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A DYNAMIC MODEL OF OPEN VESICLES IN FLUIDS∗

ROLF J. RYHAM† , FREDRIC S. COHEN‡ , AND ROBERT EISENBERG§

Abstract. A hydrodynamic model of open vesicles in solution is presented to study the enlarge-
ment and shrinkage of a pore in a biological lipid membrane. The vesicle is modeled by diffusive
interfaces. Transport equations permitting consistent treatment of the pore and pore rim are intro-
duced. Dynamic simulations implemented by the finite difference method show the evolution of a
pore in stretched vesicles. Simulation results include direct visualization of the membrane shape,
water motion, and dissipation of energy. Comparison is made with data obtained from microscopy
experiments.
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1. Introduction

Biological membranes are composed of lipid molecules. Due to their hydrophobic
and hydrophilic structure, the lipid molecules form two layers called the lipid bilayer.
The bilayer separates regions of water and allows the membrane to act as a barrier. A
vesicle is a small, fluid compartment surrounded by the bilayer. In biological processes
such as exocytosis, the membrane of two vesicles merge to form a single bilayer. Pore
formation is a similar topological change occurring in a single vesicle. The continuous
vesicle is stretched so far that a pore forms in the membrane. The inner and outer
water regions become connected. The vesicle becomes open.

The opening and closing of a pore plays an important role in biological systems
because the pore allows movement between otherwise isolated compartments. In
the past two decades, experimentalists have learned to create and measure pores by
light microscopy. A well established mathematical model of this phenomenon was
developed in [1]. The theory in [1] is widely used ([11, 14, 19]) to understand the
evolution of a pore. For example, it has been adapted by [20] to measure edge tension
as a function of lipid composition. The theory of [1] imposes a geometry. The vesicle is
spherical and the pore is round. Studying the simplified geometry has the advantage
that a rate equation for the pore can be explicitly coupled with a continuity equation
for the water. Parameters for the system of ordinary differential equations arising
from the theory can be found that yield fits to the data.

In our model, we start with a pore and approximate the classical Helfrich energy
([10]) of an open vesicle using a diffusive interface, i.e. phase field, approximation.
The novelty is that the shape of the vesicle is a variable and we calculate the line
and surface forces from variational derivatives of the energy function. As a corollary,

∗Received: August 19, 2011; accepted (in revised form): December 2, 2011. Communicated by
John Lowengrub.

†Fordham University, Department of Mathematics, 441 E. Fordham Road, Bronx, NY 10458,
USA (rryham@fordham.edu).

‡Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1750 W
Harrison St, Chicago, IL 60612, USA (Fredric Cohen@rush.edu).

§Rush University Medical Center, Department of Molecular Biophysics and Physiology, 1750 W
Harrison St, Chicago, IL 60612, USA (beisenbe@rush.edu).

1273



1274 OPEN VESICLES IN FLUIDS

the exchange of energy from the membrane to the fluid, as well as the motion of
the vesicle are self consistent. We emphasize that models which assume a particular
shape can have quite different properties from reality. Imposing a shape is an artificial
constraint and is equivalent to injecting energy into an otherwise isolated system.

In [28], Wang and Du developed a phase field model for multicomponent lipid
membranes. Building on earlier work with Chun Liu [3], they studied the equilibrium
shapes of vesicles with spatially varying membrane properties. Their numerical ex-
periments are in strong qualitative agreement with known multicomponent membrane
shapes. Their approximation is justified by asymptotic expansions. We have adapted
the phase field functionals they used [28] to model a single pore in a vesicle.

The hydrodynamics of open vesicles present significant modeling challenges. Be-
cause an open vesicle exerts both line and surface forces, the model must capture
hydrodynamic forces supported on one and two dimensional subsets. Because the
pore is an opening in the membrane, the model must track a mathematical surface
with a boundary in a kinematically consistent way.

The diffusive interface method treats the membrane region as a thin, bulk ma-
terial. The membrane, along with the aqueous solution, are viewed as a single fluid
with a smoothly varying material property. Transporting the diffusive interface by
the fluid changes the membrane’s energy. In return, the diffusive interface imparts a
force on the ambient fluid. The equations are discretized on a fixed computational
domain. The boundary is usually the fluid far from the membrane. Since the diffusive
interface is defined by a bulk field, one avoids tracking the membrane explicitly and
simple boundary conditions may be employed.

