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GAUSSIAN BEAM METHODS FOR THE DIRAC EQUATION IN
THE SEMI-CLASSICAL REGIME∗

HAO WU† , ZHONGYI HUANG‡ , SHI JIN§ , AND DONGSHENG YIN¶

Abstract. The Dirac equation is an important model in relativistic quantum mechanics. In the
semi-classical regime ε≪1, even a spatially spectrally accurate time splitting method [6] requires
the mesh size to be O(ε), which makes the direct simulation extremely expensive. In this paper, we
present the Gaussian beam method for the Dirac equation. With the help of an eigenvalue decom-
position, the Gaussian beams can be independently evolved along each eigenspace and summed to
construct an approximate solution of the Dirac equation. Moreover, the proposed Eulerian Gaussian
beam keeps the advantages of constructing the Hessian matrices by simply using the derivatives
of level set functions. Finally, several numerical examples show the efficiency and accuracy of the
method.
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1. Introduction
We are interested in developing the Gaussian beam method for the Dirac equation

in the semi-classical regime

iε∂tΨ
ε=−iεα ·∇Ψε−α ·AΨε+βΨε+VΨε, (1.1)

subject to the Cauchy initial data

Ψε(0,x)=uI(x)
iSI(x)/ε, x∈R

3. (1.2)

Here Ψε(t,x)=(Ψε
1,Ψ

ε
2,Ψ

ε
3,Ψ

ε
4)

T ∈C
4 is the spinor field, normalized such that

∫

R3

|Ψε(t,x)|2dx=1,

where 0<ε≪1 denotes the semi-classical parameter, V (t,x)∈R is the external
electric potential, and A(t,x)∈R

3 represents the external magnetic potential, i.e.,
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A=(A1,A2,A3). Without loss of generality, in this paper we only consider a static
external field. The Dirac matrices β,α=(α1,α2,α3) are complex-valued Hermitian
matrices, which are given by

β :=

(
I2 0
0 −I2

)
, αk :=

(
0 σk

σk 0

)
,

with I2 the 2×2 identity matrix and σk the 2×2 Pauli matrices, i.e.,

σ1 :=

(
0 1
1 0

)
, σ2 :=

(
0 −i
i 0

)
, σ3 :=

(
1 0
0 −1

)
.

The physical observables can be defined in terms of Ψε(t,x):

Particle-density ρε= |Ψε|2 , (1.3)

Current-density jεk= 〈Ψε,αkΨε〉C4 . (1.4)

The Dirac Equation [2, 35] is a relativistic wave equation which plays a funda-
mental role in relativistic quantum mechanics. It provides a natural description of
the particles with spin 1/2 , i.e. electrons, neutrinos, muons, protons, neutrons, etc.
The Dirac Equation also predicts some peculiar effects, such as Klein’s paradox [15]
and “Zitterbewegung” an unexpected quivering motion of a free relativistic quantum
particle [29]. Recently, graphene [1, 24] and topological insulators [5, 38] were studied
widely in connection to the Dirac Equation in the semiclassical regime [22].

In the semi-classical regime ε≪1, the solution to the Dirac Equation is highly
oscillatory. Thus, for any domain-based discretization method, the number of mesh
points in each spatial direction should be at least O(ε−1) [14]. If the potential is suffi-
ciently smooth, and if the initial data of the Dirac Equation is compactly supported,
then the time-splitting spectral method [6] offers the best numerical resolution. The
spatial meshing strategy is almost of optimal order O(ε−1) and the time step can be
O(1).

One alternative efficient numerical approach for solving the Dirac Equation is the
WKB method [30, 31, 32]. For a first order approximation, this method tries to seek
an asymptotic solution:

Ψε(t,x)=u(t,x)eiS(t,x)/ε+O(ε), S∈R, (1.5)

where the amplitude u and the phase S are smooth functions independent of ε. Sub-
stituting (1.5) into the Dirac Equation, one derives the eikonal equation and the
transport equation. Since the eikonal equation is of the Hamilton-Jacobi type, the
solution becomes singular after caustic formulation. Beyond caustics, the correct
semi-classical solution of the Dirac Equation contains several phases. In the last few
decades, many approaches have been proposed to capture this multi-phased solution;
see the reviews [3, 8].

