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HAMILTONIAN ODEs ON A SPACE OF DEFICIENT MEASURES∗

L. CHAYES† , W. GANGBO‡ , AND H.K. LEI§

Abstract. We continue the study (initiated in [L. Ambrosio and W. Gangbo, Commun. Pure
Appl. Math., 61, 18–53, 2007] of Borel measures whose time evolution is provided by an interacting
Hamiltonian structure. Here, the principal focus is the development and advancement of deficiency
in the measure caused by displacement of mass to infinity in finite time. We introduce — and study in
its own right — a regularization scheme based on a dissipative mechanism which naturally degrades
mass according to distance traveled (in phase space). Our principal results are obtained based on
some dynamical considerations in the form of a condition which forbids mass to return from infinity.
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1. Introduction

In this work, we further the study of time evolution for certain Borel measures
whose underlying dynamic is provided by a Hamiltonian structure. In particular,
for a given measure µt on D :=2d-dimensional phase space for a fluid or particle
system in d-dimensions, one is led to consider a “Hamiltonian functional”, H (µt),
whose gradient with respect to the Wasserstein metric (see equation (2.19)) provides
the velocity field which in turn evolves the measure. While the case where mass is
conserved has already been considered in, e.g., [1], our concern in this note is the
problem of Hamiltonian dynamics where the kinematics allow for the possibility that
particles may reach infinity in finite time. (As can be readily checked, dynamics
subject to an external potential with a super-quadratic drop to negative infinity shall
satisfy such a property.)

Motivated by the fact that mass-conserving dynamics can be described by an
appropriate continuity equation, as described in [1], we begin by developing a weak
theory of a deficient continuity equation where mass is degraded according to distance
traveled in phase space. It is worth emphasizing that this is a natural regularization
for which degradation of mass is ever present; moreover, this regularization allows us
to look at infinite volume measures from the outset. On the other hand, it is noted
that while the work in [1] employs the Wasserstein distance — which is equivalent to
vague convergence along with convergence of second moments, our result is much more
modest: In the present note we shall content ourselves, ultimately, with distributional
convergence, i.e., weak convergence restricted to finite volumes.

This restriction to finite volumes induces certain dynamical considerations. In-
deed, it is almost a tautology that the dynamics cannot be well-described distribu-
tionally without some notion that particles cannot “return from infinity”. (Such a
condition can be established in a variety of circumstances, the most trivial example
being in the case of a radially symmetric potential, where the existence of infinitely
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many “outward” maxima clearly define regions of no return.) A general version of
such a condition, which we refer to as a dynamical hypothesis, will be described in
Section 3. With such a dynamical hypothesis in hand, we shall indeed be able to
extract some limiting dynamics as our regularization parameter tends to zero and
establish a mass convergence result as detailed in Section 4.

2. Preliminaries

In this section we will introduce the deficient continuity equation and establish
some basic properties.

2.1. Deficient equation and a priori estimates.

Definition 2.1. We will denote by M the space of all finite Borel measures generated
by the open sets in RD. Given some α≥0 and a Borel measure µ∈M , we define

Mα(µ)=Eµ(e
α|X|)

to be the α-exponential moment of µ. We also let Mα denote the set of all Borel
measures with finite α-exponential moment.

Before we state a preliminary existence result for fixed velocity fields, we will
make the following observation:

Proposition 2.2. Let T >0 and let v : [0,T ]×RD →RD be a Borel vector field such
that vt :=v(t, ·) is locally Lipschitz for every t∈ [0,T ]. Let us assume that for every
compact K⊂RD, fK ∈L1(0,T ), where

fK(t)= sup
x∈K

|vt|+Lip(vt,K).

(i) Then for all x in RD, there exists a τ(x)>0 such that there exists a (unique)
solution to the ODE

Ẋt=vt(Xt), X0=x,

on [0,τ(x)). Further, either τ(x)=T or t 7→ |Xt| is unbounded on [0,τ(x)), in
which case

∫ τ(x)

0

|Ẋt| dt=∞.

(ii) The function τ :RD→ (0,∞) is lower semicontinuous and for t∈ (0,T ) the
function Xt is one-to-one on the open set

St :={x∈RD | τ(x)>t}.

Proof. For each x, existence up to some maximal time τ(x) follows by standard
ODE theory given the assumption on vt. Furthermore, the solution trajectories are
continuous. If τ(x)<T and t 7→ |Xt| is bounded on [0,τ(x)) then t 7→Xt is Lipschitz
on that set and so, it admits a left limit Xτ(x) at τ(x). Then the identity Xt=

X0+
∫ t

0
vs ◦Xs ds can first be extended to t= τ(x) and then beyond. In particular, if

|Xτ(x)| is bounded, then we could extend the solution of the ODE to a larger interval,
contradicting the maximality of τ(x).

Let Db denote the ball of radius b around the origin, and for t<T set

Bt(b)={x∈RD | τ(x)>t, X(x, ·)[0,t]⊂Db}.
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We shall next demonstrate that Bt(b) is an open set. Let x∈Bt(b) and y satisfying
|x−y|<δ with δ to be specified momentarily: For L>0 suppose that δ has been
chosen so that

δ<Le−
∫

t
0
fDb+L

(s) ds. (2.1)

We claim that under these conditions, y∈Bt(b+L). Indeed, clearly y∈Bϑ(b+L)
for ϑ>0 sufficiently small; let us suppose that ϑ is maximal and assume towards a
contradiction that ϑ<t. Letting r(t) := |Xt(x)−Xt(y)| we directly see that for any
t′<ϑ,

dr

dt
(t′)≤ r(t′)fDb+L

(t′).

Thus, certainly, by Gronwall’s inequality r(t′)<L for any t′≤ϑ, but continuity then
also implies that r(ϑ+η)<L for some sufficiently small η>0, contradicting the max-
imality of ϑ. We conclude that ϑ≥ t. So y∈Bt(b+L). Now, since X(x, ·)[0,t] is
compact we have that x∈Bt(b

′) for some b′<b; finally, choosing L= b−b′ we have
y∈Bt(b) and we have established that Bt(b) is an open set.

As for the semicontinuity, let x∈RD and choose an arbitrary positive number a
smaller than τ(x) and then choose t∈ (τ(x)−a,τ(x)). As X(x, ·)[0,t] is a compact
set, it is contained in a ball Db. Choose L=1, say, and δ as in equation (2.1) (with
δ≪1). Since Dδ(x), the open ball of center x and radius δ, is contained in Bt(b+1)
and we have τ ≥ t>τ(x)−a on Dδ(x). This proves that liminfy→x τ(y)≥ τ(x)−a. As
a is arbitrary we conclude that liminfy→x τ(y)≥ τ(x). Thus τ is lower semicontinuous
and, moreover, it follows that St an open set.

Finally, if x,y∈St are such that Xt(x)=Xt(y) then the functions s→ rx(s) :=
Xt−s(x) and s→ ry(s) :=Xt−s(y) satisfy

rx(0)= ry(0), ṙx=ws(rx), ṙy =ws(ry), ws :=−vt−s

on [0,t]. Hence rx(t)= ry(t), i.e. x=y, which proves that Xt is one-to-one on St.

Remark 2.3. Let v denote a velocity field satisfying the hypothesis of Proposition
2.2.

(i) To ensure that fK is Borel measurable it suffices to assume that v(·,x) is Borel
measurable for every x∈RD.

(ii) Let O be the set of (x,t) such that 0<t<τ(x). The lower semicontinuity of
τ ensures that O is an open subset of RD×(0,∞). Also, (x,t)→Xt(x) is continuous
on O.

Proposition 2.4. For fixed α0>0, α>0, and 0<T <∞, let µ0∈Mα0
denote some

initial Borel measure on RD, and let vt denote a velocity field satisfying the hypothesis
of Proposition 2.2. Then

(i) there exists (µt)t∈[0,T ] such that

∂tµt+∇·(vtµt)=−ε|vt|µt, (2.2)

in the sense of distribution: ∀ϕ∈C∞
c (RD×(0,T )),

∫ T

0

∫

RD

(∂tϕ+〈vt,∇ϕ〉) dµt dt=

∫ T

0

∫

RD

ε|vt| ϕ dµt dt;
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(ii) the measure µt is supported by Xt(St) and

∫

RD

ψ dµt=

∫

St

(Rtψ)◦Xt dµ0,

where Rt is defined as in equation (2.4);
(iii) furthermore, if α≤min{α0,ε}, then Mα(µt) is monotonically nonincreasing

in t. In particular the total mass M0(µt) is monotonically nonincreasing in
t.

Proof. For a positive integer b we select a map φb :RD→Db+1 of class C2 with
Lipschitz constant less than or equal to b such that φb(x)=x for |x|≤ b, and φb(x)=0
for |x|≥2+b. Let Xb

t be the solution of the ODE as described in Proposition 2.2 when
v is substituted by vb=v◦φb. Note that as

|Ẋb
t |≤fDb+1

, fDb+1
∈L1(0,T ),

Xb
t exists for all t∈ [0,T ] and is invertible. Let Bt(b) be as above and observe that

x∈Bt(b), =⇒ Xb
s(x)=Xs(x) ∀ s∈ [0,t]. (2.3)

Indeed, for x∈Bt(b) and s≤ t,

Xs(x)=x+

∫ s

0

vτ (Xτ (x))dτ =x+

∫ s

0

vbτ (Xτ (x))dτ.

Set

µ∗,b
t =Xb

t#µ0, µb
t =R

b
tµ

∗,b
t ,

where Rb
t is defined on [0,T ]×RD by

Rb
t ◦X

b
t =exp

(

−

∫ t

0

ε|Ẋb
s | dτ

)

.

Similarly, for t<T and x∈St we define

Rt ◦Xt=exp
(

−

∫ t

0

ε|Ẋs| dτ
)

. (2.4)

As

∂tµ
b
t+∇·(vbtR

b
t)=−ε|vbt |R

b
t and ∂tµ

∗,b
t +∇·(vbtµ

∗,b
t )=0

in the sense of distribution on (0,T )×RD,

∂tµ
b
t+∇·(vbtµ

b
t)=−ε|vbt |µ

b
t (2.5)

in the sense of distribution on (0,T )×RD.We use equation (2.3) to observe, for t<T ,

lim
b→∞

Rb
t ◦X

b
t (x)=

{

Rt ◦Xt(x) if t<τ(x),

0 if t≥ τ(x).
(2.6)
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As (t,x)→Rb
t ◦X

b
t (x) is continuous, the limiting function in equation (2.6) is a Borel

function. For t∈ [0,T ) we define the measure µt supported by Xt(St) by

∫

RD

ψdµt=

∫

St

(Rtψ)◦Xt dµ0

for ψ∈Cb(R
D). By equations (2.3) and (2.6),

lim
b→∞

∫ T

0

(

∫

RD

ϕ(t,y) dµb
t(y)

)

dt=

∫ T

0

(

∫

RD

ϕ(t,y) dµt(y)
)

dt (2.7)

for ϕ∈Cb([0,T ]×RD).

