalent.

Lemma 6.1. We have uniformly in x

X
(
x,

z

ε2

)
−x

ε→0−→0, Z
(
x,

z

ε2

)
− z

ε2
−E[ν′(0)2]z

ε→0−→0 in probability.

Proof. The convergence of X to x is evident from definitions (6.3) and (3.2).
Moreover, (6.4) gives

Z
(
x,

z

ε2

)
− z

ε2
=xεXν′

( z

ε2

)
−εX2

∫ z
ε2

0

(1+εν(s))ν′′(s)ds,

and integrating by parts and using the assumption that the fluctuations vanish at
z=0, we get

Z
(
x,

z

ε2

)
− z

ε2
= εX

[
(x−X)ν′

( z

ε2

)
−εν

( z

ε2

)
ν′
( z

ε2

)]
+ε2

∫ z
ε2

0

[ν′(s)]
2
ds.

The first term of the right-hand side is of order ε and the second term converges
almost surely to E[ν′(0)2]z, which gives the result.
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The diffusion limit is similar to that in Section 4.4, and the result is as follows.

Proposition 6.2. The complex mode amplitudes (âεj(ω,ζ))j=1,...,N converge in dis-
tribution as ε→0 to a diffusion Markov process process (âj(ω,ζ))j=1,...,N . Writing

âj(ω,ζ)=Pj(ω,ζ)
1/2eiφj(ω,ζ), j=1, . . . ,N,

the infinitesimal generator of the limiting diffusion process

L=LP +Lθ

is of the form (4.11), but with different expressions of the coefficients given below.

The coefficients Γ
(c)
jl in LP are given by

Γ
(c)
jl (ω)= R̂µ (βj−βl)Q

2
ν,jl+R̂µ (βj−βl)Q

2
µ,jl if j 6= l, (6.15)

where

Qν,jl= cν,jl+dν,jlβl(βl−βj)−(βl−βj)
2
[
eν,jl+fν,jlβl(βl−βj)

]

=
X

2
√

βjβl

[
ω2

c(X)2
−βlβj

]
φj(X)φl(X), (6.16)

Qµ,jl= cµ,jl+dµ,jl(β
2
l −β2

j )=
X

2
√

βjβl

∂ξφj(0)∂ξφl(0).

The coefficients in Lθ are similar,

Γ
(0)
jl (ω)= R̂µ(0)Q

2
ν,jl+R̂µ(0)Q

2
µ,jl ∀j,l, (6.17)

and

Γ
(s)
jl (ω)=γν,jlQ

2
ν,jl+γµ,jlQ

2
µ,jl if j 6= l, (6.18)

with γν,jl and γµ,jl defined by (4.18).
We find again that these effective coupling coefficients depend only on the behav-

iors of the mode profiles close to the boundaries. In the case of Dirichlet boundary

conditions, the mode coupling coefficient Γ
(c)
jl (ω) depends on the value of ∂ξφj∂ξφl

at the boundaries. In the case of Neumann boundary conditions, the mode coupling

coefficient Γ
(c)
jl (ω) depends on the value of φj(X)φl(X).

Given the generator, the analysis of the loss of coherence, and of the mode powers
is the same as in sections 4.4.3-4.4.5.

7. Summary

In this paper we obtain a rigorous quantitative analysis of wave propagation in
two-dimensional waveguides with random and stationary fluctuations of the bound-
aries, and either Dirichlet or Neumann boundary conditions. The fluctuations are
small, of order ε, but their effect becomes significant over long ranges z/ε2. We carry
the analysis in three main steps: First, we change coordinates to straighten the bound-
aries and obtain a wave equation with random coefficients. Second, we decompose the
wave field in propagating and evanescent modes, with random complex amplitudes
satisfying a random system of coupled differential equations. We analyze the evanes-
cent modes and show how to obtain a closed system of differential equations for the
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amplitudes of the propagating modes. In the third step we analyze the amplitudes of
the propagating modes in the long range limit, and show that the result is indepen-
dent of the particular choice of the change of the coordinates in the first step. The
limit process is a Markov diffusion with coefficients in the infinitesimal generator given
explicitly in terms of the covariance of the boundary fluctuations. Using this limit
process, we quantify mode by mode the loss of coherence and the exchange (diffusion)
of energy between modes induced by scattering at the random boundaries.

