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Abstract. In this paper, we propose explicit two-stage Runge-Kutta schemes of strong order
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1. Introduction

This paper is concerned with strong approximation of stochastic differential equa-
tions (SDE) driven by Levy jump-diffusion processes.

There has recently been rising attention paid to stochastic jump-diffusion models,
or more general Levy processes, in physical as well as social sciences. For instance, in
financial modeling the jump component can be used to model shocks and other event-
driven uncertainties ([19]), which has driven many recent research activities (see, for
example, [12]). In physics and chemistry, Levy processes have been exploited to
model continuous random walks beyond Gaussian approximation (diffusion scaling)
([4, 28]). One successful application, among others, is the control of translational
motion of atoms by laser cooling in the deep quantum regime ([3, 5]).

In general the numerical simulation of the Levy processes is highly non-trivial
except for some particular cases (for example, stable processes, etc.). One popular
strategy is perhaps to use diffusion to approximate “small jumps”, which amounts to
approximating Levy processes by jump-diffusion ([2, 26]). Then Levy-driven process
is approximated by a jump-diffusion stochastic differential equation.

There has been a considerable amount of work, and much progress has been
made, in the numerical approximation of SDE of diffusion type, which can be found
in [15, 20, 21], for example. Both strong and weak discrete time approximations
of various types and orders have been constructed. The development of numerical
methods for SDE with jumps is still limited, partly due to the complicated structure
of multiple stochastic integrals when both Poisson and Wiener measures are present.
The stochastic Taylor expansion for semi-martingales was constructed in [22, 23],
and was used to derive strong Taylor schemes ([13, 14, 17, 18, 6, 7]). The recent
book by Platen and his colleague summarizes the efforts along this line [24]. In the
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1318 JUMP STOCHASTIC DIFFERENTIAL EQUATIONS

construction of strong Taylor schemes of higher order, derivatives of coefficients are
required. It is desirable to have derivative-free higher order schemes.

Runge-Kutta methods are a class of derivative free discretization schemes. Both
strong and weak stochastic Runge-Kutta methods (SRK) for diffusion SDE have been
considered in detail in [8, 9, 16, 25, 27], and the order condition has been obtained
by colored trees analysis. In this paper, we derive a two-stage explicit SRK of strong
order 1 for jump-diffusion SDE.

The rest of this paper is organized as follows: Section 2 begins with some pre-
liminary notes, and in Section 3, we will compose a class of strong order 1 SRK
methods for (2.1). In Section 4, we illustrate the convergence of our SRK schemes
with three examples and compare their numerical behavior with two existing strong
order 1 schemes from [13] and [6], respectively. Section 5 concludes the paper and
suggests topics for future work.

2. Preliminaries

In this section, we review the notion of jump-diffusion processes and stochastic
Runge-Kutta methods.

We work with a finite-time horizon [0,T ] for some T >0. Let Q be a subset of
R\{0}, and let W (t) be a standard Wiener process on R. N(dt,dz) is a Poisson
random measure on [0,∞)×Q with mean measure ν(dz). Furthermore we assume
ν is state independent and finite. Let f,g :R→R, and h :R×Q→R. Consider the
scalar Stratonovich SDE (SSDE) given by

{

dx(t)=f(x(t−))dt+g(x(t−))◦dW (t)+
∫

Q
h(x(t−),z)N(dt,dz),

x(0)=x0,
(2.1)

or, in its integral form,

x(t)=x0+

∫ t

0

f(x(s−))ds+

∫ t

0

g(x(s−))◦dW (s)

+

∫ t

0

∫

Q

h(x(s−),z)N(ds,dz). (2.2)

Throughout the paper, we assume that W and N are independent.
By the properties of Poisson random measures, the last term in equation (2.2)

can be constructed as
∫ t

0

∫

Q

h(x(t),z)N(dt,dz)=
∑

τn≤t, zn∈Q

h(x(τn−),zn),

where {(τn,zn),n=1,2, · · ·} is the Poisson point process generated by N (see, for
example, [1]). Next, we define the the strong order of convergence of a discrete
approximation.

Definition 2.1. Let xN be the numerical approximation to x(tN ) after N steps
with constant stepsize h. Then yN is said to converge strongly to y(tN ) with order p

if ∃C>0(independent of h) and δ>0 such that

E(|xN −x(tN )|2)≤Ch2p, h∈ (0,δ).

