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BEYOND PRESSURELESS GAS DYNAMICS:

QUADRATURE-BASED VELOCITY MOMENT MODELS∗

CHRISTOPHE CHALONS† , DAMIEN KAH‡ , AND MARC MASSOT§

Abstract. Following the seminal work of F. Bouchut on zero pressure gas dynamics, extensively
used for gas particle-flows, the present contribution investigates quadrature-based velocity moments
models for kinetic equations in the framework of the infinite Knudsen number limit, that is, for dilute
clouds of small particles where the collision or coalescence probability asymptotically approaches zero.
Such models define a hierarchy based on the number of moments and associated quadrature nodes,
the first level of which leads to pressureless gas dynamics. We focus in particular on the four moment
model where the flux closure is provided by a two-node quadrature in the velocity phase space and
provides the right framework for studying both smooth and singular solutions. The link with both
the kinetic underlying equation as well as with zero pressure gas dynamics, i.e. the dynamics at the
frontier of the moment space of order four, is provided. We define the notion of measure solutions and
characterize the mathematical structure of the resulting system of four PDEs. We exhibit a family
of entropies and entropy fluxes and define the notion of entropic solution. We study the Riemann
problem and provide entropic solutions in particular cases. This leads to a rigorous link with the
possibility of the system of macroscopic PDEs to allow particle trajectory crossing (PTC) in the
framework of smooth solutions. Generalized δ-shock solutions resulting from the Riemann problem
are also investigated. Finally, using a kinetic scheme proposed in the literature in several areas, we
validate such a numerical approach and propose a dedicated extension at the frontier of the moment
space in the framework of both regular and singular solutions. This is a key issue for application
fields where such an approach is extensively used.

Key words. Quadrature-based moment methods, gas-particle flows, kinetic theory, particle
trajectory crossing, entropic measure solution, frontier of the moment space.
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1. Introduction

The physics of particles and droplets in a carrier gaseous flow field are described in
many applications (fluidized beds, spray dynamics, alumina particles in rocket boost-
ers, . . .) by a number density function (NDF) satisfying a kinetic equation introduced
by [19]. Solving such a kinetic equation relies either on a sample of discrete numeri-
cal parcels of particles through a Lagrangian–Monte-Carlo approach or on a moment
approach resulting in an Eulerian system of conservation laws on velocity moments
eventually conditioned on size. In the latter case, investigated in the present contri-
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bution, the main difficulty for particle flows with high Knudsen numbers (i.e. weakly
collisional flows), where the velocity distribution can be very far from equilibrium,
is the closure of the convective transport at the macroscopic level. One way to pro-
ceed is to use quadrature-based moment methods where the higher-order moments
required for closure are evaluated from the lower-order transported moments using
quadratures in the form of a sum of Dirac delta functions in velocity phase space (see
[20, 13] and the references therein).

Such an approach also allows for a well-behaved kinetic numerical scheme in
the spirit of Bouchut [2] (see references from [15, 8, 4, 16, 5] to [14, 9, 20]), where
the fluxes in a cell-centered finite-volume formulation are directly evaluated from
the knowledge of the quadrature abscissas and weights with guaranteed realizability
conditions and singularity treatment. Such a quadrature approach and the related
numerical methods have been shown to be able to capture particle trajectory crossing
(PTC) in a direct numerical simulation (DNS) context, where the distribution in
the exact kinetic equation remains at all times in the form of a sum of Dirac delta
functions. Such methods can be extended to partially high-order numerical schemes
[18].

In another component of the literature devoted to multiphase semiclassical limits
of the Schrödinger equation [12, 11, 10], the series of Wigner measures obtained from
the Wigner transform for studying the semiclassical limits can be shown to converge
towards a measure solution of the Liouville equation. Such an equation naturally
unfolds the caustics and can generate the proper multiphase solutions globally in
time. Two approaches have been used to solve this equation with a moment approach,
either the Heaviside closure [3] as it is called in [12, 11], or, the one which is related
to the present work, the delta closure (see [12, 11] and references therein). The
latter leads to a weakly hyperbolic system of conservation laws by taking moments
of a Liouville equation exactly identical to the Williams-Boltzmann equation studies
in gas-particle flows previously mentioned. Such approaches naturally degenerate
towards the pressureless gas system of equations in the context of monokinetic velocity
distributions [16, 14, 13, 17].

Numerical algorithms which simulate such systems of conservations laws with
the related delta closure or quadrature-based closure have been proposed in [12, 11]
and [6] independently, from the work for [2, 15] using a naturally kinetic scheme
with finite volume methods. However, many issues must still be tackled in order
to reach fully high order numerical schemes that preserve the vector of moments
inside or at the frontier of the moment space, thus leading to several possibilities
of degeneration from a given number of abscissas to a lower number of abscissas.
In fact, such models are meant to capture a given level of complexity in the phase
space which is fixed in advance by the number of moments and related quadrature
nodes. In some particular situations, for perfectly controlled dynamics, it can be
guaranteed that the solutions will remain smooth and consist in a free boundary
value (contact discontinuities) problem where boundaries separate various numbers of
quadrature abscissas. However, in most cases the numerical schemes have to tackle the
possibility of singular solutions when the complexity of the dynamics goes beyond the
one allowed by the model. In such cases the solution of the resulting system of PDEs
is the viscosity solution and does not reproduce the exact dynamics in phase space.
This induces the formation of measure singular solutions, for which we need a precise
framework. More specifically, even if [1] had set the correct mathematical background
to define general entropic solutions for the pressureless gas system, such a work had
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not yet been performed for higher order moment methods in the cited publications and
no rigorous link has been provided between these and the zero pressure gas dynamics.
This is the purpose of the present contribution for both theoretical and numerical
points of view.

The paper is organized as follows. First we introduce the quadrature-based or delta
closure velocity moment models for kinetic equations and focus on the four moment
model in order to generalize to what can be done to higher orders, but which would be
difficult to expose due to algebraic complications. The behavior at the frontier of the
moment space is characterized as well as the mathematical structure of the system
of conservation laws. We then define entropy conditions and provide, for smooth
solutions, the one-to-one kinetic-macroscopic relation. We then tackle the Riemann
problem and define entropy measure solutions. Three examples of piecewise linear
and singular solutions are then provided for which we rigorously identify the entropic
character of the solution and which are then reproduced numerically.

2. Quadrature-based velocity moment models for kinetic equations

Consider the solution f =f(t,x,v) of the free transport kinetic equation

∂tf+v∂xf =0, t>0, x∈R, v∈R, f(0,x,v)=f0(x,v). (2.1)

The exact solution of this equation is given by f(t,x,v)=f(0,x−vt,v)=f0(x−vt,v).
Defining the i-order moment Mi=

∫

v
f(t,x,v)vidv, i=1, ...,N, N ∈N, the associated

governing equations are easily obtained from (2.1) after multiplication by vi and
integration over v, and are

∂tMi+∂xMi+1=0, i≥0.

For the sake of simplicity, but without any restriction, we will focus our attention
hereafter on the four-moment model















∂tM0+∂xM1=0,
∂tM1+∂xM2=0,
∂tM2+∂xM3=0,
∂tM3+∂xM4=0.

(2.2)

It will be convenient to write (2.2) under the following abstract form

∂tM+∂xF(M)=0, (2.3)

with M=(M0,M1,M2,M3)
t and F(M)=(M1,M2,M3,M4)

t.

2.1. Quadrature inside the moment space. This model is closed pro-
vided that M4 is defined as a function of M. In quadrature-based moment methods,
the starting point to define this closure relation consists in representing the veloc-
ity distribution of f(t,x,v) by a set of two Dirac delta functions, that is a two-node
quadrature:

f(t,x,v)=ρ1(t,x)δ(v−v1(x,t))+ρ2(t,x)δ(v−v2(x,t)), (2.4)

where the weights ρ1(t,x)>0, ρ2(t,x)>0 and the velocity abscissas v1(t,x), v2(t,x)
are expected to be uniquely determined from the knowledge of M(x,t). Dropping the
(x,t)-dependence to avoid cumbersome notation, such a function f has exact moments
of order i=0, ...,4 given by ρ1v

i
1+ρ2v

i
2. The next step then naturally consists in setting

M4=ρ1v
4
1+ρ2v

4
2 , (2.5)
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where ρ1, ρ2 and v1, v2 are defined from M by the following nonlinear system:















M0=ρ1+ρ2,
M1=ρ1v1+ρ2v2,
M2=ρ1v

2
1+ρ2v

2
2 ,

M3=ρ1v
3
1+ρ2v

3
2 .

(2.6)

Lastly, it remains to prove that this system is well-posed, which is the matter of the
next proposition. We refer to [12, 11, 6] for the proof.

Proposition 2.1. System (2.3)-(2.5)-(2.6) is well-defined on the convex phase space
Ω, also called the moment space, given by

Ω={M=(M0,M1,M2,M3)
t, M0>0, M0M2−M2

1 >0}.

Moreover, setting U=(ρ1,ρ2,ρ1v1,ρ2v2)
t, the function U=U(M) is one-to-one and

onto as soon as we set for instance v1>v2. Moreover we have 0<ρ1<M0 and 0<
ρ2<M0.

Proposition 2.1 can be extended to the more general case of a 2k-moment model,
k>1. The velocity distribution is represented in this situation by a set of k Dirac
delta functions, leading to Mi=

∑k
j=1

ρjv
i
j , i=0, ...,2k−1, and M2k=

∑k
j=1

ρjv
2k
j .