A serious drawback of the WKB method is that the solution ceases to be valid
at caustics where the rays intersect and the amplitudes blow up. The Gaussian beam
method, which was first proposed by Heller in quantum chemistry [4] and indepen-
dently developed by Popov in geophysics [26], is an efficient approach that allows
accurate computation of the amplitude and phase information near caustics. The
main difference between the WKB method and the Gaussian beam method is that
the Gaussian beam method allows the phase function to be complex off the center
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of the beam and the imaginary part of the phase function is positive definite, which
makes the solution decay exponentially away from the center. The validity of the
Gaussian beam method at caustics was analyzed by Ralston in [28]. The Gaussian
beam and related methods have become very popular in high frequency waves prob-
lems [18, 19, 20, 23, 27, 33, 34, 39, 40] in recent years. Most of the methods were in the
Lagrangian framework. More recently, Eulerian Gaussian beam methods have also re-
ceived special attention for their advantage of uniform accuracy [10, 11, 12, 13, 16, 17].
A major simplification of the Eulerian Gaussian beam method is that the Hessian ma-
trices can be constructed by taking derivatives of the level set functions [10]. This
greatly reduces the computational cost.

To our knowledge, no Gaussian beam methods have previously been developed
for the Dirac Equation. It is the goal of this paper to develop such a method by
extending the previous method of [10] for the Schrödinger Equation to the Dirac
Equation (1.1)-(1.2). With the help of the eigenvalue decomposition, the Gaussian
beams evolve independently of each other. Moreover, the energy transition is for-
bidden since the Dirac matrix β results an O(1) band gap. Being different from the
Gaussian beam methods for the Schrödinger Equation, the higher order Taylor expan-
sion and asymptotic expansion must be considered for the amplitude. After making
use of the solvability condition and matching the different expansions, one gets the
transport equation for the lower order term of the amplitude. When the evolution
is done, the solution can be simply constructed by the summation of all Gaussian
beams. The solution will be shown to have a good accuracy even around caustics,
with a coarse mesh size of O(

√
ε) and large time step of O(

√
ε). A remarkable aspect

of the Eulerian Gaussian beam method is that it still possesses the advantage of the
previous method [10], which is an important benefit for the 3D simulation.

The paper is organized as follows. After reviewing the semi-classical limit of the
Dirac Equation in Section 2, we formulate the Gaussian beam method for (1.1)-(1.2)
in Section 3. In Section 4, our method is shown to be accurate and efficient by several
numerical examples. Finally, we conclude the paper in Section 5.

2. The Dirac Equation and the semi-classical limit

Denoting the Dirac operator by

D(x,ξ)=α ·(ξ−A(x))+β+V (x),

we have

D(x,−iε∇)Ψε=α ·(−iε∇−A(x))Ψε+βΨε+V (x)Ψε.

Therefore the semi-classically scaled Dirac Equation (1.1) can be written as

iε∂tΨ
ε=D(x,−iε∇)Ψε.

Let

λ(x,ξ)=

√
|ξ−A(x)|2+1,

so that

h±(x,ξ)=±λ(x,ξ)+V (x)
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are two different eigenvalues, each with multiplicity two, of the Dirac operator D(x,ξ).
The corresponding projectors Π±(x,ξ) are given by

Π±(x,ξ)=
1

2

(
I4±

1

λ(x,ξ)
(D(x,ξ)−V (x)I4)

)
.

