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GEOMETRIC DYNAMICS OF OPTIMIZATION∗

FRANÇOIS GAY-BALMAZ† , DARRYL D. HOLM‡ , AND TUDOR S. RATIU§

Abstract. This paper investigates a family of dynamical systems arising from an evolutionary
re-interpretation of certain optimal control and optimization problems. We focus particularly on
the application in image registration of the theory of metamorphosis. Metamorphosis is a means
of tracking the optimal changes of shape that are necessary for registration of images with various
types of data structures, without requiring that the transformations of shape be diffeomorphisms,
but penalizing them if they are not. The possibilities of this approach are just beginning to be
developed. In particular, metamorphosis and its related variants in the geometric approach to control
and optimization can be expected to produce many exciting opportunities for new applications and
analysis in geometric dynamics.
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1. Introduction
With the advent of new devices capable of seeing objects and structures not pre-

viously imagined, the realm of science and medicine has been extended in a multitude
of different ways. The impact of this technology has been to generate new challenges
associated with the problems of formation, acquisition, compression, transmission,
and analysis of images. These challenges cut across the disciplines of mathematics,
physics, computational science, engineering, biology, medicine, and statistics.

For example, in computational anatomy (CA) biomedical images are compared
quantitatively by calculating the “distance” between them, along a path that is opti-
mal in transforming one such image to another. The optimal path is traversed along
a curve of deformations in the group of smooth invertible maps with smooth inverses
(i.e., the diffeomorphisms) and it is governed by a partial differential equation (PDE)
called the EPDiff equation, which takes its simplest form as [42, 43, 72, 64]

d

dt

δℓ

δξ
=∓ ad∗ξ

δℓ

δξ
. (1.1)

The term EPDiff is an abbreviation for ‘the Euler-Poincaré equation on the group
of diffeomorphisms’. EPDiff arises from Hamilton’s principle δS=0 for S=

∫
ℓ(ξ)dt

for a Lagrangian ℓ(ξ) :X→R defined on the Lie algebra of vector fields X with Lie
bracket −[ξ,η]=adξη :X×X→X. The dual operation is ad∗ξµ :X×X∗→X∗. The sign
in equation (1.1) is + (resp. −) for left (resp. right) invariant vector fields.

The EPDiff equation (1.1) governs geodesic flow on the group of diffeomorphisms,
with respect to any prescribed metric. This flow from one shape to another also has
an evolutionary interpretation that invites ideas from the analysis of evolutionary
equations. In particular, the momentum map for EPDiff, identified first in [17] and
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explained more completely in [40], yields the canonical Hamiltonian formulation of
the dynamics of the singular evolutionary solutions of EPDiff. Moreover, in an opti-
mization sense, this momentum map also provides a complete representation of the
landmarks and contours (outlines) of images to be matched, in terms of the canon-
ical positions and momenta associated with the evolutionary interpretation [44]. In
addition, it provides a natural strategy for finding the optimal path between two con-
figurations of either landmarks or contours [72]. Thus, the momentum map (a concept
from Hamiltonian systems) is crucial in the construction of an isomorphism between
the data structures used in the optimal matching of images and the evolutionary sin-
gular solutions of the EPDiff equation. This isomorphism has already suggested new
dynamical paradigms for CA, as well as new strategies for assimilation of data in
other image representations, for example, as gray-scale densities [47, 72]. The con-
verse benefit may also develop, in which methods of optimal control and optimization
of data assimilation used in image matching for CA may suggest new strategies for
investigating dynamical systems of evolutionary PDE. In short, the variational formu-
lations, Lie symmetries and associated momentum maps encountered in applications
of EPDiff have led to a convergence in the analysis of both its evolutionary properties
and its optimization equations.

This paper focuses on the evolutionary aspects of the PDE that are summoned by
adopting a dynamical interpretation of the optimal control and optimization methods
used in the registration of various types of images. The paper does not perform any
applications of optimization methods to image registration, nor does it develop any
numerical algorithms for making such applications. Instead, the paper re-interprets
the endeavor of image registration from a dynamical systems viewpoint. In particular,
as we shall explain, a recent development in Large Deformation Diffeomorphic Metric
Mapping (LDM), in an approach for image registration called metamorphosis1 [61, 68,
47], introduces a new type of evolutionary equation that may be called optimization
dynamics. In following this line of reasoning, the geometric mechanics approach for
evolutionary PDE provides a framework that we hope will inform both optimization
and dynamics.The primary example in the line of reasoning leading to optimization
dynamics is the EPDiff equation [42, 43, 72].

A brief history of the EPDiff equation. The EPDiff equation (1.1) stems
from the recognition by Arnold in [1] that incompressible fluid dynamics could be
characterized as geodesic flow in the group of volume preserving diffeomorphisms,
with respect to the kinetic energy metric (L2 norm of the fluid velocity). A few
years later, the one-dimensional compressible version of EPDiff reappeared as the
dispersionless limit of the Camassa-Holm (CH) equation [17]. The CH equation is a
completely integrable evolution equation for shallow water waves, whose soliton so-
lutions develop sharp peaks in the dispersionless limit. Its peaked soliton solutions
(peakons) correspond to concentrations of momentum into delta-function singulari-
ties and are solutions of EPDiff in one dimension with the H1 kinetic energy metric.
Slightly later, the incompressible version of EPDiff with the H1 kinetic energy met-
ric was generalized to higher dimensions in [42, 43] by using its symmetry-reduced
variational principle, and was interpreted as Euler’s fluid equations, averaged follow-
ing Lagrangian particle trajectories. This interpretation soon led to the introduction
of viscosity and some interesting applications of the resulting viscous equations as a

1Although the term “metamorphosis” has a precise mathematical definition that will be given
below, it also satisfies its proper dictionary definition, as “a change of physical form, structure, or
substance”. This paper interprets the change as a type of evolution.
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turbulence model by Chen et al. [20, 21].

Around the same time, EPDiff arose independently in a completely different con-
text. Namely, it arose as the governing equation in the optimization problem for Large
Deformation Diffeomorphic Metric Mapping (LDM) in image registration [66, 67, 70].
The recognition that EPDiff was arising in these two different contexts provided a
fruitful opportunity for dual interpretations of the solutions of the same equation. In
particular, the “peakons” of the CH equation in the water wave context were soon
recognized to be the “landmarks” in images in the LDM context [44]. Since then,
the two types of problems have continued their optimization-dynamics interplay and
have been found to inform each other, while also showing intriguing differences and
similarities that arise in their dual formulations as initial value problems on one hand
and boundary value problems on the other. In particular, the concept of symme-
try reduction and momentum maps from geometric mechanics, that had previously
been applied so effectively in fluid dynamics [1] and shallow water soliton theory [17],
has recently been recognized also as a unifying approach for developing multi-mode
LDM methods for images whose data structure may comprise arbitrary tensors, or
tensor densities [16]. This is a rich and rapidly developing area of science, for which
a complete literature review would be beyond our scope here.

The convergence of these two independent endeavors has led to dual interpreta-
tions of the same equation and the same key ideas in different but complementary
contexts. This convergence is fascinating, and we continue our investigation of it
here. In the present paper, we emphasize the dynamical interpretations of the equa-
tions and approaches that are applied in optimal image matching. This is not to say
that we solve optimal matching problems for images at all in this paper. Rather, being
cognizant of the ideas and variational formulations underlying the optimal matching
approach, we shall apply these formulations to study certain classes of equations that
arise in the problem of image registration, not from the viewpoint of optimization,
but rather from the evolutionary viewpoint of geometric mechanics [45, 54].

The geometric mechanics approach emphasizes Lie group actions on manifolds,
momentum maps, and reduction by symmetry. This approach leads in the present
paper to an understanding of certain classes of control and optimization problems as
systems of evolutionary equations. In particular, the Lie symmetry ideas underlying
the process of optimal image assimilation known as metamorphosis [61, 68, 47] in
combination with the evolutionary geometric mechanics viewpoint leads the family of
EPDiff equations into the realm of optimization dynamics. Optimization dynamics
extends the previous association of image matching ideas with soliton theory [44] to
produce new results, such as the derivation and re-interpretation of the two-component
CH system (CH2) as an equation for the dynamics of metamorphosis of gray-scale
images [47]. The CH2 system is a completely integrable evolutionary system of equa-
tions that was recently discovered using isospectral methods for solitons [22]. Its
inverse scattering transform is discussed in [38]. Recognizing that some systems of
equations arising in optimization dynamics for image analysis may be associated with
soliton theory raises many questions about the mathematical properties of these sys-
tems and their solutions, particularly when the equations are nonlocal. For example,
the initial value problems for some of the nonlocal equations obtained in optimization
dynamics investigated here allow emergent singular solutions, in which the evolution
of a smooth, spatially confined, initial condition becomes singular by concentrating
itself into delta function distributions. In particular, EPDiff has that property and so
does the corresponding system of equations for the optimization dynamics of meta-
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morphosis. See [42, 43, 45] and [71, 72], respectively, for further discussions of EPDiff
from the different but complementary viewpoints of geometric mechanics and image
matching.

1.1. LDM approach, EPDiff, and momentum maps. The LDM ap-
proach is based on minimizing the sum of a time-integrated kinetic energy metric
whose value defines the length of an optimal deformation path, plus a penalty norm
that ensures an acceptable tolerance in image mismatch. The main reason why match-
ing cannot be exact is that the sets of level curves of two generic images are rarely
topologically equivalent, thus the images cannot be matched exactly.

LDM approaches were introduced and systematically developed in Trouvé [66,
67], Dupuis et al. [25], Joshi and Miller [48], Miller et al. [61, 60], Beg [5], and
Beg et al. [6]. The LDM approaches of those papers are based on Grenander’s
deformable template paradigm for image registration [32]. Grenander’s paradigm, in
turn, is a development of a biometric strategy introduced by D’Arcy Thompson [65]
of comparing a template image I0 to a target image I1 by finding a smooth invertible
transformation of coordinates that maps one image to the other. This transformation
is assumed to belong to a Lie group G of diffeomorphisms that acts on the set of
templates containing I0 and I1. The effect of the transformation on the data structure
that is encoded in the set of templates is called the action of the Lie group G on the
set of images. As discussed below, the optimal path in the transformation group is
the one that costs the least in time-integrated ‘kinetic energy’ for a given tolerance.
This concept of optimization summons a control theory approach into the analysis
and registration of images. For a comprehensive presentation of the mathematical
foundations of the LDM approach, see [71].

In applications of the LDM approach, the optimal transformation path is of-
ten sought by using a variational optimization method such as the one developed in
[25, 66, 67]. Using this method, the optimal path for the matching transformation
in this problem is obtained from a gradient-descent algorithm based on the Euler-
Lagrange equation arising from stationary balance between kinetic energy and tol-
erance. This gradient-descent approach does indeed determine an optimal matching
path. However, from the viewpoint of dynamical systems theory, it misses the follow-
ing potentially interesting question:

What information and perspective may be obtained by interpreting the
Euler-Lagrange equations associated to the LDM approach from a dy-
namical systems viewpoint?

The answer to this question may be sought by interpreting the variational opti-
mization method in the LDM approach as a form of Hamilton’s principle. Hamilton’s
principle for the variational construction of optimal paths with minimal kinetic energy
for a given tolerance in image mismatch yields an associated set of Euler-Lagrange
equations that may then be given an evolutionary interpretation. The optimal so-
lutions of these equations have been investigated as evolutionary motion on the Lie
group of diffeomorphisms in the absence of additional penalty terms by Arnold [1, 2],
Holm et al. [42, 43], Marsden and Ratiu [54], and for the particular application to
template matching in Miller et al. [60]. As mentioned earlier, the optimal paths in
these cases are geodesics with respect to the metric provided by the kinetic energy.
The kinetic energy for LDM is invariant under right translations on the diffeomor-
phism group. Reducing Hamilton’s principle with respect to this symmetry and then
invoking the Euler-Poincaré theory applied to diffeomorphisms produces the EPDiff
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equation (1.1) [42, 43].

The solution of the EPDiff equation yields the spatial representation of the
geodesic velocity, i.e., the tangent vector to the optimal path of deformations along
which the minimal distance from one image to another is measured. The geodesics
themselves may be obtained from the solutions of EPDiff for the velocity by a recon-
struction process that inverts the previous reduction by symmetry after the solution
to the EPDiff equation for velocity has been obtained. This is analogous to the re-
construction process in classical mechanics that recovers the symmetry coordinate
conjugate to a conserved momentum as the final step in the solution, after the other
degrees of freedom have been determined in the reduced space.

Composing the evolutionary solutions of EPDiff with the reconstruction process
provides an important representation of diffeomorphisms that relates the endpoint of
a geodesic to the initial value for momentum in the EPDiff equation. This relation
is the momentum representation of the deformation. The long-time existence of this
representation is based on conservation by EPDiff of the kinetic energy norm, which
may be chosen so that its boundedness affords enough smoothness on the velocities
to ensure the long-time existence of solutions of EPDiff. In this case, EPDiff admits
emergent weak momentum solutions; for example, delta-function distributions of mo-
mentum that emerge from smooth, spatially confined initial conditions [17, 40]. This
singular behavior is well understood analytically only in certain one-dimensional cases.
In particular, it is understood for the completely integrable case of the Camassa-Holm
equation; see, e.g., [52, 62] and references therein.

The EPDiff equation is of central importance in computational anatomy [72].
This is because the optimal paths sought by LDM on the image template space de-
fined on a manifold M are inherited from the geodesics on Diff(M), the Lie group of
diffeomorphisms acting on the manifold M . These, in turn, are governed by EPDiff.
Consequently, any solution of the LDM problem for optimal geodesics must involve
EPDiff [72]. Conversely, solving the LDM problem directly produces the momentum
representation of the optimal diffeomorphism. The momentum representation arising
from this evolutionary interpretation is then available for analyzing anatomical data
sets. In any case, despite the disparate forms that the geodesic equations may take
for the various data structures in the various types of images, all of them are instances
of EPDiff with the corresponding representation for momentum. The specific repre-
sentation for momentum in terms of the image data structure in a given case is called
the momentum map. The momentum map for images is another dynamical systems
concept that emerges as a central feature in this paper. The EPDiff equation and its
associated momentum map for various image data structures are discussed in Section
8.4.

An interesting example of the momentum map relating solutions of LDM to solu-
tions of EPDiff arises for the case of landmark data structure, in which the momentum
is singularly concentrated at points. The relation between these singular geodesic so-
lutions and evolutionary soliton solutions, called peakons for a shallow water wave
equation introduced in Camassa and Holm [17], has been examined in the context
of computational anatomy in Holm et al. [44]. A numerical analysis of the stability
of these equations is also given in McLachlan and Marsland [57]. See also Micheli
[58] for other recent developments involving the curvature of the space of landmark
shapes. Holm and Marsden [40] explain that two independent momentum maps for
EPDiff are available in the case that the image data structure comprises the manifold
Emb(S1,R2) of embedded closed curves (embedded images of S1) in the plane R2.
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The left action of the group of diffeomorphisms Diff(R2) of the plane deforms the
curve by a smooth invertible transformation of the coordinate system in which it is
embedded, while leaving the parameterization of the curve invariant. The right action
of the group of diffeomorphisms Diff(S1) of the circle corresponds to smooth invertible
reparameterizations of the domain S1 of the coordinates of the curve. In this case,
one momentum map corresponds to action from the left by the diffeomorphisms on
R2, the other to their action from the right on the embedded curves. Optimal control
and reparameterization methods for matching closed curves in the plane using these
two momentum maps for the space of closed curves in the plane have recently been
developed in Cotter and Holm [24].

In summary, LDM image analysis is based on optimization methods that are
formulated as boundary value problems. However, the re-interpretation of their gov-
erning equations as evolutionary systems by using symmetry reduction of the corre-
sponding Hamilton’s principle allows various concepts from dynamical systems theory
to be profitably applied in the solution and interpretation of image analysis problems.
Thus, the transfer of concepts and ideas between these two fields in the context of
image registration has the potential to enrich them both.

1.2. Distributed optimization dynamics, or evolutionary metamorpho-
sis. As we have been discussing, the paper focuses on the geometric dynamics
interpretation of the optimization problems designed for image registration. However,
rather than concentrating on the development of solutions of optimization problems,
the treatment here focuses on the dynamics that are produced in applying the method
of reduction by Lie group symmetry to families of optimization problems posed in a
geometric setting. This is a new arena for geometric dynamics and several new de-
partures are being taken. Among these new departures is the investigation of the
evolutionary dynamics that arises when distributed or nonlocal penalties are imposed
in Hamilton’s principle, rather than local constraints. For lack of a better name, we
call this sort of problem distributed optimization dynamics. It is the evolutionary
counterpart of the metamorphosis approach in imaging science [61, 68, 47], which, in
turn, is a modification and development of LDM that allows the evolution n(t) of
the image template to deviate from pure deformation. That is, metamorphosis only
penalizes the spatial average of the deviation away from the infinitesimal action of the
vector fields on an image manifold, rather than enforcing it as a local pointwise con-
straint. This approach, in turn, modifies the EPDiff equation and thereby introduces
a wealth of new structure and new examples that we shall investigate in this paper.

An explicit comparison for the case that the image templates are gray-scale den-
sity distributions may help to understand the difference between the LDM approach
and the metamorphosis approach.

LDM approach: Given the source and target templates for the images character-
ized as scalar densities n0 and nT at the initial time t=0 and the final time t=T ,
respectively, minimize the quantity

∫ T

0

ℓ(u(t))dt+
1

2σ2
‖n0 ◦η

−1
T −nT ‖

2
L2 (1.2)

over the time dependent vector field u(t), where ηT is the flow of u(t) evaluated at
time t=T , and the formula

ṅ(t)+div
(
n(t)u(t)

)
=0
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Fig. 1.1. These gray-scale images show optimal metamorphoses between two density distri-
butions with equal total mass from [47]. The optimization approach would compute the distance
along the optimal path between between the first and last density in each row. In the evolutionary
approach, the optimal trajectories for n(t) are computed. The images between the endpoints show
snapshots along the optimal path n(t) in each row at intermediate points in time. In particular,
the second row shows that metamorphosis allows a change in topology along its optimal path. Our
interest focuses on the evolutionary equations for the process of metamorphosis. The dynamical
system of metamorphosis equations obtained in registering such gray-scale image densities is given
in Section 8 as one of the examples of the general approach. In one dimension, the metamorphosis
equations for this class of images comprises a completely integrable Hamiltonian system [47].

is its infinitesimal action on a smooth density n(t)=n0 ◦η
−1
t defined over time 0≤ t≤T

on the domain of flow.

Metamorphosis approach: Given n0 and nT , minimize

∫ T

0

(

ℓ(u(t))+
1

2σ2
‖ṅ(t)+div

(
n(t)u(t)

)
‖2L2

)

dt (1.3)

over time dependent vector field u(t) and scalar densities n(t). As one sees in figure 1.1
for the metamorphosis of shapes characterized as densities, the term “metamorphosis”
introduced in [68] for this process can be understood in practice by its ordinary
meaning, as “change of shape”, such as the gradual and continuous metamorphosis
of a tadpole into a frog.

The paper begins by contrasting optimal control problems with distributed op-
timization problems in a geometric setting. In particular, we discuss the geometric
properties of Lie algebra controls acting on state space manifolds. The latter optimal
control approach parallels the familiar Clebsch variational formulation of dynamical
equations continuum mechanics (e.g., [39]). In fact, continuum mechanics was one of
the early paradigms for image registration [70]. The Clebsch variational formulation
of continuum mechanics has recently been developed and applied in the study of the
dynamical aspects of optimal control problems in a geometric setting (see [29, 37]).
Conversely, our concern here is to continue this parallel development by studying
the implications for dynamics of the geometric approach to distributed optimization
problems.

1.3. Main content of the paper.

Context. In [29] a general formulation for a large class of optimal control prob-
lems was given. These problems, called Clebsch optimal control problems, are asso-
ciated to an action Φ :G×Q→Q of a Lie group G on a manifold Q and to a cost
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function ℓ :g×Q→R, where g denotes the Lie algebra of G. The Clebsch optimal
control problem for the curves ξ(t)∈g and n(t)∈Q is, by definition,

min
ξ(t)

∫ T

0

ℓ(ξ(t),n(t))dt, (1.4)

subject to the following conditions:

(A) Either ṅ(t)= ξ(t)Q(n(t)), or (A)′ ṅ(t)=−ξ(t)Q(n(t));

(B) Both n(0)=n0 and n(T )=nT ,
where ξQ denotes the infinitesimal generator of the G-action, that is,

ξQ(n) :=
d

dt

∣
∣
∣
∣
t=0

Φexp(tξ)(n).

These optimal control problems comprise abstract formulations of many systems such
as the symmetric representation of the rigid body and Euler fluid equations [9, 37],
the double bracket equations on symmetric spaces [8], the singular solutions of the
Camassa-Holm equation [17], control problems on Stiefel manifolds [13], and others
[7, 12].

Optimal control problems on Lie groups have a long history; see [7], [49], and
references therein. Some of the earliest papers dealing with such problems are [14]
and [33].

Goals of the paper. The first goal of the present paper is to replace the con-
straints in the Clebsch optimal control problem (1.4) with a penalty function added
to the cost function and to obtain in this way a classical (unconstrained) optimization
problem. The fundamental idea is to use the constraints to form a quadratic penalty
function in order to get the Lagrangian

∫ T

0

(

ℓ(u,n)+
1

2σ2
‖ṅ∓ uQ(n)‖

2

)

dt. (1.5)

We first determine necessary and sufficient conditions characterizing the critical points
of this Lagrangian. Taking the time derivative of one of the conditions and using the
others leads directly to certain equations of motion. We then show that these equa-
tions are naturally obtained by Lagrangian reduction and that they are the Lagrange-
Poincaré equations of a Lagrangian function in the material representation that is the
sum of the original Lagrangian plus the square of the norm on the velocity vector. This
approach links directly to the approach used in [47] in the study of the metamorphosis
of shapes. From a variational point of view, one replaces the Hamilton-Pontryagin
variational principle in the Clebsch framework

δ

∫ T

0

(ℓ(u,n)+〈α,ṅ∓uQ(n)〉)dt=0

by the principle

δ

∫ T

0

(

ℓ(u,n)+
1

2σ2
‖ṅ∓uQ(n)‖

2

)

dt=0,

which is the basis of Clebsch distributed optimization.
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This paper traces how the dynamical equations change on moving from constraints
(optimal control) to optimization via imposition of a cost, and then on to metamor-
phosis. Passing from optimal control to optimization preserves the momentum map,
but this passage modifies the reconstruction relation. The evolution is no longer only
for the momentum map of the reduced Lagrangian. Instead, the momentum canoni-
cally conjugate to the velocity on the configuration manifold becomes coupled to the
momentum map equations (which are the Euler-Poincaré equations), with coupling
constant σ2.