The long range diffusion limit is similar to that in random waveguides with interior
inhomogeneities and straight boundaries, in the sense that the infinitesimal generators
have the same form. However, the net scattering effects are very different. We quantify
them explicitly in a high frequency regime, in the case of a constant wave speed, and
compare the results with those in waveguides with interior random inhomogeneities.
In particular, we estimate three important length scales: the scattering mean free
path, the transport mean free path, and the equipartition distance. The first two give
the distances over which the waves lose their coherence and forget their direction,
respectively. The last is the distance over which the cumulative scattering distributes
the energy uniformly among the modes, independently of the initial conditions at the
source.

We obtain that in waveguides with random boundaries the lower order modes
have a longer scattering mean free path, which is comparable to the transport mean
free path and, remarkably, to the equipartition distance. The high order modes lose
coherence rapidly, have a short scattering mean free path, and do not exchange energy
efficiently with the other modes. They also have a transport mean free path that
exceeds the scattering mean free path. In contrast, in waveguides with interior random
inhomogeneities, all the modes lose their coherence over much shorter distances than
in waveguides with random boundaries. Moreover, the main mechanism of loss of
coherence is the exchange of energy with the nearby modes, so the scattering mean
free paths and the transport mean free paths are similar for all the modes. Finally,
the equipartition distance is much longer than the distance over which all the modes
lose their coherence.

These results are useful in applications such as imaging with remote sensor arrays.
Understanding how the waves lose coherence is essential in imaging, because it allows
the design of robust methodologies that produce reliable, statistically stable images
in noisy environments that we model mathematically with random processes. An
example of a statistically stable imaging approach guided by the theory in random
waveguides with internal inhomogeneities is in [3].
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Appendix A. Proof of Lemma 3.1. The proof given here relies on explicit
estimates of the series in (3.34), obtained under the assumption that the background
speed is constant c(ξ)= co. We rewrite (3.34) as

[Ψv̂](z)= [Ψ1v̂](z)+[Ψ2v̂](z) (A.1)
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with linear integral operators Ψ1 and Ψ2 defined componentwise by

[
Ψ1v̂

]
j
(z)=

∞∑

l=N+1

1

2βj

∫ ∞

−∞
(Mε

jl−∂zQ
ε
jl)(z+s)v̂l(z+s)e−βj |s|ds, (A.2)

[
Ψ2v̂

]
j
(z)=

∞∑

l=N+1

1

2

∫ ∞

−∞
Qε

jl(z+s)v̂l(z+s)e−βj |s|ds. (A.3)

The coefficients have the explicit form

Mε
jl(z)=

{
2[ν(z)−µ(z)]

(
πj

X

)2

+
ν′′(z)−µ′′(z)

2

}
δjl+(1−δjl)[ν

′′(z)−µ′′(z)]
2lj

j2− l2

−(1−δjl)ν
′′(z)

2lj

j2− l2
[
1−(−1)l+j

]
+O(ε), (A.4)

Qε
jl(z)= [ν′(z)−µ′(z)]δjl+(1−δjl)[ν

′(z)−µ′(z)]
4lj

j2− l2

−(1−δjl)ν
′(z)

4lj

j2− l2
[
1−(−1)l+j

]
+O(ε). (A.5)

Let ℓ21(Z;L
2(R)) be the space of square summable sequences of L2(R) functions

with linear weights, equipped with the norm

‖v‖ℓ21 :=
[∑

j∈Z

(j ‖vj‖L2(R))
2
]1/2

.

We prove that Ψ : ℓ21(Z;L
2(R))→ ℓ21(Z;L

2(R)) is bounded. The proof consists of three
steps:

Step 1: Let T be an auxiliary operator acting on sequences v={vl}l∈Z, defined
componentwise by

[Tv]j =
∑

l 6=±j

j l

j2− l2
vl=

∑

l 6=±j

(
l/2

j+ l
+

l/2

j− l

)
vl=

1

2

(
(−l v−l)∗

1

l
+(l vl)∗

1

l

)

j

+
1

4
(v−j −vj).

This operator is essentially the sum of two discrete Hilbert transforms, satisfying the
sharp estimates [11]

∥∥
v∗ 1

l

∥∥
ℓ2
≤π‖v‖ℓ2 .