1. Claim: (µ)t∈[0,T ] satisfies equation (2.2).
Proof of Claim 1. In light of equation (2.5) it suffices to show for arbitrary

ϕ∈C1
c ((0,T )×RD) that

lim
b→∞

∫ T

0

(

∫

RD

〈∇ϕ,vb〉 dµb
t(y)

)

dt=

∫ T

0

(

∫

RD

〈∇ϕ,v〉 dµt(y)
)

dt

and

lim
b→∞

∫ T

0

(

∫

RD

ϕ|vb| dµb
t(y)

)

dt=

∫ T

0

(

∫

RD

ϕ|v| dµt(y)
)

dt.

Let r>0 be chosen so that, say, the set [r,T −r]×B1/r contains the support of ϕ. Now

let ω be such that |v|<ω on [r,T −r]×B1/r. Then once b>ω, we have 〈∇ϕ,vb〉=
〈∇ϕ,v〉 and so equation (2.7) yields the first identity of the claim. We obtain the
second identity in a similar manner.

In the above, the left hand sides actually equal the right hand sides once b is large
enough, so that Db subsumes the support of ϕ since then vb=v and we may apply
equation (2.7).

2. Claim: Let α≤min{α0,ε}. Then M∞,α(µt) is monotonically nonincreasing in
t.

Proof of Claim 2. Let 0≤ t1<t2≤T . As vb is of compact support, equation
(2.5) implies

d

dt

∫

ψ dµb
t =

∫

(〈∇ψ,vbt 〉−εψ|v
b
t |) dµt, (2.8)

so with ψ= eα|x| we get that

d

dt
M∞,α(µ

b
t)=

∫

|vbt |e
α|y|

(

α〈
y

|y|
,
vbt
|vbt |

〉−ε
)

dµt≤0

holds if α≤ ε, and hence

M∞,α(µ
b
t2)≤M∞,α(µ

b
t1). (2.9)

As α≤ ε we have

Rb
t ◦X

b
t (x)≤ exp−α

(

∫ t

0

|Ẋb
s(x)| ds

)
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and so, the inequality

|Xb
t (x)−x|≤

∫ t

0

|Ẋb
s(x)| ds

yields

Rb
t ◦X

b
t (x)e

α|Xb
t (x)|≤ eα|x|.

Since x→ exp(α|x|) belongs to L1(µ0), we may use equations (2.3) and (2.6) and
apply the Lebesgue dominated convergence theorem to obtain that

lim
b→∞

∫

RD

Rb
t ◦X

b
t (x)e

α|Xb
t (x)| dµ0(x)=

∫

St

Rt ◦Xt(x)e
α|Xt(x)| dµ0(x),

which shows that M∞,α(µ
b
t) tends to M∞,α(µt) as b tends to ∞. This together with

(2.9) proves the claim.

Remark 2.5. We make some remarks on some (almost) automatic extensions of
these results.

(i) The fact that the α-exponential moment of the solution of (2.2) decreases in
time ensures that we can repeat Proposition 2.4 on the interval [T,2T ], · · · , [nT,(n+
1)T ] to obtain that equation (2.2) is satisfied on [0,∞)×RD.

(ii) If v is a velocity field satisfying the hypothesis of Proposition 2.2 and only
the mth moment of µ0 is finite (i.e., µ0 may not have an α-exponential moment) then
the mth moment of µt stays bounded on [0,T ). (In the particular case where m=0,
the total mass of µt is less than or equal to that of µ0.) Indeed, let us define

St(x)=

∫ t

0

|Ẋτ (x)| dτ.

Then

∫

RD

|y|m dµt(y)=

∫

St

e−εSt(x)|Xt(x)|
m dµ0(x)≤

∫

e−εSt(x)(|x|+St(x))
m dµ0.

Now we divide the integral into {x :St(x)< |x|} and {x :St(x)> |x|}. The integral over
the former region is bounded by 2m times the initial moment, whereas the integral
over the latter region is bounded by a constant depending on ε.

(iii) Assume α, v, and µ0 are as in Proposition 2.4. Let t→µt be the solution
obtained in that proposition and let ϕ∈C1(Rd). Then we claim, that after some
computations along the lines of the proof of the proposition, that

∣

∣

∣

∣

∫

RD

ϕ dµt2 −

∫

RD

ϕ dµt1

∣

∣

∣

∣

≤ (1+ε)‖ϕ‖C1

∫ t2

t1

∫

RD

|vs| dµsds. (2.10)

Indeed, we can first obtain the inequality in equation (2.10) for ϕ∈C1
c (R

D). An
approximation argument then yields the general case.
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2.2. Limiting measures and equations. Let µε
t denote a (distributional)

solution to the deficient continuity equation

∂tµ
ε
t +∇·(µε

tv
ε
t )=−ε|vεt |µ

ε
t . (2.11)

We will now establish existence of the necessary ε→0 limiting measures. We remark
that here we will retrieve the limit abstractly, making no statement about the limiting
dynamics. We will address Hamiltonian dynamics in the following section.

As before, we denote by Xt the characteristic in equation (2.11): Ẋt=vt(Xt),
X0=Id.

Remark 2.6. We point out that in this section and the next, we will use the weakest
form of convergence of measures: distributional convergence, i.e., µn⇀µ if

∀ϕ∈C∞
c (RD), lim

n→∞

∫

ϕ dµn=

∫

ϕ dµ.

However, if {
∫

ψ dµn}n∈N is bounded for some nonnegative ψ∈C(RD) such that ψ(x)
tends uniformly to ∞ as |x| tends to ∞ (e.g., a moment condition) then distributional
convergence is equivalent to narrow convergence, which is defined as µn⇀

n
µ if

∀ϕ∈Cb(R
D), lim

n→∞

∫

ϕ dµn=

∫

ϕ dµ.

So we will often (automatically) acquire narrow convergence but utilize C∞
c functions

to carry out the relevant arguments.
We shall also use weak∗ convergence, which is defined as µn⇀

∗
µ if

∀ϕ∈C0(R
D), lim

n→∞

∫

ϕ dµn=

∫

ϕ dµ.

Since our measures are no longer probability measures, we prefer to not speak of
tightness but instead think of them as Radon measures and abstractly extract a
narrow limit point — which may very well have mass much less than the sequence
from which it originated but is nonetheless a Radon measure. (Indeed, by the Riesz
representation theorem, the dual of C0(R

D) is isometrically isomorphic to the space
of all Radon measures.) Then if we wish to establish some property of the limiting
measure (e.g., that it satisfies some suitable equation) it is enough to work with
functions in C∞

c (RD), as was discussed in the previous paragraph.
Finally, as far as convergence of measures of sets are concerned, by standard

properties of Radon measures it is the case that if µn⇀∗ µ and A is a Borel set, then

µ(A◦)≤ liminf
n

µn(A)≤ limsup
n

µn(A)≤µ(Ā). (2.12)

We refer the reader to e.g., [3, Chapter 1.9] for such results.

First let us extract a narrow continuity statement for measures satisfying the
deficient continuity equation:

Lemma 2.1. Let vεt be as in Proposition 2.2 and let ε∈ (0,1). Suppose (µε
t )t∈[0,T ]

satisfies the deficient continuity equation (2.11). Then t→µε
t is a continuous path

in M when the latter space is endowed with the distributional convergence topology.
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Moreover, if the αth moment of µε
0 is finite for some α>0, then t→µε

t is a continuous
path in M for the narrow convergence topology.

Proof. Let ϕ∈C∞
c (RD). By equation (2.2) the distributional derivative of

t→gεϕ(t) :=
∫

ϕ dµε
t exists and is equal to

∫

D∩Xε
t (St)

(〈∇ϕ,vεt 〉−ε|v
ε
t |ϕ) dµ

ε
t ,

where D is an open ball containing the support of ϕ and St is defined in Proposition
2.2, corresponding to vεt . Let

kεD(t)= sup
x∈D

|vεt |. (2.13)

We have

|〈∇ϕ,vεt 〉−ε|v
ε
t |ϕ|≤Ck

ε
D(t)

for a constant C depending only on ϕ but independent of t. As kεD ∈L1(0,T ) we
conclude that gεϕ∈W 1,1(0,T ) and so, it is continuous.

Having established continuity in the distributional topology, continuity in the nar-
row topology is readily established under the stated conditions by standard approxi-
mation arguments. Indeed, for ϕ∈C∞

b we may write ϕ=ϕn+ϕ−ϕn with ϕn∈C
∞
c

satisfying ϕn≤ϕ and ϕ−ϕn supported only outside a large region (tending to all of
RD as n→∞). Remark 2.5 ensures if the mth moment of µε

0 is finite for some m>0
then the mth moment of µε

t remains uniformly bounded on [0,T ). This provides us
with a uniform tightness condition that can be used to estimate the “non-compact”
portion of ϕ.

Remark 2.7. Further suppose in Lemma 2.1 that, e.g., |µε
t |≤1 and that for any

compact set K⊂RD, there exists some constant C(K)>0 such that for all ε,

sup
t∈[0,T ], x∈K

|vεt (x)|≤C(K). (2.14)

That is, the velocity fields are locally bounded, uniformly for all ε and t of interest.
Let us record that in the proof of that Lemma we have exhibited a functional

ϕ→Cϕ of C∞
c (RD) into (0,∞) such that if D is an open ball containing the support

of ϕ then

||gεϕ||W 1,1(0,T )≤Cϕ

∫ T

0

kD(t) dt, gεϕ(t) :=

∫

ϕ dµε
t .

But since kD ∈L∞(0,T ), we have in fact that gεϕ∈W 1,∞(0,T ) for all ε and hence it is
Lipschitz, with Lipschitz constant ‖kD‖L∞ . Thus, we emphasize that if the velocity
field is bounded uniformly in ε, then so is the resulting estimate on the relevant time
derivative.