Another feature of the paper, directly related to the dynamics of our optimization
problem, is the description of the equations of motion by Lagrangian and Hamilto-
nian reduction. In particular, we carry out a certain type of Lagrangian reduction
adapted to the problem, that we naturally call metamorphosis reduction, since it was
directly inspired by the example of the metamorphosis approach to image dynamics
[47]. This Lagrangian reduction leads to the expression of the associated variational
principles and Hamiltonian structures. In metamorphosis, the optimization problem
involves Riemannian structures induced by Lie group actions on themselves and on Lie
subgroups by group homomorphisms. This is a rich field whose possibilities are still
being developed. In particular, metamorphosis and related variants of the geometric
approach to control and optimization can be expected to produce opportunities for
new applications and analysis in geometric dynamics.

1.4. Plan of the paper. In the remainder of the paper, we compare the
dynamical equations that arise from optimal control problems with those arising from
distributed optimization. This comparison provides several examples of how the two
approaches differ and, in particular, how their dynamical equations differ when their
variational problem is regarded as Hamilton’s principle for the dynamics. Their com-
parison also identifies the aspects of these approaches that are fundamentally the
same.

• Section 2 begins by explaining the dynamical set up for standard optimal
control problems treated by the Pontryagin Maximum Principle. Section
2.2 provides several examples illustrating the consequences of applying Lie
group controls acting on state manifolds by using the Clebsch framework
for optimal control. These examples introduce the momentum map for the
cotangent-lifted action of the Lie group controls on the state manifold. The
cotangent-lift momentum map is a fundamental concept in the application of
geometric mechanics methods in the Clebsch framework for optimal control.
It turns out that the same momentum map is also the organizing principle for
the distributed optimization dynamics introduced in Section 2.3. After es-
tablishing this background for our comparison of optimization and dynamical
systems methods, Section 1.3 provides an overview of the rest of the paper.

• Section 3 begins by reviewing the Clebsch framework for optimal control
problems introduced and studied in [29]. A new class of optimization prob-
lems is then introduced, which is the subject of study of this paper. The
stationarity conditions are obtained and the associated equations of motion
are determined.

• Inspired by the extremum problems presented earlier, Section 4 presents two
Lagrangian reduction procedures for Lagrangian functions defined on T (G×
Q), where G is a Lie group acting on the manifold Q.

• These reduction methods are used in Section 5 to rederive the equations of
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motion that were found in Section 3.

• Hamiltonian reduction is carried out in Section 6. As before, there are two
reduction methods and, in the case of a representation, one of them leads
to Lie-Poisson equations with a symplectic cocycle on the dual of a larger
semidirect product Lie algebra.

• In Section 7 we apply these Hamiltonian reduction methods to the optimiza-
tion problems introduced earlier.

• Section 8, by far the longest of the paper, presents a panorama of examples for
the purpose of illustrating the breadth of the applications of the general the-
ory. We begin by studying examples where G is represented on a vector space.
The concrete examples treated are the heavy top and a class of problems us-
ing the adjoint representation. For example, we find a modification of the
pair of double bracket equations studied in [8], [9]. Next, we study optimiza-
tion problems associated to affine actions. Actions by group multiplication is
the next topic. The concrete examples include Euler’s equations for an ideal
incompressible homogeneous and for a barotropic fluid. The N -dimensional
Camassa-Holm equation is presented from this optimization point of view,
inspired by the construction of singular solutions. Finally, the optimization
problem is used to obtain the equations of metamorphosis dynamics for use
in computational anatomy.

• Section 9 briefly summarizes the paper and gives an outlook for future work.

2. Review of optimal control problems

2.1. Definitions. We begin by recalling the definition of optimal control
problems.

Definition 2.1 (Optimal control problems). A standard optimal control problem
comprises:

• a differentiable manifold Q on which state variables n∈Q evolve in time t
during an interval I=[0,T ] along a curve n : I→Q from n(0)=n0 to n(T )=
nT , with specified values n0,nT ∈Q;

• a vector space U of control variables u∈U whose time dependence u : I→U
is at our disposal to affect the evolution n(t) of the state variables;

• a smooth map F :Q×U→TQ such that F (·,u) :Q→TQ is a vector field on
Q for any u∈U whose associated evolution equation2

ṅ=F (n,u) (2.1)

relates the unknown state and control variables (n(t),u(t)) : I→Q×U ;

• a cost functional depending on the state and control variables

S :=

∫ T

0

ℓ(u(t),n(t))dt, (2.2)

2The over-dot notation in ṅ means time derivative. Several forms of time derivative appear in
applications and the meaning should be clear from the usage. Besides the over-dot notation, we shall
use the equivalent notation d/dt to mean either partial or ordinary time derivative in the abstract
formulas, as needed in the context. For fluids, we shall also use ∂t for the Eulerian time derivative
at fixed spatial location. Finally, the covariant time derivation on a Riemannian manifold will be
denoted as D/Dt.
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subject to the prescribed initial and final conditions, at n(0)=n0 and n(T )=
nT . The integrand ℓ :Q×U→R, called the Lagrangian, is assumed to be C1

on Q×U .
The goal of the optimal control problem is to find the evolution (n(t),u(t)) of the state
and control variables such that S is minimal subject to the prescribed dynamics (2.1)
and the prescribed initial and final conditions n(0)=n0, n(T )=nT .

The coupling between the control and state variables may be made explicit by us-
ing the pairing 〈·, ·〉Q :T ∗Q×TQ→R and a Lagrange multiplier α∈T ∗Q that imposes
the state system as a constraint on the cost functional,

Sc :=

∫ T

0

[

ℓ(u,n)+〈α,ṅ−F (n,u)〉Q

]

dt. (2.3)

This is a consequence of the well-known Pontryagin maximum principle [7, 49].
The variable α∈T ∗Q is called a costate variable. We now compute the equations

associated to the variational principle δSc=0. For simplicity, we suppose here that
the state manifold Q is a vector space, say W . In this case the cotangent space
is T ∗W =W ×W ∗ and the costate variable is of the form α=(n,p)∈W ×W ∗. The
stationary variations of the constrained cost function Sc in (2.3) yield

0= δSc=

∫ T

0

[〈

∂ℓ

∂n
−

(
∂F

∂n

)T

p− ṗ,δn

〉

W

+

〈

δℓ

δu
−

(
δF

δu

)T

p,δu

〉

U

+〈δp,ṅ−F (n,u)〉W

]

dt+〈p,δn〉W

∣
∣
∣

T

0
,

where 〈· , ·〉U :U∗×U→R denotes the duality pairing for the control vector space U
and the symbols δℓ

δn ,
δF
δn ,

∂ℓ
∂n , and

∂F
∂u denote the functional and partial derivatives of

the functions ℓ and F , respectively.
Stationarity in the variations δu gives a relation that determines the controls u

in terms of the state and costate variables, n and α, respectively, while stationarity
in the variations (δn,δα) determines the evolution equations for the state and costate
variables that minimize the cost function S. Since the values of n at the endpoints in
time are fixed, δn vanishes at the endpoints. We thus get the stationarity conditions

δℓ

δu
=

(
δF

δu

)T

p, ṅ=F (n,u), ṗ=
δℓ

δn
−

(
δF

δn

)T

p.

Remark 2.1. Although we shall confine our considerations to the Lagrangian de-
scription, we point out that the relation to the Pontryagin Maximum Principle in the
Hamiltonian description is obtained via the Legendre transformation of the integrand
in the cost functional given by (2.3) which, for each point u in the control space U ,
defines the corresponding Hamiltonian Hu :T

∗Q→R by

Hu(αn)= 〈αn,F (n,u)〉Q−ℓ(n,u). (2.4)

The notation αn for a covector in T ∗Q means that it belongs to the fiber T ∗
nQ of

the cotangent bundle. For more information about the Hamiltonian approach to
geometric optimal control theory and the Pontryagin Maximum Principle, see [7,
49]. In particular, the Pontryagin principle admits abnormal solutions that are not
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included in the Clebsch formulation. Very few results are known about the existence
of strict abnormal minimizers for these problems [4]. One might conjecture that
abnormal solutions do not arise in optimization dynamics, regarded as an initial value
problem. However, we have no results in this matter.

2.2. Examples: Lie group controls acting on state manifolds. As an
example that illustrates the theory developed in this paper, we consider the case of
continuum mechanical systems with advected quantities; see Section 6 in [42]. In this
case, the state manifold M is a vector subspace V ∗ of T(D)⊗Den(D), the tensor field
densities on a manifold D. For example, in nonlinear elasticity, the stress is a tensor
field density. We will denote by a∈V ∗ these tensor field densities. The group Diff(D)
of all diffeomorphisms of the manifold D acts on V ∗ by pull back, that is,

a 7→η∗a, for all η∈Diff(D).

It is thus a right representation of Diff(D) on T(D)⊗Den(D). We consider here the
group Diff(D) of diffeomorphism as an infinite dimensional Lie group (either formally
or in some Fréchet sense) whose Lie algebra is given by vector fields v∈X(D). The
right action of the Lie algebra X(D) on V ∗ is given by the Lie derivative

d

dt

∣
∣
∣
∣
t=0

exp(tv)∗a :=£va,

where t 7→ exp(tv) denotes the flow of v.

Example 1. We present a simple example of an optimal control problem based
on the geometric formulation of continuum mechanics described above. In this ex-
ample, the control space U is the Lie algebra X(D) and thus the control variable is
a vector field u :=v∈X(D). The state manifold Q is the vector space V ∗ of tensor
field densities. The state variable n :=a∈V ∗ is constrained to evolve according to the
ODE

ȧ=F (a,v) :=£va,

and one wants to minimize

S :=
1

2

∫ T

0

‖v‖2
g
dt,

where ‖·‖g is an inner product norm on the Lie algebra g=X(D). Note that we are
in the setting of Definition 2.1 with M =V ∗ and U =X(D). This is an example of a
Clebsch optimal control problem, as studied from a geometric point of view in [29].
For this class of problems, the vector field F is given by the infinitesimal generator
associated to a group action on the state manifold. In the present example, this
infinitesimal generator turns out to be the Lie derivative.

According to (2.3), the constrained cost function in this case is

Sc=

∫ T

0

(
1

2
‖v‖2

g
+〈p,ȧ−£va〉V

)

dt,

where p∈V is the costate variable. This is nothing else than the Clebsch approach
to continuum mechanics; see, e.g., [39]. The variational principle δSc=0 gives the
control

v=−(p⋄a)♯∈g,
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where ♯ :g∗→g is the sharp operator associated to the inner product on g and the
bilinear operator ⋄ :V ×V ∗→g∗ is defined by

〈p⋄a,v〉 :=−〈£va,p〉, for all p∈V, a∈V ∗, v∈g. (2.5)

The other stationarity conditions are

{
ȧ+£(p⋄a)♯a=0,

ṗ−£T

(p⋄a)♯p=0,
(2.6)

where £T

vp∈V is defined by

〈

a,£T

vp
〉

= 〈£va,p〉 , for all p∈V, a∈V ∗, v∈g. (2.7)

The Clebsch state-costate equations (2.6) are canonically Hamiltonian with

H(a,p)=
1

2
‖(p⋄a)♯‖2

g
=

1

2

〈

p⋄a, (p⋄a)♯
〉

g

.

As is well known [39], using the cotangent-lift momentum map given by Π=−p⋄a to
project the equations (2.6) on T ∗M to g∗ yields the (left) Lie-Poisson bracket on the
dual Lie algebra g∗. Explicitly, this Lie-Poisson bracket is given by

Π̇=ad∗δh/δΠΠ=ad∗Π♯Π, (2.8)

where the Hamiltonian has the expression

h(Π)=
1

2

〈
Π,Π♯

〉

g
. (2.9)

Example 2. This example will use the geometric setting of continuum mechanics
as described before. However, the control vector space will now be given by U :=
g×V ∗∋ (v,ν). We choose the quadratic Lagrangian

ℓ(v,ν) :=
1

2
‖v‖2

g
+

1

2σ2
‖ν‖2L2 ,

where ‖·‖L2 denotes an L2 norm on V ∗⊂T(D)⊗Den(D). As before, the state mani-
fold Q is V ∗ and the state variable a∈V ∗ is constrained to evolve as

ȧ=F (a,v,ν) :=£va+ν.

Note that the advection law ȧ=£va is not imposed. Instead, the penalty term in the
Lagrangian introduces the additional term ν into the advection law.

Thus, the constrained action (2.3) becomes in this case

Sc=

∫ T

0

(
1

2
‖v‖2

g
+

1

2σ2
‖ν‖2L2 +〈p,ȧ−£va−ν〉V

)

dt, (2.10)

whose stationary variation results in

0= δSc=

∫ T

0

[〈

−£T

vp− ṗ,δa
〉

V
+
〈

v♭+p⋄a,δv
〉

g
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+

〈
1

σ2
ν♭−p,δν

〉

V

+〈δp,ȧ−£va−ν〉V

]

dt+〈p,δa〉V

∣
∣
∣

T

0
,

where the flat operators ♭ :g→g∗ and ♭ :V ∗→V are associated to the inner products
on g and V ∗, respectively. Here the endpoint terms vanish because the values of a
at the endpoints in time are fixed. According to the variational formula for δSc, the
cost functional in (2.10) is optimized when the controls satisfy

v=−(p⋄a)♯∈g and ν=σ2p♯∈V ∗, (2.11)

in which the sharp maps are the inverses of the flat maps defined above. For the
controls (v,ν)∈g×V ∗, the state and costate variables (a,p)∈V ∗×V evolve according
to the closed system

{
ȧ+£(p⋄a)♯a=σ

2p♯,

ṗ−£T

(p⋄a)♯p=0.
(2.12)

These are Hamilton’s canonical equations for the Hamiltonian

H(p,a)=
1

2

〈
(p⋄a) , (p⋄a)♯

〉

g
+
σ2

2

〈
p, p♯

〉

V
. (2.13)

Remark 2.2. Thus, the evolution of the state a and costate p variables occurs by the
corresponding Lie derivative actions of the vector field (p⋄a)♯∈g=X(D) calculated
by applying the sharp map ♯ to raise indices on the cotangent momentum map (a,p)∈
V ∗×V =T ∗V ∗ 7→J(a,p)=−p⋄a∈g∗ of the cotangent-lifted action.

The evolution of the momentum V ∗×V →g∗ itself is the last formula to be found,
just as in the Clebsch approach [39].

Proposition 2.2. Denote the momentum map of the cotangent-lifted action by

Π:=−p⋄a,

and its dual vector field by

v :=−(p⋄a)♯=Π♯.

Then the state and costate equations (2.12) imply the following Euler-Poincaré equa-
tion for the evolution for the momentum map:

Π̇=−£∗
vΠ−σ2p⋄p♯, (2.14)

where the operator £∗
v :g

∗→g∗ is defined by 〈£∗
vΠ,u〉 := 〈Π, [v,u]JL〉 for any u,v∈g=

X(D) and Π∈g∗=Ω1(D)⊗Den(D), and where [v,u]JL=£vu denotes the standard
Lie bracket of vector fields.

Proof. The proof proceeds by a direct calculation. In the computation below we
use the standard Jacobi-Lie bracket of vector fields [X,Y ]JL(f)=X(Y (f))−Y (X(f))
for any f ∈C∞(D). For a fixed Lie algebra element Z ∈g=X(D), we compute

〈

Π̇,Z
〉

=−〈ṗ⋄a+p⋄ ȧ,Z〉

= 〈ṗ,£Za〉+〈p,£Z ȧ〉
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=−
〈

£T

vp,£Za
〉

+〈p,£Z£va〉+σ
2
〈
p,£Zp

♯
〉

=
〈
p,£[Z,v]a

〉
+σ2

〈
p,£Zp

♯
〉

=−〈p⋄a, [Z,v]〉−σ2
〈
p⋄p♯,Z

〉

=−〈Π,£vZ〉−σ
2
〈
p⋄p♯,Z

〉

=−〈£∗
vΠ,Z〉−σ

2
〈
p⋄p♯,Z

〉
,

which proves the proposition.

Note that we identified the dual space X(D)∗ with one-form densities Ω1(D)⊗
Den(D). If Π=α⊗m∈Ω1(D)⊗Den(D), then the pairing of α⊗m with v∈X(D) is
given by

〈α⊗m,v〉=

∫

D

(α ·v)m,

where α ·v is the standard contraction of a one-form with a vector field.

Remark 2.3 (Lie algebra formulation of the equations). Recall the the Lie algebra
bracket [u,v]=aduv on g is minus the Lie bracket of vector fields, that is,

[u,v]=−[u,v]JL :=−(u ·∇v−v ·∇u) .

We may thus identify £∗
v=−ad∗v and the previous equations can be rewritten as







Π̇=ad∗vΠ−σ2p⋄p♯,

ȧ=−£va+σ
2p♯,

ṗ=£T

vp.

(2.15)

These are Lie-Poisson equations with a cocycle for the Hamiltonian

h(Π,a,p)=
1

2

〈
Π,Π♯

〉

g
+
σ2

2

〈
p, p♯

〉

V
(2.16)

with respect to the Lie-Poisson bracket given by







Π̇

ȧ

ṗ






=







ad∗
2
Π a⋄2 −p⋄2

−£2a 0 1

£T

2
p −1 0













δh/δΠ=Π♯=v

δh/δa=0

δh/δp=σ2p♯






, (2.17)

in which the variational derivatives of the Hamiltonian are to be substituted into
the corresponding places indicated by a box (2). This matrix is identified as the
Hamiltonian operator for the Lie-Poisson bracket dual to the semidirect product Lie
algebra gs(V ∗×V ) plus a symplectic 2-cocycle on (a,p)∈V ×V ∗.

Remark 2.4. This Hamiltonian matrix will block-diagonalize in the Lagrange-
Poincaré formulation discussed in Section 4. Roughly speaking, this amounts to
transforming variables Π→ Π̃ :=(Π+p⋄a) and (a,ν)→ (a,ȧ).
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Example 3. We now consider an example analogous to the preceding one but in
finite dimensions. We let the orthogonal group G=SO(3) act on R3 by matrix mul-
tiplication on the left and we choose U := so(3)×R3∋ (Ω,ν) as the control space. As
usual, we identify the Lie algebra so(3) with R3. We choose the quadratic Lagrangian
ℓ : so(3)×R3→R given by

ℓ(Ω,ν) :=
1

2
IΩ ·Ω+

1

2σ2
Kν ·ν,

for symmetric positive definite matrices I and K. We impose the evolution equation

Ẋ=−Ω×X+ν (2.18)

for the state variable X∈R3=:Q. As before, the variational principle δSc=0 with

Sc=

∫ T

0

(
1

2
IΩ ·Ω+

1

2σ2
Kν ·ν+P ·

(

Ẋ+Ω×X−ν
))

dt

yields the controls

IΩ=P×X and Kν=σ2P,

as in (2.11). Note thatΩ= I−1(P×X)=(P×X)♯ and K−1P=P♯, by the definition of
the sharp maps. Then the state and costate evolution equations (2.12) take canonical
Hamiltonian form with Hamiltonian function

H(X,P)=
1

2
(P×X) ·(P×X)♯+

σ2

2
P ·P♯. (2.19)

Intriguingly, the resulting canonical Hamiltonian equations,







Ẋ=
∂H

∂P
=−(P×X)♯×X+σ2P♯,

Ṗ=−
∂H

∂X
=−(P×X)♯×P,

(2.20)

involve the double cross product of the state and costate vectors (X,P)∈R3×R3.
The double cross products correspond to the Lie derivatives in equations (2.12) which
for this case become cross products. For more information about the roots of the
Hamiltonian approach in geometric control theory, see [3].

Upon defining the vector Π := IΩ=P×X, equations (2.20) imply







Π̇=−Ω×Π−σ2(K−1P)×P,

Ẋ=−Ω×X+σ2P♯,

Ṗ=−Ω×P,

(2.21)

which recovers the momentum map system (2.15) for this case. Indeed, one may
compute directly that

Π̇= Ṗ×X+P×Ẋ

=(−Ω×P)×X+P×
(
−Ω×X+σ2P♯

)
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=(P×Ω)×X+(Ω×X)×P+σ2P×P♯

=−(X×P)×Ω+σ2P×(K−1P)

=Π×Ω+σ2P×(K−1P),

from which the result follows.

Remark 2.5 (Lie algebra formulation). The Lie algebra bracket on se(3)≃ so(3)sR3

may be written on R3×R3 as

ad(Ω,α)(Ω̃,α̃)=
[

(Π,α), (Ω̃,α̃)
]

=
(

Ω×Ω̃,Ω×α̃−Ω̃×α
)

.

Its dual operation is

ad∗(Ω,α)(Π,P)=
(

−Ω×Π−α×P,−Ω×P
)

.

In terms of the ad∗ operation on se(3)∗, the motion equations for (Π,P) in (2.21) can
be rewritten as

(
Π̇, Ṗ

)
=
(

−Ω×Π−σ2P♯×P,−Ω×P
)

=
(

ad∗ΩΠ+σ2P⋄P♯,−Ω×P
)

=ad∗(Ω,σ2P♯)

(
Π,P

)
.

The result of the last calculation may be rewritten in Lie-Poisson bracket form as

(
Π̇, Ṗ

)
=ad∗(

∂h/∂Π,∂h/∂P
)
(
Π,P

)
, (2.22)

with Hamiltonian (2.19) rewritten in these variables as

h(Π,P)=
1

2
Π ·Π♯+

σ2

2
P ·P♯, (2.23)

and using the (left) Lie-Poisson bracket defined on the dual Lie algebra se(3)∗. This is
the Hamiltonian and Lie-Poisson bracket for the motion of an ellipsoidal underwater
vehicle in the body representation. See, e.g., [36] for more discussion and references
to the literature about the geometrical approach to the dynamics and control of
underwater vehicles.

We have seen that equations (2.20) for the state-costate vectors (X,P) are canon-
ically Hamiltonian and that the system (2.22) for (Π,P) is Lie-Poisson on the dual
of a semidirect product Lie algebra. Now, it remains to include the dynamics of the
coordinate X into a single structure for the entire system (2.21) for (Π,X,P). We
observe that equations (2.21) may be put into Lie-Poisson form, as





Π̇

Ẋ

Ṗ



=





Π× X× P×
X× 0 1
P× −1 0









δh/δΠ
δh/δX
δh/δP



=





Π× X× P×
X× 0 1
P× −1 0









Ω
0

σ2P♯



 . (2.24)

This is the Lie-Poisson bracket dual to the semidirect product Lie algebra
so(3)s(R3×R3) plus a symplectic 2-cocycle on (X,P)∈R3×R3.
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Remark 2.6. As mentioned earlier, the Lagrange-Poincaré and Hamilton-Poincaré
formulations in sections 4 and 6 will block-diagonalize this Hamiltonian matrix.