Therefore, the operator T is bounded as

‖Tv‖ℓ2 ≤ (1/2+π)
∑

j∈Z

‖vj‖ℓ21 . (A.6)

Step 2: Let v(z)={vl(z)}l∈Z be a sequence of functions in R and define the
operator

Q : ℓ21(Z;L
2(R))→ ℓ21(Z;L

2(R)), [Qv]j(z)= [Tv]j ∗e−βj |s|(z) 1{j>N}, (A.7)

where

βj =

√(
πj

X

)2

−
(
ω

c0

)2

≥ j π

X

√

1−
(
ωX/(πc0)

N+1

)2

=: j Cβ , for j >N. (A.8)
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Using Young’s inequality

‖[Qv]j‖L2(R)=‖[Tv]j ∗e−βj |s|‖L2(R)≤‖[Tv]j‖L2(R)‖e−βj |s|‖L1(R)=
2

βj
‖[Tv]j‖L2(R),

(A.9)

we obtain from (A.6)-(A.9) that ‖Q‖≤ (1+2π)/Cβ , because

∑

j∈Z

(
j ‖[Qv]j‖L2(R)

)2≤ 4

C2
β

∑

j∈Z

‖[Tv]j‖2L2(R)

=
4

C2
β

∫

R

∑

j∈Z

|[Tv]j(z)|2dz

≤ 4

C2
β

(1/2+π)2
∫

R

∑

j∈Z

|j vj(z)|2dz

=
4(1/2+π)2

C2
β

∑

j∈R

(
j‖vj‖L2(R)

)2
.

(A.10)

This estimate applies to the operator Ψ2. Indeed, let us express Ψ2 in terms of
the operator Q using (A.3) and (A.5),

[Ψ2v]j(z)=
1

2
((ν′−µ′)vj)∗e−βj |s|(z)1{j>N}−2[Qµ′ vl]j(z)+2(−1)j [Qν′(−1)l vl]j(z).

(A.11)
That the sum in Ψ2 is for l>N is easily fixed by using the truncation vl= v̂l 1{l>N}.
Thus, using estimate (A.10) for the last two terms, we obtain

‖Ψ2v̂‖ℓ21 ≤
5+8π

Cβ

(
‖µ‖W 1,∞(R)+‖ν‖W 1,∞(R)

)
‖v̂‖ℓ21 .

Step 3: It remains to show that the operator Ψ1 is bounded. We see from (A.2),
(A.4), and (A.5) that, for any j >N ,

[Ψ1v̂]j(z)=
π2j2

βjX2
((ν−µ)v̂j)∗e−βj |s|(z)1{j>N}−

1

βj
[Ψ̃2v̂]j(z),

where Ψ̃2 is just like the operator Ψ2, with the driving process (ν′,µ′) replaced by its
derivative (ν′′,µ′′). Using again Young’s inequality, we have

‖[Ψ1v̂]j‖L2(R)≤2

(
π

XCβ

)2

‖(ν−µ)v̂j‖L2(R)+
1

jCβ
‖[Ψ̃2v̂]j‖L2(R).

Now multiply by j and use the triangle inequality to obtain that Ψ1 is bounded,

‖Ψ1v̂‖ℓ21 ≤
[

2π2

C2
βX

2
(‖ν‖L∞ +‖µ‖L∞)+

(5+8π)

C2
β

(‖ν‖W 2,∞ +‖µ‖W 2,∞)

]
‖v̂‖ℓ21 .

Appendix B. Independence of the change of coordinates. We begin the
proof of Theorem 4.3 with the observation that

ŵ(ξ,z)= û
(
ℓε,−1(z,F ε(z,ξ)),z

)
,
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where ℓε,−1 is the inverse of ℓε, meaning that ŵ and û are related by composition
of the change of coordinate mappings. Clearly, the composition inherits the uniform
convergence property

sup
z≥0

sup
ξ∈[0,X]

|ℓε,−1(z,F ε(z,ξ))−ξ|=O(ε). (B.1)

For the sake of simplicity we neglect the evanescent modes in the proof, but they
can be added using the techniques described in Section 3.3. Using the propagating
mode representation of û(ξ,z),

ŵ(ξ,z)=

N∑

l=1

φl(ξ)ûl(z)+

N∑

l=1

φ̃l(ξ,z)ûl(z), (B.2)

where we let

φ̃l(ξ,z)=φl

(
ℓε,−1(z,F ε(z,ξ))

)
−φl(ξ)

=

∫ 1

0

(
ℓε,−1(z,F ε(z,ξ))−ξ

)
∂ξφl

(
s ℓε,−1(z,F ε(z,ξ))+(1−s) ξ

)
ds.