We represent an open vesicle using two labeling functions. We define a function
φ(x,t) by labeling the interior aqueous region, a diffuse interface containing the mem-
brane, and outer aqueous region −1,0, and 1. Continuing, we define φ̄(x,t) by labeling
the part of the diffuse interface corresponding to water and the part corresponding
to lipid by −1 and 1 respectively. φ(x,t)=0 and φ̄(x,t)=1 implies x is a lipid and
otherwise x is a water. The role of the labeling functions is illustrated in figure 3.1 B.

The use of multiple order parameters in the diffusive interface framework has en-
joyed successful application in studying morphologically complex materials and mix-
tures [12, 23, 28]. Our use of two labeling functions to describe the dynamics of an
open vesicle in a fluid differs from these approaches in several respects. The labeling
functions define an aqueous region interior and exterior to the vesicle, the bilayer, and
the aqueous pore region. The dynamics of a lipidic pore is a non-equilibrium prob-
lem with a well defined exchange of energy from stretching to pore enlargement, and
viscosity limited outflow. Since our model consistently reproduces the experimentally
recorded opening and closing of a lipid pore, we believe our particular treatment of the
kinematic relationships is the appropriate way to model a rich set of hydrodynamic
membrane morphological changes.

The convergence of phase field models of bending energy was established in [5]
using asymptotic expansions. For the time dependent problem, [4] showed that a
related hydrodynamic phase field model of a vesicle with bending energy was well
posed. The theoretical justification for the convergence of phase field models to the
classical continuum mechanical models of vesicle membranes has a long history be-
ginning with the phase transition theory [2, 8, 16] leading up to today’s higher order
theories [17, 21]. There are also several other successful methods for modeling vesicle
membranes in solution. In [15, 22, 25], immersed boundary and boundary integral
methods capable of following large deformations of complex membranes over long time
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scales were proposed. To our knowledge, there are no three dimensional continuum
simulations which describe open vesicles in solution.

The details of the diffusive interface energy are given in Section 2. The equations
of motion are defined in Section 3. We used modified transport equations for φ(x,t)
and φ̄(x,t) that properly reflect the kinematics of the membrane and pore. These
important details, as well as the derivation of the force, are discussed in Section 3. In
Section 3.1, we use the scaling relationships of the energy to derive the nondimensional
coefficients. Section 4 gives the simulation results visualizing the membrane shape,
water motion, and dissipation of energy, as well as comparison with experimental
results. Details of the discretization method are also found there.

Finally, we remark that biological membranes and vesicles are complicated mate-
rials involving several components and multi-scale interactions. The problem we are
considering here deals with a highly simplified membrane model system. Although
vesicles can be quite complicated structures, for brevity we will refer to a fluid com-
partment formed by the simple bilayer as a vesicle.

The challenge is to know how nature solves the problems of membrane construc-
tion and vesicle dynamics. Since we do not know what resolution is needed to describe
the features of the bilayer, our approach is to use a rather simple model, and then
as it fails to reproduce specific important experimental phenomena, to add additional
structural features, e.g., inner and outer lipid leaflets, proteins, and see how the ad-
ditions help explain the data.

2. Diffusive interface functional

In this section, we introduce functionals used to approximate the classical contin-
uum lipid membrane energy. Define the cutoff functions

α(p)=
1

2
(tanh(ξp)+1), ᾱ(p)=sech2(ξp), ξ >0.

The role of these cut-off functions will be explained below. Define the functionals
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Here D is the three dimensional computational domain. The function F (p)= 1

4
(p2−

1)2 is a double welled potential and ǫ is a small, positive parameter related to the
thickness of the diffuse interface. The functional W approximates the mean curvature
squared energy of the membrane surface, L approximates the circumference of the
pore, and A approximates the membrane surface area. Define

Ẽ= bW +jL+s
(A−Ar)

2

2Ar

+wA. (2.4)

Ẽ approximates the Helfrich energy of the vesicle. The first term in (2.4) is the bending
energy of the vesicle. It is the energetic contribution coming from the splay of the lipid
molecules [10]. The second term is the edge energy1. When a pore is formed, lipid

1We distinguish between the terms line energy and edge energy. The former refers to the energy
of the boundary of a domain within a multicomponent membrane.
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molecules reorient so that the hydrophilic head groups shield the membrane interior
from water. The edge energy is proportional to pore circumference. The third term
is a Hookean relationship accounting for the mechanical energy stored in excess area.
It can also be used in a penalty formulation to enforce the constraint A=Ar. Here,
Ar is the area of the unstretched membrane. The membrane is inextensible when the
mechanical modulus s is large. The last term is surface energy. The coefficients b,j
and w are the bending modulus, edge tension, and surface tension respectively.