Remark 2.7 (Comparison of the examples). The major difference between Example
1 and Examples 2 and 3 is the following. In Example 1, we impose the advection
equation ȧ=£va as a constraint on the minimization problem. This is done, as
usual, by introducing a new variable p and adding the term 〈p, ȧ−£va〉 in the action
functional. In Examples 2 and 3, the advection law is not imposed exactly, but only
up to an error term

ν := ȧ−£va,

whose norm is added to the Lagrangian as a penalty, and needs to be minimized.
Of course, in this case, the relation ν= ȧ−£va is a constraint as seen in the term
〈p, ȧ−£va−ν〉. As we have seen in Proposition 2.2, this error term implies a modi-
fication of the equations of motion.

One of the aims of the present paper is to transform the control problem cor-
responding to the cost function in (2.10) into an optimization problem in which the
penalty term ‖ȧ−£va‖

2 appears. This objective motivates the introduction of the
distributed optimization problem in the next section.

2.3. Control problems versus optimization problems. Let ℓ= ℓ(u,n) :
U×Q→R be a cost function and F a vector field on Q. We associate to these objects
the following problems.

(1) In the Clebsch Optimal Control Problem [29] one minimizes the integral

S :=

∫ T

0

ℓ(u,n)dt subject to the conditions ṅ=F (n,u)

and the usual endpoint conditions. The resolution of this problem uses the
Pontryagin maximum principle which, under a sufficient smoothness condi-
tion, implies that a solution of this problem is necessarily a solution of the
variational principle δSc=0, with

Sc= δ

∫ T

0

(

ℓ(u,n)+〈α,ṅ−F (n,u)〉
)

dt=0. (2.25)

Example 1 in Section 2.2, for which the cost function is a kinetic energy and
the vector field F is given by a Lie derivative, illustrates this method.

(2) In Clebsch Distributed Optimization one minimizes the integral

Sp :=

∫ T

0

(

ℓ(u,n)+
1

2σ2
‖ṅ−F (n,u)‖2

)

dt, (2.26)

where a norm ‖ · ‖ is chosen, associated to a Riemannian metric on Q. In
this cost functional, the Clebsch constraint for the state system dynamics has
been relaxed to the status of a penalty, with positive tolerance, σ2>0, and
the variations are subject to the usual endpoint conditions. Of course, the
solutions of this problem are necessarily solutions of the variational principle
δSp=0.

Remark 2.8. Despite the analogy between the two variational principles δSc=0 and
δSp=0, the origins of these principles are quite different.
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(1) In Clebsch Optimal Control, the functional Sc in (2.25) is minimized subject
to the constraint of the state system dynamics by introducing the costate
variable α. The well-known Pontryagin approach tells us that the solutions
of the optimal control problem are necessarily critical points of Sc.

(2) In Clebsch Distributed Optimization, the stationarity condition for the varia-
tional principle is implied by optimization of the functional Sp with penalty
in (2.26), without other constraints, except the endpoint conditions.

We may initially regard this second approach as simply modifying the cost func-
tion in the optimal control problem (2.3) by introducing a penalty based on a norm
of the state system. We will show later that the equations of motion for the two types
of optimization problems coincide in the limit σ2→0.

In the case where Q is a vector space, denoted by W , and the norm is associated
to an inner product, the variations of the distributed cost function Sp in (2.26) now
yield

δSp=

∫ T

0

[〈

δℓ

δn
−

(
δF

δn

)T

p− ṗ,δn

〉

W

+

〈

δℓ

δu
−

(
δF

δu

)T

p,δu

〉

V

]

dt+〈p,δn〉W

∣
∣
∣

T

0
,

(2.27)
where the momentum variable p obtained from the variation with respect to the vector
field ṅ∈W is defined by

σ2p :=
(

ṅ−F (n,u)
)♭

∈W ∗, (2.28)

and in this case the ♭map (index lowering) is applied with respect to the inner product
on W .

Example. Let us return to Example 2 above and treat it as Clebsch distributed
optimization problem. As in Section 2.2, we consider the geometric setting of con-
tinuum mechanics. Contrary to Example 1 above, we do not impose the advection
equation ȧ=£va as a constraint but as a penalty. The problem is now to minimize
the expression

Sp :=

∫ T

0

[
1

2
‖v‖2

g
+

1

2σ2
‖ȧ−£va‖

2
L2

]

dt,

where ‖·‖L2 is a L2 norm on the space of tensor field densities. This problem is clearly
equivalent to that of Example 2 in Section 2.2. The variational principle δSp=0 yields
the control

v=−(p⋄a)♯∈g,

and the same equations as before,

{
ȧ+£(p⋄a)♯a=σ

2p♯,

ṗ−£T
(p⋄n)♯p=0,

(2.29)

where we have defined the variable p by

p :=
1

σ2
(ȧ−£va)

♭∈V. (2.30)
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It is important to observe that in this approach the variable p is not really needed,
since it is defined in terms of the other variables. This is not the case for the Clebsch
approach described in the Examples of Section 2.2 for which p is an independent
variable. For the Clebsch approach, the relation (2.30) is recovered as a consequence
of the variational principle δSc=0.

3. Clebsch optimal control versus distributed optimization
In this section we begin with a brief review in Section 3.1 of the Clebsch optimal

control problem studied in [29]. Then in Section 3.2 we introduce the class of Clebsch
distributed optimization problems investigated in this paper, obtained by adding to the
cost function a penalty given by the norm of the constraints in the previous approach.

3.1. Review of Clebsch optimal control.

Clebsch optimal control formulation and main results. We remind the
reader that we previously defined the Clebsch optimal control problem [29] as follows.
Let Φ :G×Q→Q be a left (resp. right) action of a Lie group G on the manifold Q
and let ℓ :g×Q→R be a cost function. The Clebsch optimal control problem for the
curves ξ(t)∈g and n(t)∈Q is

min
ξ(t)

∫ T

0

ℓ(ξ(t),n(t))dt (3.1)

subject to the following conditions:

(A) Either ṅ(t)= ξ(t)Q(n(t)) , or (A)′ ṅ(t)=−ξ(t)Q(n(t));

(B) Both n(0)=n0 and n(T )=nT ,
where ξQ denotes the infinitesimal generator of the G-action associated to ξ∈g, that
is,

ξQ(q) :=
d

ds

∣
∣
∣
∣
s=0

Φexp(sξ)(q), q∈Q.

If condition (A) is assumed, then by applying the Pontryagin maximum principle,
we obtain that an extremal curve n(t)∈Q is necessarily the projection of a curve
α(t)∈T ∗Q that is a solution of the equations [29]

δℓ

δξ
=J(α), α̇= ξT∗Q(α)+Verα

∂ℓ

∂n
. (3.2)

Here J :T ∗Q→g∗ denotes the momentum map associated to the cotangent-lifted ac-
tion of G on T ∗Q. Recall that J is given by [54]

〈J(αq),ξ〉= 〈αq,ξQ(q)〉=−〈αq ⋄q,ξ〉, where ξQ(q)=£ξq.

The expression δℓ
δξ ∈g∗ denotes the usual functional derivative of ℓ(·,n) for each fixed

n∈Q whereas ∂ℓ
∂n :=dℓ(ξ, ·)∈T ∗

nQ denotes the differential of the function ℓ(ξ, ·) :Q→R

for each fixed ξ∈g. For α,β∈T ∗
qQ, the map Verαβ denotes the vertical lift of β∈T ∗

qQ
relative to α∈T ∗

qQ, defined by

Verαβ :=
d

ds

∣
∣
∣
∣
s=0

(α+sβ)∈Tα(T
∗Q).
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In (3.2), ξT∗Q denotes the infinitesimal generator of the cotangent-lifted action of G
on T ∗Q. Note that the vector field ξT∗Q(α)+Verα

∂ℓ
∂n on T ∗Q is the Hamiltonian

vector field associated to the Hamiltonian

αn∈T
∗Q 7→ 〈αn,ξQ(n)〉−ℓ(ξ,n)∈R,

in which the Lie algebra element ξ∈g is regarded as a parameter. Using these equa-
tions, we determine that the optimal control ξ is the solution of the equations

d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
+J

(
∂ℓ

∂n

)

, resp.
d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+J

(
∂ℓ

∂n

)

. (3.3)

If condition (A)′ is assumed, then (3.2) is replaced by

δℓ

δξ
=−J(α), α̇=−ξT∗Q(α)+Verα

∂ℓ

∂n
, (3.4)

and the optimal control ξ is the solution of the equations

d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
−J

(
∂ℓ

∂n

)

, resp.
d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
−J

(
∂ℓ

∂n

)

. (3.5)

We refer to [29] for proofs of these statements and further discussion.

Proposition 3.1 (Variational principle). The equations (3.2) or (3.4), together with
the constraint ṅ=±ξQ(n), follow from the variational principle

δ

∫ T

0

(
ℓ(ξ,n)+〈α,ṅ∓ξQ(n)〉

)
dt=0, (3.6)

for curves t 7→ ξ(t)∈g and t 7→α(t)∈T ∗
n(t)Q. The variations δξ are free, whereas the

variations δα are such that the induced variations δn vanish at the endpoints, that is,
δn(0)= δn(T )=0.

Proof. To see this, let ξs∈g and αs∈T
∗
ns
Q be curves whose infinitesimal varia-

tions at s=0 are δξ∈g and δα∈T ∗
nQ. We have

δ

∫ T

0

(
ℓ(ξ,n)+〈α,ṅ∓ξQ(n)〉

)
dt

=

∫ T

0

〈
δℓ

δξ
,δξ

〉

dt+

∫ T

0

〈
∂ℓ

∂n
,δn

〉

dt

+
d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈αs,ṅs〉dt∓
d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈J(αs),ξs〉dt. (3.7)

A direct computation in canonical coordinates, using δn(0)= δn(T )=0 in an integra-
tion by parts, shows that

d

ds

∣
∣
∣
∣
s=0

∫ T

0

〈αs,ṅs〉dt=

∫ T

0

Ωcan(α̇,δα)dt, (3.8)

where Ωcan denotes the canonical symplectic form on T ∗Q. In addition, using the
definition of the momentum map J :T ∗Q→g∗ we have

d

ds

∣
∣
∣
∣
s=0

〈J(αs),ξs〉= 〈TαJ(δα),ξ〉+〈J(α),δξ〉=Ωcan (ξT∗Q(α),δα)+〈J(α),δξ〉 . (3.9)

Using relations (3.8) and (3.9) in formula (3.7) yields (3.2) and (3.4).
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Alternative form of the stationarity conditions. Note that the equations

α̇=±ξT∗Q(α)+Verα
∂ℓ

∂n
(3.10)

imply the constraint ṅ=±ξQ(n). To see this, it suffices to apply the tangent map
Tπ to (3.10), where π :T ∗Q→Q is the projection, and recall that ξT∗Q and ξQ are
π-related. By introducing a Riemannian metric g on Q, it is possible to rewrite the
stationarity condition in a more explicit way, as we show in the following lemma.

Lemma 3.1. Suppose that Q is endowed with a Riemannian metric g and denote by
∇ and D/Dt the associated Levi-Civita covariant derivatives.

Then the equation α̇=±ξT∗Q(α)+Verα
∂ℓ
∂n in (3.10) is equivalent to the system







ṅ=±ξQ(n),

D

Dt
α=∓〈α,∇ξQ(n)〉+

∂ℓ

∂n
.

(3.11)

Proof. We begin by recalling the definition and main property of the connec-
tor K :TTQ→TQ associated to a Riemannian manifold (Q,g). A general detailed
treatment for connectors associated to linear connections can be found in [59], Sec-
tion 19.11. In infinite dimensions we need to assume that the given weak Riemannian
metric has a smooth geodesic spray S∈X(TQ). In natural local charts of TTQ, the
intrinsic map K is defined by

Kloc(x,e,u,v)=(x,v+Γ(x)(e,u)), (3.12)

where Γ(x) is the Christoffel map defined by the quadratic form in the fourth com-
ponent of the geodesic spray S(x,u)=(x,u,u,−Γ(x)(u,u)). In finite dimensions, the
Christoffel map has the familiar expression Γ(x)(e,u)i=Γi

jk(x)e
iuk, where Γi

jk are
the usual Christoffel symbols associated to the metric g. The relation between the
connector and the Levi-Civita covariant derivative is given for all X,Y ∈X(Q) by

∇YX=K ◦TX ◦Y. (3.13)

The connector K induces an intrinsic map, also denoted by K :TT ∗Q→T ∗Q defined
in natural local charts by

Kloc(x,β,u,γ)=(x,γ−β(Γ(x)(u, ·))). (3.14)

The associated covariant derivative

∇Xα :=K ◦Tα◦X (3.15)

on T ∗Q recovers the Levi-Civita connection on one-forms α∈Ω1(Q). Although the
same notation is used for the connector on TQ and on T ∗Q, it will be clear from the
context which one is meant.

The proof of Lemma 3.1 begins by recalling the vector bundle isomorphism
TT ∗Q→T ∗Q⊕TQ⊕T ∗Q given by

X 7→ (σT∗Q(X),Tπ(X),K(X)) ,

where σT∗Q :TT ∗Q→T ∗Q is the projection. Therefore, to prove the equivalence it
suffices to apply the maps Tπ and K to the equation α̇=±ξT∗Q(α)+Verα

∂ℓ
∂n . As
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we have seen before, applying Tπ yields the first equation in the system (3.11). The
Definition (3.14) of K and (3.15) immediately imply the equalities

K(α̇)=
D

Dt
α and K

(

Verα
∂ℓ

∂n

)

=
∂ℓ

∂n
.

Thus, to finish the proof, it suffices to compute K (ξT∗Q(α)). Given vn∈TnQ, αn∈
T ∗
nQ, and ξ∈g, we have

〈

T ∗Φ−1
exp(sξ)(αn),TΦexp(sξ)(vn)

〉

= 〈αn,vn〉 .

Taking the s-derivative at s=0 yields

〈K (ξT∗Q(αn)) ,vn〉+〈αn,K (ξTQ(vn))〉=0. (3.16)

Noting the equalities K(ξTQ(vn))=K(TξQ(vn))=∇vn
ξQ(n), we obtain the formula

K (ξT∗Q(αn))=−〈αn,∇ξQ(n)〉 ,

which proves Lemma 3.1, that the stationarity conditions (3.10) and (3.11) are equiv-
alent for a Riemannian manifold.

System (3.11) may also be obtained directly from the variational principle δSc=0,

Sc=

∫ T

0

(
ℓ(ξ,n)+〈α,ṅ∓ ξQ(n)〉

)
dt,

by using a Riemannian metric on Q. However, we have chosen to derive the stationar-
ity conditions (3.2) or (3.4) together with the constraint ṅ=±ξQ(n) for the functional
Sc without introducing a Riemannian metric; see (3.7)–(3.9) above.

Lagrangian and Hamiltonian approach. Equations (3.3) and (3.5) can be
obtained via Euler-Poincaré reduction for the G-invariant function L :TG×Q→R

induced by ℓ. More precisely, upon fixing q∈Q and defining the Lagrangian Lq(ug) :=
L(ug,q) on TG, one finds that the equations (3.3) and (3.5) are equivalent to the
Euler-Lagrange equations for Lq by invoking a generalization of the Euler-Poincaré
reduction theorem. We refer to [30] for a proof of this assertion and for applications to
systems with broken symmetry. If Q is a representation space of G, one recovers the
Euler-Poincaré reduction theorem for semidirect products; see [42, 43] and Section 5
below.

If the Legendre transform ξ∈g 7→ δℓ
δξ ∈g∗ is a diffeomorphism, we can form the

associated Hamiltonian h :g∗×Q→R defined by

h(µ,n) := 〈µ,ξ〉−ℓ(ξ,n), where
δℓ

δξ
=µ.

In this case, the Lagrangian L is hyperregular on TG, the variable q∈Q being con-
sidered as a parameter, and we can form the Hamiltonian H :T ∗G×Q→R. More
precisely, fixing q∈Q, we define

Hq :=Eq ◦FL
−1
q ,

where Eq is the energy associated to the Lagrangian Lq :TG→R and FLq :TQ→
T ∗Q is the classical Legendre transform of Lq. The function H :T ∗G×Q→R is
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then defined by H(αg,q) :=Hq(αg). Equations (3.3) and (3.5) can be written in
Hamiltonian form as







µ̇=∓ ad∗δh
δµ
µ−J

(
∂h

∂n

)

,

ṅ=

(
δh

δµ

)

Q

(n),

(3.17)

and






µ̇=±ad∗δh
δµ
µ+J

(
∂h

∂n

)

,

ṅ=−

(
δh

δµ

)

Q

(n),

(3.18)

respectively. They are obtained by Poisson reduction of Hamilton’s equations for H
on T ∗G×Q, where Q is endowed with the zero Poisson structure.

In terms of h, the equations (3.2) or (3.4) read

µ=J(α), α̇=

(
δh

δµ

)

T∗Q

(α)−Verα
∂h

∂n
, (3.19)

and

µ=−J(α), α̇=−

(
δh

δµ

)

T∗Q

(α)−Verα
∂h

∂n
. (3.20)

As in Lemma 3.1, by introducing a Riemannian metric g on Q, these equations
can be rewritten as

µ=±J(α), ṅ=±

(
δh

δµ

)

Q

(n),
D

Dt
α=∓

〈

α,∇

(
δh

δµ

)

Q

(n)

〉

−
∂h

∂n
. (3.21)

3.2. Clebsch distributed optimization problems: using penalties.
As before, we consider a left (resp. right) action Φ :G×Q→Q and a cost function
ℓ :g×Q→R. We suppose that the manifold Q is endowed with a Riemannian metric
g. The basic idea is to treat the condition (A) or (A)′ as a penalty rather than a
constraint. Therefore, in the case of condition (A) above, we consider the minimization
problem

min
ξ,n

∫ T

0

(

ℓ(ξ,n)+
1

2σ2
‖ṅ−ξQ(n)‖

2

)

dt, (3.22)

and if condition (A)′ holds, we consider

min
ξ,n

∫ T

0

(

ℓ(ξ,n)+
1

2σ2
‖ṅ+ξQ(n)‖

2

)

dt. (3.23)

These two problems are subject to the condition

n(0)=n0 and n(T )=nT ,

for given n0,nT ∈Q. Here the norm is taken with respect to the Riemannian metric
g on Q and σ 6=0.



F. GAY-BALMAZ, D. D. HOLM, AND T. S. RATIU 187

Stationarity conditions. In order to find the critical curves, we consider the
variational principle

δ

∫ T

0

(

ℓ(ξ,n)+
1

2σ2
‖ṅ∓ ξQ(n)‖

2

)

dt=0 (3.24)

for the two curves (ξ,n) : [0,T ] 7→g×Q, where n has fixed endpoints. That is, the
variation δξ is free and the variation δn vanishes at the endpoints.

We will treat condition (A) and (A)′ simultaneously. In all the expressions below,
the upper sign refers to condition (A) and the lower sign refers to condition (A)′. The
ξ-variation yields the condition

δℓ

δξ
=±

1

σ2
J(ν♭n), where νn := ṅ∓ ξQ(n), (3.25)

and ν♭n :=g(n)(νn, ·)∈T
∗
nQ . We now compute the variations of n, where we denote

by ∇ and D/Dt the covariant derivatives associated to the Levi-Civita connection of
the metric g. For δn= d

ds

∣
∣
s=0

ns, we have

∫ T

0

(〈
∂ℓ

∂n
,δn

〉

+
1

σ2

〈

ν♭n,
D

Ds

∣
∣
∣
∣
s=0

ṅ∓
D

Ds

∣
∣
∣
∣
s=0

ξQ(ns)

〉)

dt

=

∫ T

0

(〈
∂ℓ

∂n
,δn

〉

−
1

σ2

〈
D

Dt
ν♭n,δn

〉

∓
1

σ2

〈

ν♭n,∇δnξQ(n)
〉)

dt.

Upon exchanging the order of derivatives, D
Dt

d
ds =

D
Ds

d
dt (which is allowed because the

Levi-Civita connection has no torsion) one finds the equation

D

Dt
ν♭n=∓g(νn,∇ξQ)+σ

2 ∂ℓ

∂n
. (3.26)

Consequently, (ξ,n) is a solution of (3.24) if and only if (3.25) and (3.26) hold. In
what follows, equations (3.25) and (3.26) will be called the stationarity conditions.

Note that here, in contrast to the argument in Section 3.1, specific use of the
Riemannian metric is made in computing the stationarity equations from the condition
δSp=0, where

Sp :=

∫ T

0

(

ℓ(ξ,n)+
1

2σ2
‖ṅ∓ ξQ(n)‖

2

)

dt. (3.27)

This is natural, because a Riemannian metric is provided by the penalty term in the
problem statement. Using the notation

π :=
1

σ2
ν♭n=

1

σ2
(ṅ∓ξQ(n))

♭
∈T ∗Q

enables the stationarity conditions (3.25) and (3.26) to be written as

δℓ

δξ
=±J(π), ṅ=±ξQ(n)+σ

2π♯,
D

Dt
π=∓〈π,∇ξQ〉+

∂ℓ

∂n
. (3.28)

These equations should be compared with the other stationarity conditions (3.2) and
(3.11),

δℓ

δξ
=±J(α), ṅ=±ξQ(n),

D

Dt
α=∓〈α,∇ξQ〉+

∂ℓ

∂n
, (3.29)
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associated to the Clebsch optimal control problem. These two sets of stationarity
conditions are analogous. However, the corresponding variables α and π have different
origins. Namely, the costate variable α was introduced as the Lagrange multiplier in
formulating the constrained Clebsch variational principle (3.6), whereas the variable π
arises as a canonical momentum, dual to the penalty variable νn in the unconstrained
variational principle (3.24).

Recall from Lemma 3.1 that the last two stationarity conditions of the system
(3.29) are equivalent to

α̇=±ξT∗Q(α)+Verα
∂ℓ

∂n
.

An analogous result concerning the stationarity conditions of the distributed optimal
control problem is given by the following lemma. Let ♯ := ♭−1 :T ∗Q→TQ.

Lemma 3.2. The system of two equations






ṅ=±ξQ(n)+σ
2π♯,

D

Dt
π=∓〈π,∇ξQ(n)〉+

∂ℓ

∂n

(3.30)

is equivalent to the single equation

π̇=±ξT∗Q(π)+Verπ
∂ℓ

∂n
+σ2S(π),

where S ∈X(T ∗Q) is the Hamiltonian vector field associated to the kinetic energy of
the Riemannian metric.

Proof. It suffices to observe that the vector field S satisfies the properties

K(S(α))=0 and Tπ(S(α))=α♯,

for all α∈T ∗Q. Then the proof is similar to that of Lemma 3.1.