2.2. Hyperbolic structure inside the moment space. The two-moment
model, corresponding to k=1 (one-node quadrature), is

{

∂tρ+∂xρv=0,
∂tρv+∂xρv

2=0,

which is the well-known pressureless gas dynamics system. Recall that this model
is weakly hyperbolic (the Jacobian matrix is not diagonalizable) with v the unique
eigenvalue, the characteristic field being linearly degenerate. Since there can be areas
in the solution where a single quadrature node is sufficient at the frontier of the
moment space in order to describe the dynamics, the solution in such zones will satisfy
the previous system of two conservation laws. However we will first work inside the
moment space and leave the behavior at the frontier for the next subsection.

Actually, we will observe in the course of the next section that the four-moment
model (2.3) is equivalent for smooth solutions (only) to two decoupled pressureless gas
dynamics systems associated with (ρ1,ρ1v1) and (ρ2,ρ2v2) respectively. Then (2.3) is
expected to admit two eigenvalues v1 and v2 and to be weakly hyperbolic with linearly
degenerate characteristic fields, as stated in the following proposition.

Proposition 2.2. ([12, 11]) System (2.3)-(2.5)-(2.6) is weakly hyperbolic on Ω and
admits the two eigenvalues v1 and v2, v1 6=v2. The associated characteristic fields are
linearly degenerate.

Proof. For the sake of completeness, we propose here a direct proof of the
eigenvalues v1 and v2 of (2.3)-(2.5)-(2.6). By (2.6), we first easily get















M0=ρ1+ρ2,
M1−v1M0=ρ2(v2−v1),
M2−v1M1=ρ2v2(v2−v1),
M3−v1M2=ρ2v

2
2(v2−v1),
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and then, setting σ0=v1v2 and σ1=−(v1+v2),

(

M0 M1

M1 M2

)(

σ0

σ1

)

=−

(

M2

M3

)

.

This system is invertible in the phase space Ω (M0M2−M2
1 6=0) and uniquely defines

σ0 and σ1 with respect to M:

(

σ0

σ1

)

=
1

M0M2−M2
1

(

M1M3−M2
2

M1M2−M0M3

)

. (2.7)

Then, we have

M4 = ρ1v
4
1+ρ2v

4
2

= ρ1v
3
1v1+ρ2v

3
2v2

= (ρ1v
3
1+ρ2v

3
2)(v1+v2)−(ρ1v

2
1+ρ2v

2
2)v1v2

= −M2σ0−M3σ1,

(2.8)

which finally gives M4 with respect to M. The Jacobian matrix J=∇MF is given by

J=









0 1 0 0
0 0 1 0
0 0 0 1
a b c d









with















a=∂M0
M4,

b=∂M1
M4,

c=∂M2
M4,

d=∂M3
M4.

Using (2.7) and (2.8), the calculations of the last row coefficients eventually lead to

J=









0 1 0 0
0 0 1 0
0 0 0 1

−σ2
0 −2σ0σ1 −2σ0−σ2

1 −2σ1









.

Finally, the characteristic polynomial p(λ) of J is easily shown to equal

p(λ)=(λ−v1)
2(λ−v2)

2.

This concludes the proof.

Propositions 2.1 and 2.2 show that system (2.3)-(2.5)-(2.6) is well-defined and
weakly hyperbolic only on Ω, which gives in particular v1 6=v2 in the interior of the
moment space. At a first glance, this might appear to be restrictive in the sense that
one of the main objectives of the model is to allow particle trajectory crossing, that is
in particular to deal with initial data consisting of two colliding particle packets such
that v1=v2 at each point initially (see for instance Section 7). Thus, in the last part
of the present section, we characterize the behavior at the frontier Γ of the moment
space when M0>0: Γ={M=(M0,M1,M2,M3)

t, M0>0, M0M2−M2
1 =0}.

2.3. Behavior at the frontier of the moment space. As mentioned previ-
ously, it is rather natural to envision the coexistence, in a single smooth moment solu-
tion, of zones where the number of quadrature nodes are different. More specifically,
we will examine the coexistence of zones where only one quadrature node is needed
(v1=v2), that is where M=(M0,M1,M2,M3)

t with M0>0 and M0M2−M2
1 =0, and

zones where M0M2−M2
1 >0 which are inside the moment space Ω, whereas the vector

of moments are smooth everywhere.
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After easy calculations in terms of ρ1, ρ2, v1, and v2, the latter equality M0M2−
M2

1 =0 writes ρ1ρ2(v1−v2)
2=0, so that if the vector (ρ1,ρ2,ρ1v1,ρ2v2)

t exists, this
actually corresponds to the case v :=v1=v2 (still under the assumption ρ1 6=0 and
ρ2 6=0) or to the case where one of the weights is zero. We also note that in both
cases Mk=M0v

k, whatever k is in this case, so that the whole set of moments should
be provided once M0 and M1 are given, in close connection to the case of pressureless
gas dynamics. There are in fact two possibilities:

• M=(M0,M1,M2,M3)
t is such that M0M3−M1M2 6=0: in this case (2.6)

cannot be solved and the vector (ρ1,ρ2,ρ1v1,ρ2v2)
t does not exist;

• M=(M0,M1,M2,M3)
t is also such that M0M3−M1M2=0: in this case (2.6)

can be solved and we have v=v1=v2=M1/M0, together with ρ1 and ρ2
defined by the one-parameter equation ρ1+ρ2=M0. As we will see just
below, the choice ρ1=ρ2=M0/2 is the most natural one when we have to
deal with an isolated point at the frontier of the moment space.

In order to justify the choice ρ1=ρ2=M0/2, we first observe that both conditions

{

M0M2−M2
1 =0,

M0M3−M1M2=0,

are equivalent to conditions
{

e=0,
q=0,

where

{

e=M0M2−M2
1 ,

q=(M3M
2
0 −M3

1 )−3M1(M0M2−M2
1 ),

and we consider ρ1, ρ2, v1, and v2 as functions of (M0,M1,q,e) with M0>0 and e>01.
We then propose to study the asymptotic behavior of these functions when e→0+,
considering that M0>0, M1, and q are fixed. Note that Γ={(M0,M1,e,q)

t, M0>
0, e=0}. We get the following result.

Lemma 2.3. Let M0>0, M1, and q be given. Then we have

lim
e→0+

ρ2=







M0 if q>0,
0 if q<0,

M0

2
if q=0,

lim
e→0+

ρ1=







0 if q>0,
M0 if q<0,
M0

2
if q=0,

lim
e→0+

v2=







M1

M0
if q>0,

−∞ if q<0,
M1

M0
if q=0,

lim
e→0+

v1=







+∞ if q>0,
M1

M0
if q<0,

M1

M0
if q=0,

lim
e→0+

ρ2v2=







M1 if q>0,
0 if q<0,

M1

2
if q=0,

lim
e→0+

ρ1v1=







0 if q>0,
M1 if q<0,
M1

2
if q=0.

1The definitions of e and q naturally appears when we notice that after setting ρ1=
ρ1
M0

, ρ2=
ρ2
M0

,

v1=v1−
M1

M0
, v2=v2−

M1

M0
, solving (2.6) is equivalent to solving















1=ρ1+ρ2,
0=ρ1v1+ρ2v2,
e=ρ1v

2
1+ρ2v

2
2,

q=ρ1v
3
1+ρ2v

3
2,

with e=(M0M2−M2
1 )/M

2
0 and q=((M3M2

0 −M3
1 )−3M1(M0M2−M2

1 ))/M
3
0 .
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Proof. The admissible change of variables (M0,M1,M2,M3)→ (M0,M1,e,q)
allows to write, after easy calculations,

v1=
M1

M0

+
q+
√

q2+4e3

2M0e
, ρ2=

M0e(v1M0−M1)
√

q2+4e3
,

and if q 6=0,

v1=
M1

M0

+
q

M0e

(

1+sign(q)
√

1+4e3/q2
)

2
, ρ2=

M0e

q

(

v1M0−M1

sign(q)
√

1+4e3/q2

)

,

where we have set
sign(q)=

{

1 if q>0,
−1 if q<0.

It is then an easy matter to get the expected results distinguishing between the three
cases q<0, q>0, and q=0. It is then clear by a continuity argument that the proposed
choice ρ1=ρ2=M0/2, when e= q=0, is actually natural.

An important consequence of this lemma is that in the half plane e>0, the region
close to the frontier Γ for a non-zero q corresponds to abscissas going to infinity with
arbitrary small weights. Moreover, when the velocity distributions at the kinetic level
have compact support in the initial distribution, such a property will be preserved in
the dynamics of the system and we want to be able to switch continuously from two-
node to one-node quadrature without pathological behavior on abscissas and weights.

Let us provide a first example where such a behavior is present. We consider a
path in the moment space parametrized by the variable x, such that ρ1=x3, ρ2=1,
v1=1/x, and v2=0. As x approaches zero, the smooth moment vector M=(1+
x3,x2,x,1)t has a very regular limit at the frontier of the moment space along the
lines presented before with an unbounded abscissa. Indeed we have here e=x and
q=1−x3 approaches the fixed non-zero value of 1. Note that if we replace the first
weight by ρ1=x4, we still have an unbounded abscissa even if we converge toward
the point (0,0) in the (e,q) plane (e=x2,q=x(1−x4)).

We thus have to find a framework in a subset of the plane (e,q) such that
the limits are better behaved. A natural choice presented above is the line q=0,
but it this too restrictive. In order to naturally introduce the relevant subset of
Ω, let us consider the other example with ρ1=αxβ , ρ2=1, v1=γxδ, and v2=0,
with α>0, γ >0, β≥0, and δ≥0. As x approaches zero, the moment vector
M=(1+αxβ ,αγxβ+δ,αγ2xβ+2δ,αγ3xβ+3δ)t reaches the frontier Γ of the moment
space2. Two cases are interesting; firstly when β=0, we reach the point (0,0) in
the (e,q) plane asymptotically along the line q/e3/2=(1−α)/α1/2 and no weight is
approaching zero, whereas the two abscissas are joining (see the formulas in the proof
above). Secondly, when δ=0, one of the weights is reaching zero, whereas the two
abscissas remain different at a distance of γ at the limit and we reach the point (0,0)
in the (e,q) plane asymptotically along the line q/(M0e)=γ at the limit x→0 (see
again the formulas in the proof above). We will prove in the following proposition
that the proper framework is a symmetric cone in the (e,q) plane centered at the point
(0,0) corresponding the |q/(M0e)|≤η, where η is a measure of the maximal distance
allowed between the two abscissas.