Proposition 2.8. Suppose supε |µ
ε
0|<∞ and we have vεt and µε

t such that equations
(2.11) and (2.14) hold. Then there exists a sequence (εn) decreasing to 0 such that
(µεn

t ) has a distributional limit µt as n tends to ∞, for all t∈ [0,T ]. Furthermore,
t→µt is continuous for the distributional convergence.
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Proof. Assume for instance that |µε
0|≤1. Remark 2.5 ensures that |µε

t |≤1
uniformly in t and ε. Using a diagonal sequence argument we can apply the Banach-
Alaoglu theorem to obtain (εn)⊂ (0,∞) converging to 0 as n tends to ∞ such that
(µεn

t ) converges in the distributional sense to some µt∈M for, e.g., each t∈D :=
(0,T )∩Q.

1. Claim: If t∈ (0,T ) then for any sequence (tk)⊂D converging to t we have that
µtk ⇀µt for some µt∈M independently of the sequence (tk). (That is, the limit can
be extended to all t∈ [0,T ].)

Proof of claim. By the Banach-Alaoglu theorem the set (µt)t∈D is pre-compact
in the distributional topology. Let (tk),(t

∗
k)⊂D be sequences converging to t as k

tends to ∞ and suppose that µtk ⇀ν and µt∗
k
⇀ν∗ as k tends to ∞. Let D be an open

ball of radius r containing the support of an arbitrarily fixed function ϕ∈C∞
c (RD),

set fD(t)=C(D), and as in Remark 2.7 set

gεϕ(t) :=

∫

ϕ dµε
t , gϕ(t) :=

∫

ϕ dµt.

Let Cϕ be as in Remark 2.7, then since the estimates are uniform in ε we may let
εn→0 in that remark to obtain

|gϕ(tk)−gϕ(t
∗
k)|.Cϕ|tk− t

∗
k| ·C(D). (2.15)

Letting k tend to ∞ we obtain

∫

RD

ϕ dν=

∫

RD

ϕ dν∗.

As ϕ∈C∞
c (RD) is arbitrary we conclude that ν=ν∗, which proves the claim.

2. Claim: If t∈ (0,T ) then (µεn
t ) converges in the distributional sense to µt∈M .

Proof of claim. We use equation (2.15) and the way t→µt has been extended
to (0,T ) to obtain for t,t∗∈ (0,T )

|gϕ(t)−gϕ(t
∗)|. C̄|t− t∗| ∀t,t∗∈ (0,T ), C̄ :=Cϕ ·C(D). (2.16)

Fix t∈ (0,T ). Then for tk ∈D we have

|gεnϕ (t)−gϕ(t)|≤ |gεnϕ (t)−gεnϕ (tk)|+ |gεnϕ (tk)−gϕ(tk)|+ |gϕ(tk)−gϕ(t)|

. C̄|t− tk|+ |gεnϕ (tk)−gϕ(tk)|.

Fixing k and passing to the limit when n tends to infinity we conclude that

limsup
n→∞

|gεnϕ (t)−gϕ(t)|. C̄|t− tk|.

We then let tk tend to t to conclude that

lim
n→∞

gεnϕ (t)=gϕ(t),

which proves the claim.
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Remark 2.9. We remark that it is in fact also possible to abstractly retrieve some
limiting velocity fields (vt)t∈[0,T ] so that together with the limiting measures (µt)t∈[0,T ]

the continuity equation

∂tµt+∇·(µtvt)=0 (2.17)

is satisfied. Indeed, the basis for such a result is Lemma 7.2 in [1], which can be
adapted to deficient measures mutatis mutantis. In our case we also have the addi-
tional complication that the velocity fields have only a local bound. However, this can
be dispensed with by inserting another diagonalization procedure where we consider
finite volume measures, µε,L

t , which are supported in regions of scale L. Then we may
first take ε to zero, and then L to infinity. For the principal results of this note, this
route will be avoided due (in part) to the fact that the velocity field and its limit must
(and will) be produced on the basis of an explicit dynamical structure.

2.3. Hamiltonian dynamics with mass dissipation.

Definition 2.10. Given a measure µ on RD where D=2d — and where we denote
x=(p,q) — we define our Hamiltonian to be

H (µ)=
1

2

∫

|p|2 dµ(x)+
1

2

∫

(W ∗µ)(q) dµ(x)+

∫

Φ(q) dµ(x), (2.18)

where W and Φ are both functions of q and W is even. We further assume that

◦ W ∈C2
c (R

d).

◦ Φ∈C2(Rd).

We let a denote the range of the interaction, i.e., W is supported on a ball of
radius a. Although not always strictly necessary, we shall further assume, with no
essential loss of generality, that Φ is polynomially bounded:

|Φ(q)|≤B1|q|
b2

for finite constants B1 and b2.
Formally, the gradient of H with respect to the 2-Wasserstein metric at µ is the

functional

(p,q)→∇WH (µ)(p,q)= [p,∇(W ∗µ+Φ)(q)]=:Vµ(p,q), (2.19)

provided that µ is sufficiently well-behaved (see, e.g., [2] or [4]). We shall use equation
(2.19) in order to define the relevant dynamics.

Let J be the D×D symplectic matrix so that J(p,q)=(−q,p). We say that
(µε

t )t∈[0,T ] solves the deficient Hamiltonian ODE with initial condition µ0 if it sat-
isfies

∂tµ
ε
t +∇·(J∇WH (µε

t )µ
ε
t )=−ε|J∇WH (µε

t )|µ
ε
t . (2.20)

Similarly, we say that (µt)t∈[0,T ] solves the Hamiltonian ODE with initial condition
µ0 if it satisfies

∂tµt+∇·(J∇WH (µt)µt)=0. (2.21)

equations (2.20) and (2.21) are again understood in the appropriate distributional
sense, by testing against functions ϕ∈C∞

c ((0,T )×RD).

To enable us to extract limiting Hamiltonian dynamics, let us now prove:

Lemma 2.2. Set Vµ=J∇WH (µ) and suppose
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◦ (µn) is of uniformly bounded total mass and converges to µ in the distribu-
tional sense.

◦ We have the tightness in p condition: limr→∞Cr(q̄)=0 for all q̄ where

Cr(q̄)= sup
n∈N

∫

Bc
r×Rd

|∇W |(q̄−q)dµn(p,q).

Then (Vµn
) converges uniformly to Vµ on compact sets. So, in particular,

Vµn
µn⇀Vµµ and |Vµn

|µn⇀ |Vµ|µ

in the sense of distribution.

Proof. It suffices to show that (∇W ∗µn) converges uniformly to ∇W ∗µ on
compact sets. As (µn) is of uniformly bounded total mass, (∇W ∗µn) is a bounded
subset of W 1,∞(Rd) and so, by the Ascoli-Arzela theorem, (∇W ∗µn) is precompact
in C(BQ) — where BQ is a ball of radius Q in Rd — for any Q>0. To show that
(∇W ∗µn) converges uniformly to ∇W ∗µ on BQ it suffices to show that it converges
pointwise to ∇W ∗µ.

For r>0 let θr ∈C(R) be a monotone nondecreasing continuous function such
that 0≤θr≤1 and

{

θr(p)=1 for |p|≥ r,

θr(p)=0 for |p|≤ r−1.

Using for µn the decomposition

∇W ∗µn(q̄)=

∫

RD

∇W (q̄−q)(1−θr(|p|)) dµn(p,q)+

∫

RD

∇W (q̄−q)θr(|p|) dµn(p,q),

and writing a similar decomposition for µ, we obtain

|∇W ∗µn(q̄)−∇W ∗µ(q̄)|

≤

∣

∣

∣

∣

∫

RD

∇W (q̄−q)(1−θr(|p|))
(

dµn(p,q)−dµ(p,q)
)

∣

∣

∣

∣

+2Cr−1(q̄).
(2.22)

To obtain the upper bound in equation (2.22) we have used distributional convergence:
∫

RD

|∇W (q̄−q)|θr(|p|) dµ(p,q)≤ limsup
n→∞

∫

RD

|∇W (q̄−q)|θr(|p|) dµn(p,q)≤Cr−1(q̄).

Finally, we use that (p,q)→∇W (q̄−q)(1−θr(|p|)) is of compact support, and again
utilize the fact that (µn) converges to µ in the distributional sense, to conclude from
equation (2.22) that

limsup
n→∞

|∇W ∗µn(q̄)−∇W ∗µ(q̄)|≤2Cr−1(q̄).

Letting r tend to ∞ we have that (∇W ∗µn(q̄)) converges pointwise to ∇W ∗µ(q̄).

Theorem 2.11 (Existence of solution to deficient Hamiltonian ODE). For fixed
α0>0, ε>0, and 0<T <∞, let µ0∈Mα0

denote some initial Borel measure on RD

and let H be the Hamiltonian in Definition 2.10. Assume for simplicity that the total
mass of µ0 is 1. Then there exists a path t→µε

t ∈Mα, where α<min{α0,ε}, such
that
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(i) (µε
t )t∈[0,T ] satisfies the deficient Hamiltonian ODE

∂tµ
ε
t +∇·(J∇WH (µε

t )µ
ε
t )=−ε|J∇WH (µε

t )|µ
ε
t . (2.23)

(ii) t→µε
t ∈Mα is narrowly continuous andMα(µ

ε
t ) is monotonically nonincreas-

ing in t. In particular, M0(µ
ε
t )≤1 for t∈ [0,T ].

Proof. The construction of µε
t uses roughly the discretization scheme of §6 of

[1], which goes as follows:

1. For n≥1 define the step size h=T/n.

2. We start with µε,n
0 =µ0 and define vε,n0 =J∇WH (µε,n

0 ).

3. For t∈ [kh,(k+1)h) we define µε,n
t to be the solution to the deficient equation

given in Proposition 2.4 with the constant velocity field

vε,nkh =J∇WH (µε,n
kh ).