Plugging the WKB-ansatz

Ψε(t,x)= eiS(t,x)/ε
∞∑

j=0

εjuj(t,x)

into (1.1), where uj(t,x)∈C∞(R4,C4), and by matching the O(1) and O(ε) asymp-
totic coefficients, one needs

(∂tS+D(x,∇S))u0=0, (2.1)

i(∂t+α ·∇)u0−(∂tS+D(x,∇S))u1=0. (2.2)

In order to get a nontrivial solution u0(t,x) 6=0 in (2.1), one gets

det(∂tS+D(x,∇S))=0,

which leads to the eikonal equation

∂tS
±+h±

(
x,∇S±

)
=0. (2.3)

Applying the projection Π±(x,∇S±) to (2.2), one gets the solvability condition

Π±(x,∇S±)(∂t+α ·∇)u±
0 =0.

After a series of calculations [30, 31], the following transport equation can be derived:

∂tu
±
0 +

(
ω±(x,∇S±) ·∇

)
u±
0 +

1

2

(
∇·ω±(x,∇S±)

)
u±
0 =A±(x,∇S±)u±

0 , (2.4)

with

ω±(x,ξ)=∇ξh
±(x,ξ),

A±(x,ξ)=
∑

k 6=l

αkαl

2λ
(∂xk

Al)−
1

2λ
α ·∇h±− 1

2λ2
α ·((ξ−A) ·∇A)

+
1

2λ3
(ξ−A) ·

(
(ξ−A) ·∇A+λ∇h±

)
.

Remark 2.1. If the external magnetic potential is zero, i.e. A=0, then

A±(x,ξ)=− 1

2λ
α ·∇V (x)+

1

2λ2
ξ ·∇V (x).

3. The Gaussian beam method
In this section, we derive the Gaussian beam method using both Lagrangian and

Eulerian formulations. We first introduce the Lagrangian Gaussian beam method for
solving the Dirac Equation, then discuss the Eulerian Gaussian beam method.
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3.1. The Lagrangian formulation. In this subsection, we describe how to
solve the Dirac Equation (1.1) by the Lagrangian Gaussian beam method, which is
given by the following ansatz:

φε±
la (t,x,y0)=u±

0 (t,y
±)eiT

±(t,x,y±)/ε, (3.1)

where y±=y±(t,y0) and T±(t,x,y±) is a second order Taylor truncated phase func-
tion

T±(t,x,y±)=S±(t,y±)+ξ±(t,y±) ·(x−y±)+
1

2
(x−y±)TM±(t,y±)(x−y±).

Here S±∈R, ξ±∈R
3, M±∈C

3×3, and u±
0 ∈C

4. Then the evolutionary ODEs of the
Lagrangian Gaussian beam (3.2)-(3.5) can be derived by the eigenvalue decomposition
technique and the standard Gaussian beam method (for details see Appendix):

dy±

dt
=∇ξh

±, (3.2)

dξ±

dt
=−∇yh

±, (3.3)

dS±

dt
=∇ξh

± ·ξ±−h±, (3.4)

dM±

dt
=−∇yyh

±−∇yξh
±M±−M±∇ξyh

±−M±∇ξξh
±M±, (3.5)

du±
0

dt
=−1

2

(
∇y ·ω±

)
u±
0 +Au±

0 , (3.6)

in which y±=y±(t,y0), ξ
±=ξ±(t,y±(t,y0)), S

±=S±(t,y±(t,y0)), M
±=

M±(t,y±(t,y0)), and u±
0 =u±

0 (t,y
±(t,y0)). The ODE of Lagrangian Gaussian

beam amplitude (3.6) can be given by the solvability condition and a high order
Gaussian beam formulation. Equations (3.2)-(3.3) are the ray tracing equations, and
the equation (3.5) is a Riccati Equation which can be alternatively solved by the
following dynamic first order system:

dP±

dt
=
(
∇ξyh

±
)
P±+

(
∇ξξh

±
)
R±, (3.7)

dR±

dt
=−

(
∇yyh

±
)
P±−

(
∇yξh

±
)
R±. (3.8)

Then the Hessian matrices satisfy M±=R± (P±)
−1

. After that, the Lagrangian
Gaussian beam solution to the Dirac Equation (1.1) is constructed as