In (2.1) and (2.2), the integrands are multiplied by α(φ̄) so that only the compo-
nent of the interface corresponding to membrane contributes to the total energy. In
(2.3), the factors in the integrand approximate the area density of the two interfacial
regions defined by φ and φ̄. The rim of the pore is located along the intersection of
these regions. The product of the respective area densities in (2.3) yields a satisfactory
approximation of the circumference of the pore.

To stabilize the method, we use the energy

E= Ẽ+
m1

2
P 2+m2W̄ , (2.5)

where

W̄ =
3

4
√
2

∫

D

ǫ

[

∆φ̄− 1

ǫ2
F ′(φ̄)

]2

dx, P =

∫

D

(∇φ ·∇φ̄)2dx (2.6)

are auxiliary functionals. Here m1 is a penalty parameter for the constraint P =0.
This constraint leads to orthogonal interfaces. The prefactor m2 is a small, stabilizing
parameter. In the sequel, Eφ and Eφ̄ denote the Euler-Lagrange derivative ([7]) of E

with respect to φ and φ̄, respectively.
The following identities will be used to derive b,j,s, and w from known, physical

constants. Let D=R
3 and for λ>0, define φλ and φ̄λ by a dilation of space and

define ǫλ=λǫ. Making the change of variables yields

Aλ=λ2A, Lλ=λL, Wλ=W. (2.7)

Here, the subscript λ is used to denote the functionals’ dependence on φλ, φ̄λ, and
ǫλ.

3. Equations of motion

To study the time course of the pore, we must evaluate the velocity of the mem-
brane and aqueous solution. The velocity is determined by the equations of motion:

ut+u ·∇u+∇p−η∆u=f, (3.1)

divu=0, (3.2)

φt+α(φ̄)u ·∇φ=−γEφ, (3.3)

φ̄t+ ᾱ(φ)u ·∇φ̄=−γ̄Eφ̄, x∈D, t>0. (3.4)

Here, u is the velocity of a water molecule in the water region and the velocity of a
lipid molecule in the membrane. p is the pressure. Equations 3.1 and 3.2 comprise
the Navier-Stokes equations. The force exerted by the diffusive interface is given by

f =α(φ̄)Eφ∇φ+ ᾱ(φ)Eφ̄∇φ̄. (3.5)

By equation 3.2, it is assumed that lipid and water are incompressible. We are assum-
ing the vesicle and surrounding water have constant density. We are also assuming
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that the internal friction of the fluid, whether water, lipid, or at the water lipid in-
terface, is Newtonian with a constant viscosity η. The viscosity of lipid membrane is
typically greater than that of the solution. However, the membrane is very thin (a
few nanometers) when compared to the overall geometry of the vesicle. Thus, the vis-
cous dissipation in the membrane is much smaller than in the bulk aqueous medium.
As the densities of water and lipid are comparable, we assume a constant density.
Equations 3.3 and 3.4 are stabilized transport equations stemming from the condition
that the labeling functions are carried by the fluid. The numbers γ and γ̄ are small,
positive stabilizing constants.

Equations (3.1-3.5) are complemented by the initial conditions u(x,0)=u0(x),
divu0=0, φ(x,0)=φ0(x), and φ̄(x,0)= φ̄0(x). On the boundary, we assume a no-slip
condition for the velocity and natural boundary conditions for the labeling functions:

u(x,t)=0, φ(x,t)= φ̄(x,t)=1,
∂φ

∂n
(x,t)=

∂φ̄

∂n
(x,t)=0, x∈∂D,t>0, (3.6)

where ∂
∂n

is the outward normal derivative on ∂D.
Cut-off functions are used to modulate the convective term in the transport equa-

tions. In equation 3.3, the convective term is multiplied by the cut-off function α(φ̄).
As a result, φ is convected only where φ̄ takes positive values. In particular, the
region of the diffusive interface inside the pore is not affected by the efflux of water.
In equation 3.4, the label φ̄ is convected where φ takes values close to zero, that is,
along the rim of the pore.

Equation 3.5 is derived using the principle of virtual work. The derivation is
a modification of techniques developed in [6]. The modification deals mainly with
defining a suitable variation of the domain based on the kinematic conditions described
in the previous paragraph.