By construction, we therefore see that (µε,n
t )t∈[0,T ] satisfies

∂tµ
ε,n
t +∇·

(

µε,n
t J∇WH (µε,n

[t/h]h)
)

=−ε
∣

∣

∣
J∇WH (µε,n

[t/h]h)
∣

∣

∣
µε,n
t . (2.24)

Furthermore, Proposition 2.4 allows us to write

∫

RD

ϕ dµε,n
t =

∫

S
ε,n
t

(Rε,n
t ϕ)◦Xε,n

t dµ0 (2.25)

for all ϕ∈C∞
c (RD). Here Xε,n is the flow defined by

Ẋε,n
t =vε,nt (Xε,n

t ), Xε,n
0 =x,

and

Rε,n
t ◦Xε,n

t =exp
(

−

∫ t

0

ε|vε,ns (Xε,n
s )| ds

)

.

By Proposition 2.4, (iii) t→Mα(µ
ε,n
t ) is monotone nonincreasing. In particular, the

total masses of the µε,nk

t ’s are uniformly bounded. Proceeding as in (the proof of)
Proposition 2.8 we obtain the existence of an increasing sequence of natural numbers
(nk)k∈N such that as k tends to ∞, (µε,nk

t )k∈N converges in the sense of distribution to
a measure µε

t for each t∈ [0,T ]. In order to avoid adding a new subscript we shall write
that (µε,n

t )n∈N converges in the sense of distribution to a measure µε
t for each t∈ [0,T ]

where n is restricted to an appropriate subset of N. Observing that, by disintegration
and Markov’s inequality, for all r>0 and q̄∈Rd we have

∫

Bc
r×Rd

|∇W (q̄−q)| dµε,n
t (p,q)≤ e−αr

∫

eα|(p,q)||∇W (q̄−q)| dµε,n
t (p,q)

≤ e−αrMα(µ0)‖W‖C2 ,

(2.26)

we can employ Lemma 2.2 to obtain, for fixed t∈ [0,T ],

µε,n
t ∇WH (µε,n

t ) converges in the distributional sense to µε
t∇WH (µε

t ) (2.27)
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and

µε,n
t |∇WH (µε,n

t )| converges in the distributional sense to µε
t |∇WH (µε

t )|.
(2.28)

By Remark 2.5, (iii) there exists a constant m̄ independent of t∈ [0,T ] and k∈N

such that

|∇WH (µε,n
[t/h]h)−∇WH (µε,n

t )|= |∇W ∗µε,n
[t/h]h−∇W ∗µε,n

t |≤hm̄.

This, together with equations (2.27) and (2.28), and the fact that the total masses of
{µε,n

t }t,n are bounded uniformly in t and n, implies that

µε,n
t ∇WH (µε,n

[t/h]h) converges in the distributional sense to µε
t∇WH (µε

t ) (2.29)

and

µε,n
t |∇WH (µε,n

[t/h]h)| converges in the distributional sense to µε
t |∇WH (µε

t )|.

(2.30)
We combine equations (2.24), (2.29), and (2.30) and use the fact that (∇WH (µε,n

t ))
is bounded uniformly in t,n on compact sets to conclude that (µε

t )t∈[0,T ] satisfies
equation (2.23). Thus, reasoning as in the proof of Proposition 2.4, t→Mα(µ

ε
t ) is

monotone nonincreasing. The narrow continuity claim of item (ii) now immediately
follows from Lemma 2.1.

Remark 2.12. We note that while in order to obtain existence of dynamics with non–
zero ε an a priori estimate as in equation (2.26) already suffices, more is required to
obtain some control which is uniform in ε to retrieve limiting (ε=0) dynamics. Here
is where the dynamical considerations will come into play (in particular, see Lemma
4.1).

3. Dynamical hypothesis

Here we will let (p,q)=(position, momentum) denote canonical variables and pt,qt
denote the associated Lagrangian trajectories (or characteristics) with dynamics dic-
tated by the relevant Hamiltonian. Indeed, we shall have occasion to consider single
particle Hamiltonian dynamics with some Hamiltonian H (the Hamiltonian H as
defined in Definition 2.10 is the integrated total Hamiltonian of the whole system).
We recall the canonical equations of Hamiltonian dynamics:

ṗ=−
∂H

∂q
, q̇=

∂H

∂p
. (3.1)

We will assume that the Hamiltonian is given by

H(p,q,t)=
1

2
|p|2+Φ(q)+Ψ(t,q).

Here, Φ,Ψ(·,t)∈C2(Rd), Ψ is a Borel function defined on [0,∞)×Rd, and there exists
B>0 such that

|∇Ψ(t,q)|<B ∀ t≥0, q∈Rd. (3.2)

Let u∈C2(R) be such that

u′(r)≥B+max
|q|=r

〈∇Φ(q), q̂〉, r≥0, (3.3)
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where q̂|q|= q. We consider the auxiliary “Hamiltonian”

H̃(p,q)=
1

2
〈p,q̂〉2+Υ(q) where Υ(q)=u(|q|).

Lemma 3.1 (Single Particle Dynamics). Consider the single particle Hamiltonian
dynamics equation (3.1). We define a ⋆-ring by the condition that

Υ(q)<Υ(q⋆), for all |q|> |q⋆|, (3.4)

and assume that q⋆ 6=0. Fix t̄∈ [0,T ]. Then for all characteristics which start out
inside the region bounded by the ⋆–ring, in the sense that |q0|< |q⋆|, either

|qt|≤ |q⋆|, for all t≥ t̄,

or

|qt|→∞

with nonvanishing radial speed, i.e., there exists some some t∗>t̄ such that |qt∗ |= |q⋆|
and

d|qt|

dt
(t)≥

d|qt|

dt
(t∗)>0, for all t≥ t∗.

Proof. We first claim that, provided d|q|
dt >0 on an interval, the quantity H̃ is

increasing on that interval. Using equations (3.2) and (3.3), direct computations give

d2|q|

dt2
=

〈q̈,q〉

|q|
+

|q̇|2|q|2−〈q̇,q〉2

|q|3
≥

〈q̈,q〉

|q|
=−〈∇Φ(q)+∇Ψ(t,q), q̂〉>−〈∇Υ(q), q̂〉,

(3.5)
where the last inequality is strict due to (the strict inequality in) equation (3.2).

As Υ depends only on |q|,

〈∇Υ(q), q̇〉= 〈∇Υ(q), q̂〉
d|qt|

dt
(3.6)

and so, by equation (3.5),

dH̃

dt
=
d|q|

dt

d2|q|

dt2
+〈∇Υ(q), q̇〉=

d|q|

dt

(d2|q|

dt2
+〈∇Υ(q), q̂〉

)

>0.

Suppose now that it is not the case that |qt|≤ |q⋆| for all t≥ t̄. Set

t∗=inf{t : |q(t)|> |q⋆|, t≥ t̄}.

1. Claim: We have

|q(t∗)|= |q⋆| and
d|q|

dt
(t∗)>0.

Proof of claim. What is obvious is that |q(t∗)|= |q⋆| and the derivative of |q|
at t∗ is nonnegative. Assume on the contrary that the derivative vanishes. Then
we necessarily have (by simple expansion) that the second derivative of |q| at t∗ is
nonpositive and so, since equation (3.5) reads

d2|q|

dt2
(t∗)>−u′(|q⋆|) (3.7)
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whereas equation (3.4) yields u′(|q⋆|)≤0, we have a contradiction.

2. Claim: d|q|
dt (t)≥

d|q|
dt (t∗) for all t≥ t∗.

Proof of claim. Assume on the contrary that

E=
{

t≥ t∗ :
d|q|

dt
(t)<

d|q|

dt
(t∗)

}

6=∅.

Let t1 be the infimum of E. First it is noted that t1>t∗ since d2|q|
dt2 (t∗)>0 by equation

(3.7). But then

d|q|

dt
(t1)=

d|q|

dt
(t∗)<

d|q|

dt
(t) ∀t∈ (t∗,t1),

so that |q(t1)|> |q⋆|. Thus,

H̃(p(t1),q(t1))<H̃(p(t∗),q(t∗)),

which is a contradiction since H̃ is increasing on the interval [t∗,t1].

Remark 3.1. Note that in the proof of Lemma 3.1 we have proven, in the last claim,
the following general result. If t∗∈ [0,T ) satisfies

|q(t∗)|= |q⋆|>0 and
d|q|

dt
(t∗)>0,

then d|q|
dt (t)≥

d|q|
dt (t∗) for all t≥ t∗. In particular H̃ is increasing on the interval [t∗,T ].

We make final assumptions on u′ which will allow us to summarize our obser-
vations in this section in the following dynamical hypothesis to which we shall refer
later:

Hypothesis 3.2. We postulate existence of Υ(q)=u(|q|) where u∈C2(R) satisfies
equation (3.3). We assume that there is a sequence {q⋆L}

∞
L=1 such that |q⋆L| increases

to ∞ and for all q⋆L,

Υ(q)<Υ(q⋆L) for all |q|> |q⋆L|. (3.8)

As a matter of notation we will sometimes denote generic elements of the sequence
by L⋆ or just L when the context is clear.

Let us also define the phase space cylinders

ΩL⋆ =Rd×BL⋆ ,

where BL denotes the ball in Rd of radius L centered at the origin, and refer to them
as spatial regions of no return.

Remark 3.3. We note that the existence of unbounded (in q) spatial regions of no
return is certainly guaranteed by the condition that Υ(q) decreases in |q|. Moreover, if
additionally Υ(q)∼−|q|1+R with R>1, then the unbounded motion will reach infinity
in finite time.

Remark 3.4. We emphasize that since the dynamical hypothesis is some uniform in
ε control on the dynamics, the no return condition is inherited in any ε→0 limit.
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4. Consequences of the dynamical hypothesis

4.1. Limiting Hamiltonian ODE. As a first consequence of the dynamical
hypothesis we will retrieve some limiting dynamics (meaning the relevant equation of
continuity driven by the appropriate velocity field). In light of the content of Lemma
2.2, we see that we must first estimate, for fixed t, the quantity

C̃r(µ
ε
t , q̄) :=

∫

RD

θr(p)|∇W (q̄−q)| dµε
t (p,q),

(in the following argument we will omit the tilde as it should cause no confusion) where
the µε

t ’s are given by Theorem 2.11 and θr is supported outside the ball of radius r
(Lemma 4.1). Further, we will have to produce some control on the time evolution of
the relevant velocity fields, which is now not “automatic” since ε is tending to zero
(Lemma 4.2).