2The corresponding values of e and q are e=αγ2xβ+2δ and q=αγ3xβ+3δ(1−αxβ).
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Definition 2.4 (Regular path). We define a regular path parametrized by x
in the moment space to be a path Mx=(M0x,M1x,M2xM3x) which admits a limit
as x goes to zero and is at least C1 up to the limit M0. Moreover, we define its
reduced second and third order moments ex=M0xM2x−M2

1x and qx=(M3xM0x−
M3

1x)−3M1x(M0xM2x−M2
1x). Its limit further satisfies e0= ex=0=0 and we assume

ex>0>0, M0x>ν>0, and |qx/(M0xex)|≤η, where η>0.

Proposition 2.5. We then have the following properties:

• limx→0 qx= q0=0.

• the weights and abscissas admit limits ρi0=limx→0ρix, vi0=limx→0vix. If
we assume that ρi0>0 for both i, then v10=v20, or, if one weight approaches
zero, such as ρ10=0 then we have |v10−v20|≤η and η is then a bound on
the distance between the two abscissas.

• M0=(M00,M10,M
2
10/M00,M

3
10/M

2
00)

t.

Proof. It is first clear that limx→0 qx= q0=0 since |qx|≤ηM0xex and e0=0.
Then, easy calculations give

v1−v2=

√

q2

M2
0 e

2
+

4e

M2
0

,

so that by denoting l=limx→0 |qx|/(M0xex)≥0 we clearly have v1x−v2x→ l when
x→0, and η represents an upper bound for v10−v20. Let us now distinguish between
the cases l>0 and l=0. We first note the following expression for q/(M0e):

q

M0e
=(ω1−ω2)(v2−v1), ωi=ρi/M0, ω1+ω2=1.

If l>0, one can write

|ρ1x−ρ2x|=

∣

∣

∣

∣

qx
M0xex

∣

∣

∣

∣

×
1

|v1x−v2x|
×M0x,

and this quantity clearly tends toM00 as x goes to zero. Which means that one weight
approaches zero, ρ10=0 or ρ20=0, and the other one M00 (with ρ1x+ρ2x=M0x).
If l=0, it is clear by the formula for v1 (see the proof above),

v1=
M1

M0

+
q+
√

q2+4e3

2M0e
,

that v10=v20=M10/M00. Using now the definition of ρ1 and ρ2 (see again the proof
above), one easily gets

ω2=
ρ2
M0

=

√

1+4e3/q2+sign(q)

2
√

1+4e3/q2
, ω1=

ρ1
M0

=

√

1+4e3/q2−sign(q)

2
√

1+4e3/q2
,

so that both weights have limits depending on the limit of q/e3/2.
Clearly, M0=(M00,M10,M

2
10/M00,M

3
10/M

2
00)

t, which completes the proof.

A very important consequence of the previous proposition is the fact that along
smooth paths inside the proposed cone which reach the point (0,0) in the (e,q) plane,
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the flux introduced in equation 2.3 is regular up to the frontier of the moment space,
even if the mapping of M onto U is not3.

Proposition 2.6. For any regular path in the moment space satisfying the assump-
tions of the previous proposition, that lives in the proper cone in the (e,q) plane and
smoothly reaches the point (0,0), the flux F(M) is continuous up to the frontier of the
moment space and C1 at (0,0) in any direction inside the proposed cone.

Proof. The proof is rather straightforward when one has noticed the two equa-
tions, the first of which is the expression (2.8) of M4=−σ0M2−σ1M3 as a function
of M2, M3, σ0, and σ1, and the second is the expression of σ0 and σ1:









σ0

σ1









=











q

M0e

M1

M0

+

(

M1

M0

)2

−
e

M2
0

−
q

M0e
−2

M1

M0











.

Finally, following the same lines for the evaluation of the Jacobian matrix of the
flux (see matrix J in Section 2.2), it becomes clear that the flux is continuous and
continuously differentiable in any direction inside the proposed cone. Besides, it can
be easily seen that the expression of the flux as a function of (M0,M1,e,q)

t becomes

M4

M0

=−

(

q

M0e

M1

M0

+

(

M1

M0

)2

−
e

M2
0

)(

e

M2
0

+

(

M1

M0

)2
)

+

(

q

M0e
+2

M1

M0

)

(

q

M3
0

+

(

M1

M0

)3

+3
M1

M0

e

M2
0

)

.

M4/M0 tends to (M10/M00)
4 when e goes to 0+, which concludes the proof.

Remark 2.1. Let us emphasize that in the various configurations we have proposed
when the convergence toward the frontier of the moment space does not lie inside the
cone |qx/(M0xex)|≤η in the (e,q) plane, the flux can dramatically loose regularity.
It can either have a limit without being differentiable or even not have a limit at
all. The impact of the previous proposition thus becomes clear and sets the proper
framework for solutions which will reach the frontier of the moment space.

Remark 2.2. In the case M0>0, at the frontier of the moment space within the
previous proposed framework, we have e=0, q=0; the model is made of the two
unknowns M0 and M1 and then degenerates to the usual pressureless gas dynamics
which are weakly hyperbolic with a single eigenvalue v=M1/M0. It should be noted
that for smooth solutions, the last two equations of system 2.2 on M2=M2

1 /M0 and
M3=M3

1 /M
2
0 are still satisfied with M4=M4

1 /M
3
0 coherent with the previous limit

obtained for the flux. As a consequence, we can notice, that at least for smooth
solutions, the system of partial differential equations (2.2) can describe the dynamics
inside and at the frontier of the moment space.

3The mapping of M onto U will never be smooth at point (0,0) in the (e,q) plane since the
limit of U will depend on the limit of q/(M0e), whereas the limit value of M in the proposed cone
is always fixed.
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3. Entropy conditions

In this section, we will work in the interior of the moment space and we exhibit
natural entropy inequalities for the following small viscosity system associated with
(2.2):















∂tM0+∂xM1= ε∂xxM0,
∂tM1+∂xM2= ε∂xxM1,
∂tM2+∂xM3= ε∂xxM2,
∂tM3+∂xM4= ε∂xxM3,

(3.1)

which gives in condensed form

∂tM+∂xF(M)= ε∂xxM. (3.2)

Throughout this section, we will consider smooth solutions only. We thus have

∂tM+J∂xM= ε∂xxM with J=∇MF.

Setting A=∇UM, we then get

∂tU+A−1JA∂xU= εA−1∂x(A∂xU). (3.3)

Our objective is to prove that

∂tη+∂xq≤ ε∂xxη, (3.4)

for a natural choice of (η,q) given by

{

η=ρ1S(v1)+ρ2S(v2),
q=ρ1v1S(v1)+ρ2v2S(v2).

(3.5)

Here S denotes a convex function from R to R, and we will especially consider the
case where S(v)=v2α, α≥0. Of course, the densities ρ1, ρ2 and velocities v1, v2
involved in (3.5) are naturally defined by means of the one-to-one and onto function
U=U(M). In the following and with a little abuse of notation, we will consider
without distinction η and q as functions of M or U.

We first observe

∂tη+∂xq = ∂tη(U)+∂xq(U)
= ∇Uη∂tU+∇Uq∂xU
= ∇Uη{−A−1JA∂xU+εA−1∂x(A∂xU)}+∇Uq∂xU.

The following two lemmas, the proofs of which are left to the reader, will be useful in
order to estimate the entropy dissipation rate D defined by

D=∇Uη{−A−1JA∂xU+εA−1∂x(A∂xU)}+∇Uq∂xU.

Lemma 3.1. The matrices J, A, and A−1JA are given by

J=









0 1 0 0
0 0 1 0
0 0 0 1

−v21v
2
2 2v1v2(v1+v2) −2v1v2−(v1+v2)

2 2(v1+v2)









,
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A=









1 1 0 0
0 0 1 1

−v21 −v22 2v1 2v2
−2v31 −2v32 3v21 3v22









, A−1JA=









0 0 1 0
0 0 0 1

−v21 0 2v1 0
0 −v22 0 2v2









.

Lemma 3.2. The gradients ∇Uη and ∇Uq are given by

∇Uη=









S(v1)−v1S
′

(v1)

S(v2)−v2S
′

(v2)

S
′

(v1)

S
′

(v2)









t

, ∇Uq=









−v21S
′

(v1)

−v22S
′

(v2)

S(v1)+v1S
′

(v1)

S(v1)+v1S
′

(v1)









t

,

and we have

∇Uq=∇UηA−1JA.

Before proceeding, let us make the following two remarks. We first note that thanks
to the first Lemma (3.3) with ε=0 inside the moment space,















∂tρ1+∂xρ1v1=0,
∂tρ2+∂xρ2v2=0,
∂tρ1v1−v21∂xρ1+2v1∂xρ1v1=0,
∂tρ2v2−v22∂xρ2+2v2∂xρ2v2=0,

which is equivalent to














∂tρ1+∂xρ1v1=0,
∂tρ1v1+∂xρ1v

2
1 =0,

∂tρ2+∂xρ2v2=0,
∂tρ2v2+∂xρ2v

2
2 =0.