A B

lipid

pore

(−1,1)

(1,1)

(−1,−1)

(1,−1)

D

Fig. 3.1. (A) Cross sections of a vesicle with a hole as a function of time. (B) Illustration of
the pore defined by a pair of labeling functions (φ(x),φ̄(x)). The diffusive interface {φ≈0} is drawn
by a solid line and the diffusive interface {φ̄≈0} is drawn by a dashed line.

3.1. Nondimensional coefficients. We place a vesicle within a cylindrical
aqueous medium of radius λµm. We observe the vesicle over a characteristic time τ s.
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The constants b,s,j and w are defined by

b=106
b0τ

2

ρ0λ5
, j=109

j0τ
2

ρ0λ4
, s=1012

s0τ
2

ρ0λ3
, w=1012

w0τ
2

ρ0λ3
. (3.7)

Here b0 pNnm is the experimentally measured bending modulus, s0 pNnm−1 the
stretching modulus, j0 pN the edge tension, w0 pNnm−1 the surface tension, and ρ0
gcm−3 the density of the solution. A realistic bending modulus is 20 pNnm and real-
istic surface tension is 1 pNnm−1. As an illustration, a giant vesicle in an experiment
can typically be tens of microns in diameter and changes can occur over a time course
seconds long. This scale yields a b on the order of 0.1 and w on the order of 107.
The difference in magnitude of these constants suggests that bending, compared to
surface tension, is irrelevant for the dynamics of large vesicles. To contrast, biological
vesicles have diameters in the tens to hundreds of nanometers. Only in this regime
and smaller are the constants b and w then comparable.

Let 〈u,p,φ,φ̄〉 be a smooth solution of equations (3.1-3.6). Form the dot product
equation (3.1) with u and integrate over D. Multiply (3.3) by Eφ and (3.4) by Eφ̄ and
integrate over D. Integrating by parts using (3.2) and (3.6) then gives the energy law

d

dt

(
∫

D

1

2
|u|2dx+E

)

+

∫

D

η|∇u|2+γ|Eφ|2+ γ̄|Eφ̄|2dx=0. (3.8)

The details of a related calculation may be found in [4, 5]. Using (2.7), make the
change of variables t̂= τt s, x̂=λx µm, and ǫ̂=λǫ µm. Matching the coefficients in
(3.8) with the dimensional coefficients b0,s0,j0, and w0 then yields (3.7). Readily
apparent from this calculation is η=109η0τ(ρ0λ

2)−1, where η0 cP is the dynamic
viscosity of the solution.

4. Simulation results

4.1. Discretization. To simulate the vesicle through equations (3.1-3.6), a
spatial discretization by the finite difference method was developed. We simplified
the problem to two dimensions by assuming a cylindrical geometry. Stretched vesicles
with pores are axially symmetric, as can be seen in the experimental images of [11].
We assumed the vesicle was located in the rectangle (0,1)×(0,L). A fully implicit,
backward Euler scheme was used in the time integration. For simplicity, the convective
term was dropped from the Navier-Stokes equation. This assumption was justified by
the fact the Reynolds number of flow in these biological systems is on the order of
10−2.

A Picard iteration between the Stokes system and the parabolic sub-systems
was used to solve for the velocity-pressure pair and the diffusive interface transport
equations simultaneously. The Stokes system was solved using the preconditioned
conjugate gradient routine found in [9], Algorithm 22.7.3. A mixed Picard-Newton’s
method was used to deal with the gradients of the discrete functional and the con-
vective term. The linear systems were solved by SSOR preconditioned conjugate gra-
dients. The stabilizing coefficients ǫγ and ǫγ̄ were small when compared to (∆tk)−1.
The condition number of the Jacobian resulting from the discretization of stabilized
transport equations was consequently not large. The algorithm was implemented in
C.

For the spatial discretization, a uniform 128 by 256 grid was used. The diffuse
interface thickness ǫ was chosen to be three times the mesh spacing ∆x. This ensured
that the interface was nicely resolved but remained thin when compared to the overall
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Fig. 4.1. Energy as a function of time. (A) In the rapid opening stage, mechanical energy
(hashed curve) is converted into kinetic energy (dashed curve) and edge energy (solid curve). Bend-
ing energy (dotted curve) is relatively constant. The kinetic energy increases briefly in the rapid
closing stage. (B) Total energy is nonincreasing.

geometry of the vesicle. For the time integration, a uniform time step ∆tk=10−4

was used. The stability of the time integration, large fluid viscosity, stabilization
parameters, and small step size ensured the monotonicity of energy. At each time the
total energy was seen to be nonincreasing (figure 4.1 B). The radius of the pore was
calculated by averaging the r-coordinate of the overlap of the two diffusive interfaces.
In the numerical experiments, the constraint and stability constants were γ= γ̄=10−2,
m1=103, and m2=0.1 respectively.