Φε
la(t,x)=

(
1

2πε

) 3
2
∫

R3

(
rθ(x−y+)φε+

la (t,x,y0)+rθ(x−y−)φε−
la (t,x,y0)

)
dy0,

(3.9)
where rθ ∈C∞

0

(
R

3
)
, rθ≥0 is a truncation function with rθ≡1 in a ball of radius θ>0

about the origin. The discrete form of (3.9) is given as

Φε
la(t,x)=

(
1

2πε

) 3
2
Ny0∑

j=1

rθ(x−y+(t,yj
0))φ

ε+
la (t,x,yj

0)∆y0
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+

(
1

2πε

) 3
2
Ny0∑

j=1

rθ(x−y+(t,yj
0))φ

ε+
la (t,x,yj

0)∆y0, (3.10)

where y
j
0 are the equidistant mesh points, and Ny0

is the number of the beams

initially centered at y
j
0. The initial conditions for the equations (3.2)-(3.6) are as

follows [10, 34]:

y±(0,y0)=y0, (3.11)

ξ±(0,y0)=∇SI(y0), (3.12)

S±(0,y0)=SI(y0), (3.13)

M±(0,y0)=∇2SI(y0)+ iI, (3.14)

u±
0 (0,y0)=Π±(y0,∇SI(y0))uI(y0). (3.15)

Remark 3.1. The evolutionary equation (3.6) and the initial condition (3.15) ensure
that

Π+u+
0 (t,y0)=u+

0 (t,y0), Π+u−
0 (t,y0)=0,

Π+u−
0 (t,y0)=0, Π−u−

0 (t,y0)=u−
0 (t,y0),

for ∀t≥0. The related discussion for the semi-classical limit can be found in [30].

Remark 3.2. As discussed in [10], to compute the Gaussian beam solutions for the

Schrödinger Equation, the optimal mesh can be O(ε
1
2 ) and the time step requirement

is of order O(ε
1
2 ). Therefore, the total computational cost is O(ε−2) for the 3D sim-

ulation. On the other hand, the computational cost for the direct numerical methods
should be at least O(ε−3) for accurate physical observables and O(ε−4) for accurate
wave fields. It is obvious to see that the Gaussian beam method is much more effi-
cient in the semi-classical regime ε≪1, since the solutions of the Dirac equation has
high frequency structures similar to the ones of the Schrödinger Equation. Similar
discussions can be made regarding the Dirac Equation.

3.2. The Eulerian formulation. In this subsection, the Eulerian Gaussian
beam method using the level set method [7, 9] is introduced to solve the Dirac Equa-
tion (1.1). The analogous derivations are given in details by the former work of Jin
et al [10].

Define the Liouville operator as

L±=∂t+∇ξh
± ·∇y−∇yh

± ·∇ξ,

so that the level set equations corresponding to equations (3.2)-(3.6) are given by

L±ϕ±=0, (3.16)

L±S±=∇ξh
± ·ξ±−h±, (3.17)

L±u±
0 =−1

2
(∇y ·ω±)u±

0 +Au±
0 . (3.18)

Here ϕ±=ϕ±(t,y,ξ)∈C
3 are the level set functions. The zero level set of Re[ϕ±

k ]
gives the (multi-valued) velocity. We also have the phase S±=S±(t,y,ξ)∈R and the
amplitude u±

0 =u±
0 (t,y,ξ)∈C

4 in the phase space. To be compatible with the initial
data (3.11)-(3.15), we use the following initial condition:

ϕ±(0,y,ξ)=−iy+(ξ−∇ySi(y)), (3.19)
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ε 1
256

1
512

1
1024

1
2048

‖Ψε−Φε
GB‖1 7.08×10−2 4.15×10−2 2.27×10−2 1.19×10−2

‖Ψε−Φε
GB‖2 1.29×10−1 7.79×10−2 4.31×10−2 2.30×10−2

‖Ψε−Φε
GB‖∞ 5.00×10−1 3.16×10−1 1.80×10−1 9.71×10−2

Table 4.1. The l1, l2, and l∞ errors of the solutions at t=0.50 for Example 1. The convergence
rate in ε are 0.8591 in the l1 norm, 0.8311 in the l2 norm, and 0.7912 in the l∞ norm respectively.