(3.6)

Besides, at the frontier of the moment space, we obtain the pressureless gas dynamics
on a single quadrature node. We then observe that for smooth solutions, thanks to
the remark at the end of the previous section, system (2.3) is nothing but either
two decoupled or one single pressureless gas dynamics system of equations. We then
observe that still with ε=0, D=0, Lemma 3.2 gives

∂tη+∂xq=0, (3.7)

in both cases, for any smooth solution both inside and at the frontier of the moment
space.

Let us go back to the case ε>0. We thus have the following equality:

D= ε∇UηA−1∂x(A∂xU),

from which it is natural to isolate ε∂xxη:

D = ε∇UηA−1∂x(A∂xU)
= ε∇Uη∂xxU+ε∇UηA−1∂xA∂xU
= ε∂x(∇Uη∂xU)−ε∂x(∇Uη)∂xU+ε∇UηA−1∂xA∂xU
= ε∂xxη+ε

(

∇UηA−1∂xA∂xU−∂x(∇Uη)∂xU
)

.
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By Lemma 3.2, we easily get

∂x(∇Uη)∂xU=ρ1(∂xv1)
2S

′′

(v1)+ρ2(∂xv2)
2S

′′

(v2).

We now calculate ∇UηA−1∂xA∂xU=A−t(∇Uη)t∂xA∂xU. Observe first that

∂xA∂xU=









0
0

2ρ1(∂xv1)
2+2ρ2(∂xv2)

2

6ρ1v1(∂xv1)
2+6ρ2v2(∂xv2)

2









,

so that only the last two components of A−t(∇Uη)t are actually needed. Finally, easy
calculations not reported here lead to

A−t(∇Uη)t∂xA∂xU=−
1

(v1−v2)4
(2ρ1(∂xv1)

2X1+2ρ2(∂xv2)
2X2),

where we have set






X1=(v1−v2)
2

(

3
(

S(v1)−S(v2)
)

−2(v1−v2)S
′

(v1)−(v1−v2)S
′

(v2)
)

,

X2=−(v1−v2)
2

(

3
(

S(v1)−S(v2)
)

−(v1−v2)S
′

(v1)−2(v1−v2)S
′

(v2)
)

.

The entropy inequality (3.4) is then valid if and only if

∇UηA−1∂xA∂xU−∂x(∇Uη)∂xU≤0,

that is, setting Si=S(vi), S
′

i =S
′

(vi), and S
′′

i =S
′′

(vi), i=1,2,

(v1−v2)
2ρ1(∂xv1)

2

(

6
(

S1−S2

)

−4(v1−v2)S
′

1−2(v1−v2)S
′

2+(v1−v2)
2S

′′

1

)

+(v1−v2)
2ρ2(∂xv2)

2

(

−6
(

S1−S2

)

+2(v1−v2)S
′

1+4(v1−v2)S
′

2+(v1−v2)
2S

′′

2

)

≥ 0.
(3.8)

A sufficient condition is given by

{

6
(

S1−S2

)

−4(v1−v2)S
′

1−2(v1−v2)S
′

2+(v1−v2)
2S

′′

1 ≥0,

−6
(

S1−S2

)

+2(v1−v2)S
′

1+4(v1−v2)S
′

2+(v1−v2)
2S

′′

2 ≥0.
(3.9)

Let us focus for instance on the first inequality (the second one is treated in a similar
way), and let us consider the left-hand side as a function of v2, for any given v1:

F1(v2)=6(S1−S2)−4(v1−v2)S
′

1−2(v1−v2)S
′

2+(v1−v2)
2S

′′

1 .

Differentiation yields

F
′

1(v2)=4(S
′

1−S
′

2)−2(v1−v2)(S
′′

1 +S
′′

2 ),

F
′′

1 (v2)=2(S
′′

1 −S
′′

2 )−2(v1−v2)S
′′′

2 ,

F
′′′

1 (v2)=2(v2−v1)S
′′′′

2 .

It is then clear that F1(v1)=F
′

1(v1)=F
′′

1 (v1)=F
′′′

1 (v1)=0. Then, provided that
S

′′′′

(v)≥0, ∀v, we easily get by a chain argument based on the sign of the derivative
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and the monotonicity property that F1(v2)≥0, ∀v1,v2. We have thus proved the
following proposition:

Proposition 3.3. Smooth solutions of (3.2) satisfy the entropy inequality (3.4)
for any entropy entropy-flux pair (η,q) defined by (3.5) provided that v→S(v) is a
smooth function from R to R with nonnegative fourth-order derivative. In particular,
the natural choice S(v)=v2α with α≥2 is suitable.

Remark 3.1. Any third-order polynomial may of course be added to the leading
term of S, without changing the sign of the fourth-order derivative. However, if we
focus on (strictly) convex functions v→S(v) in order to get a (strictly) convex entropy
η=η(U), only first-order polynomials may be added without changing the convexity
property.

Remark 3.2. If we consider S(v)=1,v,v2,v3, it is easily checked that (3.9) holds
true with two equalities. In agreement with (3.1), these choices that lead to the pairs
(η,q)=(Mi,Mi+1), i=0, ...,3, are admissible.

Remark 3.3. In the case M0>0, e=0, q=0 with the additional conditions associ-
ated with the connection between the interior and the frontier of the moment space
presented in Subsection 2.3, we clearly have Mk=Mk

1 /M
k−1
0 . In this case, the en-

tropy pairs clearly work also in such a case, for smooth solutions, and admit a smooth
behavior at the frontier of the moment space in the cone we have defined previously.

4. Kinetic-macroscopic relation for smooth solutions

For smooth solutions, we established in the previous section that the four-moment
model (2.2) is equivalent to the following two decoupled pressureless gas dynamics
models















∂tρ1+∂xρ1v1=0,
∂tρ1v1+∂xρ1v

2
1 =0,

∂tρ2+∂xρ2v2=0,
∂tρ2v2+∂xρ2v

2
2 =0,

(4.1)

where ρ1, ρ2, v1, and v2 are defined by the nonlinear system (2.6). The aim of this
section is to prove a rigorous equivalence result, still for smooth solutions, between this
macroscopic model and the free transport kinetic formulation (2.1) when the velocity
distribution is given by a set of two Dirac delta functions. This result is nothing but
a generalization of the one given in [1] for the usual pressureless gas dynamics model.

Proposition 4.1. Let T >0 and ρi(t,x), vi(t,x) in C1(]0,T [×R) for i=1,2. Let us
define

f(t,x,v)=

2
∑

i=1

ρi(t,x)δ(v−vi(t,x)).

Then, ρi and vi solve (2.2), or equivalently (4.1), in ]0,T [×R if and only if

∂tf+v∂xf =0, in ]0,T [×R×R (4.2)

in the distributional sense, i.e. if and only if ∀φ ∈ C∞
c (]0,T [×R) and χ ∈ C∞

c (R),

∫ T

0

∫

R

2
∑

i=1

ρi(t,x)
(

∂tφ(t,x)+vi(t,x)∂xφ(t,x)
)

χ
(

vi(x,t)
)

=0. (4.3)
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Proof. Let us first assume that (4.3) holds. Since the velocity functions vi
are in particular locally bounded, one can successively choose χ ∈ C∞

c (R) such that
χ(v)=vk, k=0, ...,3 for all v=vi(t,x) and then get

∫ T

0

∫

R

2
∑

i=1

ρi(t,x)
(

∂tφ(t,x)+vi(t,x)∂xφ(t,x)
)

(

vi(t,x)
)k

=0

for all φ ∈ C∞
c (]0,T [×R). Invoking the closure relation (2.6), this gives the four-

moment model (2.2), or equivalently (4.1), as ρi(t,x) and vi(t,x) are smooth functions.
Conversely, let us assume that the partial differential equations of (4.1) are satisfied.
Using the mass conservation equations, it is then usual to show that for i=1,2,

ρi(∂tvi+vi∂xvi)=0,

and then multiplying by χ′ for any smooth function χ,

∂tρiχ(vi)+∂xρiχ(vi)vi=0.

Summing over i=1,2 and integrating past a test function φ ∈ C∞
c (]0,T [×R) gives the

expected result (4.3). This concludes the proof.

This proposition allows, as a corollary, to introduce a particular type of solution
which will be called piecewise free boundary C1 solutions. Such solutions correspond
to a discontinuous connection from the interior of the moment space to the frontier
through a contact discontinuity for which the Rankine-Hugoniot solutions are trivially
satisfied as well as the entropy conservation equation (3.7).

Corollary 4.2. We consider the following distribution at the kinetic level:
f(t,x,v)=

∑2

i=1
ρi(t,x)δ(v−vi(t,x)), where ρ1(t,x)>0 and v1(t,x) are taken as con-

stants (or sufficiently smooth in some time interval), whereas ρ2(t,x) is zero except in
a compact connected subset K0 at time t=0 of R, where ρ2(0,x)>0 and v2(0,x) are
two constants (or sufficiently smooth in some time interval) such that v2 6=v1. The
resulting solution at the moment level exhibits two discontinuities at the frontier of the
compact set Kt which is the translation of set K0 at velocity v2; however the system
4.1 as well as the entropy conservation equation (3.7) are satisfied in the weak sense,
that is the equations are satisfied in the usual sense where the solution is smooth and
the Rankine-Hugoniot conditions are satisfied at points of discontinuity.

Proof. Clearly, the moment solution will satisfy the system of conservation
equations everywhere except at the frontier of theKt set. The Rankine-Hugoniot jump
conditions are trivially satisfied at the discontinuities where the mass flux associated to
the first abscissa is ρ1(v1−v2) in the referential of the discontinuity and leads to zero
jump conditions for the part of the flux associated to the first abscissa by continuity,
whereas the mass flux associated to the second abscissa is zero, as usual in contact
discontinuities, which also allows us to conclude the argument. The same reasoning
allows us to conclude that for any entropy-flux pair, the conservation equation is
satisfied in the weak sense.