t 0.75s 1.25s 2.0s 2.75s 3.5s
‖φh−φH‖L2 0.097 0.085 0.081 0.079 0.077
‖φ̄h− φ̄H‖L2 0.012 0.018 0.021 0.021 0.021
‖φh−φH‖L∞ 0.229 0.281 0.280 0.275 0.269
‖φ̄h− φ̄H‖L∞ 0.205 0.244 0.246 0.246 0.246

‖uh−uH‖2/‖uH‖L2 0.126 0.070 0.061 0.070 0.091

Table 4.1. Mesh independence: Comparison of simulation on 128×256 and 64×128 grids.

Numerical tests were performed to check the sensitivity of the simulation with
respect to the grid size and with respect to the auxiliary parameters. In the first
test, the simulation variables φh, φ̄h, and uh defined on a fine, 128 by 256 grid were
compared against the simulation variables φH , φ̄H , and uH defined on a coarse, 64
by 128 grid. In both cases the computational domain was (0,1)×(0,2) and all other
physical parameters and auxiliary parameters were the ones used in the experimental
setup described in Section 4.2. In order to keep the diffusive interface thickness
constant, ǫ was set to 6∆x on the fine grid and to 3∆x on the coarse grid. In table
4.1, we see that the fine and coarse grid solutions differ by roughly 10% in the L2-
norm throughout the range of the simulation. The labeling functions differ in the
L∞-norm by roughly 20%, implying that the position of the diffusive interface differs
by only a few grid points. In particular, the position of the vesicle and velocity are
stable with respect to the grid size. To show that the dynamic is governed primarily
by the diffusive interface energy, we also explored the dependence on the auxiliary
constants. We compared the simulation when γ= γ̄=10−2, m1=103, and m2=0.1,
the values used in the numerical experiments, against the simulation with the altered
values γ= γ̄=2 ·10−2, m1=0.5 ·103, and m2=0.2. We have plotted the pore radius



1280 OPEN VESICLES IN FLUIDS

0

1

2

3

4

0 1 2 3 4
s

µmA

r

r r r
r
r r
r r
r r r r r r r

r r r r r r r r
r r r r rr r r

r r r
r r
r r r r r r r rr r r rr r rr r r r r r r r r r r r r r

r r
r r r
r r r r
r

r

0

1

2

3

4

0 1 2 3 4
s

µmB

Fig. 4.2. Experimental and simulated pore radius as a function of time. (A) Microscopy data
[1] for a vesicle of radius 20µm in solution with η0 = 20cP. (B) The same vesicle simulated with
s0 = 0.045, w0 = 0, b0 = 20, j0 = 2.5, τ = 0.1, η0 = 30, and λ= 40. Solid line: γ = γ̄ = 10−2, m1 = 103,
and m2 = 0.1. Dashed line: γ = γ̄ = 2 ·10−2, m1 = 0.5 ·103, and m2 = 0.2.

as a function of time for two sets of values for γ, γ̄, m1, and m2 in figure 4.2 B. The
solid line corresponds to the values used in the numerical experiment while the dashed
line corresponds to the altered values. We see that the overall dynamic is not greatly
effected by doubling and halving the auxiliary values.

The fluid was assumed initially at rest. The vesicle was initially a sphere with
radius half of the domain. A pore was introduced by defining a sphere one twentieth
the radius of the domain, centered at the pole of the vesicle. Our model does not
spontaneously form a pore. The opening and closing of the pore involves the geometry
of the lipid molecules at a length scale a few nanometers in diameter, much smaller
than considered by classical continuum mechanical models. The exact mechanism
governing the opening and closing of a pore is itself an interesting subject and is
beyond the scope of this study. See, for example, [27].

4.2. A large vesicle with infoldings. In the experimental practice of
creating and visually recording a pore, a large vesicle tens of microns in diameter
is placed in solution. These vesicles are not taut, but have small undulations while
maintaining an overall spherical shape. A mechanical tension is introduced by the
photoactivation of fluorescently labeled lipids which in turn leads to an excess of area.
The two dimensional modulus typically associated with this unfolding is s0=0.045.
Furthermore, a solution with viscosity several times that of water is used to slow and
make the experiments easier.