Since the following argument requires pulling trajectories back to µ0, we shall
work directly with the time discretized measures which, by construction, satisfy the
pushforward equation µε,n

t =Xε,n
t #µ0 (see Proposition 2.4 as it appears in the proof

of Theorem 2.11).
We have the following tightness estimate:

Lemma 4.1. Let T >0 and let (µε,n
t )t∈[0,T ] be the time discretized measures as con-

structed in the proof of Theorem 2.11. Suppose further that

◦ W is supported on the ball of radius a around the origin and there is some
B≥0 such that

|W |≤B and |∇W |<B;

◦ There is a “bounding” potential Υ, which is uniform in ε,n, corresponding
to Φ and Ψn :=W ∗µε,n

t (see equation (3.3) and the display which follows)
satisfying the condition in Hypothesis 3.2.

Let Q>0 and let Cr(µ
ε,n
t ,q) be defined as in Lemma 2.2, then for L as in Hy-

pothesis 3.2 sufficiently large so that (see Definition 2.10 for the meaning of a)

|q⋆L|>Q+a,

we have

∀q∈BQ(0), ∀t∈ [0,T ], ∀ε>0, ∀n

the bound

Cr(µ
ε,n
t ,q)≤B

(

µ0(Q
⋆
L)+µ0(B

c
r∗ ×Rd)

)

.

Here Q⋆
L denotes the complement of the cylinder Ω⋆

L :=Rd×B|q⋆
L
| and r is sufficiently

large so that (at least)

r∗= r−1−MLT >0,

where

ML=B+ sup
q∈B|q⋆

L
|

|∇Φ(q)|.
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Proof. We have that

Cr(µ
ε,n
t ,q)=

∫

|∇W (q−qt)|θr(pt) dµ
ε,n
t

=

∫

θr(pt)|∇W (q−qt)|R
ε,n
t (pt,qt) dµ0(p,q);

here it is re-emphasized that the validity of the pull back to µ0 has been assured by
the manner in which the measures µε,n

t were constructed. By invoking the dynamical
condition, for trajectories starting inside Ω⋆

L this quantity can be bounded depending
on whether the position marginal of the trajectory has ever left B|q⋆

L
| by time t: If

the trajectory never left, then the acceleration can be bounded by ML, whereas if the
trajectory leaves, then it is guaranteed not to return by Lemma 3.1, and so since |q⋆L|
is outside of the interaction range of any point in BQ, ∇W (q−qt)=0.

More precisely, let us partition the space of all possible initial conditions in phase
space into three sets:

S={(p,q)∈RD | |qs|≤ |q⋆L| ∀s∈ [0,t]},

G={(p,q)∈RD | |q|< |q⋆L| and ∃t∈ (0,t) such that |qt|> |q⋆L|},

O={(p,q)∈RD | |q|≥ |q⋆L|}.

Since |qt|≥ |q⋆L|>Q+a for q∈G so that ∇W (q−qt)≡0 there, it is the case that we
have

Cr(µ
ε,n
t ,q)=

∫

S∪O

θr(pt)|∇W (q−qt)|Rt(pt,qt) dµ0(p,q)

≤Bµ0(Q
⋆
L)+B

∫

S

θr(pt) dµ0(p,q).

(4.1)

Here in the last inequality we have used that |∇W |≤B and |Rt|≤1.
Since all measures under consideration have mass bounded by one, it is immediate

that for all t∈ [0,T ],

|∇W ∗µε,n
t |<B, |W ∗µε,n

t |≤B.

Therefore, for (p,q)∈S we have that, by construction of Υ,
∣

∣

∣

∣

dps
dt

∣

∣

∣

∣

= |∇(Φ+W ∗µε,n
t )(qs)|≤ML, ∀s∈ [0,t],

from which it directly follows that

|pt|≤MLt+ |p0|.

On the other hand, for the trajectory to contribute to the last integral in (4.1) we
must have θr(pt)>0, so altogether we have

r−1≤|pt|≤MLt+ |p0|,

so that

|p0|≥ r−1−MLt= r
∗,

yielding the conclusion.

Remark 4.1. Let us fix t∈ [0,T ].
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(i) In reference to the above lemma, for all t∈ [0,T ] the entire bound now resides
with µ0, which is a particular (finite) measure. Thus we may choose L⋆ large
so that the first term µ0(Q

⋆
L) is small and then, by choosing r large, the second

term can be made small. Not only is this uniform in t, but we further note that
the estimates of Lemma 4.1 are uniform in the discretization n and also ε, as
the dynamical condition uniformly bounds the dynamics.

(ii) Let us set

F ε,n
t :=∇W ∗µε,n

t , F ε
t =∇W ∗µε

t ,

and suppose that µε,n
t ⇀µε

t . We record that the above Lemma in particular
implies that the hypotheses of Lemma 2.2 are satisfied and hence F ε,n

t →F ε
t

uniformly on compact sets. (Recall that we have already established this via
different means in the proof of Theorem 2.11.)

Next we will acquire the required control on the time evolution of the (Hamilto-
nian) velocity fields. Let us denote by

vε,nt (p,q)=
[

−∇(Φ+W ∗µε,n
[ t
hn

]hn
)(q),p

]

:= [−∇Φ(q)+F ε,n
tn (q),p]

(where by slight abuse of notation, tn= tn(t) is the nearest time discretization point)
the relevant velocity field for the time discretized measures µε,n

t .
Suppose that Mα(µ0)<∞ for some α>0. Formally, from the deficient equation

of continuity, we have

∂tF
ε,n
t (x̄)=

∫

RD

(

p ·∇2W (q̄−q)−ε|vε,nt (x)|∇W (q̄−q)
)

dµε,n
t (x)=:Aε,n

t,2 −εAε,n
t,1 ,

where the above ∇2 is notation for the matrix of second derivatives. This requires
justification since, strictly speaking, W is not compactly supported in phase space.
However, since ε>0, we have exponential moments for µε,n

t (see Proposition 2.4,
(iii); here, in hindsight, we may regard the vε,nt used in the construction of µε,n

t as
prescribed) and all relevant functions are C1 so item (iii) of Remark 2.5 can be applied.

Recalling once again that for n<∞ we may pullback to the initial measure, we
rewrite the above as

Aε,n
t,2 =

∫

RD

pt ·∇
2W (q̄−qt)R

ε,n
t (pt,qt) dµ0(p,q)

and

Aε,n
t,1 =

∫

RD

|vε,nt (pt,qt)|∇W (q̄−qt)R
ε,n
t (pt,qt) dµ0(p,q).

Let {q⋆L}
∞
L=1 be the sequence of no-return points as in Hypothesis 3.2. We set q⋆0 =0.

Given q∈Rd, there exists a unique L such that |q⋆L|≤ |q|< |q⋆L+1|. Let us define

R(q)=B+ max
|q′|≤|q⋆

L+1
|
|∇Φ(q′)| ∀ |q⋆L|≤ |q|< |q⋆L+1|.

For the potentials that we have in mind, under the assumption of an exponential
moment for µ0, we certainly have that

∫

R2d

R(q) dµ0<∞. (4.2)



L. CHAYES, W. GANGBO, AND H.K. LEI 19

Lemma 4.2. Let Q> |q⋆1 | and let DQ⊂RD be the ball of radius Q, centered at the
origin. Let µε,n

t , vε,nt , and µ0 be as described and suppose that equation (4.2) holds.
(In particular, for the polynomially bounded potentials as discussed in Definition 2.10,
and for µ0 with an exponential moment, this is the case.) Then there exists a constant
CQ independent of ε,n such that

sup
x̄,t

{|∇F ε,n
t (x̄)| | x̄∈DQ,t∈ [0,T ]}≤CQ (4.3)

and

sup
x̄,t

{|∂tF
ε,n
t (x̄)| | x̄∈DQ,t∈ [0,T ]}≤CQ. (4.4)

Proof. Since ∇F ε,n
t =∇2W ∗µε,n

t , the first inequality of the lemma follows as
∇2W is bounded and µε,n

t is a finite measure. It remains to show the second statement,
which requires a refinement of the proof of Lemma 4.1.

Choose L>0 such that |q⋆L|>Q+a and let S, G, and O be the sets defined in
Subsection 4.1 and corresponding to q⋆L. Each one of the above sets depends on ε,n as
(pt,qt) is the flow associated to vε,nt . But to simplify the notation, we will not display
these dependences. Let us provide preliminary estimates for the cases (p,q)∈S,G,O:

If (p,q)∈G then |qt|> |q⋆L|>Q+a and so,

|∇W (q̄−qt)||vt(pt,qt)|=0. (4.5)

If (p,q)∈S then

|ṗs|≤B+ max
|q′|≤|q∗

L
|
|∇Φ(q′)|=R(q⋆L−1)

for all s∈ [0,t] and so,

|vt(pt,qt)|
2= |pt|

2+ |ṗt|
2≤

(

|p|+TR(q⋆L−1)
)2

+R(q⋆L−1)
2.

Hence,

|∇W (q̄−qt)||vt(pt,qt)|≤ ||∇W ||

√

(

|p|+TR(q⋆L−1)
)2

+R(q⋆L−1)
2. (4.6)

Finally, consider (p,q)∈O and let L1 be such that |q∗L1
|≤ |q|< |q∗L1+1|. Note

that L1≥L. Suppose that there exists s∈ [0,t) such that |qs|> |q⋆L1+1|. Let t1 be the
smallest such s. We have |qs|> |q⋆L1+1| for all s∈ (t1,t) and so, ∇W (q̄−qt)=0 for
s∈ (t1,t). If |qs|≤ |q⋆L1+1| for all s∈ [0,t] then |ṗs|≤R(q) for all s∈ [0,t] and so,

|pt|≤ |p|+ tR(q).

We therefore have

|vt(pt,qt)|
2= |pt|

2+ |ṗt|
2≤ (|p|+TR(q))2+R(q)2,

and conclude that

|∇W (q̄−qt)||vt(pt,qt)|≤ ||∇W ||
√

(|p|+TR(q))2+R(q)2. (4.7)
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Since by equation (4.5) we need not consider (p,q)∈G, we have

At,1=

∫

S∪O

∇W (q̄−qt)|vt(pt,qt)|Rt(pt,qt) dµ0(p,q).