Let us emphasize the fact that in the region where the second weight is zero
outside the compact set Kt, we have used so far the convention that in such a region
where a single quadrature node is to be found, the two weights are equal and the
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two abscissas are equal. The results proposed in the previous corollary are of course
independent of such a choice since the point at the frontier of the moment space is
isolated. Besides, such a corollary can be extended to as many quadrature nodes as
needed as long as the number of nodes allows to describe the dynamics at the kinetic
level at any point and time. Finally, the collision of two particle packets presented
in Subsection 6.1 satisfies the assumptions of Corollary 4.2 and will be an entropic
solution.

5. Riemann problems and entropic measure solutions

In this section, we focus on the Riemann problem, which is associated with the
initial condition for two constant states ML and MR in Ω:

M(x,0)=

{

ML if x<0,
MR if x>0,

(5.1)

The solution of (2.3)-(5.1) is sought in the form

M(x,t)=























ML if x<σLt,
Mδ

L(t)δ(x−σLt) if x=σLt,
M⋆ if σLt<x<σRt,
Mδ

R(t)δ(x−σRt) if x=σRt,
MR if x>σRt,

(5.2)

which corresponds to the juxtaposition of two Dirac delta functions with mass Mδ
β

and position x−σβt, β=L,R, and separated by a constant state M⋆ in Ω. Here,
σβ denotes a real number, we have mβ(t)≥0, mβ(0)=0, and β=L,R, and Mδ

β(t) is
defined by

Mδ
β(t)=









mβ(t)
mβ(t)σβ

mβ(t)σ
2
β

mβ(t)σ
3
β









. (5.3)

We introduce the following natural definitions of (entropic) measure solutions.

Definition 5.1. Let η=ρ1S(v1)+ρ2S(v2) and q=ρ1v1S(v1)+ρ2v2S(v2) with
S(v)=v2α, α∈N. We say that (5.2) is a measure solution of (2.3)-(5.1) if and
only if ∂tη+∂xq=0 in D

′

(]0,∞[×R) for S(v)=v2α with α=0, 1
2
,1, 3

2
, that is for

(η,q)=(Mi,Mi+1), i=0,1,2,3. We say that (5.2) is an entropic measure solution of
(2.3)-(5.1) if and only if ∂tη+∂xq≤0 in D

′

(]0,∞[×R) for S(v)=v2α with α=0, 1
2
,1, 3

2

and α≥2.

We can prove the following equivalence result.

Theorem 5.2. The solution given by (5.2) is a measure solution of (2.3)-(5.1) if and
only if







σL(ML−M⋆)t−
(

F(ML)−F(M⋆)
)

t+Mδ
L(t)=0,

σR(M⋆−MR)t−
(

F(M⋆)−F(MR)
)

t+Mδ
R(t)=0.

(5.4)

The solution given by (5.2) is a entropic measure solution of (2.3)-(5.1) if and only
if in addition, for all S(v)=v2α with α≥2,







σL

(

η(ML)−η(M⋆)
)

t−
(

q(ML)−q(M⋆)
)

t+η(Mδ
L(t))≤0,

σR

(

η(M⋆)−η(MR)
)

t−
(

q(M⋆)−q(MR)
)

t+η(Mδ
R(t))≤0,

(5.5)
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Proof. We first recall that ∂tη+∂xq=0 in D
′

(]0,∞[×R) means that for any
smooth function with compact support ϕ∈C∞

c (]0,∞[×R), we have

<∂tη+∂xq,ϕ>=−<η,∂tϕ>−<q,∂xϕ>=

−
∫∞

0

∫ +∞

−∞
η(x,t)∂tϕ(x,t)dxdt−

∫∞

0

∫ +∞

−∞
q(x,t)∂xϕ(x,t)dxdt=0,

where, by Definition (5.2),

η(x,t)=























η(ML), x<σLt,
η(Mδ

L(t))δ(x−σLt), x=σLt,
η(M⋆), σL< x

t <σR,
η(Mδ

R(t))δ(x−σRt), x=σRt,
η(MR), x>σRt,

q(x,t)=























q(ML), x<σLt,
q(Mδ

L(t))δ(x−σLt), x=σLt,
q(M⋆), σL< x

t <σR,
q(Mδ

R(t))δ(x−σRt), x=σRt,
q(MR), x>σRt.

Here we note that q(Mδ
β(t))=σβη(M

δ
β(t)) with η(Mδ

β(t))=mβ(t)S(σβ), β=L,R. For
all ϕ∈C∞

c (]0,∞[×R) we thus have

<∂tη+∂xq,ϕ>

= −

∫ ∞

0

dt

∫ σLt

−∞

η(ML)∂tϕ(x,t)dx−

∫ ∞

0

η(Mδ
L(t))∂tϕ(σLt,t)dt

−

∫ ∞

0

dt

∫ σRt

σLt

η(M⋆)∂tϕ(x,t)dx−

∫ ∞

0

η(Mδ
R(t))∂tϕ(σRt,t)dt

−

∫ ∞

0

dt

∫ ∞

σRt

η(MR)∂tϕ(x,t)dx−

∫ ∞

0

dt

∫ σLt

−∞

q(ML)∂xϕ(x,t)dx

−

∫ ∞

0

q(Mδ
L(t))∂xϕ(σLt,t)dt−

∫ ∞

0

dt

∫ σRt

σLt

q(M⋆)∂xϕ(x,t)dx

−

∫ ∞

0

q(Mδ
R(t))∂xϕ(σRt,t)dt−

∫ ∞

0

dt

∫ ∞

σRt

q(MR)∂xϕ(x,t)dx,

that is, using in particular q(Mδ
β(t))=σβη(M

δ
β(t)),

<∂tη+∂xq,ϕ>

= −

∫ ∞

0

dtη(ML)
( d

dt

∫ σLt

−∞

ϕ(x,t)dx−σLϕ(t,σLt)
)

−

∫ ∞

0

q(ML)ϕ(σLt,t)dt

−

∫ ∞

0

dtη(M⋆)
( d

dt

∫ σRt

σLt

ϕ(x,t)dx−σRϕ(t,σRt)+σLϕ(t,σLt)
)

−

∫ ∞

0

q(M⋆)
(

ϕ(σRt,t)−ϕ(σLt,t)
)

dt

−

∫ ∞

0

dtη(MR)
( d

dt

∫ ∞

σRt

ϕ(x,t)dx+σRϕ(t,σRt)
)

+

∫ ∞

0

q(MR)ϕ(σRt,t)dt

−

∫ ∞

0

η(Mδ
L(t))

d

dt
[ϕ(σLt,t)]dt−

∫ ∞

0

η(Mδ
R(t))

d

dt
[ϕ(σRt,t)]dt
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=

∫ ∞

0

ϕ(σLt,t)
(

σLη(ML)−q(ML)
)

dt+

∫ ∞

0

ϕ(σRt,t)
(

σRη(M⋆)−q(M⋆)
)

dt

−

∫ ∞

0

ϕ(σLt,t)
(

σLη(M⋆)−q(M⋆)
)

dt−

∫ ∞

0

ϕ(σRt,t)
(

σRη(MR)−q(MR)
)

dt

−

∫ ∞

0

η(Mδ
L(t))

d

dt
[ϕ(σLt,t)]dt−

∫ ∞

0

η(Mδ
R(t))

d

dt
[ϕ(σRt,t)]dt

=

∫ ∞

0

ϕ(σLt,t)
(

σL(η(ML)−η(M⋆))−(q(ML)−q(M⋆))
)

dt

+

∫ ∞

0

ϕ(σRt,t)
(

σR(η(M⋆)−η(MR))−(q(M⋆)−q(MR))
)

dt

−

∫ ∞

0

η(Mδ
L(t))

d

dt
[ϕ(σLt,t)]dt−

∫ ∞

0

η(Mδ
R(t))

d

dt
[ϕ(σRt,t)]dt

=

∫ ∞

0

ϕ(σLt,t)
d

dt

(

σL(η(ML)−η(M⋆))t−(q(ML)−q(M⋆))t+η(Mδ
L(t))

)

dt

+

∫ ∞

0

ϕ(σRt,t)
d

dt

(

σR(η(M⋆)−η(MR))t−(q(M⋆)−q(MR))t+η(Mδ
R(t))

)

dt.

Then, since mβ(0)=0 and η(Mδ
β(0))=0, β=L,R, it is clear that (5.2) is a measure

solution of (2.3)-(5.1) if and only if (5.4) is valid for all t≥0, and an entropic measure
solution if and only if in addition (5.5) holds for all t≥0 and all η=ρ1S(v1)+ρ2S(v2)
and q=ρ1v1S(v1)+ρ2v2S(v2) with S(v)=v2α, α≥2.

Remark 5.1. Let us recall that η(Mδ
β(t))=mβ(t)S(σβ). Since (5.5) is made of

equalities when S(v)=1 and S(v)=v (we get in these cases the first two components
of (5.4)), the validity of (5.5) for all S(v)=v2α, α≥2, is equivalent to the validity of







σL

(

η(ML)−η(M⋆)
)

−
(

q(ML)−q(M⋆)
)

≤0,

σR

(

η(M⋆)−η(MR)
)

−
(

q(M⋆)−q(MR)
)

≤0,
(5.6)

for all S(v)=v2α−σ2α
L

v−σR

σL−σR
−σ2α

R
v−σL

σR−σL
, α≥2.