In order to compare the diffusive interface model with the classical experimental
result [1], we chose a solution viscosity 30 times that of distilled water. The spatial
scale λ was chosen so the initially spherical vesicle had a radius of 20 µm and the
surrounding cylindrical fluid region a radius of 40 µm and height 80 µm. We used
the realistic values b0=20 and j0=2.5 for the bending modulus and edge tension
respectively. For this experiment, unfolding is more consequential than surface tension
and so we set w0=0.

In experiments with vesicles of this size, the life time of the pore is seconds long.
Letting τ =0.1, the nondimensional coefficients in the equations were numerically
comparable and the simulation results yielded a realistic time course. In figure 4.2, the
pore radius as a function of time compares favorably with microscopy data obtained
from [1]. Figure 3.1 A shows the cross section of the vesicle as well as the opening
and closing of the pore. The cross sections show that the overall shape of the vesicle
is spherical. At the length scale of large vesicles, the force due to mechanical tension,
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A B C
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Fig. 4.3. (A) Initially, mechanical tension widens the pore. (B) In the transition from stage
one to stage two, mechanical tension is relaxed. (C) In the the closing stages, edge tension closes
the pore. For clarity, only one third of the arrows are plotted. (D) Initially the flow is concentrated
in the pore but quickly develops around the pore. (E,F) In the closing stages, flow is more in plane
with the pore.

a spatially constant multiple of the surface normal, is orders of magnitude larger than
bending and edge tension. Thus, the increase in energy associated with a deviation
from a spherical shape is much larger than the change in energy associated with the
widening and closing of the pore. Many biological vesicles are much smaller than this,
as we shall soon see, some as small as 50 nm. The effect of surface tension is more
pronounced for smaller vesicles. Note that in this experiment, the diffusive interface
represents the apparent location of the membrane. The undulations occurring at a
much smaller length scale are not resolved.

4.3. Comparison and discussion. The simulation captures the experimen-
tally well known, three stage form of the pore radius as function of time. Preceding
the first stage, a mechanical tension is imposed by assuming the vesicle has an excess
area of four percent ([11]). A small pore is introduced. The presence of the pore
permits the vesicle to lose area. As seen in figure 4.3 A, a rapid widening, stage one,
is induced by diffusive interface forces pointing away from the pore. In figure 4.3 D,
fluid leaks from the interior of the vesicle. In figures 4.1 A and 4.2 B, one sees that
the maximum radius is reached and most of the energy dissipated in one tenth of the
life-time of the pore.

Stage two, the linear closing, follows. The area of vesicle has assumed the resting
value and the length of the rim of the pore is the primary source of energy. In figure
4.3 C and E, the force pointing inward to the pore generates a contractile motion of
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Fig. 4.4. Simulation results for an osmotically swollen vesicle of radius 50 nm in solution
η0 = 1, with s0 = 60, w0 = 1, b0 = 20, j0 = 2.5, τ = 10−8, and λ= 0.1. (A) Percent leak out of vesicle
volume (solid line) and sphericity (dashed line). Sphericity is defined as A/As−1, where As is the
area of the spherical zone with the identical volume and pore radius as the vesicle. (B) Pore radius
as a function of time.

the fluid. The rate of contraction is quite small when compared to stage one.

The pore dynamic concludes with the third, rapid closing stage. As the pore
becomes smaller, the curvature increases which in turn increases the radial force due
to edge tension, accelerating the pore closure. The water in the interior of the vesicle,
no longer affected by Laplace pressure, is almost completely static. The pore seals
due to diffusive effects of the interface. This occurs when the radius of the pore is
comparable to the diffusive interface thickness.

4.4. A small osmotically stretched vesicle. The creation of a pore by
osmotic swelling is a process with considerable interest to biologists. Hemolysis, the
leaking out of the contents out of a red blood cell, has been studied and observed by
clinicians for centuries. Encouraged by the agreement of the simulation with exper-
imental data for large vesicles, we proceed to simulate a small, osmotically swollen
vesicle.

Due to dimensional scaling, small vesicles can withstand the large pressure associ-
ated with osmotic gradients by increasing their area slightly. The stretching modulus
s0=60 associated with the excess area per lipid is much larger than the one due to
unfolding ([13]). The stretching tension plus the surface tension w0=1 for submicron
vesicles results in a significant Laplace pressure.