Now let us introduce stochastic Runge-Kutta methods (SRK) for equation (2.1).
For stochastic differential equations of the form

dx(t)=f(x(t))dt+g(x(t))◦dW (t),
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Rümelin [27] gave a class of SRK methods of the form

Yi=yn+h

s
∑

j=1

aijf(Yj)+J1

s
∑

j=1

bijg(Yj), i=1,2, · · · ,s,

yn+1=yn+h

s
∑

j=1

αjf(Yj)+J1

s
∑

j=1

βjg(Yj), (2.3)

where s is the number of states, h is the step size, and J1=
∫ tn+1

tn
◦dW (s). Applying

the tableau introduced by Butcher [11], we obtain
A B

αT βT ,

where A=(aij) and B=(bij) are s×s matrices of real elements while αT =
(α1,α2, · · · ,αs) and βT =(β1,β2, · · · ,βs) are row vectors.

Similar to the above case, we propose a class of SRK methods

Yi=yn+h

s
∑

j=1

aijf(Yj)+J1

s
∑

j=1

bijg(Yj)+J2
∑

z

s
∑

j=1

cijh(Yj ,z), i=1,2, · · · ,s.

yn+1=yn+h

s
∑

j=1

αjf(Yj)+J1

s
∑

j=1

βjg(Yj)+J2
∑

z

s
∑

j=1

γjh(Yj ,z), (2.4)

where J2=
∫ tn+1

tn

∫

Q
N(ds,dz), γT =(γ1,γ2, · · · ,γs).

The corresponding Butcher tableau is
A B C

αT βT γT ,

where C=(cij) is a s×s matrix. In the article, we only consider two-stage methods.
Therefore, our explicit Butcher tableau is of the form

0 0 0 0 0 0
a1 0 b1 0 c1 0
α1 α2 β1 β2 γ1 γ2

. (2.5)

3. Two-stage stochastic RK methods for jump-diffusion processes

Now let us focus on the equation (2.2). A general version of Itô’s formula states
that a given function V of the solution x can be written as

V (x(t))=V (x0)+

∫ t

0

L0V (x(s))ds+

∫ t

0

L1V (x(s))dW (s)

+

∫ t

0

∫

Q

L2V (x(s))N(ds,dz), (3.1)

where

L0V =f
∂V

∂x
, L1V =g

∂V

∂x
, L2V =V (x(t)+h(x(t),z))−V (x(t)). (3.2)

Applying (3.1) and (3.2) with V (x(t))=x(t) gives

x(t)=x0+f(x0)J0+g(x0)J1+
∑

z∈Q

h(x0,z)J2+f(x0)f
′(x0)J00+g(x0)f

′(x0)J10
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+
∑

z∈Q

(f(x0+h(x0,z))−f(x0))J20+f(x0)g
′(x0)J01+g(x0)g

′(x0)J11

+
∑

z∈Q

(g(x0+h(x0,z))−g(x0))J21

+
∑

z∈Q

∑

z1

(h(x0+h(x0,z1),z)−h(x0,z))J22+R. (3.3)

Here R is the remainder term and Jj1,j2 represents the multiple integral, where the
integration is with respect to ds if ji=0, ◦dW (t) if ji=1, or N(dt,dz) if ji=2. Hence,
for example,

J21=

∫ t

0

∫ s

0

∫

Q

N(ds1,dz)◦dW (s).

Now, we are ready to express the solution of (2.2) by applying of the set of tri-
colored trees. Let T denote the colored trees with a root ⊙ and which may also contain
some deterministic nodes ⊕ (τ) and Wiener process nodes ⊘ (σ) and Poisson process
nodes ⊗ (µ). Thus, if t1, · · · ,tm are tri-colored trees then 〈t1, · · · ,tm〉, [t1, · · · ,tm],
{t1, · · · ,tm}, and (t1, · · · ,tm) are trees in which t1, · · · ,tm are each joined by a single
branch to ⊙, ⊕, or ⊘, or ⊗. Define two functionals F1(V ) and F2(V ) by ∂V

∂x
and

V (x+h(x,z))−V (x), respectively. Then, an elementary differential can be defined
recursively for any t∈T by

F (τ)(y)=f(y), F (σ)(y)=g(y), F (µ)(y)=h(y),

F (t)(y)=







f (m)[F (t1)(y), · · · ,F (tm)(y)], t=[t1, · · · ,tm],
g(m)[F (t1)(y), · · · ,F (tm)(y)], t={t1, · · · ,tm},
h(m)[F (t1)(y), · · · ,F (tm)(y)], t=(t1, · · · ,tm),

(3.4)

where f (m) means F1 and F2 act on the function f m times together and g(m) and
h(m) are defined similarly.