6. Examples of entropic solutions

In this section, we propose three particular entropic solutions. The first one mod-
els the collision of two packets of particles with a free boundary C1 smooth solution,
that is a solution for which an exact link with the kinetic level is preserved and for
which the entropy equation is exactly satisfied. In such a situation the four-moment
model does not develop δ-shock Dirac delta functions and is actually able to properly
represent the crossing of the two packets which correspond to the dynamics at the
kinetic level. The second one models the collision of four packets of particles. In this
case and as expected since the number of moments is set to four, the entropic solutions
involves two δ-shock Dirac delta function singularities. Whereas the first case corre-
sponds to a connection from the interior of the moment space to the frontier through
a contact discontinuity, or free boundary solution, resulting in an isolated point at
the frontier, we consider in a third example a smooth connection to the frontier of
the moment space, such that the point at the frontier is an accumulation point of a
trajectory inside the moment space.

6.1. Collision of two packets of particles. We consider a Riemann initial
set of data (5.1) where ML=M(UL) and MR=M(UR) are such that
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UL=
1

2









ρL
ρL

ρLvL
ρLvL









and UR=
1

2









ρR
ρR

ρRvR
ρRvR









for two given densities ρL>0 and ρR>0 and velocities vL>0 and vR<0. We recall
that the function M=M(U) is defined by (2.6). We define

M(x,t)=







ML if x<vRt,
M⋆ if vRt<x<vLt,
MR if x>vLt,

(6.1)

with M⋆=M(U⋆) given by U⋆=(ρL,ρR,ρLvL,ρRvR)
t
. Our objective here is to prove

that the following solution, which does not contain any Dirac delta functions, is an
entropy solution of (2.3)-(5.1). Conditions (5.4) and (5.5) become

{

vR(ML−M⋆)−
(

F(ML)−F(M⋆)
)

=0,

vL(M⋆−MR)−
(

F(M⋆)−F(MR)
)

=0,
(6.2)

and
{

vR
(

η(ML)−η(M⋆)
)

−
(

q(ML)−q(M⋆)
)

≤0,

vL
(

η(M⋆)−η(MR)
)

−
(

q(M⋆)−q(MR)
)

≤0,
(6.3)

with η(U)=ρ1S(v1)+ρ2S(v2) and q(U)=ρ1v1S(v1)+ρ2v2S(v2) for all S(v)=v2α

with α≥2. We will focus only on the first equality of (6.2) and the first inequal-
ity of (6.3), the second ones being treated similarly. We clearly have

ML−M⋆=









ρL
ρLvL
ρLv

2
L

ρLv
3
L









−









ρL+ρR
ρLvL+ρRvR
ρLv

2
L+ρRv

2
R

ρLv
3
L+ρRv

3
R









=−









ρR
ρRvR
ρRv

2
R

ρRv
3
R









,

while

F(ML)−F(M⋆)=









ρLvL
ρLv

2
L

ρLv
3
L

ρLv
4
L









−









ρLvL+ρRvR
ρLv

2
L+ρRv

2
R

ρLv
3
L+ρRv

3
R

ρLv
4
L+ρRv

4
R









=−









ρRvR
ρRv

2
R

ρRv
3
R

ρRv
4
R









.

It is then clear that the first equality of (6.2) holds true. Let us now check that the
proposed Riemann solution fulfills the entropy condition. We clearly have

vR
(

η(ML)−η(M⋆)
)

−
(

q(ML)−q(M⋆)
)

= vR
(

ρLS(vL)−(ρLS(vL)+ρRS(vR))
)

−
(

ρLvLS(vL)−(ρLvLS(vL)+ρRvRS(vR))
)

= 0,

which allows to prove that the proposed solution is an entropic smooth solution.

6.2. Collision of four packets of particles. We consider a Riemann initial
set of data (5.1), where ML=M(UL) and MR=M(UR) are such that

UL=
1

2









ρ
ρ
ρv1
ρv2









and UR=
1

2









ρ
ρ

−ρv2
−ρv1
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for a given density ρ>0 and two velocities v2>v1>0. We have

ML=
1

2









2ρ
ρ(v1+v2)
ρ(v21+v22)
ρ(v31+v32)









and MR=
1

2









2ρ
−ρ(v1+v2)
ρ(v21+v22)
−ρ(v31+v32)









,

F(ML)=
1

2









ρ(v1+v2)
ρ(v21+v22)
ρ(v31+v32)
ρ(v41+v42)









and F(MR)=
1

2









−ρ(v1+v2)
ρ(v21+v22)
−ρ(v31+v32)
ρ(v41+v42)









.

We define

M(x,t)=























ML if x<−σt,
Mδ

L(t)δ(x+σt) if x=−σt,
M⋆ if −σt<x<σt,
Mδ

R(t)δ(x−σt) if x=σt,
MR if x>σt,

(6.4)

with σ>0, M⋆=M(U⋆) given by

U⋆=
1

2









ρ⋆
ρ⋆

−ρ⋆v⋆
ρ⋆v⋆









, M⋆=









ρ⋆
0

ρ⋆v
2
⋆

0









, ρ⋆>0, v⋆>0,

and Mδ
L(t), M

δ
R(t) given by

Mδ
L(t)=m(t)









1
−σ
σ2

−σ3









, Mδ
R(t)=m(t)









1
σ
σ2

σ3









, F(M⋆)=









0
ρ⋆v

2
⋆

0
ρ⋆v

4
⋆









,

with m(t)≥0. The generalized Rankine-Hugoniot jump conditions (5.4) become







−σ(ML−M⋆)t−
(

F(ML)−F(M⋆)
)

t+Mδ
L(t)=0,

σ(M⋆−MR)t−
(

F(M⋆)−F(MR)
)

t+Mδ
R(t)=0,

that is, equivalently,























































2σM⋆−σ(ML+MR)+(F(MR)−F(ML))+
m(t)

t









2
0

2σ2

0









=0,

2F(M⋆)+σ(MR−ML)−(F(ML)+F(ML))−
m(t)

t









0
2σ
0

2σ3









=0.

(6.5)
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This is made of eight equalities, four are trivial (zero equals zero), so that four are
left to determine the four unknowns ρ⋆, v⋆, σ, and m(t)/t. We propose below to
numerically solve this nonlinear system for a specific set of values for ρ, v1, and v2.

Remark 6.1. We conjecture existence and uniqueness of a solution to this nonlinear
system. Indeed, the initial condition involves four different velocities while the model
is able to represent two different velocities only. More precisely and by analogy with
the usual pressureless gas dynamics model (see [2, 1]), velocity v1 is to “bump” into
velocities −v1 and −v2 to create a first Dirac delta function. By symmetry, another
Dirac delta function is expected.

Regarding the entropy inequalities (5.5), we first remark that for S(v)=v2α,

η(ML)=η(MR)=
ρ

2
(S(v1)+S(v2)),

η(M⋆)=ρ⋆S(v⋆),

η(Mδ
L(t))=η(Mδ

R(t))=m(t)S(σ),

while
q(ML)=−q(MR)=

ρ

2
(v1S(v1)+v2S(v2)), q(M⋆)=0.

As an immediate consequence, both inequalities in (5.5) are equivalent and the entropy
condition is

σ
(

ρ⋆S(v⋆)−
ρ

2
(S(v1)+S(v2))

)

−
ρ

2
(v1S(v1)+v2S(v2))+

m(t)

t
S(σ)≤0. (6.6)

A concrete example. We propose to take ρ=1, v1=0.8, and v2=1.2. Numerically
solving (6.5) gives ρ⋆=1.88265, v⋆=1.06026, σ=0.87983, andm(t)/t=0.22342. If the
left-hand side of (6.6), which represents the entropy dissipation rate associated with
S(v)=v2α, is denoted D(α), a simple calculation gives for instance D(2)=−0.27324,
D(3)=−0.86854, D(4)=−1.88678,... The proposed solution (6.4) is then actually an
entropy measure solution of the four-moment model. Such an exact entropic solution
will be used in the following to prove the relevance of the numerical scheme proposed
hereafter with respect to the exact solution when singularities are present.

6.3. Piecewise linear solution connected with the frontier of the mo-

ment space. As a last example, we introduce a piecewise linear solution which
allows to connect zones inside the moment space with zones at the frontier within
the proper framework introduced in Subsection 2.3. Particles are initiated in the
domain [0, 0.5]. In the domain [0, 0.1], a monomodal velocity distribution is recon-
structed, with v1=v2=1 and ρ1=ρ2=0.5. On the contrary, a bimodal velocity distri-
bution is reconstructed in the domain [0.1, 0.4], with ρ1=ρ2=0.5, and for the abscissas
v1=1+ x−0.1

0.3 and v2=1. The initial conditions are represented in figure 6.1.

The ground difference with the first test case is that the transition between the
two zones is smooth, and so the numerical strategy to account for this transition is
important. The analytical solution of this problem, in smooth areas, consists of a
decoupled transport of each of the quadrature nodes as two independent pressureless
gases as shown in system (3.6). This comes from the fact that the number of Dirac
delta functions reconstructed from the moments, two in this case, is always sufficient to
capture the problem dynamics. The equivalence between the kinetic and macroscopic
equations is preserved, and the solution in terms of moments satisfies the entropy
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Fig. 6.1. Moment dynamics for a free boundary connecting areas where e=0 and e>0: Initial
conditions. Top-left: M0. Top-right: M1. Bottom-left: weights. Bottom-right: abscissas. The solid
line corresponds to (ρ1,v1), the dashed line with circles to (ρ2,v2).

equation. Therefore, the solution is the superposition of a translation at constant
velocity v2=1 and a transport with the following velocity field:

v1=







1 x∈ [0, 0.1],
1+ x−0.1

0.3 x∈ [0.1, 0.4],
2 x∈ [0.4, 0.5].