Remark 3.2. In terms of the Hamiltonian h associated to ℓ, the stationarity condi-
tions (3.25) and (3.26) read

ṅ=±

(
δh

δκ

)

Q

(n)+σ2π♯,
D

Dt
π=∓

〈

π,∇

(
δh

δκ

)

Q

(n)

〉

−
∂h

∂n
,

or, equivalently,

π̇=±

(
δh

δκ

)

T∗Q

(π)−Verπ
∂h

∂n
+σ2S(π).

These equations should be compared to their analogues in (3.19) – (3.21).

Equations of motion associated to the stationarity conditions. We now
compute the differential equation associated to condition (3.25), that is, the analogue
of equations (3.3), (3.5). The formulation will involve the following g∗-valued (1,1)
tensor field.

Definition 3.3. Consider a Lie group G acting on a Riemannian manifold (Q,g).
We define the g∗-valued (1,1) tensor field F∇ :T ∗Q×TQ→g∗ associated to the Levi-
Civita connection ∇ by

〈
F∇(αq,uq),η

〉
:=
〈
αq,∇uq

ηQ(q)
〉
, (3.31)
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for all uq ∈TqQ, αq ∈T
∗
qQ, and η∈g.

The main properties of the tensor field F∇ are given in the following lemmas.

Lemma 3.4. For all αq ∈T
∗
qQ, uq ∈TqQ, and ξ∈g,

〈
F∇(αq,uq),ξ

〉
= 〈αq,K(ξTQ(uq))〉=−〈K(ξT∗Q(αq)),uq〉 ,

where K denotes the connectors of the covariant derivatives on TQ and T ∗Q, respec-
tively (see formulas (3.12)-(3.15)).

Proof. It suffices to use formula (3.16) in the proof of Lemma 3.1.

The following important property of F∇ is valid when G acts by isometries.

Lemma 3.5. If G acts by isometries, then F∇ is antisymmetric, that is

F∇(αq,uq)=−F∇(u♭q,α
♯
q),

for all uq ∈TqQ, αq ∈T
∗
qQ.

Proof. Since G acts by isometries, £ξQg=0 which implies (∇ξQ)
T =−∇ξQ.

We also need the following preparatory lemma, valid for any action.

Lemma 3.6. Let J :T ∗Q→g, 〈J(αq),ξ〉= 〈αq,ξQ(q)〉 be the momentum map of the
cotangent-lifted action of G on T ∗Q and let g be a Riemannian metric on Q. Then
for a curve α(t)∈T ∗

q(t)Q we have

d

dt
J(α(t))=J

(
D

Dt
α(t)

)

+F∇(α(t), q̇(t)),

where D/Dt and ∇ denote the Levi-Civita covariant derivatives associated to g.

Proof. For all η∈g, we have

d

dt
〈J(α(t)),η〉=

d

dt
〈α(t),ηQ(q(t))〉=

〈
D

Dt
α(t),ηQ(q(t))

〉

+

〈

α(t),
D

Dt
ηQ(q(t))

〉

=

〈

J

(
D

Dt
α(t)

)

,η

〉

+
〈

α(t),∇q̇(t)ηQ(q(t))
〉

.

Using the definition of F∇ implies the required formula.

Note that this proof of Lemma 3.6 did not assume that the metric is G-invariant
and that the formula is valid for left and right actions.

Lemma 3.6 and equations (3.25), (3.26) enable one to compute the motion equa-
tions associated to the minimization problems (3.22), (3.23) as follows:

d

dt

δℓ

δξ
=±

d

dt

1

σ2
J(ν♭n)=±

1

σ2
J

(
D

Dt
ν♭n

)

±
1

σ2
F∇(ν♭n,ṅ)

=±J

(
∂ℓ

∂n

)

−
1

σ2
J
(

〈ν♭n,∇ξQ〉
)

±
1

σ2
F∇(ν♭n,νn)+

1

σ2
F∇(ν♭n,ξQ(n))

=±J

(
∂ℓ

∂n

)

±
1

σ2
F∇(ν♭n,νn)+(∓)

1

σ2
ad∗ξ J(ν

♭
n)
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=±J

(
∂ℓ

∂n

)

±
1

σ2
F∇(ν♭n,νn)±(∓)ad∗ξ

δℓ

δξ
,

where in (∓) one chooses − (resp. +) when G acts on Q by a left (resp. right) action;
so in the last term there are four choices of sign. Thus, when the penalty is given by
‖ṅ−ξQ(n)‖

2 (condition (A)), the critical curves of the variational principle (3.24) are
solutions of







d

dt

δℓ

δξ
=∓ ad∗ξ

δℓ

δξ
+J

(
∂ℓ

∂n

)

+
1

σ2
F∇(ν♭n,νn),

D

Dt
ν♭n=−〈ν♭n,∇ξQ〉+σ

2 ∂ℓ

∂n
, νn := ṅ−ξQ(n).

(3.32)

When the penalty ‖ṅ+ξQ(n)‖
2 (condition (A)′) is chosen instead, one finds,







d

dt

δℓ

δξ
=± ad∗ξ

δℓ

δξ
−J

(
∂ℓ

∂n

)

−
1

σ2
F∇(ν♭n,νn),

D

Dt
ν♭n= 〈ν♭n,∇ξQ〉+σ

2 ∂ℓ

∂n
, νn := ṅ+ξQ(n).

(3.33)

Remark 3.3. The motion equations (3.32) and (3.33) should be compared to the
analogous motion equation (3.3) and (3.5), respectively, obtained by the Clebsch op-
timal control approach. Note that the term F∇(ν♭n,νn) is an additional force term
that is due to the presence of the quantity νn. The variable νn= ṅ± ξQ(n) mea-
sures the inexact matching and evolves according to the second equation D

Dtν
♭
n=

±g(νn,∇ξQ)+σ
2 ∂ℓ
∂n . We shall return to the discussion of inexact matching for images

in Section 8.5.

Thanks to Lemma 3.5 we obtain the following important result, when G acts by
isometries.

Theorem 3.7. Let G be a Lie group acting on a manifold Q and let ℓ :g×Q→R be a
cost function. We consider the two associated Clebsch optimal control and distributed
optimization problems. Suppose that the Riemannian metric used in the penalty term
is G-invariant. Then the two problems yield the same equations of motion.

Proof. It suffices to use Lemma 3.5, and to compare equations (3.33), (3.32)
with equations (3.3), (3.5).

For completeness we rewrite below the equations (3.32) and (3.33) in the partic-
ular case where G acts by isometries. Using F∇(ν♭n,νn)=0 and ∇ξTQ=−∇ξQ for this
case yields







d

dt

δℓ

δξ
=∓ ad∗ξ

δℓ

δξ
+J

(
∂ℓ

∂n

)

,

D

Dt
νn=∇νn

ξQ+σ2 ∂ℓ

∂n

♯

, νn := ṅ−ξQ(n)

(3.34)

and






d

dt

δℓ

δξ
=± ad∗ξ

δℓ

δξ
−J

(
∂ℓ

∂n

)

,

D

Dt
νn=−∇νn

ξQ+σ2 ∂ℓ

∂n

♯

, νn := ṅ+ξQ(n).

(3.35)
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Remark 3.4. The remainder of the present paper will investigate these equations
as dynamical systems, rather than as optimal control problems. See [44], in which a
similar approach is taken.

4. Lagrange-Poincaré and metamorphosis reduction
In this section, we present two Lagrangian reduction approaches that will be

useful in understanding the geometry of the equations (3.33), (3.32) associated to the
minimization problem (3.23), (3.22).

Let G act on the left (resp. right) on Q. Let L :T (G×Q)→R be a left (resp.
right)-invariant Lagrangian under the action of G given by

(ug,uq) 7→ (hug,huq) resp. (ug,uq) 7→ (ugh,uqh).

Two reduction processes are discussed. The first uses Lagrangian reduction (see [19])
and the second is a formulation of the reduction used for metamorphosis in [47].

Theorem 4.1 (Lagrange-Poincaré reduction). Let g∈G and q∈Q be two curves
and define the curves n :=g−1q∈Q and ξ :=g−1ġ∈g (resp. n := qg−1∈Q and ξ :=
ġg−1∈g).

Then (g,q) is a solution of the Euler-Lagrange equations for L if and only if (n,ξ)
is a solution of the Lagrange-Poincaré equations







d

dt

δℓLP

δξ
=ad∗ξ

δℓLP

δξ
,

D

Dt

∂ℓLP

∂ṅ
−
∂ℓLP

∂n
=0,

d

dt
n= ṅ,

resp.







d

dt

δℓLP

δξ
=−ad∗ξ

δℓLP

δξ
,

D

Dt

∂ℓLP

∂ṅ
−
∂ℓLP

∂n
=0,

d

dt
n= ṅ,

(4.1)
where the Lagrange-Poincaré Lagrangian ℓLP = ℓLP (n,ṅ,ξ) :TQ×g→R is induced
from L by the quotient map

T (G×Q)→TQ×g, (ug,uq) 7→ (n,ṅ,ξ) :=(νn−ξQ(n),ξ) (4.2)

for n :=g−1q, νn :=g
−1uq, ξ :=g

−1ug (resp. n := qg−1, νn :=uqg
−1, ξ :=ugg

−1).
These equations are equivalent to the variational principle

δ

∫ T

0

ℓLP (n,ṅ,ξ)dt=0

for arbitrary variations δn and constrained variations δξ= η̇+[ξ,η] (resp. δξ= η̇−
[ξ,η]).

In the Lagrange-Poincaré equations, D/Dt and ∂ℓLP /∂n denote the covariant
derivative and the partial derivative associated to a fixed torsion free connection ∇ on
Q.

Proof. We treat the case of a left action and apply the results of [19]. The
projection associated to the G-action reads π :G×Q→Q, π(q,g)=g−1q. Thus,
by taking the tangent map, we find Tπ(ug,uq)=

(
g−1ug−(g−1ug)Q(g

−1q)
)
. The

adjoint bundle Ad(G×Q) can be identified with the trivial vector bundle Q×g

via the identification [(g,q),ξ]≃ (g−1q,Adg−1 ξ). Using the principal connection
A(ug,uq) :=ugg

−1, the diffeomorphism (T (G×Q))/G∼=TQ×g is given by [ug,uq] 7→(
g−1uq−(g−1ug)Q(g

−1q),g−1ug
)
. Thus, the Lagrange-Poincaré reduction map has

the required expression (4.2). Since the chosen principal connection is flat, we obtain
the Lagrange-Poincaré equations (4.1).
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For the same G-invariant Lagrangian L :T (G×Q)→R as before, we define an-
other reduced Lagrangian ℓM = ℓM (νn,ξ) :TQ×g→R associated to the quotient map

T (G×Q)→TQ×g, (ug,uq) 7→ (νn,ξ) :=(g−1uq,g
−1ug), resp. (νn,ξ) :=(uqg

−1,ugg
−1).

This reduced Lagrangian differs from the Lagrange-Poincaré Lagrangian ℓLP defined
above, but one can pass from the one to the other by the vector bundle isomorphism

TQ×g→TQ×g, (νn,ξ) 7→ (νn−ξQ(n),ξ), (4.3)

that is, we have

ℓLP (n,ṅ,ξ)= ℓM (n,ṅ+ξQ(n),ξ)

for both the left and right cases. The reduction associated to this quotient map will
be called metamorphosis reduction, since it is the abstract framework underlying the
metamorphosis dynamics described in [47].

Theorem 4.2 (Metamorphosis reduction). Let g∈G and q∈Q be two curves
and define the curves νn :=g

−1q̇∈TQ and ξ :=g−1ġ∈g (resp. νn := q̇g
−1∈TQ and

ξ := ġg−1∈g).
Then (g,q) is a solution of the Euler-Lagrange equations associated to L if and

only if (ν,ξ) is a solution of the equations







d

dt

δℓM
δξ

=± ad∗ξ
δℓM
δξ

−J

(
∂ℓM
∂n

)

−F∇

(
∂ℓM
∂νn

,νn

)

,

D

Dt

∂ℓM
∂νn

=

〈
∂ℓM
∂νn

,∇ξQ

〉

+
∂ℓM
∂n

,
d

dt
n=νn−ξQ(n),

(4.4)

where + (resp. −) occurs when G acts on Q by a left (resp. right) action, and F∇

is the g∗-valued (1,1) tensor field defined in (3.31). In (4.4), ∂ℓM/∂n and ∂ℓM/∂νn
denote the horizontal and fiber derivatives, respectively.

These equations are equivalent to the variational principle

δ

∫ T

0

ℓM (ν,ξ)dt=0,

with variations δξ= η̇+[ξ,η] (resp. δξ= η̇− [ξ,η]) and δν= D
Dtω+∇ωξQ−∇νηQ.

The proof will use the following lemma.

Lemma 4.3. Consider the two reduced Lagrangians ℓLP and ℓM . Then we have the
relations

δℓLP

δξ
=
δℓM
δξ

+J

(
∂ℓM
∂νn

)

,
∂ℓLP

∂n
=
∂ℓM
∂n

+

〈
∂ℓM
∂νn

,∇ξQ

〉

,
∂ℓLP

∂ṅ
=
∂ℓM
∂νn

. (4.5)

Proof. Using the relation ℓLP (n,ṅ,ξ)= ℓM (n,ṅ+ξQ(n),ξ), we easily obtain the
first and third expression. For the second we recall that partial derivatives ∂ℓLP

∂n , ∂ℓM∂n
are defined with the help of a connection ∇ on Q. Let c(t)∈Tm(t)Q be a smooth
horizontal curve covering a curve m(t)∈Q and such that c(0)= ṅ, ṁ(0)=un∈TnQ.
By using the decomposition of TTQ into its vertical and horizontal part, we have
〈
∂ℓLP

∂n
(n,ṅ,ξ),un

〉

=
d

dt

∣
∣
∣
∣
t=0

ℓLP (c(t),ξ)=
d

dt

∣
∣
∣
∣
t=0

ℓM (c(t)+ξQ(m(t)),ξ)
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=dTQℓM (n,ṅ,ξ)

(
d

dt

∣
∣
∣
∣
t=0

c(t)+
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)

=

〈
∂ℓM
∂n

(ṅ+ξQ(n),ξ),Tπ

(
d

dt

∣
∣
∣
∣
t=0

c(t)+
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)〉

+

〈
∂ℓM
∂νn

(ṅ+ξQ(n),ξ),K

(
d

dt

∣
∣
∣
∣
t=0

c(t)+
d

dt

∣
∣
∣
∣
t=0

ξQ(m(t))

)〉

=

〈
∂ℓM
∂n

(ṅ+ξQ(n),ξ),un

〉

+

〈
∂ℓM
∂νn

(ṅ+ξQ(n),ξ),∇un
ξQ

〉

,

where K : TTQ→TQ denotes the connector map associated to ∇. Here dTQ

is the exterior derivative on TQ and the fourth equality is a general formula, valid
for linear connections, that links the total derivative to the horizontal and vertical
derivatives.

Proof. [Proof of Theorem 4.2.] We treat simultaneously the case of a left and
right action. Using the second equation in (4.1) and Lemma 4.3, we directly obtain
the equations

D

Dt

∂ℓM
∂νn

−
∂ℓM
∂n

=

〈
∂ℓM
∂νn

,∇ξQ

〉

,
d

dt
n=νn−ξQ(n).

By Lemma 3.6, for any η∈g, we have

〈
d

dt
J

(
∂ℓM
∂νn

)

,η

〉

=

〈

J

(
D

Dt

∂ℓM
∂νn

)

,η

〉

+

〈
∂ℓM
∂νn

,∇ṅηQ(n)

〉

=

〈

J

(
∂ℓM
∂n

)

,η

〉

+

〈
∂ℓM
∂νn

,∇ηQ
ξQ(n)

〉

+

〈
∂ℓM
∂νn

,∇νn
ηQ(n)

〉

−

〈
∂ℓM
∂νn

,∇ξQηQ(n)

〉

=

〈

J

(
∂ℓM
∂n

)

,η

〉

+

〈

F∇

(
∂ℓM
∂νn

,νn

)

,η

〉

∓

〈

J

(
∂ℓM
∂νn

)

, [η,ξ]

〉

,

where we use the equalities ∇ηQ
ξQ−∇ξQηQ=[ηQ,ξQ]=∓[η,ξ]Q. We thus obtain

d

dt
J

(
∂ℓM
∂νn

)

=J

(
∂ℓM
∂n

)

+F∇

(
∂ℓM
∂νn

,νn

)

± ad∗ξ J

(
∂ℓM
∂νn

)

.

Inserting the formula δℓLP

δξ = δℓM
δξ +J

(
∂ℓM
∂νn

)

in the first equation of (4.1) and using

the previous expression for d
dtJ
(

∂ℓM
∂νn

)

, we get the required equation

d

dt

δℓM
δξ

=± ad∗ξ
δℓM
δξ

−J

(
∂ℓM
∂n

)

−F∇

(
∂ℓM
∂νn

,νn

)

.

Left (right) reduction and right (left) action. In some applications, we need
to consider left-invariant (resp. right-invariant) Lagrangians whereas G acts on Q by
a right (resp. left) action. We quickly present here the situation, by giving the main
formulas in this case. Let G act on the left (resp. right) on Q. We consider here the
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case of a right (resp. left) invariant Lagrangian L :T (G×Q)→R under the action of
G given by

(ug,uq) 7→ (ugh,h
−1uq) resp. (ug,uq) 7→ (hug,uqh

−1).

The Lagrange-Poincaré Lagrangian ℓLP :TQ×g→R is now induced by the quotient
map

T (G×Q)→R, (ug,uq) 7→ (n,ṅ,ξ) :=(νn+ξQ(n),ξ), (4.6)

for n :=gq, νn :=guq, ξ :=ugg
−1 (resp. n := qg, νn :=uqg, ξ :=g

−1ug). The Lagrange-
Poincaré equations are now given by






d

dt

δℓLP

δξ
=−ad∗ξ

δℓLP

δξ
,

D

Dt

∂ℓLP

∂ṅ
−
∂ℓLP

∂n
=0,

d

dt
n= ṅ,

resp.







d

dt

δℓLP

δξ
=ad∗ξ

δℓLP

δξ
,

D

Dt

∂ℓLP

∂ṅ
−
∂ℓLP

∂n
=0,

d

dt
n= ṅ.

(4.7)
Note the change in the sign when compared to (4.1), and that we now have the relation
ℓLP (n,ṅ,ξ)= ℓM (ṅ−ξQ(n),ξ). Therefore, the conclusions of Lemma 4.3 should be
replaced by

δℓLP

δξ
=
δℓM
δξ

−J

(
∂ℓM
∂νn

)

,
∂ℓLP

∂n
=
∂ℓM
∂n

−

〈
∂ℓM
∂νn

,∇ξQ

〉

,
∂ℓLP

∂ṅ
=
∂ℓM
∂νn

.

Thus, equations (4.4) are replaced by






d

dt

δℓM
δξ

=∓ ad∗ξ
δℓM
δξ

+J

(
∂ℓM
∂n

)

+F∇

(
∂ℓM
∂νn

,νn

)

,

D

Dt

∂ℓM
∂νn

=−

〈
∂ℓM
∂νn

,∇ξQ

〉

+
∂ℓM
∂n

,
d

dt
n=νn+ξQ(n),

(4.8)

where − (resp. +) occurs when G act on Q by a left (resp. right) action.

Alternative form of the equations. For completeness, we give here an alter-
native form for the second and third equations in systems (4.4), (4.8). This alternative
form is analogous to that given in lemmas 3.1, 3.2, and reads

d

dt

∂ℓM
∂νn

=±ξT∗Q

(
∂ℓM
∂νn

)

+Ver ∂ℓM
∂νn

∂ℓM
∂n

+Hor ∂ℓM
∂νn

νn, (4.9)

where, for αn∈T
∗
nQ, Horαn

:TnQ→Tαn
T ∗Q denotes the horizontal lift associated to

the Levi-Civita connection on T ∗Q. Note that we have the formula Horν♭
n
νn=S(νn),

where as before, S ∈X(T ∗Q) is the Hamiltonian vector field associated to the kinetic
energy of the Riemannian metric.

5. Optimization, the Lagrangian approach
In this section, we show how to obtain the motion equations associated to the

distributed optimization problem by using Lagrangian reduction. More precisely,
we will use the metamorphosis reduction, starting from the unreduced Lagrangian
associated to ℓ, augmented by the square of the norm of the velocity vector.

Let G act on the left (resp. right) on Q and consider a cost function ℓ := ℓ(ξ,n)
on g×Q. Let L :TG×Q→R be the associated G-invariant Lagrangian on TG×Q.
The definition of L depends on the condition ((A) or (A)′) we want to impose.
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• If (A) holds, we suppose that L is invariant under the right (resp. left) action

(ug,q) 7→ (ugh,h
−1q), resp. (ug,q) 7→ (hug,qh

−1), (5.1)

i.e., we define L(ug,q) := ℓ(ugg
−1,gq), resp. L(ug,q) := ℓ(g

−1ug,qg).

• If (A)′ holds, we suppose that L is invariant under the left (resp. right) action

(ug,q) 7→ (hug,hq), resp. (ug,q) 7→ (ugh,qh), (5.2)

i.e., we define L(ug,q) := ℓ(g
−1ug,g

−1q), resp. L(ug,q) := ℓ(ugg
−1,qg−1).

Definition of the unreduced Lagrangian. The G-invariant Lagrangian L :
TG×Q→R produces the function ℓ by reduction. We now want to modify L in order
to obtain, by reduction, the integrand

ℓ(ξ,n)+
1

2σ2
‖ṅ± ξQ(n)‖

2 (5.3)

of the distributed optimization problem. This will be done by constructing, from L,
a G-invariant Lagrangian L defined on the tangent bundle T (G×Q). Of course, the
definition of L depends on the condition ((A) or (A)′) we want to impose.

• If (A) holds, we define L :T (G×Q)→R by

L(ug,uq) :=L(ug,q)+
1

2σ2
‖guq‖

2, resp. L(ug,uq) :=L(ug,q)+
1

2σ2
‖uqg‖

2.

(5.4)
• If (A)′ holds, we define L :T (G×Q)→R by

L(ug,uq) :=L(ug,q)+
1

2σ2
‖g−1uq‖

2, resp. L(ug,uq) :=L(ug,q)+
1

2σ2
‖uqg

−1‖2.

(5.5)

Of course, the norm appearing in the second term of the Lagrangian is the same as
the norm used in the integrand (5.3) of the distributed optimization problem. It is
associated to a Riemannian metric on the manifold Q. The presence of the group
action in the second term is needed in order to make the Lagrangian G-invariant.