Next, an elementary weight needs to be associated with each elementary differen-
tial. Here, we associate 0 with a deterministic node ⊕, 1 with a Wiener process node
⊘, and 2 with a Poisson process node ⊗. Then, if we let

J0(F )=

∫ t

0

F (y(s))ds,

J1(F )=

∫ t

0

F (y(s))◦dW (s),

J2(F )=

∫ t

0

∫

Q

F (h(y(s),z)N(ds,dz), (3.5)

then elementary weights can be defined recursively as

θ(τ)=J0(1), θ(σ)=J1(1), θ(µ)=J2(1),

θ(t)=































J0

( m
∏

j=1

θ(tj)
)

, t=[t1, · · · ,tm],

J1

( m
∏

j=1

θ(tj)
)

, t={t1, · · · ,tm},

J2

( m
∏

j=1

θ(tj)
)

, t=(t1, · · · ,tm).

(3.6)
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Denote by d(t) the number of deterministic nodes, by w(t) the number of Wiener
process node, and by n(t) the number of Poisson process nodes in t. Then the order
ord(t) for a tree t is defined as

ord(t)=d(t)+
1

2
w(t)+

1

2
n(t). (3.7)

Let L(t) be the number of leaves of a tree t, where a leaf is defined as a node without
any “children”, i.e. no successor node. Let α(t) be the number of ways of labeling t

with a set of ord(t) ordered symbols such that along each outwardly directed arc the
labels increase; then we can write x(t) (as in [8]) as

x(t)=
∑

t∈T

α(t)F (t)(x0)θ(t). (3.8)

⊙

⊕
@
@@

⊗⊘

�
��

⊕

Sample tree 1

⊙
�

��
@
@@

⊕ ⊘
�

��
@
@@

⊗ ⊘

Sample tree 2

It is easy to see that the mathematical expression of of the first sample tree
is 〈[⊕,⊘,⊗]〉, ord(〈[⊕,⊘,⊗]〉)=3, α(〈[⊕,⊘,⊗]〉)=1, and L(〈[⊕,⊘,⊗]〉)=3, and that
the mathematical expression of the second tree is 〈⊕,{⊗,⊘}〉, ord(〈⊕,{⊗,⊘}〉)= 5

2 ,
α(〈⊕,{⊗,⊘}〉)=4, and L(〈⊕,{⊗,⊘}〉)=3.

Remark 3.1. In the expression of ord(t) in (3.7), a deterministic node is weighted
with 1 because we get a h if we integrate 1 with respect to ds on [0,h], both a
Wiener process node and a jump node are weighted with 1

2 because of isometries

E[
∫ h

0
1 ·dW (t)]2=h and E[

∫ h

0

∫

Q
1 ·N(dt,dz)]2=λν(Q)h.

For the rest of this section, we focus on the expression of the solution of SRK
methods, i.e. equation (2.4). For simplicity, we will replace tn with t0, and for a given
t= t0+h, xn+1 will be expressed as X(t) with intermediate states X1(s), · · · ,Xs(t).

From (2.4),

X(t)=X0+
s
∑

j=1

αjf(Xj(t))+
s
∑

j=1

βjg(Xj(t))+
∑

z∈A

s
∑

j=1

γjh(Xj(t),z)

=X0+

s
∑

j=1

αj [f(X0)+L0f(X0)+L1f(X0)+L2f(X0)+H.O.T ]

+

s
∑

j=1

βj [g(X0)+L0g(X0)+L1g(X0)+L2g(X0)+H.O.T ]

+
∑

z∈A

s
∑

j=1

γj [h(X0,z)+L0h(X0,z)+L1h(X0,z)+L2h(X0,z)+H.O.T ]
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=X0+αT ef(X0)+αTAef(X0)f
′(X0)+

∑

z∈A

αTCe[f(X0+h(X0,z))−f(X0)]

+αTBef ′(X0)g(X0)+βT eg(X0)+βTAef(X0)g
′(X0)+βTBeg′(X0)g(X0)

+
∑

z∈A

βTCe[g(X0+h(X0,z))−g(X0)]+
∑

z∈A

γT eh(X0,z)

+
∑

z∈A

γTAef(X0)h
′(X0,z)+

∑

z∈A

γTBeg(X0)h
′(X0,z)

+
∑

z∈A

∑

z1∈A

γTCe[h(X0+h(X0,z1),z)−h(X0,z)]+H.O.T.