But we can also carry out the mode decomposition directly on ŵ and obtain

ŵ(ξ,z)=

N∑

l=1

φl(ξ)ŵl(z), (B.3)

because the number of propagating modes N and the eigenfunctions φj in the ideal
waveguide are independent of the change of coordinates. Here ŵl(z) are the am-
plitudes of the propagating modes of ŵ(z). Equating identities (B.2) and (B.3),
multiplying by φj(ξ) and integrating in [0,X] we conclude that

ŵj(z)= ûj(z)+

N∑

l=1

c̃lj(z)ûl(z), (B.4)

where we introduced the random processes

c̃lj(z)=

∫ X

0

φj(ξ)

∫ 1

0

∂ξφl

(
s ℓε,−1(z,F ε(z,ξ))+(1−s) ξ

)(
ℓε,−1(z,F ε(z,ξ))−ξ

)
dsdξ.

In addition, differentiating equation (B.4) in z, we have

∂zŵj(z)=∂zûj(z)+
N∑

l=1

∂z c̃lj(z)ûl(z)+ c̃lj(z)∂zûl(z). (B.5)

Now, let us recall from the definition of the forward and backward propagating
modes that

iβj ûj(z)+∂zûj(z)=2i
√

βj âj(z)e
iβjz.

We conclude from (B.4) and (B.5) that

âwj (z)= âj(z)+
1

2

N∑

l=1

c̃lj(z)

(
βj+βl√
βjβj

âl(z)e
−i(βj−βl)z+

βj−βl√
βjβj

b̂l(z)e
−i(βj+βl)z

)
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+
i

2

N∑

l=1

∂z c̃lj(z)√
βjβl

(
âl(z)e

−i(βj−βl)z+ b̂l(z)e
−i(βj+βl)z

)
,

(B.6)

where {âwj (z)}j=1,...,N are the amplitudes of the forward propagating modes of
ŵ(ξ,z). A similar equation holds for the backward propagating mode amplitudes

{b̂wj (z)}j=1,...,N .
The processes c̃lj(z) can be bounded as (4.30):

max
1≤j,l≤N

{
sup
z≥0

|c̃lj(z)|
}
≤X max

1≤j,l≤N

{
sup

ξ∈[0,X]

|φj(ξ)| sup
ξ∈[0,X]

|∂ξφl(ξ)|
}

×sup
z≥0

sup
ξ∈[0,X]

|ℓε,−1(z,F ε(z,ξ))−ξ|=O(ε). (B.7)

For the processes ∂z c̃lj(z) we find a similar estimate. Indeed, note that

∂z
[
∂ξφl

(
s ℓε,−1(z,F ε(z,ξ))+(1−s) ξ

)(
ℓε,−1(z,F ε(z,ξ))−ξ

)]

=−λl φl(s ℓ
ε,−1(z,F ε(z,ξ))+(1−s) ξ)s∂z[ℓ

ε,−1(z,F ε(z,ξ))] (ℓε,−1(z,F ε(z,ξ))−ξ)

+∂ξφl(s ℓ
ε,−1(z,F ε(z,ξ))+(1−s) ξ)∂z[ℓ

ε,−1(z,F ε(z,ξ))].

A direct calculation shows that

∂z
[
ℓε,−1(z,F ε(z,ξ))

]

=∂z

[
X(F ε(z,ξ)−εµ(z))

X(1+εν(z))−εµ(z)

]

=X
(∂zF

ε(z,ξ)−εµ′(z))(X(1+εν(z))−εµ(z))−(F ε(z,ξ)−εµ(z))ε (ν′(z)−µ′(z))

(X(1+εν(z))−εµ(z))2
.