In the particular case where the Riemannian metric is G-invariant, the Lagrangian
L is simply given by

L(ug,uq) :=L(ug,q)+
1

2σ2
‖uq‖

2,

and the associated Euler-Lagrange equations for L read

D

Dt
q̇=σ2 ∂L

∂q
,

d

dt

∂L

∂ġ
−
∂L

∂g
=0,

where D/Dt denotes the covariant derivative associated to the Riemannian metric on
Q.

Lagrangian reduction. Using the quotient maps (4.6) and (4.2) associated to
Lagrange-Poincaré reduction, we can compute the reduced Lagrangian associated to
L. When the G-invariance (5.1) (condition (A)) holds, we get

ℓLP (n,ṅ,ξ)= ℓ(ξ,n)+
1

2σ2
‖ṅ−ξQ(n)‖

2,
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and when the G-invariance (5.2) (condition (A)’) holds, we get

ℓLP (n,ṅ,ξ)= ℓ(ξ,n)+
1

2σ2
‖ṅ+ξQ(n)‖

2.

We have thus obtained the integrand of the distributed optimization problem by
Lagrange-Poincaré reduction. However, in order to compute the associated equations
of motion, it will be more appropriate to use metamorphosis reduction. For this
approach, the reduced Lagrangian is readily seen to be

ℓM (νn,ξ)= ℓ(ξ,n)+
1

2σ2
‖νn‖

2,

in all cases.
We now compute the reduced equations of motions. Since the functional deriva-

tives of ℓM are

δℓM
δξ

=
δℓ

δξ
,

∂ℓM
∂νn

=
1

σ2
ν♭n, and

∂ℓM
∂n

=
∂ℓ

∂n
,

the reduced equations (4.8) (associated to condition (A)) and (4.4) (associated to
condition (A)′) become, respectively,







d

dt

δℓ

δξ
=∓ ad∗ξ

δℓ

δξ
+J

(
∂ℓ

∂n

)

+
1

σ2
F∇

(

ν♭n,νn

)

,

D

Dt
ν♭n=−〈ν♭n,∇ξQ〉+σ

2 ∂ℓ

∂n
, ṅ=νn+ξQ(n)

(5.6)

and






d

dt

δℓ

δξ
=± ad∗ξ

δℓ

δξ
−J

(
∂ℓ

∂n

)

−
1

σ2
F∇

(

ν♭n,νn

)

,

D

Dt
ν♭n= 〈ν♭n,∇ξQ〉+σ

2 ∂ℓ

∂n
, ṅ=νn−ξQ(n).

(5.7)

These are exactly the equations (3.32) and (3.33) that are verified by the extremals
of the distributed optimization problem, obtained here by metamorphosis reduction.

Remark 5.1. The fact that metamorphosis reduction recovers the motion equations
verified by the extremals of the distributed optimization problem is natural in the
following sense. The extremals are given by the unconstrained variational principle

0= δSp= δ

∫ T

0

(

ℓ(ξ,n)+
1

2σ2
‖ṅ± ξQ(n)‖

2

)

dt;

this gives the stationarity conditions (3.25), (3.26). These imply (but are not equiv-
alent to) the metamorphosis equations (3.32), (3.33) obtained form the same action
Sp under constrained variations.

6. Hamilton-Poincaré and metamorphosis reduction
In this section, we present the Hamiltonian side of the two Lagrangian reduction

approaches described in Section 4.
As before, we let G act on the left (resp. right) on Q. We consider a left (resp.

right)-invariant Hamiltonian H :T ∗(G×Q)→R under the action of G given by

(αg,αq) 7→ (hαg,hαq) resp. (αg,αq) 7→ (αgh,αqh).
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As before, there are two reduction processes. The first uses Hamilton-Poincaré re-
duction (see [18]) and the second is the Hamiltonian version of the metamorphosis
reduction described in Section 4.

Theorem 6.1 (Hamilton-Poincaré reduction). Let αg ∈T
∗G and αq ∈T

∗Q be
two curves and define the curves πn :=g

−1αq ∈T
∗Q and µ :=g−1αg+J(g−1αq)∈g∗

(resp. πn :=αqg
−1∈T ∗Q and µ :=αgg

−1+J(αqg
−1)∈g∗).

Then (αg,αq) is a solution of the canonical Hamilton equations for H on T ∗G×
T ∗Q if and only if (πn,µ) is a solution of the Hamilton-Poincaré equations






d

dt
µ=ad∗δhHP

δµ

µ,

d

dt
n=

∂hHP

∂π
,

d

dt
π=−

∂hHP

∂n
,

resp.







d

dt
µ=−ad∗δhHP

δµ

µ,

d

dt
n=

∂hHP

∂π
,

d

dt
π=−

∂hHP

∂n
,

(6.1)
where the Hamilton-Poincaré Hamiltonian hHP =hHP (πn,µ) :T

∗Q×g∗→R is in-
duced from H by the quotient map

T ∗(G×Q)→T ∗Q×g∗, (αg,αq) 7→ (πn,µ) :=(πn,κ+J(πn)) (6.2)

for n :=g−1q, πn :=g
−1αq, κ :=g

−1αg, (resp. n := qg
−1, πn :=αqg

−1, κ :=αgg
−1).

In the Hamilton-Poincaré equations (6.1), the second equation is written in Dar-
boux coordinates. One can write it intrinsically as

d

dt
πn=XhHP

(πn),

where XhHP
is the Hamiltonian vector field of hHP viewed as a function on T ∗Q, the

variable µ∈g∗ being considered as a parameter.

Proof. We treat the case of a left action and apply the results in
[18]. The coadjoint bundle Ad∗(G×Q) can be identified with the trivial vec-
tor bundle Q×g∗ via the identification [(g,q),µ]≃ (g−1q,Ad∗gµ). Using the prin-
cipal connection A(ug,uq) :=ugg

−1, the diffeomorphism (T ∗(G×Q))/G∼=T ∗Q×g∗

is given by [αg,αq] 7→
(
g−1αq,g

−1αg+J(g−1αq)
)
. Indeed, the horizontal-lift associ-

ated to A reads Hor(g,q) :TnQ→TgG×TqQ, Hor(g,q)vn=(0g,gvn), its dual map is
[
Hor(g,q)

]∗
(αg,αq)=g

−1αq, and the momentum map J :T ∗(G×Q)→g∗ is J(αg,αq)=
αgg

−1+J(αq). Thus, the Hamilton-Poincaré reduction map has the required expres-
sion (6.2). Since the chosen principal connection is flat, we obtain the Hamilton-
Poincaré equations (6.1).

It is convenient to write the equations of motion (6.1) in matrix form, namely

d

dt





µ

πn



=





±ad∗
2
µ 0

0 Ω♯
can(πn)










δhHP

δµ

dT∗QhHP




 , (6.3)

where dT∗Q is the exterior derivative on T ∗Q.
For the same G-invariant Hamiltonian H :T ∗(G×Q)→R as before, we define an-

other reduced Hamiltonian hM =hM (πn,κ) :T
∗Q×g∗→R associated to the quotient

map

T ∗(G×Q)→T ∗Q×g∗,
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(αg,αq) 7→ (πn,κ) :=(g−1αq,g
−1αg), resp. (πn,κ) :=(αqg

−1,αgg
−1).

This reduced Hamiltonian differs from the Hamilton-Poincaré Hamiltonian hHP de-
fined above, but one can pass from the one to the other by the vector bundle isomor-
phism

T ∗Q×g∗→T ∗Q×g∗, (πn,µ) 7→ (πn,µ−J(πn)),

that is, we have

hHP (πn,κ+J(πn))=hM (πn,κ),

for both the left and right cases. Of course, the previous isomorphism is the dual map
to (4.3).

As on the Lagrangian side, we fix a Riemannian metric g on Q. This allows us
to write the reduced Hamilton equation a bit more explicitly. Note, however, that it
is possible to write the reduced Hamilton equations without the help of a metric; see
(6.5) below.

Theorem 6.2 (Metamorphosis reduction). Let αg ∈T
∗G and αq ∈T

∗Q be two
curves and define the curves πn :=g

−1αq ∈T
∗Q and κ :=g−1αg ∈g∗ (resp. πn :=

αqg
−1∈T ∗Q and κ :=αgg

−1∈g∗).
Then (αg,αq) is a solution of the canonical Hamilton equations for H on T ∗G×

T ∗Q if and only if (πn,κ) is a solution of the equations






d

dt
κ=± ad∗δhM

δκ

κ+J

(
∂hM
∂n

)

−F∇

(

πn,
∂hM
∂πn

)

,

d

dt
πn=−

(
δhM
δκ

)

T∗Q

(πn)+XhM
(πn),

(6.4)

where XhM
is the Hamiltonian vector field associated to hM viewed as a function of

πn.

Proof. We treat simultaneously the case of left and right actions and apply
Poisson reduction. The reduced Poisson structure on T ∗Q×g∗ associated to the
quotient map (αg,αq) 7→ (g−1αg,g

−1αq), resp. (αg,αq) 7→ (αgg
−1,αqg

−1) is given for
any f,g∈C∞(T ∗Q×g∗) by

{f,g}T∗Q×g∗ =∓

〈

µ,

[

δf

δµ
,
δg

δµ

]〉

−

〈

J (df(πn)) ,
δg

δµ

〉

+

〈

J (dg(πn)) ,
δf

δµ

〉

+{f,g}T∗Q ,

where J :T ∗(T ∗Q)→g∗ is the cotangent bundle momentum map and the last term
is the canonical Poisson bracket on T ∗Q; see Proposition 10.3.1 in [53]. Consequently,
the reduced Hamilton’s equation are







d

dt
κ=± ad∗δhM

δκ

κ+J (dhM (πn)) ,

d

dt
πn=−

(
δhM
δκ

)

T∗Q

(πn)+XhM
(πn).

(6.5)

Now it suffices to decompose the derivative dhM into the vertical (fiber) and horizontal
partial derivatives and use Lemma 3.4 to write

J (dhM (πn))=J

(
∂hM
∂n

)

−F∇

(

πn,
∂hM
∂πn

)

. (6.6)
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This proves the result.

Equations (6.4) can be conveniently written in matrix form as

d

dt





κ

πn



=





±ad∗
2
κ J

−(2)T∗Q (πn) Ω
♯
can(πn)










δhM
δκ

dT∗QhM




 , (6.7)

where in the (1,2) entry one uses formula (6.6). We shall see in Section 8.1 that if Q
is a representation space of G, this formula gives rise to a Lie-Poisson equation on a
semidirect product with a cocycle.

Left (right) reduction and right (left) action. We quickly present here
the equations arising when the Hamiltonian H :T ∗(G×Q)→R is invariant under the
action of G given by

(αg,αq) 7→ (αgh,h
−1αq) resp. (αg,αq) 7→ (hαg,αqh

−1).

The Hamilton-Poincaré Hamiltonian hHP :T ∗Q×g∗→R is now induced by the quo-
tient map

T ∗(G×Q)→R, (αg,αq) 7→ (πn,µ) :=(πn,κ−J(πn)), (6.8)

for n :=gq, πn :=gαq, κ :=αgg
−1 (resp. n := qg, πn :=αqg, κ :=g

−1ug). The resulting
Hamilton-Poincaré equations are given by






d

dt
µ=−ad∗δhHP

δµ

µ,

d

dt
n=

∂hHP

∂π
,

d

dt
π=−

∂hHP

∂n
,

resp.







d

dt
µ=ad∗δhHP

δµ

µ,

d

dt
n=

∂hHP

∂π
,

d

dt
π=−

∂hHP

∂n
.

(6.9)
Note the change in the sign when compared to (6.1), and that we now have the relation
hHP (πn,κ−J(πn))=hM (πn,κ).

Likewise, equations (6.4) are replaced by







d

dt
κ=∓ ad∗δhM

δκ

κ−J

(
∂hM
∂n

)

+F∇

(

πn,
∂hM
∂πn

)

,

d

dt
πn=

(
δhM
δκ

)

T∗Q

(πn)+XhM
(πn),

(6.10)

where − (resp. +) occurs when G acts on Q by a left (resp. right) action. As in (6.3)
and (6.7), equations (6.9) and (6.10) may be re-expressed in matrix form as

d

dt





µ

πn



=





∓ad∗
2
µ 0

0 Ω♯
can(πn)










δhHP

δµ

dT∗QhHP




 , (6.11)

d

dt





κ

πn



=





∓ad∗
2
κ −J

(2)T∗Q (πn) Ω
♯
can(πn)










δhM
δκ

dT∗QhM




 . (6.12)
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Remark 6.1 (Link with the untangling map). Recall that the vector bundle isomor-
phism

(ξ,νn)∈g×TN 7→ (ξ,νn±ξQ(n))=(ξ,n,ṅ)∈g×TN

allows one to pass from the metamorphosis reduced equation to the Lagrange-Poincaré
equations. Its dual map

(µ,πn)∈g∗×T ∗N 7→ (µ± J(πn),πn)=(κ,πn)∈g∗×T ∗N,

naturally passes from the Hamilton-Poincaré description to the metamorphosis ap-
proach. The inverse of this map is known as the untangling map in applications ([34])
since it transforms the Hamiltonian structure of the metamorphosis equation into
the direct sum of the Lie-Poisson bracket on g∗ and the canonical Poisson bracket
on T ∗N ; see (6.1)-(6.7) and (6.11)-(6.12). Recent theoretical developments and new
applications of the untangling map appear in [30].

Legendre transformation and alternative formulation. When the Hamil-
tonian H comes from a Lagrangian L by Legendre transformation, then we have the
following relations between the reduced objects:

hM (πn,κ)= 〈πn,νn〉+〈κ,ξ〉−ℓM (νn,ξ), κ=
δℓM
δξ

, πn=
∂ℓM
∂νn

.

The partial derivatives with respect to n are related by the formula

∂hM
∂n

=−
∂ℓM
∂n

.

In this case, the reduced equations on the Lagrangian and Hamiltonian side ((4.4),
(4.8) and (6.4), (6.10)) are readily seen to be equivalent. To see this, it suffices to use
the formula

Xh(αn)=Horαn

∂h

∂αn
−Verαn

∂h

∂n

for the Hamiltonian vector field, together with the alternative formulation (4.9) for the
reduced equations on the Lagrangian side. This also shows that the second equation
of the systems (6.4) and (6.10) can be equivalently written as

D

Dt
πn=∓

〈

πn,∇

(
δhM
δκ

)

Q

(n)

〉

−
∂hM
∂n

,
d

dt
n=±

(
δhM
δκ

)

Q

(n)+
∂hM
∂πn

.

7. Optimization, the Hamiltonian approach
Suppose we are given a left (resp. right) action of G on Q and a cost function ℓ=

ℓ(ξ,q) on g×Q. Let the map ξ 7→ δℓ
δξ be a diffeomorphism and consider the associated

Hamiltonian h :g∗×Q→R defined by

h(µ,q) := 〈µ,ξ〉−ℓ(ξ,q),
δℓ

δξ
=µ.

As in Section 5 for ℓ, the function h induces a G-invariant function H :T ∗G×Q→R.
Of course, H can be obtained from L by a Legendre transformation, the variable q
being considered as a parameter. Recall that given a Riemannian metric g on Q, we
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associated to L a G-invariant Lagrangian on T (G×Q) by adding to L a G-invariant
expression involving the norm of the vector in TQ; see (5.4), (5.5). For example, in
the case of condition (A)′ and if G acts on the left we have defined

L(ug,uq) :=L(ug,q)+
1

2σ2
‖g−1uq‖

2.

Taking the Legendre transformation of this hyperregular Lagrangian yields the G-
invariant Hamiltonian H on T ∗(G×Q) given by

H(αg,αq)=H(αg,q)+
σ2

2
‖g−1αq‖

2.

The reduced Hamiltonian associated to metamorphosis reduction reads

hM (πn,κ)=h(κ,n)+
σ2

2
‖πn‖

2.

When condition (A)′ is assumed, the reduced Hamilton-Poincaré Hamiltonian reads

hHP (πn,µ)=hM (πn,µ−J(πn))=h(µ−J(πn),n)+
σ2

2
‖πn‖

2.

In the case of condition (A), we have

hHP (πn,µ)=hM (πn,µ+J(πn))=h(µ+J(πn),n)+
σ2

2
‖πn‖

2.

Using the relations

∂hM
∂πn

=σ2π♯
n and

∂hM
∂n

=
∂h

∂n
,

the reduced equations (6.4) and (6.10) become, respectively,







d

dt
κ=± ad∗δh

δκ
κ+J

(
∂h

∂n

)

,

d

dt
πn=−

(
δh

δκ

)

T∗Q

(πn)−Verπn

∂h

∂n
+σ2S(πn)

(7.1)

and






d

dt
κ=∓ ad∗δh

δκ
κ−J

(
∂h

∂n

)

,

d

dt
πn=

(
δh

δκ

)

T∗Q

(πn)−Verπn

∂h

∂n
+σ2S(πn),

(7.2)

where S ∈X(T ∗Q) is the Hamiltonian vector field associated to the kinetic energy

1

2
‖πn‖

2=
1

2
g(π♯

n,π
♯
n).

These equations recover the motion equations associated to the distributed optimiza-
tion, in Hamiltonian form; cf. Remark 3.2.
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8. Examples

In this section we apply the general theory to various group actions.

8.1. Action by representation and advected quantities. Let G be a
Lie group acting by left (resp. right) representation on the dual vector space Q=
V ∗. Given a Lie algebra element ξ, we denote by ξV ∗(a)= ξa (resp. ξV ∗(a)=aξ)
the associated infinitesimal generator. Using the diamond operator ⋄ :V ×V ∗→g∗

defined for p∈V and a∈V ∗ by 〈p⋄a,ξ〉 :=−〈ξa,p〉 (resp. 〈p⋄a,ξ〉 :=−〈aξ,p〉), for any
ξ∈g, the cotangent bundle momentum map is J(a,p)=−p⋄a. Since Q is a vector
space, we can choose ∇ to be the ordinary derivative; therefore we have ∇bξV ∗(a)= ξb
(resp. ∇bξV ∗(a)= bξ), for all a,b∈V ∗. From (3.31), we thus obtain the expression
F∇((a,v),(a,b))=−v⋄b.

Metamorphosis reduction and Lie-Poisson formulation with cocycles.
Assume that V is a left representation space of G and that reduction has been per-
formed on the left. The other cases have similar formulations. In view of the identities
above, equations (4.4) become







d

dt

δℓM
δξ

=ad∗ξ
δℓM
δξ

+
δℓM
δa

⋄a+
δℓM
δν

⋄ν,

d

dt

δℓM
δν

=−ξ
δℓM
δν

+
δℓM
δa

,
d

dt
a=−ξa+ν,

where ℓM = ℓM (ξ,a,ν) :g×V ∗×V ∗→R is the reduced Lagrangian. Performing the
Legendre transformation hM (κ,a,π) := 〈κ,ξ〉+〈π,ν〉−ℓM (ξ,a,ν), where

δℓM
δξ

=κ,
δℓM
δν

=π,

one finds the corresponding Hamilton equations for hM =hM (κ,a,π) :g∗×V ∗×V →R

as







d

dt
κ=ad∗δhM

δκ

κ−
δhM
δa

⋄a+π⋄
δhM
δπ

,

d

dt
π=−

δhM
δκ

π−
δhM
δa

,
d

dt
a=−

δhM
δκ

a+
δhM
δπ

.

(8.1)

These equations recover (6.4) for the case of a left G-representation.

Note that the inverse Legendre transformation (assuming it is a diffeomorphism)
is given by δhM/δκ= ξ, δhM/δπ=ν and that δhM/δa=−δℓM/δa.

The proof of the following theorem is a direct verification.

Theorem 8.1. The equations of motion (8.1) are Lie-Poisson on (gs(V ×V ∗))∗ with
the cocycle C : (V ×V ∗)×(V ×V ∗)→R given by the canonical symplectic structure
Ωcan on T ∗V =V ×V ∗, where the g-left representation on V ×V ∗ is given by (ξ,v) 7→
ξv, (ξ,ν) 7→ ξν, for ξ∈g, v∈V , ν ∈V ∗. Thus these equations can be written in matrix
form as

∂

∂t





κ
a
π



=





ad∗
2κ −2⋄a π⋄2

−2a 0 1
−2π −1 0









δhM/δκ
δhM/δa
δhM/δπ



 . (8.2)
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The Clebsch optimal control approach. Given a cost function ℓ :g×V ∗→R,
the Clebsch optimal control problem with condition (A)′ yields (for left representation)
the stationarity conditions

δℓ

δξ
=−J(a,p)=p⋄a, ȧ=−ξa, ṗ=−ξp+

∂ℓ

∂a
. (8.3)

For a representation on the right, one replaces ξa, ξp by aξ, pξ. These equations
imply the Euler-Poincaré equations of motion

d

dt

δℓ

δξ
=± ad∗ξ

δℓ

δξ
+
∂ℓ

∂a
⋄a.

When condition (A) is assumed, we get the stationarity conditions

δℓ

δξ
=J(a,p)=−p⋄a, ȧ= ξa, ṗ= ξp+

∂ℓ

∂a
, (8.4)

and the motion equations

d

dt

δℓ

δξ
=∓ ad∗ξ

δℓ

δξ
−
∂ℓ

∂a
⋄a.

These are the Euler-Poincaré equations for semidirect products, useful for the study
of physical systems with advected quantities; see [42, 43].

Note that when the Lagrangian ℓ is given by the kinetic energy associated to an
inner product on g, the control is given by ξ=±(p⋄a)♯, where ♯ :g∗→g is associated
to the inner product on g. We get the equations

ȧ+(p⋄a)♯a=0, ṗ+(p⋄a)♯p=0.

This is the abstract formulation of the double bracket equations ; see Section 8.1.2
below.

The distributed optimization approach. In order to state the optimization
problem with penalty, we endow V ∗ with a inner product. The corresponding func-
tional is thus

ℓ(ξ,a)+
1

2σ2
‖ȧ±ξa‖2.

Recall that in the present case we have F∇((a,v),(a,b))=−v⋄b. So, if condition (A)′

is assumed, the motion equations (3.33) read






d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+
δℓ

δa
⋄a+

1

σ2
ν♭ ⋄ν,

d

dt
ν♭−σ2 δℓ

δa
=−ξν♭, ν= ȧ+ξa,

resp.







d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
+
δℓ

δa
⋄a+

1

σ2
ν♭ ⋄ν,

d

dt
ν♭−σ2 δℓ

δa
=−ν♭ξ, ν= ȧ+aξ,

(8.5)
where ♭ :V ∗→V is the flat isomorphism associated to the inner product on V ∗. When
condition (A) is assumed, we have (see (3.32))






d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
−
δℓ

δa
⋄a−

1

σ2
ν♭ ⋄ν,

d

dt
ν♭−σ2 δℓ

δa
= ξν♭, ν= ȧ−ξa,

resp.







d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
−
δℓ

δa
⋄a−

1

σ2
ν♭ ⋄ν,

d

dt
ν♭−σ2 δℓ

δa
=ν♭ξ, ν= ȧ−aξ.