Furthermore, as in [8], it can be shown that the Taylor expansion for the numerical
solution can be written as

X(t)=
∑

t∈T

Φ(t)F (t)(X0)
hρ1(t)

ρ(t)!
, (3.9)

where Φ(t) is defined recursively by

k(φ)= e, (3.10)

Φ(t)=



























ρ(t)αT
m
∏

i=1

k(ti), t=[t1, · · · ,tm],

ρ(t)βT
m
∏

i=1

k(ti), t={t1, · · · ,tm},

ρ(t)γT
m
∏

i=1

k(ti), t=(t1, · · · ,tm),

(3.11)

where

k(t)=



























ρ(t)A
m
∏

i=1

k(ti), t=[t1, · · · ,tm],

ρ(t)B
m
∏

i=1

k(ti), t={t1, · · · ,tm},

ρ(t)C
m
∏

i=1

k(ti), t=(t1, · · · ,tm),

(3.12)

and where ρ(t) is the number of leaves of t while ρ1(t) is the number of deterministic
leaves of t.

Hence, the truncation error at t= tn is

en=
∑

t∈T

(

α(t)θ(t)−Φ(t)
hρ1(t)

ρ(t)!

)

F (t)(x(tn)). (3.13)

Thus, if

E(|en|2)≤Ch2p, (3.14)

then a method will have strong order p.
To find a good RK method, we list the local error of all trees with ord(t)≤1.5;

see table 3.1.



C. HUANG, J. SHI, AND Z. ZHANG 1323

Table 3.1. Local truncation errors

♯ t e(t)

1 ⊕ J0−αT e

2 ⊘ J1−βT e

3 ⊗ J2−γT e

4 [⊘] J10−αTBe

5 {⊕} J01−βTAe

6 [⊗] J20−αTCe

7 (⊕) J02−γTAe

8 (⊘) J12−γTBe

9 {⊗} J21−βTCe

10 {⊘} J11−βTBe

11 (⊗) J22−γTCe

12 {{⊘}} J111−βTB2e

13 {{⊗}} J211−βTBCe

14 {(⊘)} J121−βTCBe

15 {(⊗)} J221−βTC2e

16 ({⊘}) J112−γTB2e

17 ({⊗}) J212−γTBCe

18 ((⊘)) J122−γTCBe

19 ((⊗)) J222−γTC2e

20 {⊘,⊘} J111− 1
2β

T (Be)2

21 {⊘,⊗} J211− 1
2β

T (Be)(Ce)

22 {⊗,⊗} J221− 1
2β

T (Ce)2

23 (⊘,⊘) J112− 1
2γ

T (Be)2

24 (⊘,⊗) J212− 1
2γ

T (Be)(Ce)

25 (⊗,⊗) J222− 1
2γ

T (Ce)2

Theorem 3.2. There is no 1.5 order Runge-Kutta method of form (2.5) for equation
(2.2).

Proof. If there exists an order 1.5 scheme, then all trees of order 1 in Table 3.1
must be accurately approximated, so that the remainder, in the L2 sense, is of order
1.5 or higher. In particular, tree 9 in Table 3.1 is order 1. Hence, we require

E(J21−βTCe)2=O(h3) or (3.15)

E(J2
21)−2E(βTCeJ21)+E(βTCe)2)=O(h3). (3.16)

Let α= α̂h, β= β̂J1, γ= γ̂J2, A= Âh, B= B̂J1, and C= ĈJ2, and let M be an
event such that only one jump occurs in [0,h]. Now let us calculate the left-hand side



1324 JUMP STOCHASTIC DIFFERENTIAL EQUATIONS

of (3.16):