We can now use equations (4.2), (4.6), and (4.7) to conclude that

sup
t,|x̄|≤Q

|At,1(x̄)|=:C1,Q<∞. (4.8)

Similar arguments yield

sup
t,|x̄|≤Q

|At,2(x̄)|=:C2,Q<∞. (4.9)

Finally it is noted that these bounds are independent of ε,n since all estimates have
been performed with the “reference” measure µ0, regardless of ε,n; in particular,
while the sets G,S,O themselves may depend on ε,n, once the position/momentum
bounds have been obtained — independently of ε,n — the measures of these sets are
all estimated by the full measure. This concludes the proof of the theorem.

The required convergence of velocity fields as ε tends to zero now follows:

Corollary 4.2. Let K⊂RD be a compact set and suppose that µε,n
t ⇀µt subse-

quentially for some µt (by this we mean that along some sequence (εk,nk)→ (0,∞)
we have that µεk,nk

t ⇀µt). Then vε,nt converges uniformly to vt := [−∇(Φ+Ft)(q),p]
on K× [0,T ] (where Ft=∇W ∗µt) and consequently,

vε,nt µε,n
t ⇀vtµt

in the sense of distribution.

Proof. Let first recall that tn= tn(t) is the nearest time discretization point to t.
It is sufficient to show that F ε,n

tn converges to Ft uniformly (from this the distributional
convergence immediately follows). Let us first observe that Ftn is piecewise constant
and (only) agrees with Ft at time discretization points.

Notwithstanding, we begin by showing that F ε,n
t converges to Ft uniformly. To

this end, we have by Lemma 4.2 that the (phase) spatial and time derivatives are
bounded and therefore the family (F ε,n

t ) is pre-compact on C(K× [0,T ]) by the
Arzela-Ascoli theorem (and all functions in question are uniformly bounded), so there
exists a subsequential limit F̃t. On the other hand, inputing the tightness estimate
from Lemma 4.1 (in particular see Remark 4.1, (i)) into Lemma 2.2, we conclude that
F̃t=Ft, so in particular we have convergence along the original (εk,nk) sequence.

Finally, let us take into account the discretization: Since by Lemma 4.2

|F ε,n
tn −Ft|≤ |F ε,n

tn −F ε,n
t |+ |F ε,n

t −Ft|≤CQ|tn− t|+ |F ε,n
t −Ft|

(with Q>0 such that K⊂DQ), and |tn− t|→0, as n→∞, the result follows.

Now we can repeat the logic of the proof of Theorem 2.11 to obtain existence of
solutions to the (limiting) Hamiltonian ODE.

Theorem 4.3 (Existence of Solutions to Hamiltonian ODE). For fixed 0<T <∞
and α0>0 let µ0∈Mα0

denote some initial Borel measure on RD of finite total mass
and let H denote the Hamiltonian in Definition 2.10. Assume for simplicity that the
total mass of µ0 is 1. Then there exists a distributional limit of (µε,n

t )t∈[0,T ] along
some subsequence (εk,nk), denoted (µt)t∈[0,T ], starting at µ0 such that
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(i) t→µt∈M is distributionally continuous and M0(µt)≤1 for t∈ [0,T ].

(ii) (µt)t∈[0,T ] satisfies the Hamiltonian ODE

∂tµt+∇·(J∇WH (µt)µt)=0. (4.10)

Proof. For ε>0 we let (µε,n
t )t∈[0,T ] be the time discretized solutions from the

proof of Theorem 2.11 with initial data µ0. It follows from the reasoning in the proof
of Proposition 2.8 that we have a distributional limiting curve (µt)t∈[0,T ]⊂M which
is distributionally continuous; here we have taken µεℓ,nℓ

tk
⇀µtk for a dense set of times

in [0,T ] and the rest of the argument is identical.
That M0(µt)≤1 follows, after a small argument, from distributional convergence

(sinceM0(µ
ε,n
t )≤1 for all ε,n, by the same reasoning as used in the proof of Theorem

2.11). Finally, Corollary 4.2 gives the necessary convergence of the relevant velocity
fields to yield the limiting dynamics (again we refer the reader to the proof of Theorem
2.11).

4.2. Closeness of trajectories and representation formulae. In the
ensuing subsection we will need stronger properties of µε

t and associated trajectories.
The key result in this subsection is a pullback formula for the measures µε

t (Lemma
4.4). As a consequence we will immediately be able to extract a limiting Hamiltonian
ODE statement which does not explicitly involve time discretization (Theorem 4.4).
Let us first review the setting of Proposition 2.2:

Let vnt :RD× [0,T ]→RD be a sequence of Borel maps such that for each compact
set K⊂RD, the fnK are in L∞(0,T ), where

fnK(t)= sup
x∈K

|vnt |+Lip(vnt ,K).

Also let vt :R
D× [0,T ]→RD be another Borel map with

fK(t)= sup
x∈K

|vt|+ Lip(vt,K).

As in Proposition 2.2 we let [0,τn(x)) be the maximal interval on which the ODE

Ẋn
t =vnt (X

n
t ), Xn

0 =x

admits a unique solution.

We begin with an abstract closeness of trajectories result.

Lemma 4.3. Let (vns :RD× [0,t]→RD |n∈N) be a sequence of velocity fields as de-
scribed. Let t>0 and suppose that vns converges uniformly to some limiting velocity
field vs on K× [0,t] for any compact set K⊂RD. Suppose further that

sup
n∈N

‖fnK(t)‖L∞(0,t) :=fK <∞.

Let L>0 and define

Bt(L)={x∈RD |X(·,x)[0,t]⊂DL},

where DL⊂RD denotes the (phase space) ball of radius L centered around the origin.
Then given any δ>0, there exists n0(t,L,δ) such that if n≥n0,

sup
x∈Bt(L)

sup
s∈[0,t]

|Xn
s (x)−Xs(x)|≤ δ.
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Proof. Assume on the contrary that the conclusions do not hold. If so, there
exists δ>0, an increasing sequence (nk)⊂N, and sequences (xk)⊂Bt(L) and (sk)⊂
[0,t] such that

|Xnk
sk

(xk)−Xsk(xk)|>4δ. (4.11)

For each k set

ϑk=sup
τ≥0

{τ | |Xnk
s (xk)−Xs(xk)|≤2δ for all s∈ [0,τ ]} .

Next choose σ>0 such that

σexp
(

fDL+δ
t
)

<fDL+δ
δ. (4.12)

As (vns ) converges uniformly to vs on DL× [0,t] we may choose a positive integer k0
so that

sup
DL×[0,t]

|vnk
s −vs|<σ

for all k≥k0.
We claim that ϑk≥ t for k≥k0. Assume towards a contradiction that ϑk<t. For

almost every s∈ (0,ϑk) we have

d

ds
|Xnk

s (xk)−Xs(xk)|≤ |vnk
s (Xnk

s (xk))−vs(Xs(xk))|

≤ |vnk
s (Xnk

s (xk))−v
nk
s (Xs(xk))|+ |vnk

s (Xs(xk))−vs(Xs(xk))|

≤fDL+δ
|Xnk

s (xk)−Xs(xk)|+σ.

A Gronwall type integral inequality and equation (4.12) yield

|Xnk
s (xk)−Xs(xk)|≤

σ

fDL+δ

·exp(fDL+δ
s)<δ.

This proves that Xnk(xk, ·)[0,ϑ
k) is contained in DL+δ. Hence the solution X

nk(xk, ·)
of the ODE can be extended to an interval of positive length [ϑk,ϑk+ak] such that
by continuity

|Xnk
s (xk)−Xs(xk)|≤2δ

on [0,ϑk+ak]. This contradicts the maximality of ϑk and proves the claim. We
eventually use the fact that ϑk≥ t for k≥k0 to contradict equation (4.11).

The reasoning behind the above set of ideas now allows us to deduce a represen-
tation formula for µε

t from the representation formula for µε,n
t , i.e., the measure at

time t is expressible as the push-forward of µ0, augmented with the depreciation in
mass provided by Rε

t . Let us first recall that

Sεt ={x∈RD : τε(x)>t},

where τε(x) is such that the ODE Ẋε
t (x)=v

ε
t (X

ε
t ), X

ε
0 =Id has a unique solution on

[0,τ(x)) (see Proposition 2.2).
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Lemma 4.4. Let ε>0, t>0 be fixed and let (µε
s)s∈[0,t] be as constructed in Theorem

2.11. Then we have the following representation formula: If ϕ∈C∞
c (RD),

∫

RD

ϕ dµε
t =

∫

Sεt

(ϕ ·Rε
t )◦X

ε
t dµ0,

where we recall that Sεt is an open set, by Proposition 2.2, (ii).

Proof. The result essentially follows from Lemma 4.3 and the fact that since
ε>0, there is no “discontinuity at infinity”. We first note that by distributional
convergence and by the fact that for finite n we do have the representation formula,
we have

∫

RD

(ϕ ·Rε,n
t )◦Xε,n

t dµ0=

∫

RD

ϕ dµε,n
t −→

∫

RD

ϕ dµε
t ,

and therefore it is sufficient to establish that
∫

RD

(ϕ ·Rε,n
t )◦Xε,n

t dµ0−→

∫

Sεt

(ϕ ·Rε
t )◦X

ε
t dµ0. (4.13)

First we claim that vε,ns uniformly converges to vεs onK× [0,t] for any compact set
K⊂RD. Indeed, it is again sufficient to address the interaction term and the argument
is essentially the same as the proof of Corollary 4.2; we remind the reader that the
necessary estimates (namely equations (4.3) and (4.4)) to ensure pre-compactness
from Lemma 4.2 are uniform in n. We therefore may assume the conclusion of Lemma
4.3 for the trajectories Xε,n

t and Xε
t .

To establish (4.13) we will divide into two cases:

1. Case: x∈Sεt (or t<τε(x)). In this case, for L sufficiently large, x∈Bε
t (L) and

therefore by Lemma 4.3 we have the pointwise limit

lim
n→∞

(Rε,n
t ·ϕ)◦Xε,n

t (x)=χ
Sεt
(Rt ·ϕ)◦X

ε
t (x).