S±(0,y,ξ)=SI(y), (3.20)

u±
0 (0,y,ξ)=Π±(y0,∇SI(y0))uI(y0). (3.21)

From (3.16) and (3.19), the Hessian matrices are constructed via

M±=−∇yϕ(∇ξϕ)
−1

.

As a result of this property, we do not need to solve the level set equations forM±, P±,
or R± corresponding to equations (3.5) and (3.7)-(3.8) as was done in the Eulerian
Gaussian beam method [16, 17]. This can save a lot of computational resources,
especially for such 3D problems. The Eulerian Gaussian beam solution to the Dirac
Equation (1.1) is then constructed as

Φε
eu(t,x)=

(
1

2πε

) 3
2
∫

R3

∫

R3

rθ(x−y)
(
φε+

eu (t,x,y,ξ)δ(Re[ϕ
+(t,y,ξ)])

+φε−
eu (t,x,y,ξ)δ(Re[ϕ

−(t,y,ξ)])
)
dξdy, (3.22)

where

φε±
eu (t,x,y,ξ)=u±

0 (t,y,ξ)e
iT±(t,x,y,ξ)/ε,

T±(t,x,y,ξ)=S±(t,y,ξ)+ξ ·(x−y)+
1

2
(x−y)TM±(t,y,ξ)(x−y).

Remark 3.3. The equation (3.22) can be solved by a discretized delta function
integral method [36, 37] or a local semi-Lagrangian method [10, 17].

Remark 3.4. One can use the local level set method [21, 25] to solve the level set
equation in the vicinity of a lower-dimensional zero level curve of Re[ϕ±] to reduce
the total computational cost for the Eulerian Gaussian beam method. An alternative
efficient way is to use the semi-Eulerian Gaussian beam method proposed in [12].

4. Numerical examples
In this section, we present several numerical examples to show the accuracy and

efficiency of the Gaussian beam method. We compute the solution of the Dirac
Equation (1.1) by the time-splitting spectral scheme [6]. The reference solutions
Ψε(t,x) are computed on a very fine mesh and a very small time step. In all the
numerical examples, the truncation parameter θ in (3.10) is chosen large enough so
that the cut-off error is almost zero.
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Fig. 4.1. Example 1, at time t=0.5, x3=0. The images, from top to bottom, represent the
amplitude of the Gaussian beam solutions (Left)

∣

∣Φε

GB

∣

∣ and the absolute error (Right)
∣

∣Ψε−Φε

GB

∣

∣

for different ε= 1
256

, 1
512

, 1
1024

.

ε 1
512

1
1024

1
2048

1
4096

‖Ψε−Φε
GB‖1 1.23×10−1 6.41×10−2 3.26×10−2 1.71×10−2

‖Ψε−Φε
GB‖2 2.21×10−1 1.23×10−1 6.53×10−2 3.37×10−2

‖Ψε−Φε
GB‖∞ 8.36×10−1 5.40×10−1 3.09×10−1 1.57×10−1

Table 4.2. The l1, l2, and l∞ errors of the solutions at t=0.38 for Example 2. The convergence
rate in ε are 0.9490 in the l1 norm, 0.9051 in the l2 norm, and 0.8111 in the l∞ norm respectively.