(8.6)
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As we have seen in the general theory, these motion equations arise by metamorphosis
reduction associated to the Lagrangian L(ug,a)+

1
2σ2 ‖ȧ‖

2. They can be obtained by
the stationarity conditions (3.25), (3.26). In our case, for a left representation they
read

δℓ

δξ
=±

1

σ2
ν♭ ⋄a, ȧ=∓ξa+ν, ν̇♭=∓ξν♭+σ2 ∂ℓ

∂a
.

As usual, to compare these conditions with the stationarity conditions (8.3), (8.4)
given by the Clebsch optimal control approach, we define

p :=
1

σ2
ν♭∈V,

and we get

δℓ

δξ
=±p⋄a, ȧ=∓ξa+σ2p♯, ṗ=∓ξp+

∂ℓ

∂a
. (8.7)

For a right representation one simply replaces ξa, ξp by aξ, pξ.
When the Lagrangian ℓ is given by the kinetic energy associated to the inner

product on g, the control is given by ξ=±(p⋄a)♯, and we get the equations

ȧ+(p⋄a)♯a=σ2p♯, ṗ+(p⋄a)♯p=0.

This is the abstract formulation of the double bracket equations, modified by the extra
term σ2p♯; see Section 8.1.2 below. Note that in the formula above, there are two
different sharp operators, ♯ :g∗→g and ♯ :V →V ∗, associated to the inner products
on g and V ∗, respectively.

Note that, consistently with Theorem 3.7, if the inner product is G-invariant,
then ν♭ ⋄ν=0. This has already been noticed in the Remark 2.4 of the introduction,
for the case of an isotropic inner product.

8.1.1. Heavy top. Consider the evolution equations for a state system in the
frame of a rotating body

Ẋ=X×Ω, (8.8)

for vector state and control variables X,Ω∈R3 related to the rotation matrix O∈
SO(3) by X=O−1ẑ and Ω×=O−1Ȯ∈ so(3). These vectors are, respectively, the
vertical spatial axis as seen from the rotating body and the body angular velocity
vector.

We choose to optimize a cost functional consisting of the difference between the
rotational kinetic energy and the gravitational potential energy, subject to a penalty
imposed by the state system (8.8). This cost function is

Sp=

∫ T

0

(

ℓ(Ω,X)+
1

2σ2

∥
∥Ẋ+Ω×X

∥
∥
2
)

dt (8.9)

=

∫ T

0

(
1

2
IΩ ·Ω−mgχ ·X+

1

2σ2

∥
∥Ẋ+Ω×X

∥
∥
2
)

dt, (8.10)

where m is the total mass of the body, g is the value of the gravitational acceleration,
I is the real positive definite symmetric matrix of moments of inertia in the body, χ



F. GAY-BALMAZ, D. D. HOLM, AND T. S. RATIU 205

is the center of mass vector in the body, and σ is a real constant. The variation with
respect to Ẋ defines the Legendre transform relation (costate variable)

σ2P♯ := Ẋ+Ω×X. (8.11)

The variation of the cost functional is given by

δS=

∫ T

0

[(

IΩ+X×P
)

·δΩ−
(

Ṗ+Ω×P+mgχ
)

·δX

]

dt+
[

P ·δX
]T

0
. (8.12)

The general system (8.7) takes in this case the following double cross form, involving
the double cross product of vectors (X,P)∈R3×R3 (cf. equations (2.20)),







Ẋ−(X×P)♯×X=σ2P♯,

Ṗ−(X×P)♯×P=−mgχ,
(8.13)

with

Ω= I
−1(P×X)=(P×X)♯.

These equations correspond to the three equations in the general system (8.7), with
the upper sign chosen. After denoting the angular momentum vector Π∈R3 by

Π := IΩ=P×X, (8.14)

substitution of equations (8.14) into (8.13) yields

Π̇=Π×Π♯−mgχ×X+σ2P×P♯ and Ẋ+Π♯×X=σ2P♯, (8.15)

which can be written in matrix form as





Π̇

Ẋ

Ṗ



=





Π× X× P×
X× 0 1
P× −1 0









∂hM/∂Π
∂hM/∂X
∂hM/∂P



=





Π× X× P×
X× 0 1
P× −1 0









Π♯

mgχ
σ2P♯



 , (8.16)

where

hM (Π,X,P)=
1

2
Π ·Π♯+mgχ ·X+

σ2

2
P ·P♯, (8.17)

which suggests that one might regard the system (8.16) physically as a model of the
motion of an ellipsoidal underwater vehicle, influenced by an external gravitational
torque. These are equations (8.2) in this particular case.

Remark 8.1. The analogous extremal problem for compressible fluids is given by

min
u,ρ

∫ T

0

(

ℓ(u,ρ)+
1

2σ2
‖ρ̇+div(ρu)‖2

)

dt,

where u is the Eulerian velocity and ρ is the fluid density in spatial representation.
The advection law ρ̇+div(ρu)=0 (exact matching) is no longer imposed. Instead its
expression ‖ρ̇+div(ρu)‖2L2 (inexact matching) is used as a penalty. Since this can be
treated in a more general case, we defer this discussion to Section 8.3.2.
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8.1.2. Adjoint representations. We let G act on on the right on its Lie
algebra g by the adjoint representation. The infinitesimal generator is thus ξg(x)=
[x,ξ], the diamond operator is ⋄ :g∗×g→g∗,p⋄x=−ad∗xp, and the momentum map
is J(x,p)=ad∗xp.

The Clebsch optimal control approach. The Clebsch optimal control (with
condition (A), that is, ẋ=[x,ξ]) associated to a cost function ℓ= ℓ(ξ,x) yields the
(generalized) Euler-Poincaré equations

d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+ad∗x

∂ℓ

∂x
.

We suppose that g is endowed with a bi-invariant inner product γ. This allows us to
identify the dual Lie algebra with itself and to write ad∗xp=−[x,p]. In this case, the
motion equations are

d

dt

δℓ

δξ
=

[
δℓ

δξ
,ξ

]

+

[
∂ℓ

∂x
,x

]

.

These equations are obtained from the stationarity conditions

δℓ

δξ
=[p,x], ẋ=[x,ξ], ṗ=[p,ξ]+

∂ℓ

∂x
.

If the Legendre transform associated to ℓ is a diffeomorphism, we can write ξ= δh
δ[p,x]

and the equations take the form

ẋ=

[

x,
δh

δ[p,x]

]

, ṗ=

[

p,
δh

δ[p,x]

]

+
∂ℓ

∂x
.

In the particular case where ℓ is given by the kinetic energy of a bi-invariant inner
product, one obtains the control ξ=[p,x] and the double bracket equations

ẋ=[x, [p,x]], ṗ=[p, [p,x]].

More generally, the Lagrangian ℓ(ξ,x)= 1
2‖ξ‖

2−V (x) implies the motion equation

ξ̇=
[
x, δVδx

]
; see [9]. An interesting example is provided by the potential V (x)=

− 1
2‖[x,n]‖

2; see [15]. For more discussion of the history, theoretical developments,
and other examples of double bracket equations, see, e.g., [29].

The distributed optimization approach. The penalty functional is defined
on g×Tg and reads

ℓ(ξ,x)+
1

σ2
‖ẋ− [x,ξ]‖2,

where the norm is associated to an inner product on the Lie algebra g. The associated
equations of motion read

d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+ad∗x

∂ℓ

∂x
+

1

σ2
ad∗ν ν

♭.

As above, we now suppose that g is endowed with a bi-invariant inner product γ and
we use it to identify the dual Lie algebra g∗ with g. In this case, the above equations
become

d

dt

δℓ

δξ
=

[
δℓ

δξ
,ξ

]

+

[
∂ℓ

∂x
,x

]

.
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These equations are obtained from the stationarity conditions

δℓ

δξ
=

1

σ2
[ν,x], ẋ=[x,ξ]+ν, ν̇=[ν,ξ]+σ2 ∂ℓ

∂x
.

As usual, we define the variable p := 1
σ2 ν in order to rewrite these conditions as

δℓ

δξ
=[p,x], ẋ=[x,ξ]+σ2p, ṗ=[p,ξ]+

∂ℓ

∂x
.

As before, if the Legendre transform associated to ℓ is a diffeomorphism, we get

ẋ=

[

x,
δh

δ[p,x]

]

+σ2p, ṗ=

[

p,
δh

δ[p,x]

]

+
∂ℓ

∂x
.

If the Lagrangian ℓ is given by the kinetic energy of a bi-invariant inner product, we
get the control ξ=[p,x]. Now the double bracket equations are modified by an extra
term:

ẋ=[x, [p,x]]+σ2p, ṗ=[p, [p,x]].

Further investigation of this class of equations will be pursued in future research.

8.2. Action by affine representation. We now consider the more general
case where G acts on V ∗ by a left affine representation, a 7→ga+c(g), where c :G→V ∗

is a group one-cocycle. In this case, the infinitesimal generator is

ξV ∗(a)= ξa+dc(ξ)

and the cotangent bundle momentum map is

J(a,v)=−v⋄a+dcT (v).

Affine representations play an important role for a comprehensive approach to the
Hamiltonian dynamics of complex fluids. We quickly give below the main equations
arising in that case, in order to understand the influence of the cocycle.

The Clebsch optimal control approach for affine action. The Clebsch op-
timal control problem (with condition (A)′) yields the affine Euler-Poincaré equations

d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+
δℓ

δa
⋄a−dcT

(
δℓ

δa

)

.

These equations appear naturally in the study of spin systems and complex fluids; see
[28].

The distributed optimization approach for affine action. The penalty
function in the case of an affine representation is ‖ȧ+ξa+dc(ξ)‖2. The presence of
the cocycle c does not modify the tensor field F∇, and one finds the motion equations







d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+
δℓ

δa
⋄a−dcT

(
δℓ

δa

)

+
1

σ2
ν♭ ⋄ν,

d

dt
ν♭−σ2 δℓ

δa
=−ξν♭, ν= ȧ+ξa+dc(ξ).

(8.18)
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As before, these equations can be obtained either by metamorphosis reduction, or by
the stationarity conditions

δℓ

δξ
=

1

σ2

(

ν♭ ⋄a−dcT (ν♭)
)

, ȧ=−ξa−dc(ξ)+ν, ν̇♭=−ξν♭+σ2 δℓ

δa
.

Defining the variable p := 1
σ2 ν

♭, we can write

δℓ

δξ
=p⋄a−dcT (p), ȧ=−ξa−dc(ξ)+σ2p♯, ṗ=−ξp+

δℓ

δa
.

When the affine term is not present, one recovers (8.7). If the Lagrangian ℓ is given
by the kinetic energy associated to an inner product, then the control is given by

ξ=(p⋄a−dcT (p))♯,

and we get the equations

ȧ+(p⋄a−dcT (p))♯a+dc
(
(p⋄a−dcT (p))♯

)
=σ2p♯,

ṗ+(p⋄a−dcT (p))♯p=0.

8.3. Actions by multiplication on Lie groups. We now specialize to the
case where Q=H is a Lie group, containing G as a subgroup. We will then apply the
results to the rigid body and ideal fluids.

Suppose that G acts on H by left (resp. right) multiplication. Given a Lie algebra
element ξ∈g, the infinitesimal generator is

ξH(h)=TRhξ=: ξh, resp. ξH(h)=TLhξ=:hξ,

and the cotangent bundle momentum map J :T ∗H→g∗ is

J(αh)= i
∗(T ∗Rhαh)= i

∗(αhh
−1) resp. J(αh)= i

∗(T ∗Lhαh)= i
∗(h−1αh),

where i∗ :h∗→g∗ is the dual map to the Lie algebra inclusion i :g→h.

The Clebsch optimal control approach. Given a cost function ℓ= ℓ(ξ,h), and
assuming the constraint (A)′, that is, ḣ=−ξh (resp. ḣ=−hξ), the Clebsch optimal
control problem yields the (generalized) Euler-Poincaré equations

d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
− i∗

(
∂ℓ

∂h
h−1

)

, resp.
d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
− i∗

(

h−1 ∂ℓ

∂h

)

.

If the constraint (A) is assumed, that is ḣ= ξh (resp. ḣ=hξ), the equations are

d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
+ i∗

(
∂ℓ

∂h
h−1

)

, resp.
d

dt

δℓ

δξ
=+ad∗ξ

δℓ

δξ
+ i∗

(

h−1 ∂ℓ

∂h

)

.

These equations are obtained by inserting the expression of the momentum map in
equations (3.3) and (3.5).
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The distributed optimization approach. The penalty functional is defined
on g×TH and reads

ℓ(ξ,h)+
1

2σ2
‖ḣ± ξh‖2, resp. ℓ(ξ,h)+

1

2σ2
‖ḣ±hξ‖2,

relative to a Riemannian metric on H. We will restrict to the case of an H-invariant
metric. More precisely, given an inner product γ on h, we consider the associated
left (resp. right)-invariant Riemannian metric γh on H, that is, we have γh(uh,vh) :=
γ(h−1uh,h

−1vh), resp. γh(uh,vh) :=γ(uhh
−1,vhh

−1).
Since G acts by isometries, the motion equations are given by (3.34) and (3.35).

To compute these equations in our particular case, we need the concrete expression
of the Levi-Civita connection associated to the Riemannian metric γh on H. It is
written in terms of the isomorphism ψ :F(H,h)→X(H) given by ψ(f)(h)=TLh(f(h))
(resp. ψ(f)(h)=TRh(f(h))). For a vector field X ∈X(H), the Levi-Civita covariant
derivative associated to the left (resp. right)-invariant extension of γ to H is given by

∇vh
X(h)=TLh

(

df(vh)−
1

2
ad†v f(h)−

1

2
ad†f(h)v+

1

2
[v,f(h)]

)

,

resp. ∇vh
X(h)=TRh

(

df(vh)+
1

2
ad†v f(h)+

1

2
ad†f(h)v−

1

2
[v,f(h)]

)

,

where v :=h−1vh (resp. v :=vhh
−1), f =ψ−1(X), and ad†ξ is the transpose of adξ with

respect to the inner product γ on h; see [50], Section 46.5.
We now specialize these formulas to the case where the vector field X is given

by the infinitesimal generator ξH . In the case of multiplication in the left, we have
X(h)= ξH(h)= ξh and f(h)=Adh−1 ξ. Thus we obtain

∇vh
ξH(h)=TLh

(

−[h−1vh,f(h)]−
1

2
ad†v f(h)−

1

2
ad†f(h)v+

1

2
[v,f(h)]

)

=−
1

2
TLh

(

[v,f(h)]+ad†v f(h)+ad†f(h)v
)

.

For right-invariant metrics, we have ξH(h)=hξ, f(h)=Adh ξ, and the previous for-
mula becomes

∇vh
ξH(h)=

1

2
TRh

(

[v,f(h)]+ad†v f(h)+ad†f(h)v
)

.

When condition (A)′ is assumed, the motion equations are (see (3.35))







d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
− i∗

(
∂ℓ

∂h
h−1

)

, νh= ḣ+ξh,

D

Dt
νh−σ

2 ∂ℓ

∂h

♯

=
1

2
TLh

(

[ν,f(h)]+ad†f(h)ν+ad†ν f(h)
)

∈ThH,

(8.19)

resp. for the opposite sign required for right action,







d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
− i∗

(

h−1 ∂ℓ

∂h

)

, νh= ḣ+hξ,

D

Dt
νh−σ

2 ∂ℓ

∂h

♯

=−
1

2
TRh

(

[ν,f(h)]+ad†f(h)ν+ad†ν f(h)
)

∈ThH,

(8.20)
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and the stationarity condition (3.25) is

δℓ

δξ
=−

1

σ2
i∗
(

ν ♭
hh

−1
)

, νh= ḣ+ξh, resp.
δℓ

δξ
=−

1

σ2
i∗
(

h−1ν ♭
h

)

, νh= ḣ+hξ.

If the constraint (A) is assumed, then we have (see (3.34))







d

dt

δℓ

δξ
=−ad∗ξ

δℓ

δξ
+ i∗

(
∂ℓ

∂h
h−1

)

, νh= ḣ−ξh,

D

Dt
νh−σ

2 ∂ℓ

∂h

♯

=−
1

2
TLh

(

[ν,f(h)]+ad†f(h)ν+ad†ν f(h)
)

∈ThH,

(8.21)

resp.







d

dt

δℓ

δξ
=ad∗ξ

δℓ

δξ
+ i∗

(

h−1 ∂ℓ

∂h

)

, νh= ḣ−hξ,

D

Dt
νh−σ

2 ∂ℓ

∂h

♯

=
1

2
TRh

(

[ν,f(h)]+ad†f(h)ν+ad†ν f(h)
)

∈ThH,

(8.22)

and the stationarity condition (3.25) is

δℓ

δξ
=

1

σ2
i∗
(

ν ♭
hh

−1
)

, νh= ḣ−ξh, resp.
δℓ

δξ
=

1

σ2
i∗
(

h−1ν ♭
h

)

, νh= ḣ−hξ.

From the general theory developed in Section 5, these equations can be obtained by

metamorphosis reduction, starting from the G-invariant Lagrangian L=L
(

g,ġ,f,ḟ
)

:

T (G×H)→R given by

L
(

g,ġ,f,ḟ
)

=L(g,ġ,f)+
1

2σ2
‖ḟ‖2,

where L :TG×H→R is the G-invariant function associated to ℓ. One can pass from
the Lagrangian variables (g,f) to the reduced variables (ξ,νh) via the map

(

g,ġ,f,ḟ
)

→ (ξ,νh) :=
(

g−1ġ,g−1ḟ
)

,

for example. Note the relation h=g−1f .

Remark 8.2. Note that if the inner product γ on h is bi-invariant, then ad†=−ad
and the equations above simplify.

8.3.1. Euler fluid equations. Hamilton’s principle for ideal fluid flow might
be summarized by saying that water moves as well as possible to get out of its own
way [63]. The question pursued in [37] was whether Euler’s fluid equations represent
optimal control, or only optimization. As it turned out, the geodesic flow represented
by the Euler’s fluid equations was found to arise from either formulation. An opti-
mization method used in image-processing (metamorphosis) is found to imply Euler’s
equations for incompressible flow of an inviscid fluid, without requiring that the La-
grangian particle labels exactly follow the flow lines of the Eulerian velocity vector
field. That is, an optimal control formulation and an optimization formulation for
incompressible ideal fluid flow both yield the same Euler fluid equations, although
their Lagrangian parcel dynamics are different. This is a result of the gauge freedom
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in the definition of the fluid pressure for an incompressible flow, in combination with
the symmetry of fluid dynamics under relabeling of their Lagrangian coordinates.

We apply here the result of this section to the Lie group H=Diff(D) of all diffeo-
morphisms of the manifold D and its subgroup G=Diffvol(D) of volume preserving
diffeomorphisms. We shall recover and extend the approach given in [37]. Recall
that a curve ηt∈Diffvol(D) represents the Lagrangian motion of an ideal fluid in the
domain D, that is, the curve ηt(x) in D is the trajectory of the fluid particle located
at x at time t=0, assuming that η0 is the identity; ηt is referred to as the forward
map. The Lie algebra of G consists of divergence free vector fields on D parallel to
the boundary and is denoted by g=Xvol(D). The curve ηt is the flow of the Eulerian
velocity ut∈Xvol(D), that is, we have η̇t=ut ◦ηt. The curve lt :=η

−1
t is called the

back-to-labels map. (See, e.g., [23] where the name “back-to-labels” was introduced
and the map was used as a sufficient variable to describe and analyze the incompress-
ible Euler equations.) The back-to-labels map is related to the Eulerian velocity ut
via the relation l̇t+T lt·ut=0.

As is well known, a curve ηt∈Diffvol(D) is a geodesic with respect to the L2 right
invariant Riemannian metric if and only if ut is a solution of the Euler fluid equations

∂tu+u·∇u=−gradp.

In other words, the Euler fluid equation is given by the Euler-Poincaré equation on
Xvol(D) associated to the Lagrangian ℓ(u)= 1

2

∫

D
‖u‖2dx.

First approach - composition on the left: We let the group G=Diffvol(D) act on
H=Diff(D) by composition on the left. The infinitesimal generator is thus given by
uDiff(D)(ϕ)=u◦ϕ, for ϕ∈Diff(D).

The Clebsch optimal control approach. Using the Lagrangian ℓ(u,ϕ)=
ℓ(u)= 1

2

∫

D
‖u‖2dx= 1

2‖u‖
2
L2 and the constraint ϕ̇=u◦ϕ, the Clebsch optimal con-

trol problem yields the Euler equations

∂tu+∇uu=−gradp.

Note that here there is no dependence of ℓ on the variable ϕ, therefore the Clebsch
approach yields the standard Euler-Poincaré equations. The stationarity conditions
are

u♭=J(ϕ,π)=P(Jϕ−1(π◦ϕ−1)), ϕ̇=u◦ϕ, π̇=−(T ∗u◦ϕ) ·π, (8.23)

where Jϕ is the Jacobian determinant of ϕ and P :Ω1(D)→Ω1
div(D) is the Hodge

projector. Here Ω1(D) denotes the space of one-forms onD and Ω1
div(D)={α∈Ω1(D) |

div(α♯)=0} is the space of divergence-free one-forms on D. Here we have chosen the
L2 pairing between one-forms and vector fields on D and the symbols ♭ and ♯ denote,
respectively, the index lowering and rising operations defined by the Riemannian
metric on D.

The distributed optimization approach. The penalty term is ‖ϕ̇−u◦ϕ‖2L2 ,
where the norm is taken with respect to the left-invariant L2 metric on Diff(D), and
one needs to minimize the functional

∫ T

0

(
1

2
‖u‖2L2 +

1

2σ2
‖ϕ̇−u◦ϕ‖2L2

)

dt
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among all curves u(t),ϕ(t) in Xdiv(D)×Diff(D). The stationarity condition (3.25)
reads

δℓ

δu
=

1

σ2
P(Jϕ−1(ν♭ϕ ◦ϕ

−1))=
1

σ2
Jϕ−1(ν♭ϕ ◦ϕ

−1)−dk,

in which dk is the differential of an arbitrary scalar function, in the kernel of the
projection P to incompressible flows. In our case, the equations of motion are given
by (8.21) and we get







∂tu+∇uu=−gradp, ϕ̇=u◦ϕ+νϕ,

D

Dt
νϕ+Tϕ◦∇ϕ∗uν=−Tϕ◦F(ϕ∗u,ν),

(8.24)

where ν :=Tϕ−1 ◦νϕ and F(v,ν)= 1
2 (gradg(v,ν)+νdivv+vdivν). To see this, we

compute the right hand side

−
1

2
TLh

(

[ν,f(h)]+ad†f(h)ν+ad†ν f(h)
)

of the second equation in (8.21). We have

[ν,v]+ad†v ν+ad†ν v=∇vν−∇νv+∇vT ν+∇vν+νdivv+∇νT v+∇νv+vdivν

=gradg(v,ν)+2∇vν+νdivv+vdivν,

since ad†um=∇uTm+∇um+mdivu. By choosing ν :=TLϕ−1(νϕ)=Tϕ
−1 ◦νϕ and

v :=Adϕ−1 u=Tϕ−1 ◦u◦ϕ=ϕ∗u, we obtain the result. Note that ϕ∗u is an analogue
of the convective velocity, but recall that ϕ is not the flow of u.