2. Case: x /∈Sεt (or t≥ τε(x)). Here we claim that pointwise the corresponding
portion of the integrand in the left hand side of (4.13) converges to 0: Choose r>0
arbitrary. Then choose A large enough so that exp(−εA)<r. Next, choose t̄< τε(x)
such that |Xε

t̄ (x)−x|>2A. Since t̄< τε(x), by Lemma 4.3 there exists n0 such that

|Xε,n
t̄ (x)−Xε

t̄ (x)|<A

for all n≥n0. Hence,

|Xε,n
t̄ (x)−x|>A

and so,

Rε,n
t (Xε,n

t (x))≤ exp
(

−ε

∫ t̄

0

|Ẋε,n
s | ds

)

≤ exp
(

−ε
∣

∣Xε,n
t̄ (x)−x

∣

∣ ds
)

≤ exp(−εA)<r

for these n. This proves that

limsup
n→∞

Rε,n
t ◦Xε,n

t (x)≤ r.
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Taking r to zero, we may conclude the case x /∈Sεt .
Integrating and invoking the dominated convergence theorem now yields equation

(4.13).

We can now extract the limiting measures by taking ε to zero (along a sequence)
directly:

Theorem 4.4. For fixed 0<T <∞ and α0>0 let µ0∈Mα0
denote some initial Borel

measure on RD of finite total mass and let H denote the Hamiltonian in Definition
2.10. Assume for simplicity that the total mass of µ0 is 1. Let (µε

t )t∈[0,T ] be as con-
structed in Theorem 2.11. Then there exists a distributional limit of (µε

t )t∈[0,T ] along
some subsequence (εk), denoted (µt)t∈[0,T ], starting at µ0 such that

(i) t→µt∈M is distributionally continuous and M0(µt)≤1 for t∈ [0,T ].

(ii) (µt)t∈[0,T ] satisfies the Hamiltonian ODE

∂tµt+∇·(J∇WH (µt)µt)=0.

Proof. The representation formula from Lemma 4.4 allows us to adapt the
proof of Corollary 4.2 for the measures (µε

t )t∈[0,T ], yielding the requisite convergence
of velocity fields. We remind the reader that once the representation formula has
been acquired, the key ingredients for the proof of Corollary 4.2 are found in Lemma
4.2. The conclusion of this Lemma provided derivative bounds on the velocity fields
— equations (4.8) and (4.9) — and these bounds are uniform in (n and) ε. With
these preparatory results in hand, the proof of Theorem 4.3 can be repeated mutatis
mutantis.

We conclude this subsection with a result which turns out to be of no explicit
use in the present work but may be of some independent interest: As an immediate
corollary to the preceding ideas we can also deduce a closeness of trajectories result
as ε tends to zero.

Corollary 4.5. Let L>0, t>0 and consider µε
t and trajectories given by the dy-

namics in Theorem 2.11. For ε≥0 we define

Bε
t (L)={x∈RD |Xε(·,x)[0,t]⊂DL},

where DL denotes the phase space ball of radius L centered around the origin. Suppose
µεk
t ⇀µt. Then given any α>0, there exists ε0(t,L) such that if ε∈ (εk) and ε<ε0,

then

sup
x∈B0

t (L)

sup
s∈[0,t]

|Xε
s (x)−Xs(x)|<δ.

In particular,

Bε
t (L)⊂B0

t (L+α).

Proof. It is sufficient to verify the hypothesis of Lemma 4.3, which is immediate
from Lemma 4.2 (here we reiterate that the relevant estimates in equations (4.3)
and (4.4) are uniform in ε; c.f., the proof of Theorem 4.4). We note that a further
subsequence in ε is not required as the limit is uniquely specified by Lemma 2.2 (as
was the case in the proof of Corollary 4.2).
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4.3. Convergence of mass. Here we are in the setting of Theorem 4.4, and
we wish to establish statements concerning convergence of (total) mass. In particular,
for εk→0 and µεk

t ⇀µt we will show that a limit exists for the finite ε-masses and in
particular it agrees a.e. with the mass of the limiting measure.

Since µε
t has been constructed in Theorem 2.11 as the limit for the narrow con-

vergence of a sequence (µε,n
t ) such that t→µε,n

t (RD) is monotone nonincreasing,
t→µε

t (R
D) is monotone nonincreasing (which also follows from the fact that µε

t sat-
isfies equation (2.2)). Unfortunately, in Theorem 4.4, µt is obtained as a limit of a
subsequence of (µε

t ) only for the vague topology and so, the above simple argument
does not apply. What is obvious is that as µε

0 is independent of ε, µt(R
D)≤µ0(R

D).
In light of the previous comments, we plan to first demonstrate that, at least

under the dynamical condition, in the limiting measure the mass can only decrease in
time. (That is, there cannot be particles returning from infinity.)

First, for expository ease, we will introduce compact regions of no return in phase
space.

Proposition 4.6. Let t> t̄≥0 and consider a trajectory Xt=(pt,qt) satisfying the
dynamics as in Theorem 2.11 such that Xt̄ is in some BL′ ×BL⋆ for some L′>0, and
where L⋆ is as in Hypothesis 3.2 and remains in Rd×BL⋆ =ΩL⋆ up to time t. Then
there is a L⋆-dependent constant a⋆ such that uniformly in ε, for all τ ∈ [t̄,t],

|pτ |≤a⋆(t− t̄)+ |pt̄|.

Proof. Let us write F̃ ε
t (qt)=∇Φ(qt)+∇W ∗µε

t (qt) and observe that since |∇W |
and |∇Φ| are both bounded in ΩL⋆ , there is some L⋆-dependent constant a⋆ such that
|Ft(qt)|≤a⋆. Taking into account the fact that, for all ε, the total mass of µε

t can,
without loss of generality, be assumed to be less than or equal to 1, we may explicitly
choose

a⋆= sup
q∈BL⋆

|∇Φ|+ |∇W |.

We have by the canonical equations that (uniformly in ε)

d

ds
|ps|≤ |ṗs|= |F̃s(qs)|≤a⋆,

where we have used that |qs|≤ |q⋆|=L
⋆ for all 0≤s≤ t. The result follows by integra-

tion.

It is now clear that we may define phase space regions of no return:

Definition 4.7. Let T >0, let (µε
t )t∈[0,T ] be given as in Theorem 2.11, and let

L⋆→∞ be the sequence as in Hypothesis 3.2. Let η>0 be an arbitrary (small) number.
Then we define

Ω̄L⋆(t)=BL⋆+(a⋆+η)t×BL⋆ ,

where a⋆ is as in Proposition 4.6.

We then have

Lemma 4.5. Let t̄∈ [0,T ] be fixed. Under Hypothesis 3.2, for any trajectory (pt̄,qt̄)∈
Ω̄L⋆(t̄) satisfying the dynamics as given in Theorem 2.11, it is the case that either

(pt,qt)∈ Ω̄L⋆(t), for all t≥ t̄,
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or

|qt|→∞,

either at some finite time or as t→∞. In particular, there is some time t∗ after which
the radial speed is uniformly bounded away from zero: i.e., there exists some α and
some t∗>t̄ such that

d|qt|

dt
≥α>0, for all t≥ t∗.

Moreover, (pt,qt) exits Ω̄L⋆(t) on the |q|= |q⋆| boundary.

Proof. This follows immediately from Lemma 3.1 and Proposition 4.6. Indeed if
the space marginal never exceeds L⋆, then by Proposition 4.6 the momentum marginal
remains within the stated bounds: Explicitly, as long as qs′ ∈BL⋆ for all s′∈ [t̄,s], the
corresponding momentum satisfies

|ps|≤L
⋆+ t̄(a⋆+η)+(s− t̄)a⋆<L

⋆+s(a⋆+η),

and hence (ps,qs)∈ Ω̄L⋆(s). It follows that the only available exit is via the position
space marginal and hence there is no possibility of return, by Lemma 2.1.

Proposition 4.8. Let T >0 and let (µt)t∈[0,T ] be as obtained in Theorem 4.4 and
let us denote by Mt the total mass at time t: Mt=µt(R

D). Then Mt is monotone
nonincreasing in t.

Proof. Suppose 0≤ t1<t2≤T . Let δ>0 and let us choose L⋆>0 sufficiently
large, where L⋆ is as described before, so that

µ0((DL⋆)c)<δ

(where DL⋆ denotes the phase space ball of radius L⋆) and

µt2

(

(Ω̄L⋆(t2))c
)

<δ.

Now we claim that for all ε,

µε
t1(Ω̄L⋆(t1))≥µ

ε
t2(Ω̄L⋆(t2))−δ. (4.14)

In broad strokes, the argument proceeds as follows: By the representation formula
in Lemma 4.4, we can decompose (at time t2) the mass in Ω̄L⋆(t2) into that which
originated, at t=0, from Ω̄L⋆(0)(=DL⋆) and that which did not. The latter clearly
has µ0 mass bounded by δ, while the former, path-wise, must be in the set Ω̄L⋆(t1)
at time t1, by the no-return condition stated in Lemma 4.5.

More explicitly, we claim that

DL⋆ ∩(Xε
t2)

−1(Ω̄L⋆(t2))⊂DL⋆ ∩(Xε
t1)

−1(Ω̄L⋆(t1)). (4.15)

Indeed, suppose (p0,q0)∈DL⋆ and (pt2 ,qt2)∈ Ω̄L⋆(t2). If |qt|>L
⋆ occurs for some t∈

(0,t2), the no return condition would yield that |qt2 |>L
⋆, which contradicts the fact

that (pt2 ,qt2)∈ Ω̄L⋆(t2). Consequently, |qt|≤L
⋆ for all t∈ [0,t2] and so, |dpt/dt|≤a⋆

for t∈ [0,t1], which yields (p0,q0)∈ (Xε
t1)

−1(Ω̄L⋆(t1)).
The claimed inequality equation (4.14) now basically follows from the above set

containment along with the fact that Rε
t is decreasing in t along each trajectory. More
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precisely, let ϕk ∈C0 with values in [0,1] and support in Ω̄L⋆(t2) be functions which
satisfy

µε
t2((Ω̄L⋆(t2))

◦)= lim
k→∞

∫

Ω̄L⋆ (t2)

ϕk dµ
ε
t2 .

(Such functions are readily constructed.) Then

∫

Ω̄L⋆ (t2)

ϕk dµ
ε
t2 =

∫

(Xε
t2

)−1(Ω̄L⋆ (t2))

(ϕk · Rε
t2) ◦ Xε

t2 dµ0

≤

∫

DL⋆∩(Xε
t2

)−1(Ω̄L⋆ (t2))

(ϕk · Rε
t2) ◦ Xε

t2 dµ0+δ

by our choice of DL⋆ . Invoking the set containment in equation (4.15), the above
inequality can be continued as

∫

Ω̄L⋆ (t2)

ϕk dµ
ε
t2 ≤

∫

DL⋆∩(Xε
t1

)−1(Ω̄L⋆ (t1))

(ϕk · Rε
t2) ◦ Xε

t2 dµ0+δ.