We simulated a vesicle with radius 50 nm in a solution of distilled water. In
order to resolve the time course, we chose a time scale tenths of microseconds long
by setting τ =10−8. The pore radius as a function of time is plotted in figure 4.4 B.
Qualitatively, the functional form of the graph is very similar to that of large vesicles.
The pore reaches a maximum radius that is a significant fraction of the overall vesicle
size. The linear closing stage is not as well defined as for large vesicles due to the
nonzero surface tension w (comparison not shown.) In figure 4.4 A, we have also
plotted the percent outflow and sphericity of the vesicle as a function of time. The
vesicle becomes slightly elliptical in stage one and is spherical after the pore closes.
The total outflow of fluid represents roughly 5% of the vesicle volume. In this case,
the bilayer also assumes a shape very close to a sphere. This shows that although
there is a steady efflux of water from the vesicle interior, the total outflow is small
enough to not significantly alter the shape while the vesicle sheds excess area. Since
mechanical tension is large, the energy dissipation mechanism dictates that the vesicle
minimize surface area with respect to its fluid volume, the change of which is limited
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by the low Reynolds outflow though the pore.

5. Sharp interface limit

Under suitable modeling assumptions, the energy of the open vesicle E enjoys the
sharp interface limit

E0=

∫

Mt

(bH2+w)α0dS+s
(|Mt|α0

−Ar)
2

2Ar

+j|Mt∩M̄t|+m2

∫

M̄t

H2dS. (5.1)

Here Mt and M̄t are smooth, closed, orthogonal surfaces evolving with t and where
Mt∩M̄t represents the rim of the pore. When ξ is large, the function α0(x,t) is a
positive, step wise function taking values close to 1 exterior to M̄t and values close to
0 interior to M̄t. By |Mt|α0

we denote that approximate area of M, namely the surface
integral of α0 over M. By |Mt∩M̄t| we denote the length of the intersection. Here H
is the mean curvature of Mt or M̄t and as before m2 is a small, stabilizing parameter.
Thus the diffusive interface model converges to the classical Helfrich energy of a lipid
bilayer with a hole plus auxiliary terms for the surfaces used to label the position of
the hole.

The modeling assumptions are

φ(x,t)= q(d(x,t)/ǫ)+ǫg1(x,t)+ǫ2g2(x,t)+ . . . ,

φ̄(x,t)= q̄(d̄(x,t)/ǫ)+ǫḡ1(x,t)+ǫ2ḡ2(x,t)+ . . . ,

where d(x,t) and d̄(x,t) are the signed distance function to smooth, closed, transverse
surfaces Mt and M̄t in D respectively. The surfaces Mt and M̄t are the boundaries
of the sets of points where φ and φ̄ are positive respectively, in the limit ǫ=0. The
functions q and q̄ describe the limiting profile of the labeling functions and g1,g2, ḡ1,
and ḡ2 are smooth functions independent of ǫ. We also assume that E is bounded by
a constant independently of ǫ and the other modeling parameters. This assumption is
reasonable since the energy is known (by the dissipation relation (3.8)) to be bounded
by the energy of the initial vesicle.

In [5, 6, 28], a related problem was analyzed for a single diffusive interface ap-
proximation of the Willmore–mean curvature squared–energy with surface area and
volume constraints. Using the assumptions stated above, Theorems 2.1 and 2.2 of [5]
imply that that q(r)= q̄(r)=tanh(r/

√
2) and g1≡ ḡ1≡0. Summarizing the argument,

the energy E is expanded in powers of ǫ. Collecting the lowest order terms, the energy
remains bounded provided q and q̄ are solutions to the ordinary differential equation
q′′−q(q2−1)=0. The boundary conditions (3.6) then imply that q and q̄ are profiles
given by the hyperbolic tangent function. The remaining terms in the expansion of
E involves the square norm of g1 and ḡ1. These terms are bounded independently of
ǫ provided g1 and ḡ1 are identically zero. By making only slight modifications to ac-
count for the term α appearing in the integrand of W and A, we can apply Theorem
4.1 of [5] to recover the sharp interface limit for the surface integrals appearing in
(5.1).

It remains to show that the diffusive interface approximation L converges to the
length of the rim of the pore |Mt∩M̄t|. The constraint functional P was introduced in
[28] to ensure that the diffusive interfaces are effectively orthogonal. We use expansion
and the boundedness of P to conclude that Mt and M̄t are orthogonal. Note that the
gradient of the distance functions are a multiple of the unit normals n and n̄ of Mt and
M̄t respectively. Using the continuity of the functions ∇d and ∇d̄ in a neighborhood
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of the curve Mt∩M̄t, the first term in the expansion of P in ǫ is bounded below by

cǫ−4

∫

Mt∩M̄t

(n · n̄)2dl

for some constant c independent of ǫ. Since this quantity is bounded independently
of ǫ, we infer that Mt and M̄t are orthogonal. Using Lemma 2.2 of [5], the remaining
terms in the expansion of P vanish with ǫ. Thus, the boundedness of P and the
asymptotic assumptions imply that limǫ→0P =0.