(6.7)

The analytical solution, displayed in figure 6.2, has two fronts at x=0.2 and
x=0.9 moving with a velocity v=1 and v=2, respectively. The first front corresponds
to particles initiated with velocity v=1 between x=0 and x=0.1. The second front
corresponds to particles initiated with velocity v=2 between x=0.4 and x=0.5. The
square wave between x=0.8 and x=0.9 is the final location of the particles initiated
with velocity v=2 between x=0.4 and x=0.5. The value of ρ1 between x=0.3 and
x=0.8 corresponds to the expansion of the density field due to transport with a linear
velocity field with positive slope. The value of the density in that area is the solution
of the equation ∂tρ1+v1∂xρ1=−ρ1∂xv1, which yields ρ1=0.3 at time t=0.2 4.

According to the initial conditions, both weights have the same profile and the
quantities q/(M0e) and q/e3/2 are null. At time t=0.2, the weight profiles are different
in the interval [0.3,0.8] corresponding to the expansion of ρ1. Therefore, q/e

3/2 is non
null, as well as q

M0e
, since the velocities also have different values, and can be exactly

calculated (see figure 7.10).

7. Numerical simulations via kinetic schemes

This section is devoted to the discretization of (2.3)-(2.5)-(2.6). As already stated,
we use as a building block a natural first-order kinetic scheme already proposed in
the literature [12, 11, 6] and briefly recalled here for the sake of completeness.

4In the interval [0.8,0.9], although ρ2 should be null (the square wave at velocity v2=1 should be
bounded between the front x=0.2 and x=0.7), we computed ρ2=0.5 and v2=2. This is consistent
with the conditions in Section 2.3 for moment vectors at the frontier of the moment space.
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Fig. 6.2. Moment dynamics for a free boundary connecting areas where e=0 and e>0: Solution
at t=0.2. Top-left: M0. Top-right: M1. Bottom-left: weights, Bottom-right: abscissas. The solid
line corresponds to (ρ1,v1), the dashed line with circles to (ρ2,v2).

Let us first introduce a time step ∆t>0 and a space step ∆x>0 that we as-
sume to be constant for simplicity. We set λ=∆t/∆x and define the mesh in-
terfaces xj+1/2= j∆x for j∈Z, and the intermediate times tn=n∆t for n∈N. In
the sequel, Mn

j denotes the approximate value of M at time tn and on the cell

Cj =[xj−1/2,xj+1/2). For n=0, we set M0
j =

1

∆x

∫ xj+1/2

xj−1/2
M0(x)dx, j∈Z, where

M0(x) is the initial condition.

Let us now assume as given (Mn
j )j∈Z the sequence in Ω of approximate values

at time tn. In order to advance it to the next time level tn+1, the kinetic scheme is
decomposed into two steps.

First step: transport (tn→ tn+1−).

We first set Un
j =U(Mn

j ) and define the function (x,v)→fn(x,v) by

fn(x,v)=(ρ1)
n
j δ
(

v−(v1)
n
j

)

+(ρ2)
n
j δ
(

v−(v2)
n
j

)

, ∀ (x,v)∈Cj×R, j∈Z.

We then solve the transport equation
{

∂tf+v∂xf =0, (x,v)∈R×R,
f(t=0,x,v)=fn(x,v),

(7.1)

the solution of which is given by f(t,x,v)=fn(x−vt,v). At last, we set fn+1−(x,v)=

fn(x−v∆t,v).

Second step: collapse (tn+1−→ tn+1). The first four moments at time tn+1 are

now naturally defined by setting

(Mi)
n+1
j =

1

∆x

∫ xj+1/2

xj−1/2

∫ +∞

−∞

vifn+1−(x,v)dvdx.
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Then, we have Mn+1
j =

(

(M0)
n+1
j ,(M1)

n+1
j ,(M2)

n+1
j ,(M3)

n+1
j

)t
for all j∈Z, which

completes the algorithm description.

Remark 7.1. It is easy to see that this scheme preserves the moment space Ω; see
for instance [6].

Remark 7.2. Under the natural CFL condition ∆tmaxj∈Z((v1)
n
j ,(v2)

n
j )≤CFL∆x,

with CFL≤1, integrating (7.1) over (t,x,v)∈ (0,∆t)×Cj×R and against vi, i=0, ...,3
easily leads to the equivalent update formula

Mn+1
j =Mn

j −
∆t

∆x

(

Fn
j+1/2−Fn

j−1/2

)

, j∈Z,

where we have set Fn
j+1/2=

(

(M1)
n
j+1/2,(M2)

n
j+1/2,(M3)

n
j+1/2,(M4)

n
j+1/2

)t
and

(Mi)
n
j+1/2=(Mi)

n+
j+1/2+(Mi)

n−
j+1/2, and with

(Mi)
n−
j+1/2=(ρ1)

n
j+1min(0,(v1)

n
j+1)

(

(v1)
n
j+1

)i−1
+min(0,(v2)

n
j+1)(ρ2)

n
j+1

(

(v2)
n
j+1

)i−1
,

(Mi)
n+
j+1/2=(ρ1)

n
j max(0,(v1)

n
j+1)

(

(v1)
n
j

)i−1
+(ρ2)

n
j max(0,(v2)

n
j+1)

(

(v2)
n
j

)i−1
.

7.1. Numerical quadrature strategy at the frontier of the moment

space. This paragraph addresses the issue of how to numerically handle the
transition between a vector in the interior of the moment space, and a vector lying
at its frontier. For an isolated point at the frontier of the moment space Γ, there is
no specific problem since we use a single quadrature node and the quadrature is not
a problem. The two problems we have to face are related to the preservation of the
cone in which we envision to work in Section 2 as well as to deal with finite precision
algebra in the neighborhood of the point (0,0) in the (e,q) plane.

Consequently we introduce two constants in the numerical quadrature we use.
First, for finite precision algebra and in order to avoid numerical errors, we only
evaluate the two quadrature nodes when e/M2

0 >ǫ1, where ǫ1 is a small number related
to machine precision. Under this threshold, the velocity dispersion is considered null
(e=0), and the set of Dirac delta functions are reconstructed as suggested in Section
2: ρ1=ρ2=M0/2, v1=v2=M1/M0.
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Fig. 7.1. Handling of the moment space border with the admissible cone.

Secondly, since we want to deal with a compactly supported velocity distribution
at the kinetic level, we will introduce another constant, η, which is a bound for the
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distance between the two abscissas. In fact we would like to require that the solution

remains inside the cone in the (e,q) plane: |q|
M0e

≤η. It will be shown in the following
examples that the cone is in fact automatically preserved by the proposed algorithm
and that such a bound does not have to be imposed but is satisfied by the numerical
solution.

If |q|
M0e

>η, then we set q/(M0e)=sign(q)η, so that:

q

M0e
=sign(q)η, q=sign(q)ηM0e, M3= q+M1M2/M0.

As illustrated in figure 7.1 and explained in Section 2.3, the variable q naturally lives
in a cone delimited by the straight lines of slope ±η and becomes null when e≤ ǫ1.

Let us remark that limiting q
M0e

does not lead to a limitation on the quantity
q

e3/2
in such a way as to allow the possibility to reach a large ratio in terms of weights

(one weight can approach a zero value while the quantity q
e3/2

grows indefinitely) but
without allowing the distance between the abscissas to grow beyond of fixed limit
naturally inherited from the initial solutions at the kinetic level. We will come back
to this point in the results section. For the simulations we present, the parameters
are such that ǫ1=10−9 and η=2.

7.2. Numerical results. This section is devoted to numerical illustrations of
the two Riemann problems and one dedicated to the case of a free boundary connecting
zone where e=0 and a zone where e>0, as discussed in Section 6.

In all the figures, we choose to represent ρ1 and v1 by solid lines, and ρ2 and v2
by lines with circle markers. In the representation of weights and abscissas, values
have to be assigned for v1 and v2 : we thus decide that v1 is the maximum of the
relative values of velocity.

Two packet collision. Figure 7.2 represents the initial conditions for the case
of two particle packets. Figures 7.3 and 7.4 present the numerical and analytical
solutions for the case of two particle packets with ρL=ρR=1, and vL=1, vR=−1.
The computation is run with a 1000 cell grid on the spatial domain [0,1], with CFL=
1. The length of each packet is 0.4 (ρ1=ρ2=v1=v2=0 for x≤0.1 and x≥0.9) and
the two packets start to collide exactly at time t=0. Moving in opposite direction
one across the other, with the same opposite speed, they then overlay and we note
in particular that ρ1=ρ2=1 and v1=v2=0 in the mixing zone (see for instance the
plots at time t=0.1). As expected, they finally become separated again and we note
that a perfect agreement is obtained with the exact entropic solution.
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Fig. 7.2. Initial fields of weights (left) and abscissas (right) for the two particle packet case.
The first quadrature node is represented by solid lines whereas the second node is represented by
circles.
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Fig. 7.3. Results for the two packet case at time t=0.1. Top: Numerical results for M0 (solid
line) and M1 (dashed line) (left) and for M2 (solid line) and M3 (dashed line) (right). Middle:
Analytical result for weights (left) and abscissas (right). Bottom: Numerical results for weights
(left) and abscissas (right). The solid line corresponds to the higher abscissa, the dashed line with
circle to the lower one.

Four packet collision. Figure 7.5 presents the initial conditions. Figures 7.6
and 7.8 present the numerical and analytical solutions, respectively, for the moments
and the weights and abscissas. The computation is run with a 1000 cell grid on
the spatial domain [0,1], at CFL=1. Here, we observe the presence of two Dirac
delta functions as already discussed in Section 6. The agreement between exact and
numerical solutions for the moments is very good, showing that the numerical solution
converges to the analytical one. The disparities encountered between the analytical
and numerical solution in the case of the weights and abscissas are due to the fact
that the mapping U(M) is discontinuous at the moment space border. In the area
of numerical diffusion (x≈0.22 and x≈0.88), when the dispersion e is under the
threshold ǫ1, weights and abscissas are reconstructed as explained in Section 2.