ε 1
512

1
1024

1
2048

1
4096

‖Ψε−Φε
GB‖1 8.62×10−2 2.92×10−2 1.14×10−2 5.11×10−3

‖Ψε−Φε
GB‖2 2.28×10−1 1.26×10−1 6.62×10−2 3.49×10−2

‖Ψε−Φ
ε

GB
‖∞

‖Φε

GB‖∞

1.76×10−1 1.06×10−1 6.14×10−2 3.23×10−2

Table 4.3. The l1, l2, and l∞ errors of the solutions at t=0.56 for Example 2. The convergence
rate in ε are 1.3682 in the l1 norm, 0.9030 in the l2 norm, and 0.8177 in the l∞ norm (relative
errors) respectively.
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Fig. 4.2. Example 2, at time t=0.38, x3=0. The images, from top to bottom, represent the

amplitude of the Gaussian beam solutions (Left)
∣

∣Φε

GB

∣

∣ and the relative error (Right)
|Ψε−Φ

ε

GB |
‖Ψε‖∞

for different ε= 1
512

, 1
1024

, 1
2048

.

Example 1. We consider the case of zero external fields, i.e. V (x)=0 and A(x)=0.
The initial condition for the Dirac Equation (1.1)-(1.2) is

Ψε
0(x)= e−

|x|2

4d2 χ, χ=(1,0,0,0)T , d=
1

16
.

In this example, Ψε
2=Ψε

3=Ψε
4=0 and

iε∂tΨ
ε
1=Ψε

1,

which can be explicitly solved as

Ψε
1(t,x)= e−

|x|2

4d2 e−
it

ε .

The l1, l2, and l∞ errors between the solutions of the Dirac Equation Ψε and those
of the Gaussian beam method Φε

GB for different ε are given in table 4.1. Here we
take t=0.5, the time step and mesh size of the Gaussian beam method satisfy ∆t=
O(ε

1
2 ),∆y=O(ε

1
2 ). We plot the wave amplitudes and absolute errors for different ε
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Fig. 4.3. Example 2, at time t=0.56, x3=0. The images, from top to bottom, represent the

amplitude of the Gaussian beam solutions (Left)
∣

∣Φε

GB

∣

∣ and the relative error (Right)
|Ψε−Φ

ε

GB |
‖Ψε‖∞

for different ε= 1
512

, 1
1024

, 1
2048

.

in figure 4.1, from which one can see that the Gaussian beam method is more accurate
for small ε and converges at nearly first order with respect of ε. On the other hand,
the absolute error could be large for big ε, e.g. the absolute l∞ error of the Gaussian
beam solution could be 0.500 for ε= 1

256 . This is because we consider the asymptotic
numerical method. The approximations may not good when the asymptotic parameter
ε is not small enough. However, the l∞ error decays almost linearly in ε, and we can
still conclude that the Gaussian beam method is accurate and efficient in the semi-
classical regime ε≪1.

Example 2. We again consider the case of zero external fields. Then the initial
condition for the Dirac Equation (1.1)-(1.2) is

Ψε
0(x)= e−

|x|2

4d2 eiS0(x)/εχ(x), d=
1

16
,

S0(x)=
1

40
(1+cos2πx1)(1+cos2πx2),

χ(x)=

(
1

2

(√
(∂x1

S0)2+(∂x2
S0)2+1+1

)
,0,0,

1

2
(∂x1

S0+∂x2
S0)

)T

.
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Fig. 4.4. Example 3, the amplitude of Gaussian beam solutions at different time, here ε=
1

512
, x3=0. Note that at time t=1 and t=8 the amplitude is cut since it is too large near caustics.

In this example, Ψε
2=Ψε

3=0 and

iε∂tΨ1=Ψ1− iε∂x1
Ψ4−ε∂x2

Ψ4,

iε∂tΨ4=−iε∂x1
Ψ1+ε∂x2

Ψ1−Ψ4,

which reduces to a two dimensional problem and can be solved by the time-splitting
spectral method in only one time step. Due to the compressive initial velocity, caustics
will form at about t≈0.56. The l1, l2, and l∞ errors between the solutions of the Dirac
equation Ψε and those of the Gaussian beam method Φε

GB for different ε are given
in tables 4.2-4.3, for t=0.375 and t=0.56 respectively. We remark that in table 4.3
we compare the relative l∞-error since caustics form. We plot the wave amplitudes
and relative errors for different ε in figures 4.2-4.3, for which, we can draw the same
conclusions as in Example 1.