Hence, using condition (4.30) for ∂zF
ε(z,ξ),

sup
z≥0

sup
ξ∈[0,X]

∣∣∂z
[
ℓε,−1(z,F ε(z,ξ))

]∣∣≤C(‖v‖W 1,∞ ,‖µ‖W 1,∞)ε.

Therefore,

max
1≤j,l≤N

{
sup
z≥0

|∂z c̃lj(z)|
}
≤X max

1≤j,l≤N
{λl sup

ξ∈[0,X]

|φj(ξ)| sup
ξ∈[0,X]

|φl(ξ)|}O(ε2)

+X max
1≤j,l≤N

{
sup

ξ∈[0,X]

|φj(ξ)| sup
ξ∈[0,X]

|∂ξφl(ξ)|
}
O(ε).(B.8)

Let âw(z) and b̂
w(z) be the vectors containing the forward and backward prop-

agating mode amplitudes and define the joint process of propagating mode ampli-
tudes X

w(z)=(âw(z), b̂w(z))T . Let us denote the long range scaled process by
X

ε,w(z)=X
w(z/ε2). Equation (B.6) implies that

X
ε,w(z)=X

ε(z)+Mε

(
C
( z

ε2

)
,∂zC

( z

ε2

)
,
z

ε2

)
X

ε(z), (B.9)

where C(z) :=(c̃lj(z))j,l=1,...,N and ∂zC(z) :=(∂z c̃lj(z))j,l=1,...,N . The subscript ε in
the matrix Mε(·) denotes the fact that this matrix depends explicitly on ε and, due
to estimates (B.7) and (B.8), we have

sup
z≥0

‖Mε(C(z),∂zC(z),z)‖∞=O(ε). (B.10)
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Let us prove then, that the processes Xε,w(z) and X
ε(z) converge in distribution

to the same diffusion limit. Denote by Q(X0,L) the 2N -dimensional cube with center
X0 and side L. The probability that Xε,w(z) is in this cube can be calculated using
(B.9),

P[Xε,w(z)∈Q(X0,L)]=

∫

{x∈Q(X0,L)}
dPw

(
x,

z

ε2

)

=

∫

{x∈(I+Mε(C,∂zC,z))−1Q(x0,L)}
dP
(
x,C,∂zC,

z

ε2

)
. (B.11)

Here Pw(x,z) is the probability distribution of the process Xw(z) and P(x,C,∂zC,z)
is the joint probability distribution of the processes (X(z),C(z),∂zC(z)). We can take
the inverse of I+Mε(C,∂zC,z) by (B.10). The same estimate (B.10) also implies that
for every δ>0 there exists ε0 such that for ε≤ ε0,

{x∈Q(x0,(1−δ)L)}⊆{x∈ (I+Mε(C,∂zC,z))−1Q(x0,L)}⊆{x∈Q(x0,(1+δ)L)}.
(B.12)

Denote the diffusion limits by

X̃(z)= lim
ε→0

X
ε(z), X̃

w(z)= lim
ε→0

X
ε,w(z).

We conclude from (B.11) and (B.12) that for any δ>0,

P[X̃(z)∈Q(X0,(1−δ)L)]≤P[X̃w(z)∈Q(X0,L)]≤P[X̃(z)∈Q(X0,(1+δ)L)].

Sending δ→0, we have that for any arbitrary cube Q(x0,L),

P[X̃(z)∈Q(X0,L)]=P[X̃w(z)∈Q(X0,L)].

This proves that the limit processes have the same distribution and therefore the same
generator.

Appendix C. Proof of Proposition 5.1. Recall the expression (2.3) of the
wavenumbers. The first term in (5.1) follows from (4.16):

Γ
(0)
jj =

( π

X

)2[
R̂ν(0)+R̂µ(0)

] j4

(N+α)2−j2
≈ (2π)3/2

X

kℓ

N

j4

(N+α)2−j2
. (C.1)

It increases monotonically with j, with minimum value

Γ
(0)
11 ≈ (2π)3/2

X

kℓ

N3
≪1, (C.2)

and maximum value

Γ
(0)
NN ≈ (2π)3/2

2αX
kℓN2≫1. (C.3)

The second term in (5.1), which is in (5.2), follows from (4.13), (5.6), and (5.4),