The wave propagating at velocity 1.2 and separating the constant states (v1=
0.8,v2=0) and (v1=1.2, v2=0.8) is steep and coincides with the analytical wave,
whereas the wave propagating at velocity 0.8 is actually smooth since the CFL number
is based on the highest value of velocity, which is 1.2 in this studied case. The
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Fig. 7.4. Results for the two packet case at time t=0.4. Top: Analytical result for weights
(left) and abscissas (right). Bottom: Numerical results for weights (left) and abscissas (right). The
solid line corresponds to the higher abscissa, the dashed line with circle to the lower one.

same explanation holds for the symmetric jump at location x=0.78. Meanwhile,
because of the conservation of the velocity moments, the numerical velocity jump (at
x=0.154) happens before the analytical velocity jump (at x=0.18). One can notice
that the quadrature method provides the expected value of velocity in the numerical
diffusion zones. The same explanation holds for the different velocity jump locations
between the analytical and numerical solution at x=0.82 and x=0.845. The same
phenomenon is responsible for the disparities between the analytical and numerical
solutions at the δ-shocks locations, i.e. at x=0.4 and x=0.6.

Figure 7.7 displays the final profile of the quantities q
M0e

and q
e3/2

. Thus, q
M0e

has
significant values in areas where the abscissa distance as well as the weight difference
are important, whereas q

e3/2
reaches high values in areas where the weight ratio is

important. Since in the domain, except for the singularities, the weights have the
same value, both quantities are equal to zero. At the singularities, q

e3/2
is roughly

proportional to the square root of the weight ratio, and q
M0e

is bounded, accounting
for the fact that the velocity field is bounded.

We have thus provided numerical simulations in the two cases for which we have
at our disposal an analytical entropic solution, either in the piecewise constant case,
or in the singular case where δ-shock measure solutions are present. In the first case,
the crossing of the two monokinetic packets of droplets is very properly reproduced
without numerical diffusion since we work at CFL=1, even if this is not symptomatic
of the numerical diffusion such methods will encounter with a first order method
in realistic configurations [14]. In the second case, the numerical method is able to
capture the creation of the measure singular solutions associated to the fact the we
have limited the number of quadrature node to two. With this node number limitation,
the proper physical solution, in the infinite Knudsen number limit, where the various
droplet packets cross without interacting, differs from the entropic solution of the
system (2.2) of partial differential equations obtained through the quadrature-based
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Fig. 7.5. Four packet case with ρL=ρR=1, and v1=1.2, v2=0.8: Initial conditions. Top:
M0 (left) and M1 (right). Bottom: weights (left) and abscissas (right). The solid line corresponds
to the set (ρ1,v1), and the dashed line with circles to the set (ρ2,v2).
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line with circles) solutions. Top: M0 (left) and M1 (right). Bottom: M2 (left) and M3 (right).

closure. This is the same type of behavior as seen in the case of pressureless gas
dynamics at a lower level.

Free boundary case. The last test case, explained in Subsection 6.3, assesses
the ability of the method to solve free boundary cases connecting in a continuous
manner states lying in the interior of the moment space and at its frontier. The
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Fig. 7.7. Four particle packet case, at time t=0.1. Left: ratio q/(M0e). Right: ratio q/e3/2.
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Fig. 7.8. Four packet case: Results at t=0.1. Top: Analytical weights (left) and abscissas
(right). Bottom: Numerical weights (left) and abscissas (right). The solid line corresponds to the
set (ρ1,v1), and the dashed line with circles to the set (ρ2,v2).

chosen grid contains 400 cells, and the CFL number is set to 0.98. This value of
the CFL number is chosen is order to prevent high frequency instabilities to occur.
The computation is run until t=0.2. The analytical solution has been provided in
Subsection 6.3.

Results are displayed in figure 7.9. Let us first focus on the fronts present at
x=0.2 and x=0.9 for the analytical solution. Since the CFL number is based on the
highest velocity value (2 in this case) and is taken as 0.98, the corresponding wave
is less diffused at x=0.9, contrary to the front wave located at x=0.2 moving at
velocity v2=1. Note that in these areas, ρ1=ρ2, since e=0 or e<ǫ1. The borders of
these areas are clearly seen at x≈0.28 and x=0.8. The constant profiles for ρ2 and
ρ1 observed respectively between x=0.5 and x=0.7 and between x=0.5 and x=0.8
correspond to those observed in the analytical solution. In the area between x=0.28
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and x=0.5, the density profiles would be expected to be constant, with the same
value as before. Instead of that, one observes a peak value for ρ2 and a low value for
ρ1, the sum ρ1+ρ2 being constant. This results from a coupling between the behavior
of the quadrature method when e tends to zero and the numerical diffusion. We are
here in the situation q>0 and e small but e>ǫ1; see Lemma 2.3. Further away from
the discontinuities the density values tend to their analytical value.
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Fig. 7.9. Moment dynamics for a free boundary connecting areas where e=0 and e>0: Results
at t=0.2. Top: Analytical (dashed line) and numerical (solid line) density (left) and momentum
(right). Bottom: weights (left) and abscissas (right). The solid line corresponds to the set (ρ1,v1),
and the dashed line with circles to the set (ρ2,v2).
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Fig. 7.10. Moment dynamics for a free boundary connecting areas where e=0 and e>0:
Results at t=0.2. Left: ratio q/(M0e). The dashed line with crosses represents the analytical
solution, whereas the solid line represents the numerical solution, bounded by its extremal initial
values (dotted-dashed curve). Right: ratio q/e3/2.

Figure 7.10 displays the profile of quantities q
M0e

and q
e3/2

at time t=0.2. First, it
is interesting to note that q

M0e
is naturally bounded by 1 in the numerical simulation,

as shown in figure 7.10 such that the bound imposed with η=2 in never effective. Let
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us emphasize that in the present case, the numerical scheme allows to preserve the
proposed cone associated with a maximal distance between the abscissas which is also
invariant. Comparing the analytical value of |q/(M0e)| to the numerical resolution in
figure 7.10, it is instructive to observe that the numerical diffusion is creating zones
where it can be far from zero, whereas it should be zero in the analytical solution.
However, this is done is such a way as to preserve the maximal value foreseen as
the maximal distance between the abscissa at time t=0, which is one. Let us also
emphasize that we have rerun this case with various values of ǫ1 varying from 10−9 up
to 10−7 without any effect on the solution. It can also be noticed that the quantity
q/e3/2 has large values in the regions of connection between the interior and the
frontier of the moment space, but has no reason to be naturally limited as opposed
to the previous quantity as seen in figure 7.9-bottom left.

Concerning the convergence behavior of the numerical solution, we display the
error in L1 norm relative to the analytical solution to assess convergence quantita-
tively in table 7.1, for 400, 800, 1600, and 3200 cell grids. As expected, we get an
experimental order of convergence of 0.5. These data clearly show the convergence
towards the analytical solution for each moment.

As a consequence, it can be seen that we have designed the proper theoretical
setting for the transition from the interior of the moment space towards its frontier
since the cone we have defined seems to be automatically preserved by the kinetic
scheme we have used. Such a point would be worth a detailed study which is beyond
the scope of the present paper.

Grid size 400 800 1600 3200
m0 0.049 0.0344 0.0244 0.0172
m1 0.0442 0.0307 0.0219 0.0153
m2 0.0396 0.0271 0.0195 0.0136
m3 0.0362 0.0244 0.0177 0.0122

Table 7.1. L1 error on moments relative to the analytical solution.

8. Conclusion

In this paper, we have extended the notion of entropic measure solution of a
quadrature-based moment method for kinetic equations. Such kinetic equations are
frequently encountered in many application fields where a complex dynamics in phase
space is involved. Following the contribution of [2] for the pressureless gas dynamics,
which is the one-node quadrature version of a more general system of conservation laws
for quadrature-based moment models, we have been able to provide a few problem
test-cases showing that the numerical solution of the resulting system of conservation
laws through kinetic schemes reproduces the defined entropic solution as well as the
proper theoretical setting for the transition from the interior to the frontier of the
moment space. It is an important point for the case of PTC where the solution
remains smooth and where the scheme allows to describe the phase space dynamics
properly as well as for cases where the complexity of the dynamics in phase space leads
to generalized δ-shocks, as observed for pressureless gas dynamics due to the weakly
hyperbolic structure of the system of conservation laws. Two stumbling blocks still
remain to be treated. First, we would need a uniqueness theory and a convergence
analysis in a general framework in order to fully justify the use of the kinetic schemes
for the simulation of such models. However, as explained already in [1], the framework
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of entropic solutions is not sufficient in order to provide uniqueness since one can
exhibit multiple entropic solutions for measure solutions. Let us emphasize that it is
easy to construct the same type of measure solutions for system (2.3), which is the
exact same collision case used by Bouchut, but with a motionless Dirac delta function
in density localized at the collision point of the other two incoming “particles”. An
infinite set of entropic solutions can then be exhibited depending on the nature of the
collision. As a consequence, it would be first useful to investigate such a point on
the pressureless gas dynamics and then to extend it to the present system of higher
order quadrature-based moment models. Besides, the construction of fully high order
methods is still an open question and requires further developments.
At last, let us mention that most of the results of the present paper do naturally
extend to higher order moment systems, but at the price of algebraic complications.
In fact, the key point lies in the extension of the proposed study of the behavior of
the quadrature at the frontier of the moment space, namely when the two velocities
v1 and v2 become equal. If we consider for instance the 6-moment model and assume
that one of the three velocities v1, v2, and v3 is smooth while the other two become
equal, we are in the same framework as in the present paper. But the case when the
three velocities tend to be equal needs to be explored in a future work.
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