E(J2
21)=E

(

∫ h

0

∫ s

0

∫

Q

N(ds1,dz)◦dW (s)
)2

,

=E
(

∫ h

0

N(s,Q)◦dW (s)
)2

=E
((

∫ h

0

N(s,Q)◦dW (s)
)2

|M
)

P (M)+H.O.T

≃λ
h2

2
ν(Q), (3.17)

E(βTCeJ21)

=E(β̂T ĈeJ1J2J21)

= β̂T ĈeE
(

∫ h

0

◦dW (s)

∫ h

0

∫

Q

N(ds,dz)

∫ h

0

∫ s

0

∫

Q

N(ds1,dz)◦dW (s)
)

= β̂T ĈeE
(

∫ h

0

◦dW (s)

∫ h

0

∫

Q

N(ds,dz)

∫ h

0

∫ s

0

∫

Q

N(ds1,dz)◦dW (s)|M
)

P (M)

+H.O.T

≃ β̂T Ĉe ·λh
2

2
ν(Q). (3.18)

Finally,

E(βTCe)2=(β̂T Ĉe)2E(J1J2)
2

=(β̂T Ĉe)2E(W (h)N(h,Q))2

=(β̂T Ĉe)2E(W (h)2N(h,Q)2|M)P (M)+H.O.T

≃ (β̂T Ĉe)2λh2ν(Q), (3.19)

where e=(1,1)T . Here, we take advantage of the fact that, for a Poisson process, if
there are n arrivals on [0,h] then the n arrival times are uniformly distributed on the
interval [0,h] and also the fact that there exists only one jump on the interval if h is
small enough.

Writing φ= β̂T Ĉe, (3.16) becomes

h2

(

φ2−φ+
1

2

)

=0.

Obviously, this has no real root. Hence, an order 1.5 scheme does not exist. This
completes the proof.

Now let us construct an order 1 scheme. Note that from table 3.1, trees 2 and 3
are of order 1

2 , so we require

β̂T e=1, γ̂T e=1. (3.20)

The order 1 trees in table 3.1 are trees 1, 8, 9, 10, 11. For optimization, one should
find parameters to minimize

E(J0−αT e)2, E(J21−βTCe)2,
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E(J11−βTBe)2, E(J22−γTCe)2, E(J12−γTBe)2. (3.21)

as Burrage did in [8, 9]. For simplicity, we choose

γ2=0, b1=
1

2
, β2=1, c1=1. (3.22)

Then, we obtain the tableau

0 0 0 0 0 0
1 0 1

2 0 1 0
α1 α2 0 1 1 0

, (3.23)

where α1+α2=1, i.e

Y =yn+hf(yn)+
J1

2
g(yn)+J2

∑

z

h(yn,z),

yn+1=yn+h(α1f(yn)+α2f(Y ))+J1g(Y )+J2
∑

z

h(yn,z). (3.24)

4. Numerical experiments

In this section, we implement (3.24) with α1=
1
3 , α2=

2
3 , i.e.

0 0 0 0 0 0
1 0 1

2 0 1 0
1
3

2
3 0 1 1 0

. (4.1)

We compare the numerical errors of the SRK scheme above, Gardoń’s strong order
1 scheme [13], and Bruti-Liberati and Platen’s adapted strong order 1 scheme [6]. We
remark that Gordoń’s scheme was originally proposed and analyzed for homogeneous
Poisson processes but could be extended to Poisson random measures as is done here.
The first two examples in this section are from Gardoń’s [14] and the last one is
from Bruti-Liberati’s work [6]. In this section, for all problems and all methods, 500
trajectories are computed for each step size. Hence, the error

E|x(T )−X(T )|=

√

√

√

√

√

500
∑

i=1

|xi(T )−Xi(T )|2

500
.

Example 1. Consider an autonomous linear equation as follows:

{

dx(t)= 15
8 x(t)dt+ 1

2x(t)◦dW (t)+
∫

Q
− 1

10x(t)N(dt,dz), t∈ [0,1],

x(0)=10, λ=50.
(4.2)

The analytical solution of (4.2) is

x(t)=10

(

9

10

)N(t)

exp

(

15

8
t+

1

2
W (t)

)

,

where N(t) denotes the number of jumps.
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Fig. 4.1. The portfolio of error for different numerical methods at the end time for Example 1
(Left) and for Example 2 (Right).