The orthogonality of sharp interface limits is now sufficient to imply that the
approximation L actually converges to the length of the rim of the pore. This is
achieved by first assuming that Mt∩M̄t is piecewise linear and passing to the limit
ǫ=0. The general case follows by approximation and noting that, with the asymptotic
assumptions, L is uniformly continuous with respect to Lipschitz deformations of the
curve Mt∩M̄t. Consider the rectangular cylinder Q={(x1,x2,x3) : 0<x3<l,−√

ǫ<
x1,x2<

√
ǫ}. Assume, without loss of generality, that Mt∩M̄t∩Q lies in the x3-axis

and n and n̄ are parallel with the coordinate directions. This assumption is possible
since the interfaces are orthogonal. As ǫ approaches 0, the signed distance functions
d and d̄ are uniformly approximated by the coordinate functions x1 and x2. Using the

identities F (p)=(p2−1)2=(p′)2/2 and limǫ→0

∫

√
ǫ

−
√
ǫ
1

ǫ
q′(s/ǫ)2ds= 2

√
2

3
, we evaluate

the limit

lim
ǫ→0

∫

Q

(

ǫ

2
|∇φ|2+ 1

ǫ
F (φ)

)(

ǫ

2
|∇φ̄|2+ 1

ǫ
F (φ̄)

)

dx=
8

9
l=

8

9
|Mt∩M̄t∩Q|.

To calculate the entire length, cover Mt∩M̄t by a union of such cylinders, noting that
the integrand vanishes exponentially on the exterior of the cover, and the contribution
from the overlap vanishes in the limit ǫ=0. This show that limǫ→0L= |Mt∩M̄t|. This
concludes the demonstration of the sharp interface limit (5.1).

6. Conclusion

The diffusive interface model captures the dynamic shape of an open vesicle where
the membrane and water is impelled by surface and line forces. The numerical method
is stable, encompasses a wide range of length and time scales through scaling parame-
ters, and is capable of producing realistic time courses of vesicles and their flow fields
below the experimentally observable limits. The simulation results for large vesicles
are in good quantitive agreement with classical experiments. The model converts
large amounts of energy stored in mechanical stretching into fluid motion, edge en-
ergy, and heat. The simulations indicate that the overall shape of the vesicle remains
sphere-like throughout the time course.

The model was unable to produce a pore spontaneously. An initial, small pore was
assumed and sealing is an artifact of the diffusive interface representation. Future work
will study functionals for which spontaneous pore formation is an energy minimizing
path.
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[21] M. Röger and R. Schätzle, On a modified conjecture of DeGiorgi, Mathematische Zeitschrift,
254(4), 675–714, 2006.

[22] J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt, and J. Lowengrub, Dynamics of multicomponent
vesicles in a viscous fluid, J. Comput. Phys., 229, 119–144, 2010.

[23] H. Sun, J.J. Brannick, C. Liu, and T. Qian, Diffuse interface method for multiple phase mate-
rials: An Energetic Variational Approach, preprint, 2011.

[24] S.H. Veerapaneni, Y.-N. Young, P.M. Vlahovska, and J. B lawzdziewicz, Dynamics of a com-
pound vesicle in shear flow, Phys. Rev. Lett., 106, 158103, 2011.

[25] P.M. Vlahovska, Y.-N. Young, G. Danker, and C. Misbah, Dynamics of a non-spherical micro-
capsule with incompressible interface in shear flow, J. Fluid Mech. 678, 221–247, 2011.

[26] J.D. Van der Waals, Thermodynamic theory of capillarity assuming continuous change of den-
sity, Natuurk. Verb. Kon. Akad. Amsterdam 1, 1–56, 1892.

[27] J. Wohlert, W.K. den Otter, O. Edholm, and W.J. Briels, Free energy of a trans-membrane pore
calculated from atomistic molecular dynamics simulations, J. Chem. Phys., 124, 154905,
2006.

[28] X. Wang and Q. Du, Modeling and simulations of multi-component lipid membranes and open
membranes via diffuse interface approaches, J. Math. Biol., 56, 347–371, 2008.