As usual, the stationarity conditions can also be expressed in terms of the variable
π := 1

σ2 ν
♭
ϕ. They can alternatively be written as

u♭=J(ϕ,π)=P(Jϕ−1(π◦ϕ−1)), ϕ̇=u◦ϕ+σ2π♯, π̇=−(T ∗u◦ϕ) ·π+σ2S(π),

in order to be compared to (8.23), where S denotes the geodesic spray of the left
invariant Riemannian metric. Here ♯ := ♭−1.

The equations (8.24) can be obtained by metamorphosis reduction for the La-
grangian defined on (uη,uf )∈T (Diffvol(D)×Diff(D)) by

1

2
‖uη‖

2
L2 +

1

2σ2
‖uf‖

2
L2 ,

where the L2 norms are associated to the right and left invariant extension of the L2

inner product, respectively. This Lagrangian is invariant under the tangent lift of the
right Diffvol-action given by

(η,f) 7→ (η◦h,h−1 ◦f).

The link between the Lagrangian variables (η,η̇,f,ḟ) and the reduced variables (u,νϕ)
is given by the reduction map

(η,η̇,f,ḟ) 7→ (u,νϕ) :=(η̇◦η−1,T η◦ ḟ).

In particular, we have ϕ=η◦f .
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Note that the operator D/Dt denotes the covariant derivative with respect to
the left-invariant L2 Riemannian metric on Diffvol(D) and does not have a simple
expression, in general, contrary to the covariant derivative associated to the right-
invariant L2 Riemannian metric, which is simply given by functorial lift. As we will
see below, for the penalty approach to the Euler equations, it is more convenient to
work with the back-to-labels map.

Note that instead of H=Diff(D), one can use the subgroup H=Diffvol(D) of vol-
ume preserving diffeomorphisms. In this case, the second equation in (8.24) simplifies
to

D

Dt
νϕ+Tϕ◦∇ϕ∗uν=0.

Second approach - composition on the right: We now let the group G=Diffvol(D) act
on H=Diff(D) by composition on the right. The infinitesimal generator is thus given
by uDiff(D)(l)=T l◦u. Recall that the back-to-labels map l is related to the Eulerian

velocity u by the formula l̇=−T l◦u; therefore, we need to impose condition (A)′.

Clebsch optimal control approach. Using the same Lagrangian ℓ(u)=
1
2

∫

D
‖u‖2dx as before, and imposing the condition l̇=−T l◦u (condition (A)′), the

Clebsch optimal control problem yields the Euler-Poincaré equations on Xvol(D). We
thus recover the Euler fluid equations

∂tu+u·∇u=−gradp.

The associated stationarity conditions are ([37])

u♭=−P(π◦T l) , l̇=−T l◦u, π̇=−Tπ◦u. (8.25)

In analogy with the symmetric representation of the rigid body ([9]), these equations
are referred to as the symmetric representation of the Euler fluid equations.

The distributed optimization approach. The penalty term reads ‖l̇+T l◦
u‖2L2 where the norm is taken relative to the right-invariant L2 metric on the group
of diffeomorphisms. Therefore, we minimize the functional

∫ T

0

(
1

2
‖u‖2L2 +

1

2σ2
‖l̇+T l◦u‖2L2

)

dt

among all curves u(t),l(t) in Xdiv(D)×Diff(D). The stationarity condition (3.25)
reads

δℓ

δu
=−

1

σ2
P

(

ν♭l ◦T l
)

=−
1

σ2
ν♭l ◦T l−dk,

where νl := l̇+T l◦u, dk is the differential of an arbitrary scalar function, and the
associated equations of motion are







∂tu+∇uu=−gradp,

D

Dt
νl+∇uνl=−(gradq)◦ l.

(8.26)

These equations are obtained by computations similar to those above, but using (8.20)
instead of (8.21). In particular, the right hand side of the second equation of (8.20)
becomes

−(∇vν)◦ l− (gradq)◦ l=−∇uνl− (gradq)◦ l, q=
1

2
g
(
l∗u,νϕ ◦ l

−1
)
,



214 GEOMETRIC DYNAMICS OF OPTIMIZATION

since we need to choose ν :=νl ◦ l
−1 and v=Adlu= l∗u. Note that v is the convective

velocity of the fluid. As usual, the stationarity conditions can also be expressed in
terms of the variable π := 1

σ2 ν
♭
l . They can alternatively be written as

u♭=−J(l,π)=−P(π◦T l) , l̇=−T l◦u+σ2π♯, π̇=−Tπ◦u+σ2S(π),

in order to be compared to (8.25), where S denotes the geodesic spray of the right
invariant Riemannian metric.

The equations of motion (8.26) can be obtained by metamorphosis reduction of
the Lagrangian defined on (uη,uf )∈T (Diffvol(D)×Diff(D)) by

1

2
‖uη‖L2 +

1

2σ2
‖uf‖

2
L2 ,

where the L2 norms are associated to the right invariant extension of the L2 inner
product. This Lagrangian is invariant under the tangent lift of the right Diffvol-action
given by

(η,f) 7→ (η◦h,f ◦h).

The link between the Lagrangian variables (η,η̇,f,ḟ) and the reduced variables (u,νl)
is given by the reduction map

(η,η̇,f,ḟ) 7→ (u,νl) :=(η̇◦η−1, ḟ ◦η−1).

In particular, we have l=f ◦η−1.
Working with H=Diffvol(D), instead of the whole diffeomorphism group, yields

the second equation of (8.26) in the simpler form

D

Dt
νl+∇uνl=0.

These results recover Theorem 10 in [37].

8.3.2. Optimization dynamics of a compressible fluid. For the com-
pressible fluid, we choose to minimize the functional

Sp=

T∫

0

(

ℓ(u,ρ)+
1

2σ2
1

‖l̇+T l◦u‖2L2 +
1

2σ2
2

‖ρ̇+div(ρu)‖2L2

)

dt

over all curves u(t),l(t),ρ(t) in X(D)×Diff(D)×Den(D), where Den(D) denotes the
space of densities on D. This minimization involves penalties and tolerances at two
levels. We seek the stationarity conditions implied by optimization of the functional
Sp, subject to homogeneous endpoint and boundary conditions. We introduce the
notation

m :=
δℓ

δu
∈Ω1(D), ̟ :=

δℓ

δρ
∈C∞(D), (8.27)

π :=
1

σ2
1

(l̇+T l◦u)♭∈T ∗
l Diff(D), φ :=

1

σ2
2

(
ρ̇+divρu

)
∈C∞(D), (8.28)

and then write the stationarity conditions associated to the variations δu, δl, and δρ,
respectively, as:

m+π◦T l−ρdφ=0;
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π̇+div(πu)=0;

φ̇+dφ◦u−̟=0. (8.29)

Combining these equations into Hamiltonian form yields (in index notation for clarity)
explicitly, in terms of indices and differential operators,

∂

∂t









mi

ρ
φ

lA

πA









=−B










δhM/δmj =u
j

δhM/δρ=−̟
δhM/δφ=σ

2
2φ

δhM/δl
B =0

δhM/δπB =σ2
1π

♯B










, (8.30)

where

B=











mj∂i+∂jmi ρ∂i −φ,i −l
B
,i πB∂i

∂jρ 0 −1 0 0

φ,j 1 0 0 0

lA,j 0 0 0 −1

∂jπA 0 0 1 0











. (8.31)

Here, the summation convention is enforced on repeated indices. Upper Latin indices
refer to the spatial components of the inverse map, lower Latin indices refer to the
spatial reference frame, and subscript-comma notation is used for spatial derivatives.
The partial derivative ∂j =∂/∂xj , say, acts to the right on all terms in a product by
the chain rule. The Hamiltonian whose variations are taken in (8.30) is given by

hM (m,ρ,φ,l,π)=h(m,ρ)+
σ2
1

2
‖γ‖2+

σ2
2

2
‖φ‖2.

8.4. N-dimensional Camassa-Holm equation. In this section we apply
the distributed optimization method to the N -dimensional Camassa-Holm equations

v̇+u·∇v+∇uT ·v+vdivu=0, v := (1−α2∆)u,

which are the spatial representation of the geodesic spray on the group Diff(D) of all
diffeomorphisms of D, relative to a Sobolev H1 metric; see [40]. They are thus ob-
tained by Euler-Poincaré reduction and represent a particular case of the well known
EPDiff equations, to which the approach described here generalizes easily. For sim-
plicity, we assume that D has no boundary.

By analogy with the Euler equations, we shall give two approaches, namely, by
composition on the left and on the right. However, in the case of the Camassa-Holm
equations it is convenient to slightly generalize the previous setting by letting the
diffeomorphism group act on a space of embeddings. More precisely, we first consider
the left action of Diff(D) on the space of embeddings Emb(S,D) of a manifold S into
D and obtain the distributed optimization for the cost function

∫ T

0

(
1

2
‖u‖2H1 +

1

2σ2
‖Q̇−u◦Q‖2

)

dt, Q∈Emb(S,D).

Then, we let Diff(D) acts on the right on the space of embeddings Emb(D,M) of a
manifold D into a manifold M and obtain the cost function

∫ T

0

(
1

2
‖u‖2H1 +

1

2σ2
‖q̇+Tq◦u‖2

)

dt, q∈Emb(D,M).
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8.4.1. Left action of diffeomorphisms on embedded subspaces. Con-
sider the left action of the configuration diffeomorphism group G=Diff(D) on Q=
Emb(S,D). The infinitesimal generator associated to a Lie algebra element u∈X(D)
reads uEmb(S,D)(Q)=u◦Q and belongs to the tangent space TQEmb(S,D).

The Clebsch optimal control approach. Using the Lagrangian ℓ(u,Q)=
ℓ(u)= 1

2

∫

D
‖u‖2H1dx and the constraint Q̇=u◦Q, the Clebsch optimal control prob-

lem yields the N -Camassa-Holm equation; see Section 4 in [29]. Note that here there
is no dependence of ℓ on the variable Q, therefore the Clebsch approach yields the
standard Euler-Poincaré equations. The stationarity conditions are

δℓ

δu
=J(Q,P)=

∫

S

P(s)δ(x−Q(s))ds∈Ω1(D), Q̇=u◦Q, Ṗ=−(T ∗u◦Q) ·P.

The last equation can also be written as

D

Dt
P=−

(
(∇u)T ◦Q

)
·P,

where D/Dt denotes the covariant derivative associated to the Riemannian metric on
D.

The distributed optimization approach. The proposed associated cost func-
tion is

Sp=

∫ T

0

(

ℓ(u)+
1

2σ2
‖Q̇−u◦Q‖2L2

)

dt. (8.32)

For definiteness, we rewrite this expression more explicitly as

Sp=

∫ T

0

(

ℓ(u)+
1

2σ2

∫

S

|Q̇(t,s)−u(t,Q(t,s))|2ds
)

dt, (8.33)

in which, for simplicity, | · |2 denotes the norm of vectors in TD defined by the Rie-
mannian metric on D and ds denotes the volume form on S. There could also be
a sum on integrations over some finite number of embedded submanifolds of various
dimensions, but this possibility is unimportant in the subsequent reasoning, so it will
be suppressed in the notation.

The choice of the reduced Lagrangian ℓ(u) will be left unspecified, except that
sufficient smoothness will be assumed for the variational calculations manipulations to
make mathematical sense, at least in terms of weak solutions. With these assumptions
we have the following result.

Theorem 8.2. The extremals of Sp in (8.33) are given by

δℓ

δu
(x)=

∫

S

P(t,s)δ(x−Q(t,s))ds, Q̇=u◦Q+σ2P♯,
D

Dt
P=−

(

(∇u)
T
◦Q
)

·P,

(8.34)
where Q∈Emb(S,D), P♯∈TQEmb(S,D), and D/Dt is the covariant derivative of the
Levi-Civita connection on D.

Proof. We can obtain these conditions directly from the general equations (3.28).
However, it is also instructive to derive them directly from the variational principle.

Consider the variations ε 7→uε and ε 7→Qε, and define P♯ by

σ2P♯ := Q̇−u◦Q.
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For δu= d
dε

∣
∣
ε=0

uε and δQ= d
dε

∣
∣
ε=0

Qε, we have

δSp=

∫ T

0

〈

δℓ

δu
,δu

〉

dt

+

∫ T

0

∫

S

〈

P(t,s),
D

Dε

∣

∣

∣

∣

ε=0

Q̇ε(t,s)−δu(t,Q(t,s))−
D

Dε

∣

∣

∣

∣

ε=0

u(t,Qε(t,s))

〉

dsdt

=

∫ T

0

〈

δℓ

δu
,δu

〉

dt+

∫ T

0

∫

S

〈

P(t,s),
D

Dt

d

dε

∣

∣

∣

∣

ε=0

Qε(t,s)

〉

dsdt

−

∫ T

0

∫

D

∫

S

〈P(s)δ(x−Q(t,s)),δu(t,x)〉dsdxdt−

∫ T

0

∫

S

〈P(t,s),∇δQu(t,s)〉dsdt

=

∫ T

0

〈

δℓ

δu
−

∫

S

P(s)δ(x−Q(t,s))ds,δu

〉

dt−

∫ T

0

〈

D

Dt
P+

(

(∇u)T ◦Q
)

·P,δQ

〉

dt

+
[

〈P,δQ〉
]T

0
.

The stationarity conditions follow immediately, upon noting that δQ(0,s)=0=
δQ(T,x), so that temporal endpoint terms arising under integrations by parts may
be ignored.

Suppose the reduced Lagrangian defines a velocity norm, ℓ(u)= 1
2‖u‖

2=
1
2 〈u,Qop(u)〉. For example, let the norm be a Sobolev H1 norm, so that it makes
sense for its variational derivative in u to result in a singular distribution defined on
an embedded subspace. Then, the density equation

δℓ

δu
(t,x)=

∫

S

P(t,s)δ(x−Q(t,s))ds=: (Qopu)(t,x) (8.35)

has a natural dual solution for the velocity, given by

u(t,x)=

∫

S

P♯(t,s)G(x−Q(t,s))ds, (8.36)

where G is the Green’s function for the positive L2 self-adjoint operator Qop, that is,

QopG(x−Q(t,s))= δ(x−Q(t,s)). (8.37)

In this situation, we have enough assumptions to obtain a coupled system of equations
for the momentum densities P(t,s) and m(t,x).

Theorem 8.3. The system of variational equations (8.34) for the minima of S in
(8.33) implies the following dynamics for the momentum densities P(t,s) and m(t,x),

∂tv+∇uv+∇uT ·v+vdiv(u)=−σ2Div

∫

S

P♯⊗P♯(t,s)δ(x−Q(t,s))ds, (8.38)

D

Dt
P+

(

(∇u)
T
◦Q
)

·P=0, (8.39)

where Div denotes the divergence of a contravariant two-tensor field on D. The re-
maining decoupled equation

Q̇=u◦Q+σ2P♯

allows reconstruction of the Lagrangian coordinates Q(t,s) on the embedded surface(s)
from the dynamics of the coupled equations for the momentum densities m(t,x) and
P(t,s).
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Proof. Substitution of equations (8.34) and definitions (8.36)-(8.37) into the
definition of the momentum m in equation (8.35) verifies its evolution by (8.38), upon
pairing with a smooth test function and integrating appropriately by parts.

Alternatively, one can use the abstract formulation of the dynamical equations
given in (3.32). As recalled before, the Euler-Poincaré part of these equations gives
the N -Camassa-Holm equation

v̇+∇uv+∇uT ·v+vdiv(u)=0.

Thus, it remains to compute the expression of the tensor F∇. Let P♯∈TQEmb(S,D)
and u∈X(D), and choose X ∈X(D) such that P♯(s)=X(Q(s)). Using the fact that
the covariant derivative on Emb(S,D) is the functorial lift of the covariant derivative
on D, using (3.31) we get

〈
F∇(P,P♯),u

〉
=
〈
P,∇P♯uEmb(S,D)(Q)

〉
=

∫

S

g
(
P♯(s),∇P♯(s)u(Q(s))

)
ds

=

∫

S

∫

D

g
(
X(x),∇X(x)u(x)

)
δ(x−Q(s))dxds

=−

∫

D

g

(∫

S

Div
(
X(x)⊗X(x)δ(x−Q(s))

)
,u(x)

)

dxds,

where we make use of the identity
∫

D

g(X,∇Y u)dx=−

∫

D

g(Div(Y ⊗X),u)dx, for all X,Y,u∈X(D),

where Div(T )j =∇iT
ij , where T =T ij ∂

∂xi ⊗
∂

∂xj is a contravariant two-tensor on D.
We thus obtain the formula

F∇(P,P♯)=−

∫

S

Div
(
X(x)⊗X(x)δ(x−Q(s))

)
ds

=−Div

∫

S

X(Q(s))⊗X(Q(s))δ(x−Q(s))ds

=−Div

∫

S

(
P♯(s)⊗P♯(s)δ(x−Q(s))

)
ds

as required.

Remark 8.3. Equations (8.38) and (8.39) represent a new dynamical system, whose
exploration has only just begun and we expect will be a subject of future research.

8.4.2. Back-to-labels map for fluids. We next present the optimal control
derivation of the Camassa-Holm equation using the back-to-labels map. This means
that we shall use the right action of Diff(D) on Emb(D,M).

Recall that particles frozen into an ideal fluid flow are represented by time-
dependent vector labels lt whose components each satisfy the advection law obtained
from the time derivative of the back-to-labels map, lt(x) :=η

−1
t (x)= l(t,x), and hence

the following equation holds:

l̇+T l◦u=0, (8.40)

where u is the Eulerian velocity of the fluid.
We shall slightly generalize the back-to-labels map by considering embeddings

q :D→M , where M is a given Riemannian manifold, instead of diffeomorphisms
l :D→D.
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The Clebsch approach. We recall from [29] how one can obtain the Camassa-
Holm equation by Clebsch optimal control via a generalization of the back-to-labels
map.

Let the groupG=Diff(D) act freely on the right on the manifold Emb(D,M). The
associated infinitesimal generator reads uEmb(D,M)(Q)=Tq◦u. Using the Lagrangian

ℓ(u)= 1
2‖ut‖

2
H1 and the constraint q̇+Tq◦u=0 we get the stationarity conditions

δℓ

δu
=−p ·Tq, q̇+Tq◦u=0, ṗ+Tp◦u=0.

These equations produce the Camassa-Holm equation if one uses the Hamiltonian

H(q,p)=
1

2

∫∫

p(x)·Tq(x)G(x−x′)p(x′)·Tq(x′)dxdx′.

Distributed optimization. As opposed the Clebsch approach, we do not im-
pose q̇t+Tqt ◦ut=0. Instead we use ‖q̇t+Tqt ◦ut‖

2
L2 as a penalty, that is, we con-

sider the cost functional given by

Sp=

T∫

0

(

ℓ(u)+
1

2σ2
‖q̇+Tq◦u‖2L2

︸ ︷︷ ︸

Penalty

)

dt. (8.41)

Thus we need to minimize Sp subject to spatial boundary conditions on u (e.g.,
periodic, or vanishing at spatial infinity) and endpoint conditions (in which q(0,x)
and q(T,x) are prescribed), and also subject to the penalty for the error in the L2

norm,

‖q̇+Tq◦u‖2L2 =

∫

D

|q̇(x)+Tq(u(x))|2dx, (8.42)

in which, for simplicity, | · |2 denotes the norm of vectors in TM defined by a Rieman-
nian metric on M . It is important to note that the L2 Riemannian metric used in the
penalty is not invariant under the right Diff(D)-action on itself.

Remark 8.4 (An alternative penalty term). If M =D, the quantity

v :=−l̇◦ l−1=T l◦u◦ l−1= l∗u=Adlu

is called the convective velocity [41] of the fluid. This is analogous to the relation
Ω=AdO−1ω for O∈SO(3) satisfied by body angular velocity Ω and spatial angular
velocity ω for rigid body motion in R3, both viewed as elements of so(3). Penalizing in
(8.41) for ‖v−Adlu‖

2
L2 is an interesting alternative approach, which will be presented,

in general, in Section 8.5.1.

Let σ2>0 and choose the reduced Lagrangian to be a norm ℓ(u)= 1
2‖u‖

2. Then,
when extremals of (8.41) exist, they will be minima.

Later we shall specialize the reduced Lagrangian to the norm ℓ(u)= 1
2‖u‖

2
H1 . For

the moment, however, we leave the choice arbitrary, only assuming that sufficient
smoothness is present for all functions to exist locally and be differentiable in space
and time. With these assumptions we have the following result.

Theorem 8.4. The extremals of Sp in (8.41) are given by

δℓ

δu
+π◦Tq=0,

Dπ

Dt
+Div(πu)=0, q̇+Tq◦u=:σ2π♯, (8.43)
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where the expression Div(πu)∈T ∗
q Emb(D,M) is defined by

Div(πu) :=(divu)π+∇uπ, with ∇ux
π :=

D

Dε

∣
∣
∣
∣
ε=0

π(c(ε))

for ux∈TxD, ε 7→ c(ε) a curve such that d
dε

∣
∣
ε=0

c(ε)=ux, and D
Dε is the covariant

derivative of the Levi-Civita connection of the Riemannian metric on M .

Note that if M =Rn endowed with the Riemannian metric given by the dot prod-
uct then Div(πu)i=div(πiu).

Proof. Define π∈TqEmb(D,M) by σ2π := q̇+Tq◦u. For variations ε 7→uε and
ε 7→qε, we compute

δSp=

∫ T

0

〈
δℓ

δu
,δu

〉

dt+

∫ T

0

〈

π,
D

Dε

∣
∣
∣
∣
ε=0

(q̇ε+Tqε ◦uε)

〉

=

∫ T

0

〈
δℓ

δu
,δu

〉

dt+

∫ T

0

〈

π,
D

Dt
δq+Tq◦δu+∇uδq

〉

=

∫ T

0

〈
δℓ

δu
+π◦Tq,δu

〉

−

∫ T

0

〈
D

Dt
π+Div(πu),δq

〉

,

where in the last equality, we used integration by parts and the definition of Div.