Since Rε
t2 ◦X

ε
t2 ≤R

ε
t1 ◦X

ε
t1 , the above becomes

∫

Ω̄L⋆ (t2)

ϕk dµ
ε
t2 ≤

∫

DL⋆∩(Xε
t1

)−1(Ω̄L⋆ (t1))

(ϕk ◦X
ε
t2) · (Rε

t1 ◦X
ε
t1) dµ0+δ.

Next we observe that pushing forward to time t1, the second term in the product
in the integrand together with dµ0 becomes dµε

t1 , the set of integration becomes
Ω̄L⋆(t1)∩X

ε
t1(DL⋆), and the integrand becomes ϕk ◦Xt2−t1 :

∫

Ω̄L⋆ (t2)

ϕk dµ
ε
t2 ≤

∫

Ω̄L⋆ (t1)∩Xε
t1

(DL⋆ )

(ϕk ◦Xt2−t1) dµ
ε
t1 +δ≤µ

ε
t1(Ω̄L⋆(t1))+δ,

where the last inequality follows from the fact that ϕk≤1. Taking k to infinity, we
conclude

µε
t2((Ω̄L⋆(t2))

◦)≤µε
t1(Ω̄L⋆(t1))+δ.

Since the above holds for all ε, we have by equation (2.12) and the choice of L⋆

that

Mt1 ≥µt1(Ω̄L⋆(t1))≥ limsup
ε

µε
t1(Ω̄L⋆(t1))≥ limsup

ε
µε
t2((Ω̄L⋆(t2))

◦)−δ

≥ liminf
ε

µε
t2((Ω̄L⋆(t2))

◦)−δ≥µt2((Ω̄L⋆(t2))
◦)−δ≥Mt2 −2δ,

and the desired monotonicity follows by taking δ to zero.

Now we introduce a more quantitative version of the dynamical condition which
can be understood as a requirement that the external potential diverges sufficiently
fast near infinity:

Hypothesis 4.9. As in Section 3, we consider dynamics given by the Hamiltonian

H(p,q,t)=
1

2
|p|2+Φ(q)+Ψ(t,q), (4.16)
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where |∇Ψ(t,q)|<B, ∀t≥0, q∈Rd (so that in particular we may take, e.g., Ψ(t,q)=
(W ∗µε

t )(qt)). Recall that Hypothesis 3.2 concerns the existence of spherically sym-
metric bounding potentials Υ such that Υ(q)<Υ(q⋆L) for all |q|> |q⋆L|.

Here we are concerned with pairs of position space rings L and ℓ(L) such that
ℓ(L)<L (not necessarily adjacent). Let t>0 be essentially arbitrary and let us con-
sider trajectories of particles operating under Υ-dynamics which exit BL at time t,
having at some earlier time exited Bℓ

ẼL(t) :={qs | qt∈∂BL, qt′ ∈Bℓ(L) for some t′<t}.

Obviously, for some t’s, the sets ẼL(t) are non-empty. For ẼL(t) 6=∅ we may define

ϑ̃L(t)=sup{τ | q(s)∈ ẼL(t), |qt+τ |<∞}.

And, if ẼL(t)=∅ — e.g., if Υ is very repulsive and t is too large — then we may, for
convenience, define ϑ̃L(t)=0. Finally we define

τ̃L=sup
t
ϑ̃L(t).

We take as a hypothesis the existence of a sequence (L,ℓ(L)) with ℓ(L)→∞ such that

lim
L→∞

τ̃L=0.

Remark 4.10. Following along the lines of the discussions in Remark 3.3, it is readily
derived that if the bounding potential Υ satisfies power law upper and lower bounds
of the form

D2|q|
d2 ≤|Υ|≤D1|q|

d1

with d1, d2 larger than 2 then, if Hypothesis 3.2 is satisfied, then the stronger Hy-
pothesis 4.9 also holds.

Proposition 4.11. Let t>0 be arbitrary and consider Hamiltonian dynamics ac-
cording to equation (4.16). Suppose Hypothesis 4.9 holds. Let us define the phase
space “escape times” τL by analogy to the above with the BL’s etc., replaced by the
appropriate Ω̄L’s providing us with (untilded) versions of ẼL(t) and ϑ̃L(t).

Then we have

limτL→0 as L→∞.

Proof. This is immediate from Lemma 4.5 which ensures that when particles
exit Ω̄L(t), they do so via the position space barrier and the fact (as can be seen from
e.g., equation (3.5)) that the actual radial momentum is bounded by that provided
by the Υ-dynamics.

Remark 4.12. We remark that for finite ε, the quantity τL is a universal bound
for the non-existence of trajectories that are in Ω̄ℓ(t

′) at time t′ and exiting Ω̄L(t) at
time t. Indeed, all dynamics are bounded by the dynamics driven by the potential Υ
which is, by fiat, uniform in ε.

Theorem 4.13. Suppose Hypothesis 4.9 holds and suppose that µεk
t ⇀µt as in The-

orem 4.4. Then it is the case that for almost every t∈ [0,T ],

Mt= lim
εk→0

M
εk
t .
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More specifically the above convergence holds at all points of continuity of Mt.

Proof. Let us denote

M−
t = lim

t′րt
Mt′ , M+

t = lim
t′ցt

Mt′

and

M•
t =limsup

εk→0
M

εk
t , M◦

t =liminf
εk→0

M
εk
t .

It is clear that M◦
t ≤M•

t and the monotonicity result of Mt established in Proposition
4.8 gives that M+

t ≤M−
t . We will establish that in fact

M+
t ≤M◦

t ≤M•
t ≤M−

t ,

from which the result follows. In particular (although (sub)subsequential limits are
already guaranteed by the monotonicity of the Mεk

t ) this establishes the a.e. existence
of the limit for Mεk

t at points of continuity of Mt. We will separate the proof into two
claims.

Claim. M+
t ≤M◦

t :
Let δ>0 be arbitrary, and let L>0 be such that µt(Dc

L)<δ, where DL denotes
a phase space ball of radius L. Then, from weak∗ convergence (see equation (2.12)),

Mt≤µt(D
◦
L)+δ≤ liminf

εk→0
µεk
t (DL)+δ≤M

◦
t +δ

and the claim follows. (Note that this shows that a mass convergence result is im-
mediate in the absence of the interaction W , since then all trajectories Xε

t ’s are the
same and the masses Mε

t are monotonically increasing as ε→0.)

Claim. M•
t ≤M−

t :
Let δ>0 and let ℓ := ℓ(L) be from the hypothesized sequence in Hypothesis 4.9

such that

µ0

(

(Ω̄ℓ(0))c
)

<δ.

Next given any ε>0 we let Lε>0 be such that

µε
t

(

(Ω̄Lε
(t))c

)

<δ.

Let us now consider the time t−τL with τL as in Proposition 4.11. Then we claim
that

µε
t (Ω̄Lε

(t))≤µε
t−τL(Ω̄L(t−τL))+δ.

On the level of heuristics (and neglecting for the time being the (beneficial) effect of
reduction in mass afforded by Rε

t ) the above display can be understood as follows:
First we observe that by our choice of ℓ we may restrict attention to mass that
initiated in Dℓ. Now all of this mass which is in Ω̄L(t) at time t is certainly in Ω̄L(t

′)
for t′<t since L is a ring of no return (this is the same reasoning as used in the proof
of Proposition 4.8), and in particular this applies to t′= t−τL. As for the mass in
Ω̄Lε

(t)\ Ω̄L(t), we note that if the representative particles had already left Ω̄L(t−τL)



30 HAMILTONIAN ODEs ON A SPACE OF DEFICIENT MEASURES

before time t−τL, then by time t they would be (well) beyond Ω̄Lε
(t), by the definition

of τL; here we are specifically employing the hypothesized properties of (ℓ,L).
The actual proof proceeds as follows: Let η>0 and let ϕη be a continuous function

such ϕη =1 on Ω̄Lε
(t) and ϕη =0 on

(

Ω̄Lε+η(t)
)c
. We have then, by the representation

formula in Lemma 4.4,

µε
t (Ω̄Lε

(t))≤

∫

RD

ϕη dµ
ε
t =

∫

RD

(ϕη · Rε
t ) ◦ Xε

t dµ0

≤

∫

(Xε
t )

−1(Ω̄Lε+η(t))∩Dℓ

(ϕη · Rε
t ) ◦ Xε

t dµ0 + δ.

Now, we claim, we have the set containment

Dℓ∩(Xε
t )

−1(Ω̄Lε+η(t))⊂Dℓ∩(Xε
t−τL)

−1(Ω̄L(t−τL)).

Indeed, following the reasoning in equation (4.15) we certainly have that the left
hand side is contained in Dℓ∩(Xε

t−τL)
−1(Ω̄Lε+η(t−τL)), so it remains to establish

the stronger statement that we can shrink down to spatial scale L. Suppose then that
(p0,q0)∈Dℓ and

(pt−τL ,qt−τL)∈ Ω̄Lε+η(t−τL)\ Ω̄L(t−τL).

Then the trajectory was, initially, in Ω̄ℓ(0) and at some time s′ which is earlier than
t−τL had exited Ω̄L(s

′). It follows by the definition of τL that at some point before
time t, the trajectory had ceased to exist (gone to infinity) and therefore it is certainly
not in Ω̄Lε+η(t).

Continuing and using the representation formula from Lemma 4.4 again, we now
have

µε
t (Ω̄Lε

(t))≤

∫

(Xε
t−τL

)−1(Ω̄L(t−τL))∩Dℓ

(ϕη · Rε
t ) ◦ Xε

t dµ0+δ

≤

∫

Ω̄L(t−τL)

ϕη dµ
ε
t−τL +δ

≤µε
t−τL(Ω̄L(t−τL))+δ,

as claimed.
Using the inequality established above and the choice of Lεk we have

M
εk
t ≤µεk

t (Ω̄Lεk
(t))+δ≤µεk

t−τL(Ω̄L(t−τL))+2δ.

Taking the limsup and recalling again equation (2.12), we arrive at

M•
t ≤µt−τL(Ω̄L(t−τL))+2δ≤Mt−τL +2δ.

The result follows by taking L to infinity.
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