Example 3 (Harmonic oscillator). We consider the case of zero external magnetic

potential A(x)=0 and quadratic external electric potential V (x)= 1
2 |x|

2
. The initial

condition for the Dirac Equation (1.1)-(1.2) is

Ψε
0(x)= e−

(x1−0.1)2+(x2+0.1)2+x
2
3

4d2 χ, χ=(1,0,0,0)T , d=
1

16
.

This is a full 3D problem. The time splitting spectral method is very expensive
because of the large requirement of memory for very small ε, for which the Gaussian
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beam method is accurate. In figure 4.4, we depict the wave amplitude at different
times t. In this example, we choose ε= 1

512 . We can see that the wave packet moves
in circles due to its interaction with the harmonic external potential.

5. Conclusion
In this work, we developed the Gaussian beam method for the Dirac Equation.

The Eulerian Gaussian beam method provides a simple way to compute the Hessian
matrices for the phase, as in [10]. The proposed method is shown numerically to be
accurate and efficient. The required mesh size and time step should be of O(

√
ε).

Compared to the traditional numerical method, which requires mesh size to be O(ε),
the computational cost for our method is cheap, especially when ε is very small. A
more interesting question is to simulate graphene by using the Gaussian beam method.
We are currently investigating this important model and hope to report our progress
in the near future.

Appendix. In this appendix, we give the detailed derivation of the Lagrangian
Gaussian beam method for the Dirac Equation. For convenience, we drop the super-
script ± in (3.1):

φε
la(t,x,y0)=u(t,x,y)eiT (t,x,y)/ε, (A.1)

with

T (t,x,y)=S(t,y)+ξ(t,y) ·(x−y)+
1

2
(x−y)TM(t,y)(x−y), (A.2)

u(t,x,y)= ũ0(t,x,y)+εũ1(t,x,y), (A.3)

ũ0(t,x,y)=u0(t,y)+(x−y) ·∇yu0(t,y)+
1

2
(x−y)T (∇yyu0(t,y))(x−y), (A.4)

ũ1(t,x,y)=u1(t,y).

Without loss of generality, we can assume that Π(x,∇yS)u0=u0. Taking this into
(1.1) and matching the leading order and the next-to-leading order of ε, one obtains

(
∂tT +

dy

dt
·∇yT +D(x,∇xT )

)
ũ0=0, (A.5)

i

(
∂tũ0+

dy

dt
·∇yũ0+α ·∇xũ0

)
−
(
∂tT +

dy

dt
·∇yT +D(x,∇xT )

)
ũ1=0. (A.6)

In order to get a nontrivial solution ũ0 6=0 in (A.5), we need

det

(
∂tT +

dy

dt
·∇yT +D(x,∇xT )

)
=0.

Since h(x,ξ) is the eigenvalue of D(x,ξ), one gets

∂tT +
dy

dt
·∇yT +h(x,∇xT )=0. (A.7)

Taking the first and second order derivatives with respect to x in (A.7) gives

∂t(∇xT )+
dy

dt
·∇yxT +∇xh+∇ξh ·∇xxT =0, (A.8)

∂t(∇xxT )+
dy

dt
·∇yxxT +∇xxh+∇xξh∇xxT
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+∇xxT∇ξxh+∇xxT∇ξξh∇xxT +∇ξh ·∇xxxT =0. (A.9)

Considering (A.2) and evaluating (A.6)-(A.9) at x=y yields

∂tS+
dy

dt
·(∇yS−ξ)+h(x,ξ)=0, (A.10)

∂tξ+
dy

dt
·(∇yξ−M)+∇yh+∇ξh ·M =0, (A.11)

∂tM+
dy

dt
·∇yM+∇yyh+∇yξhM+M∇ξyh+M∇ξξhM =0, (A.12)

i(∂tu0+α ·∇yu0)+

(
∂tS+

dy

dt
·(∇yS−ξ)+D(x,ξ)

)
u1=0. (A.13)

We choose the beam center that satisfies

dy

dt
=∇ξh,

so that (A.10)-(A.12) can be written as

dξ

dt
=−∇yh,

dS

dt
=∇ξh ·ξ−h,

dM

dt
=−∇yyh−∇yξhM−M∇ξyh−M∇ξξhM.