Theorem 8.5. The system of variational equations (8.43) for the minima of Sp

yields the following dynamical system for the momentum π and momentum 1-form
v♭ :=dℓ/δu=−π◦Tq:

∂tv+∇uv+∇uT ·v+vdiv(u)=σ2(∇π)T ·π♯, (8.44)

∂tπ+Div(πu)=0, (8.45)

where Div(πu) is defined above. The decoupled equation σ2π♯= q̇+Tq◦u allows re-
construction of the labels q from the dynamics of the coupled equations for v and π.

Proof. One can directly obtain these equations from the stationarity condition
given in (8.43). We shall however use the abstract formulation (3.33) and compute
the tensor field F∇ defined in (3.31). Given π∈T ∗

qEmb(D,M), u∈X(D), and a curve

ε 7→qε∈Emb(D,M) such that d
dε

∣
∣
ε=0

qε=π
♯, we have

〈
F∇(π,π♯),u

〉
=
〈
π,∇π♯uEmb(D,M)(q)

〉
=

∫

D

g

(

π♯(x),
D

Dε

∣
∣
∣
∣
ε=0

Tqε(u(x))

)

dx

=

∫

D

g
(
π♯(x),∇uπ(x)

)
dx=

〈
(∇πT )·π♯,u

〉
,

which proves (8.44). Equation (8.45) is part of the system (8.43).

Remark 8.5 (Two-component Camassa-Holm equation). If D=R, M =R, and we
assume appropriate decay properties at infinity such that all boundary terms appear-
ing in integration by parts vanish, specializing the reduced Lagrangian to

ℓ(u)=
1

2
‖u‖2H1 =

1

2

∫

R

(
u2+α2u2x

)
dx,
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with homogeneous boundary conditions on the infinite real line or on a periodic spatial
interval yields the variational derivative (dℓ/δu)♯=v=u−α2uxx for a length scale
α. In this case, equations (8.44), (8.45) recover the two-component Camassa-Holm
equations,

∂tv+(uv)x+vux=σ
2ππx, (8.46)

∂tπ+(uπ)x=0. (8.47)

This system forms a completely integrable Hamiltonian system with soliton solutions
associated to an isospectral linear eigenvalue problem, so it may be solved analyti-
cally by using the inverse scattering transform method [22, 51]. These equations are
also known to be the spatial representation of geodesics on the semidirect product
Diff(R)sF(R); see [46], [31].

8.5. Metamorphosis dynamics. Consider a Lie group G acting on the left
on a manifold N . The Lie group G is the group of deformations and the manifold N
contains what are called “deformable objects”. In imaging applications we take G to
be the group of diffeomorphisms of N .

Definition 8.6. A metamorphosis ([68, 47]) is a pair of curves (gt, ηt)∈G×N
parameterized by time t, with g0=id. Its image is the curve nt∈N defined by the
action nt=gtηt denoted by concatenation from the left. The quantities gt and ηt are
called, respectively, the deformation part of the metamorphosis, and its template

part. When ηt is constant, the metamorphosis is said to be a pure deformation. In
the general case, the image is a combination of a deformation and template variation.

A metamorphosis may be determined as an optimal curve (gt,ηt), with gt∈G
and ηt∈N , with respect to a metric that is invariant under the right action of G on
G×N defined by

(g,η)h=
(
gh,h−1η

)
(8.48)

for any g,h∈G and η∈N . More specifically, a metamorphosis (g,η) may be obtained
by seeking a stationary point dS=0 of a right-invariant cost function S on T (G×N).
This general situation has been considered in detail in the first sections of the paper.

The present conventions are those of equations (3.32) with the upper sign chosen.
Recall in particular that we start from a right G-invariant Lagrangian of the form

L(g,ġ,η,η̇)=L(g,ġ,η)+
1

2σ2
‖gη̇‖2,

where the norm involved in the penalty is associated to a Riemannian metric g on N .
The corresponding reduced Lagrangians on g×TN read

ℓEP (u,νn)= ℓ(u,n)+
1

2σ2
‖νn‖

2, ℓM (u,n,ṅ)= ℓ(u,n)+
1

2σ2
‖ṅ−uN (n)‖2,

where the reduced variables are

u= ġg−1∈g, n=gη∈N, νn=gη̇∈TnN,

with g∈G, η∈N .
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We shall discuss the case in which G and N are Lie groups and the action of G
on N is a Lie group homomorphism for all g∈G, that is,

g(nñ)=(gn)(gñ), for all n,ñ∈N.

For example, N can be a vector space and the action of G can be linear. In the case
of action by homomorphisms we can form the semidirect product Lie group GsN
with product defined by

(g,n)(g̃,ñ)=(gg̃,(gñ)n). (8.49)

Define on T (GsN) a right-invariant metric whose value at the identity is denoted
‖( · , ·)‖(idG,idN ). A geodesic for this metric that optimizes the kinetic energy in
T (GsN) between (g0=idG,n0) and (g1,n1) with fixed images n0 and n1 and free
deformation g1 yields a particular case of metamorphosis. A right-invariant cost func-
tion on T (GsN) may be expressed in terms of the time-dependent quantities

u= ġg−1, n=gη, and ν=gη̇, (8.50)

that are each invariant under the right action defined in equation (8.48). For example,
a right-invariant cost function on T (GsN) may be expressed as

S=

∫

L(g,ġ,η,η̇)dt=

∫

ℓ(u,n,ν)dt. (8.51)

Right invariance of a metric on T (GsN) implies

‖(Ug,Un)‖(g,n)=‖(Ug g̃,(Ugñ)n+(gñ)Un‖(gg̃,(gñ)n), (8.52)

which, upon choosing (g̃,ñ)=(g−1,g−1n−1) and denoting u :=Ugg
−1, ζ :=n−1Un,

yields

‖(Ug,Un)‖(g,n)=‖(u,(un−1)n+ζ‖(idG,idN )

=‖(u,ζ−Adn−1u)‖(idG,idN ).

The last line follows from 0=u(n−1n)=(un−1)n+n−1(un). In this notation, the cost
function given by the geodesic energy on T (GsN) for a path of unit length is given
by

1

2

∫ 1

0

‖(u,ζ−Adn−1u)‖2(idG,idN )dt. (8.53)

The definition of the variable n in (8.50) implies ṅ= ġη+gη̇=un+ν. Upon writing
ζ=n−1ṅ as the left-invariant image velocity, one sees the variable transformation

ζ−Adn−1u=n−1ν.

Consequently, optimizing the geodesic energy (8.53) with fixed n0 and n1 is equivalent
to solving the metamorphosis problem formulated in [47] as a stationary principle
δS=0 with S=

∫
l(u,n,ν)dt and

l(u,n,ν)=‖(u,n−1ν)‖2(idG,idN ). (8.54)

We shall investigate the additively separated form of the metric,

ℓ(u,n,ν)= l(u)+
1

2σ2
‖n−1ν‖2(idG,idN )

= l(u)+
1

2σ2
‖ζ−Adn−1u‖2(idG,idN ).
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8.5.1. Subgroup actions. We shall discuss in this paragraph the particular
case in which N is also a Lie group that contains G as subgroup and on which G acts
by multiplication on the left. We also assume that the Riemannian metric g on N is
left invariant (relative to left translations by elements of N). In this case, one can
make use of left trivialization of the tangent bundle TN to get the diffeomorphism

g×TN→g×N×n, (u,n,ṅ) 7→ (u,n,n−1ṅ)=: (u,n,ζ).

The reduced Lagrangian in terms of the new variables is denoted ℓL and reads

ℓL(u,n,ζ)= ℓ(u,n)+
1

2σ2
‖ζ−Adn−1 u‖2

since we have the relations

n−1νn=n
−1(ṅ−uN (n))=n−1(ṅ−un)= ζ−Adn−1 u.

We now rewrite the stationarity conditions relative to these new variables. Consider
variations ε 7→uε and ε 7→nε of the curves u and n. We have as usual

δζ=Σ̇+[ζ,Σ], (8.55)

where Σ=n−1δn. Likewise,

δ(Adn−1u)=Adn−1

(
δu+[u,δnn−1]

)
=Adn−1 (δu+[u,AdnΣ])

=Adn−1δu+[Adn−1 u,Σ] .

For simplicity, we suppose that ℓ does not depend on n. Substituting these relations
into the variation of the action integral we get

dSp=d

∫ T

0

ℓL(u,n,ζ)dt= δ

∫ T

0

(

ℓ(u)+
1

2σ2
‖ζ−Adn−1 u‖2

)

dt

=

∫ T

0

(〈
δℓ

du
,δu

〉

+〈π,δζ−δ(Adn−1u)〉

)

dt

=

∫ T

0

(〈
δℓ

δu
,δu

〉

+
〈

π,Σ̇+adζΣ−Adn−1δu−ad(Adn−1u)Σ
〉)

dt

=

∫ T

0

(〈
δℓ

δu
−Ad∗n−1π,δu

〉

−
〈

π̇−ad∗ζπ+ad∗(Adn−1u)π,Σ
〉)

dt+
[

〈π,Σ〉
]T

0
,

where π∈n∗ is the image momentum dual to the left-invariant image velocity ζ ∈n,
that is,

π :=
δℓL
δζ

=
1

σ2
(ζ−Adn−1 u)

♭
=

1

σ2

(

n−1ν ♭
n

)

=
1

σ2
n−1

(

ν ♭
n

)

=∈n∗.

Stationarity dS=0 and Σ(0)=Σ(T )=0 then imply

δℓ

δu
=Ad∗n−1π and π̇=ad∗ζπ−ad∗(Adn−1u)π=ad∗σ2π♯π=σ2ad∗π♯π. (8.56)

From the general theory, since the G-action on N is by isometries it follows that
F∇=0, and thus these equations imply the Euler-Poincaré equations. It is also
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instructive to obtain them directly. Taking the time derivative and using general
results relating the Ad∗ and ad∗ operations yields

d

dt

δℓ

δu
=
d

dt

(

Ad∗n−1π
)

=Ad∗n−1

(

π̇−ad∗ζπ
) (

with ζ=n−1ṅ
)

by (8.56b)=−Ad∗n−1ad∗(Adn−1u)π

=−ad∗u

(

Ad∗n−1π
)

by (8.56a)=−ad∗u
δℓ

δu
.

In turn, using u= ġg−1 and n=gη, from the Euler-Poincaré equation we get the
conservation law,

0=Ad∗g

(
d

dt

δℓ

δu
+ad∗u

δℓ

δu

)

=
d

dt

(

Ad∗g
δℓ

δu

)

=
d

dt

(
Ad∗gAd

∗
n−1π

)

=
d

dt

(
Ad∗η−1π

)
=Ad∗η−1 (π̇−ad∗υπ) ,

where υ :=η−1η̇ is the left-invariant template velocity.

Remark 8.6 (Interpretation of the equations).

1. The conservation laws for Ad∗g(δℓ/δu) and Ad∗η−1π provide the interpreta-
tions of the momentum dynamics. Namely, the momentum δℓ/δu (resp. π)
undergoes coadjoint motion with respect to g (resp. η−1).

2. The peculiar form of the momentum equation (8.56b) is then understood,
because the template velocity υ is proportional to image momentum π by a
factor of the penalty constant, which also maps it from the dual of the Lie
algebra, back to Lie algebra, namely,

υ :=η−1η̇=n−1νn=σ
2π♯.

Perhaps not unexpectedly, when σ2→0 the template velocity vanishes and
the remaining image motion reduces to a pure deformation governed by the
Euler-Poincaré equation.

3. The metamorphosis (gt,ηt) is determined as an initial value problem, as fol-
lows. Given the Lagrangian ℓ(u), the Euler-Poincaré equation

d

dt

δℓ

δu
+ad∗u

δℓ

δu
=0,

determines the velocity u= ġg−1 which then yields gt by reconstruction from
solving ġt=utgt. Next, the relations

π̇=ad∗(ζ−Adn−1u)π and σ2π♯= ζ−Adn−1u,

with ζ=n−1ṅ and ṅ=un+νn, need to be negotiated to obtain the image
curve nt. Finally, the template curve is obtained from ηt=g

−1
t nt. This

process is worth discussing in an example.
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8.5.2. Example: Metamorphosis equations on SE(2). In SE(2) the
manifold of “deformable objects” N =R2 is acted upon by the Lie group of “defor-
mations” G=SO(2) on the left. The situation simplifies in this case because N is a
vector space and we recover the setting described in Section 8.1. Hence,

ℓM (u,n,ν)= ℓ(u)+
1

2σ2
‖ν‖2= ℓ(u)+

1

2σ2
‖ṅ−un‖2= ℓLP (u,n,ṅ),

and the cost function becomes

Sp=

∫ T

0

(

ℓ(u)+
1

2σ2
‖ν‖2

)

dt=

∫ T

0

(

ℓ(u)+
1

2σ2
‖ṅ−un‖2

)

dt,

where the se(2) Lie algebra action un may be written on R2 as a cross product of
vectors [36]

un=uẑ×n.

Consequently, the SDP metamorphosis equations (see (8.7))

dℓ

du
+π⋄n=0,

π̇−uπ=0,

ṅ−un=σ2π♯=ν,

which may be written in vector form as

dℓ

du
ẑ+π×n=0,

π̇−uẑ×π=0,

ṅ−uẑ×n=σ2π=ν.

A few statements may be made about the qualitative properties of the solutions
of this system.

1. We first observe that |π| is constant because by the second equation above,
we have d

dt |π|
2=2π · π̇=2π ·(uẑ×π)=0. So π executes circular motion in the

plane at constant rotation frequency π× π̇/|π|2=uẑ.

2. Substituting the second and third equations into the time derivative of the
first one yields the conservation law

d

dt

δℓ

δu
=0

for the planar motion. In particular, we obtain the constant of motion π×n=
const.

3. The other two equations are closed provided one may solve δℓ/δu for u, which
of course we shall assume is possible. More precisely, we now assume that the
Legendre transformation u 7→ δℓ/δu is a diffeomorphism. In this case, since
δℓ/δu is constant, u is also constant.

4. It remains to determine the effects of σ2 6=0 on the dynamics of n. A short
computation shows that

d

dt
(π ·n)=σ2|π|2 and

d

dt
|n|2=2σ2(π ·n),
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so, since |π|2= const, |n|2(t) increases quadratically with scaled time σ2t
and the motion may be visualized as taking place in R3 with coordinates
(x1,x2,x3)=(|π|2, |n|2,π ·n) along the parabolas formed by intersections of
level sets of the two integrals of motion |π|2= constant and |π×n|2= const.
The rotation frequency of n is found to be

n× ṅ

|n|2
= ẑ

(

u+
σ2

|n|2
dl

du

)

.

As σ2t→∞, the directions of the vectors π and n tend toward a state of
alignment, rotating together at frequency uẑ. In contrast, for σ2=0, the
vectors π and n keep their magnitudes and rotate together at frequency uẑ
with constant relative orientation.

8.5.3. Lie-Poisson Hamiltonian formulation of metamorphosis for right
action. In this example we particularize the system of motion equations (4.8) to
the case of a representation but without imposing the endpoint condition at t=1.
The resulting equations are obtained by metamorphosis reduction from an arbitrary
Lagrangian L :T (G×V )→R, where V is a vector space. Thus, the equations below
are more general that those obtained in the penalty approach.

As explained in Section 5, the variational problem optimizes over metamorphoses

(gt,ηt) by minimizing S=
∫ 1

0
Ldt, for a Lagrangian L of the form

L(gt, ġt,ηt, η̇t)=L(gt, ġt,ηt)+
1

2σ2
‖gtη̇t‖

2,

with fixed boundary conditions for the initial and final images n0 and n1, with image
nt=gtηt for template ηt and g0=idG; thus only the images are constrained at the
endpoints.

For the concrete metamorphosis example, the group G of diffeomorphisms
Diff(D)∋g of the domain D is taken to act on the space of smooth maps (images)
V =F(D)∋η by the left action gη :=η◦g−1 of G on V . Therefore, the right action
(8.48) of G on G×V is given in this case by (g,η)h := (g◦h,η◦h) for g,h∈Diff(D)
and η∈F(D). The reduced Lagrangians ℓLP (ut,nt,ṅt) and ℓM (ut,nt,νt) are defined
on the space g×V ×V . In imaging applications, ut= ġtg

−1
t is the velocity along the

optimal path gt sought between two images; nt :=gtηt is the path in the image space;
and νt :=gtη̇t is the image velocity.

From a visual point of view, image metamorphoses are similar to what is usually
called “morphing” in computer graphics. The evolution of the image over time, t 7→
nt, is a combination of deformations and image intensity variation. Algorithms and
experimental results for the solution of the boundary value problem (minimize the
time-integrated Lagrangian between two images) can be found in [61, 26].

From the general metamorphosis equations (4.8) (with the minus sign correspond-
ing to the right action of G on G×V ) we obtain the dynamical system























































∂

∂t

δℓM
δu

+ad∗
ut

δℓM
δu

+
δℓM
δn

⋄nt+
δℓM
δν

⋄νt=0,

∂

∂t

δℓM
δν

−ut
δℓM
δν

−
δℓM
δn

=0,

ṅt=νt+utnt,

δℓM
δu

(1)+
δℓM
δν

(1)⋄n1=0,

(8.57)
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where for n∈V , a∈V ∗, and u∈X(D)=g, the infinitesimal actions and the diamond
operators are given by

un=−dn ·u∈V =F(D),

ua=div(au)∈V ∗=F(D)∗∼=F(D),

n⋄a=−adn∈g∗=Ω1(D).

Even though we fixed the standard volume form on D⊂Rn, so densities on D are
identified with functions and one-form densities with one-forms, we recall that one
should think of ua as a density and n⋄a as a one-form density.

In contrast to earlier sections, fixed endpoints at t=1 are not assumed in meta-
morphosis. This difference leads to the last equation in the system (8.57). For details
of the derivation of the system (8.57) and discussions of the regularity of its solutions,
see [47].

System (8.57) describes coadjoint motion

∂

∂t

(
δℓM
δu

+
δℓM
δν

⋄n

)

+ad∗ut

(
δℓM
δu

+
δℓM
δν

⋄n

)

=0, (8.58)

or, equivalently,

∂

∂t

(

Ad∗gt

(
δℓM
δu

+
δℓM
δν

⋄n

))

=0, (8.59)

so that
(
δℓM
δu

+
δℓM
δν

⋄n

)∣
∣
∣
∣
t

=Ad∗
g−1

t

(
δℓM
δu

+
δℓM
δν

⋄n

)∣
∣
∣
∣
t=0

, (8.60)

for the coadjoint action of the Lie group G on the dual of its Lie algebra g.

Hamiltonian formulation. One passes from the Euler-Poincaré metamorphosis
equations on the Lagrangian side to their Lie–Poisson Hamiltonian formulation via
the Legendre transformation; see the presentation and general formulas at the end
of Section 6. The Legendre transformation of the reduced Lagrangian ℓM (u,n,ν) :
g×V ×V →R in its variables u and ν defines the Hamiltonian,

h(µ,n,β)= 〈µ,u〉+〈β,ν〉−ℓM (u,n,ν), (8.61)

on g∗×V ×V ∗, where

µ=
δℓM
δu

and β=
δℓM
δν

(8.62)

are given by the Legendre transformation. The variational derivatives of the Hamil-
tonian h are

δh

δµ
=u,

δh

δβ
=ν,

δh

δn
=−

δℓM
δn

. (8.63)

Consequently, the Euler-Poincaré equations (8.57) for metamorphosis in the Eule-
rian description imply the following equations for the Legendre-transformed variables
(µ,n,β), written symbolically as a matrix operation:

∂

∂t





µ
n
β



=−





ad∗
2µ −2⋄n β ⋄2

−2n 0 −1
−2β 1 0









δh/δµ
δh/δn
δh/δβ



=:B





δh/δµ
δh/δn
δh/δβ



, (8.64)
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with boxes 2 indicating where the substitutions occur. These equations can also be
obtained from the system (6.10) (with minus sign chosen in ∓) by explicitly computing
every term for this situation. The Poisson bracket defined by the L2 skew-symmetric
Hamiltonian matrix B is given by

{
f,h
}
(µ,n,β)=

∫ 



δf/δµ
δf/δn
δf/δβ





T

B





δh/δµ
δh/δn
δh/δβ



dx. (8.65)

The pair (n,β) satisfies canonical Poisson-bracket relations. The other parts of the
Poisson bracket are linear in the variables (µ,n,β). This linearity is the signature of
the Lie-Poisson bracket on the dual of the semidirect product Lie algebra of vector
fields X(D) acting on functions F(D,W ) and its dual F(D,W ∗) with a canonical
cocycle between them. The semidirect product Lie algebra bracket on g×V ×V is

[(u,n,ν),(ū,n̄, ν̄)]=([u,ū],un̄− ūn,uν̄− ūν) .

A similar Lie-Poisson bracket was found for complex fluids in [35]. Ongoing work
in this direction includes a Lagrange-Poincaré formulation of these equations ([30]).

9. Conclusions and outlook
This paper has begun the development of the family of dynamical systems asso-

ciated with optimal control and optimization problems. The theory was developed in
the context of many examples inspired by control theory and optimization, particu-
larly in the new area of applications in imaging analysis of the theory of metamor-
phosis, a means of optimally tracking the changes of shape necessary for registration
of images of various types, or data structures, without requiring that the transforma-
tions of shape be diffeomorphisms. The main idea was to soften the exact dynamical
constraint by replacing it with a quadratic penalty term. The resulting optimization
dynamics was studied by using methods that originated in geometric mechanics. In
particular, Lagrange-Poincaré reduction and its associated variational formulations
were adapted to this sort of optimal inexact reduction. This approach allowed us to
obtain the equations of metamorphosis dynamics that are naturally generated by the
stationarity conditions, then study their properties from both the Lagrangian and
Hamiltonian points of view.

This geometric setup for optimization dynamics was illustrated in diverse exam-
ples in Section 8. Besides metamorphosis (Section 8.5), these examples included opti-
mally reduced versions of the heavy top (Section 8.1.1), the double bracket equations
(Section 8.1.2), the Euler equations for an inviscid ideal fluid both incompressible and
compressible (Section 8.3.1), and the N -dimensional Camassa-Holm equation (Section
8.4). For the one-dimensional Camassa-Holm equation the optimal reduction process
produced its integrable Hamiltonian extension, the two-component Camassa-Holm
equations in (8.46) and (8.47).

We plan to continue the investigation of the relationships among problems in
imaging, optimal control, and geometric mechanics. In particular, we plan to continue
developing the dynamical systems framework for designing and interpreting methods
of large deformation matching for image registration in computational anatomy.
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[68] A. Trouvé and L. Younes, Metamorphoses through Lie group action, Found. Comput. Math.,

5, 173–198, 2005.
[69] F.-X. Vialard, Hamiltonian Approach to Shape Spaces in a Diffeomorphic Framework: From

the Discontinuous Image Matching Problem to a Stochastic Growth Model, Ph.D. Thesis,
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