−Γ
(c)
jj (ω)≈

(2π)3/2j2

X
√

(N+α)2−j2

N∑

l=1
l 6= j

l2kℓ

N
√

(N+α)2− l2
e
−

(kℓ)2

2

(√
1−j2/(N+α)2−

√
1−l2/(N+α)2

)2

.
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(C.4)

If 0<j/N <1, then we can estimate (C.4) by using the fact that the main con-
tribution to the sum in l comes from the terms with indices l close to j, provided that
kℓ is larger than N1/2 and smaller than N . We find after the change of index l= j+q
that

−Γ
(c)
jj (ω)≈

(2π)3/2j4kℓ

X((N+α)2−j2)N

∑

q 6=0

e
− (kℓ)2

2
j2

(N+α)2−j2
q2

(N+α)2 .

Interpreting this sum as the Riemann sum of a continuous integral, we get

−Γ
(c)
jj (ω)≈

(2π)3/2j4kℓ

X((N+α)2−j2)

∫ ∞

−∞
e
− (kℓ)2

2
j2

(N+α)2−j2
s2

ds=
(2π)2j3

X
√

(N+α)2−j2
.

(C.5)

By comparing with (C.1) we find that the coefficient −Γ
(c)
jj (ω) is larger than Γ

(0)
jj when

kℓ satisfies
√
N≪kℓ≪N .

To be complete, note that:

- If kℓ∼N , then −Γ
(c)
jj (ω) is larger than Γ

(0)
jj if and only if j/N < (1+(kℓ/N)2)−1/2.

- If kℓ is larger than N , then the main contribution to the sum in l comes only from one
or two terms with indices l= j±1, and it becomes exponentially small in (kℓ)2/N2.

In these conditions −Γ
(c)
jj (ω) becomes smaller than Γ

(0)
jj .

For j∼1 we can estimate (C.4) again by interpreting the sum over l as a Riemann
sum approximation of an integral that we can estimate using the Laplace perturbation
method. Explicitly, for j=1 we have

−Γ
(c)
11 (ω)≈

(2π)3/2

X

1

N

N∑

l=2

(l/N)2kℓ√
(1+α/N)2−(l/N)2

e
− (kℓ)2

2

(

1−
√

1−(l/N)2
)2

≈ (2π)3/2kℓ

X

∫ 1

0

ds
s2√
1−s2

e−
(kℓ)2

2 (1−
√
1−s2)

2

. (C.6)

We approximate the integral with Watson’s Lemma [2, Section 6.4], after changing
variables ζ=(1−

√
1−s2)2 and obtaining that

∫ 1

0

ds
s2√
1−s2

e−
(kℓ)2

2 (1−
√
1−s2)

2

≈
∫ 1

0

dζϕ(ζ)e−
(kℓ)2

2 ζ , ϕ(ζ)=
ζ−1/4

√
2

+O(ζ1/4).

Watson’s Lemma gives

∫ 1

0

ds
s2√
1−s2

e−
(kℓ)2

2 (1−
√
1−s2)

2

≈ Γ(3/4)21/4

(kℓ)3/2
,

and therefore by (C.6) and (5.7),

−Γ
(c)
11 (ω)≈

(2π)3/2Γ(3/4)21/4

X(kℓ)1/2
. (C.7)

By comparing with (C.2) we find that the coefficient −Γ
(c)
11 (ω) is larger than Γ

(0)
11 .
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For j∼N only the terms with l∼N contribute to the sum in (C.4). If kℓ∼
√
N ,

then we find that

−Γ
(c)
NN (ω)≈ (2π)3/2N2kℓ

2
√
αX

∞∑

q=1

1√
α+q

e−
(kℓ)2

2N (
√
q+α−√

α)2 ∼ (2π)3/2N3

2C(α)kℓX
,

up to a constant C(α) that depends only on α. By comparing with (C.3) we can see

that it is of the same order as Γ
(0)
NN . If kℓ≫

√
N , then we find that

−Γ
(c)
NN (ω)≈ (2π)3/2N2kℓ

2
√

α(1+α)X
e−

(kℓ)2

2N (
√
1+α−√

α)2 ,

which is very small because the exponential term is exponentially small in (kℓ)2/N .

In these conditions −Γ
(c)
NN (ω) is smaller than Γ

(0)
NN .
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