To obtain the transport equation for u0, we apply the projection Π(x,∇yS) to (A.13):

Π(x,∇yS)(∂t+α ·∇y)u0=0.

This is the solvability condition for u1, and one can finally get the ODE for Lagrangian
Gaussian beam amplitude after a series of calculations:

du0

dt
=−1

2
(∇y ·ω)u0+Au0.

Remark 5.1. The amplitude (A.3)-(A.4) is expanded to higher order in both the
Taylor expansion and the asymptotic expansion, which is different from the Gaussian
beam method for the Schrödinger Equation [10]. The reason is that a higher order
asymptotic expansion is needed for deriving the transport equation for the amplitude
when using the solvability condition. The higher order Taylor expansion should be
used to match the high order asymptotic expansion for the Gaussian beam method.

Remark 5.2. The equation (A.4) can be written in a more general form, e.g.

ũ0(t,x,y)=u00(t,y)+(x−y) ·u01(t,y)+
1

2
(x−y)Tu02(t,y)(x−y).

where u00∈C∞(R4,C4), u01∈C∞(R4,C3×4), and u02∈C∞(R4,C(3×3)×4). Since
there are more freedoms than restrictions, one can easily formulate them as

u01=∇yu00, u02=∇yyu00,

to close the system. This is consistent with equation (A.4).
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[29] E. Schrödinger, Über die kräftefreie Bewegung in der relativistischen Quantenmechanik,
Sitzungsber. Preuss. Akad. Wiss., Phys. Math. Kl., 24, 418–428, 1930.



H. WU, Z. HUANG, S. JIN, AND D. YIN 1315

[30] C. Sparber and P.A. Markowich, Semiclassical asymptotics for the Maxwell-Dirac system, J.
Math. Phys., 44, 4555–4572, 2003.

[31] C. Sparber and P.A. Markowich, Erratum: Semiclassical asymptotics for the Maxwell-Dirac
system, J. Math. Phys., 45, 5101, 2003.

[32] H. Spohn, Semiclassical limit of the Dirac equation and spin precession, Ann. Physics, 282,
420–431, 2000.

[33] N.M. Tanushev, B. Engquist, and R. Tsai, Gaussian beam decomposition of high frequency
wave fields, J. Comput. Phys., 228, 8856–8871, 2009.

[34] N.M. Tanushev, Superpositions and higher order Gaussian beams, Commun. Math. Sci., 6,
449–475, 2008.

[35] B. Thaller, The Dirac Equation, Springer, 1992.
[36] X. Wen, High order numerical methods to two dimensional delta function integrals in level set

methods, J. Comput. Phys., 228, 4273–4290, 2009.
[37] X. Wen, High order numerical methods to three dimensional delta function integrals in level

set methods, SIAM J. Sci. Comput., 32, 1288–1309, 2010.
[38] Y. Xia, D. Qian, D. Hsieh, L.Wray, A. Pal, H. Lin, A. Bansil, D. Grauer, Y.S. Hor, R.J. Cava,

and M.Z. Hasan, Observation of a large-gap topological-insulator class with a single Dirac
cone on the surface, Nature Physics, 5, 398–402, 2009.

[39] D. Yin and C. Zheng, Gaussian beam formulations and interface conditions for the one-
dimensional linear Schrödinger equation, Wave Motion, 48, 310–324, 2011.

[40] D. Yin and C. Zheng, Composite coherent states approximation for one-dimensional multi-
phased wave functions, Commun. Comput. Phys., 11, 951–984, 2012.