Then the numerical results of the Runge-Kutta method for different step sizes
in table 4.1 and errors for three different methods are illustrated in the left part of
figure 4.1. From the portfolio for this example, we observe that the errors of the RK
method gradually deviate from the line with slope −1 for the first five points. The
reason for this is that we obtain our Butcher tableau (4.1) based upon the assumption
that there exists only one jump on the time interval if the length of the interval is
small enough. However, this condition might be violated for the choice of the first
five time steps whereas with refined time steps, the error line of the RK method goes
back to the line with slope −1.

Table 4.1. Numerical results of Example 1 and Example 2

step size E|x(1)−X(1)| (Ex1) E|x(T )−X(T )| (Ex2)
2−7 0.0310 20.5485

2−8 0.0172 0.2829

2−9 0.0095 0.1209

2−10 0.0054 0.0592

2−11 0.0034 0.0278

2−12 0.0018 0.0159

2−13 0.0008 0.0088

2−14 0.0005 0.0038

Example 2. Consider the nonlinear jump-diffusion equation

{

dx(t)=a(t,x(t))dt+b(t,x(t))◦dW (t)+c(t,x)dN(t), t∈ [0, 25 ],
x(0)=100, λ=30,

(4.3)
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where

a(t,x)=
10πcos(10πt)

r(t)
x+12t 3

√

r(t)x2,

b(t,x)=3 3
√

r(t)x2,

c(t,x)=
−3t

10
3
√

r(t)x2+
3t2

100
3
√

r2(t)x− t3r(t)

1000
,

r(t)=
11

10
+sin(10πt), (4.4)

and with analytical solution

x(t)=

(

11

10
+sin(10πt)

)(

10
3
√
11

+2t2+W (t)− 1

10

∫ t

0

sdNs

)3

.

Numerical results of different methods are reported in table 4.1 (Runge-Kutta) and
the right part of figure 4.1. From the figure, we observe that errors of Gardoń’s
method are large, which coincides with the numerical results in [14].

Table 4.2. Numerical results of Example 3

step size E|x(1)−X(1)| (Example 3)

2−7 0.0435

2−8 0.0231

2−9 0.0098

2−10 0.0053

2−11 0.0027

2−12 0.0013

2−13 0.0007

2−14 0.0003

Example 3. Consider an jump-diffusion example of the form

{

dXt=2Xtdt+
1
2XtdW (t)+

∫

Q
X(t)(z−1)N(dt,dz),

X(0)=1, λ=1

on [0,1]. From [6], this equation admits the explicit solution

Xt=exp
(15

8
t+

1

2
W (t)

)

pφ(t)
∏

i=1

ξi, (4.5)

where pφ(t) is the number of jumps up to time 1 and ξi= eζi is the i-th lognormal real-
ization of the jump size, with ζi∼N (ρ,ς) denoting an independent Gaussian random
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Fig. 4.2. The portfolio of error for different numerical methods at the end time for Example 3.

variable with mean ρ and variance ζ. The distribution of jumps is

P (z)=























0.25, if z=2,

0.5, if z=1,

0.25, if z=0.1.

Note that Gardoń’s method can not be applied to this example since the coefficient
of the jump term is jump-dependent, so we compare our Runge-Kutta scheme with
Bruti-Liberati and Platen’s scheme only. Table 4.2 shows the numerical errors for our
Runge-Kutta method with different step sizes.

5. Concluding remarks

In this paper, we construct a two-stage strong order 1 stochastic Runge-Kutta
scheme to solve stochastic differential equations with jump-diffusion. By the colored
rooted tree analysis, we obtain an extended tableau as in [8, 9]. During the process of
construction, we also prove that order 1.5 scheme does not exist for (2.5). In the nu-
merical experiment section, we compare the numerical errors of our SRK scheme
above with Gardoń’s strong order 1 scheme [13] and Bruti-Liberati and Platen’s
adapted strong order 1 scheme [6]. From numerical experiments, we observe that
our stochastic Runge-Kutta scheme performs as well of better than the other two
schemes. Another merit of our scheme is that it is given by a tableau, and thus is
concise and derivative free. As is known, the computational cost is high for this type
of approximation when the jump intensity is high. Future work includes extending
the current scheme to multidimensional problems as well as high jump intensities.
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