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LARGE TIME BEHAVIOR OF SOLUTIONS TO THE ISENTROPIC

COMPRESSIBLE FLUID MODELS OF KORTEWEG TYPE IN R
3∗

ZHONG TAN† AND YONG WANG‡

Abstract. We consider the long-time behavior and optimal decay rates of global strong solutions
to the isentropic compressible Navier-Stokes-Korteweg system in R

3. When the regular initial data
belong to the Sobolev space Hl+1(R3)∩Ḃ

−s
1,∞(R3)×Hl(R3)∩Ḃ

−s
1,∞(R3) with l≥3 and s∈ [0,1], we

show that the density and momentum of the system converges to its equilibrium state at the rates

(1+ t)−
3
4
− s

2 in the L2-norm or (1+ t)−
3
2
− s

2 in the L∞-norm, respectively, which are proved to be
optimal for the compressible Navier-Stokes-Korteweg system.
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1. Introduction

The compressible Navier-Stokes-Korteweg system governs the motions of the
compressible isothermal viscous capillary fluids. We study its initial value problem
(IVP):







∂tρ+∇·m=0,
∂tm+∇·(m⊗m

ρ )+∇P (ρ)−µ∆(mρ )−ν∇div(mρ )=κρ∇∆ρ,

(ρ,m)|t=0=(ρ0,m0),

(1.1)

for (x,t)∈R
3×R

+. The unknown variables ρ, m represent the density and momentum
of the fluid, respectively, and P =P (ρ) is the pressure satisfying P ′(ρ)>0 for ρ>0.
The constants µ>0, ν≥0 are the viscosity coefficients and κ>0 is the capillary
coefficient.

Since Korteweg [15] first introduced the theory of capillarity with diffuse interfaces
which was derived rigorously by Dunn and Serrin [5], many mathematicians have
contributed to the development of Navier-Stokes-Korteweg system. Meantime, many
important results about the existence and uniqueness of (weak, strong or smooth)
solutions can be found in [1, 2, 7, 8, 9, 16] and the references therein. We refer to
[1, 7] for the global existence of weak solutions, [16] for the local existence of strong
solutions, [8, 9] for the local and global existences of classical solutions, and [2] for
the global existence of smooth solutions in the critical Besov space.

There have been many important advancements in the investigation of large time
behavior of global solutions to the compressible Navier-Stokes system. For instance,
Matsumura and Nishida [19] obtained the optimal L2 convergence rate for the com-
pressible viscous and heat-conductive fluid in R

3 without external force:

‖(ρ− ρ̄,u,θ− θ̄)(t)‖L2 ≤C0(1+ t)
− 3

4 ,
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if the small initial perturbations belongs toH3∩L1, and Ponce [21] proved the optimal
Lp convergence rate

‖∇k(ρ− ρ̄,u,θ− θ̄)(t)‖Lp ≤C0(1+ t)
− 3

2 (1−
1
p
)− k

2 ,

for 2≤p≤∞ and 0≤k≤2, if the small initial perturbations belong to H l∩W l,1 with
l a sufficiently large integer. Li-Zhang [18] considered the Cauchy problem for the
compressible Navier-Stokes equations when the regular initial data belong toH l(R3)∩
Ḃ−s

1,∞(R3), with l≥4 and s∈ [0,1], and showed the optimal time decay rates

‖(ρ− ρ̄,m)(t)‖L2 ≤C0(1+ t)
− 3

4−
s
2 .

Zeng [28] showed the convergence of global solution to the nonlinear Burgers’ diffusive
wave. Wang and Tan [26] proved the optimal L2 and Lp (p≥2) decay rates for the
classical solutions and their spatial derivatives for the compressible Navier-Stokes-
Korteweg system. Zhang, Li, and Zhu [27] considered the compressible non-isentropic
Navier-Stokes-Poisson system and analyzed the influence of an internal electric field
on the qualitative behaviors of solutions. Li, Matsumura, and Zhang [17] proved
the global existence and optimal decay rates of the solutions to the compressible
Navier-Stokes-Poisson equations. Recently, Guo-Wang [6] and Wang [24] developed
a general energy method for proving the optimal time decay rates of the solutions
to the dissipative equations in the whole space by introducing the negative Sobolev
space. Finally, concerning the long time decay rates of global solutions for the half
space and exterior domain or for the general external force, we refer to the papers
[10, 11, 12, 13, 14, 16, 18, 22, 25].

In this paper, we conduct a linearized analysis by decomposing the velocity field
as the potential and rotational parts, compared with the known results in [17, 18, 22,
25, 26, 27]. This technique makes the linearized analysis simpler, which is more helpful
for the non-isentropic model as in [23]. At the same time, the nonlinear analysis in
Section 3 becomes clearer, since we divide the equations of motion of (3.1) into a
simplified equation and a well-known heat equation by this technique.

Before we state the main results, let us first recall the definition of Ḃ−s
1,∞.

Let ψ :R3→ [0,1] be a radial smooth cut-off function valued in [0,1] such that

ψ(ξ)=







1, |ξ|≤ 3
4 ,

smooth, 3
4 < |ξ|< 4

3 ,

0, |ξ|≥ 4
3 .

Let ϕ(ξ) be the function

ϕ(ξ) :=ψ
(ξ

2

)

−ψ(ξ).

Thus, ψ is supported in the ball {ξ∈R
3 : |ξ|≤ 4

3 }, and ϕ is also a smooth cut-off func-
tion valued in [0,1] and supported in the shell { ξ∈R

3 : 34 ≤|ξ|≤ 8
3 }. By construction,

we have
∑

k∈Z

ϕ(2−kξ)=1, if ξ 6=0.

Definition 1.1. We denote by Ḃ−s
1,∞ the space of distributions which is the completion

of S(R3) by the following norm:

‖f‖Ḃ−s
1,∞

:= sup
k∈Z

2−sk‖∆̇kf‖L1 ,
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where

∆̇kf :=ϕ(2
−kD)f =23k

∫

R3

(F−1ϕ)(2ky)f(x−y)dy,

and F (f) or f̂ denotes the Fourier transform of the function f .

For the global existence and large time behavior of strong solutions, we have the
following:

Theorem 1.2. Let P ′(ρ)>0 for ρ>0 and denote n :=ρ− ρ̄. Assume that n0=
ρ0− ρ̄∈H l+1(R3)∩Ḃ−s

1,∞(R3), m0∈H l(R3)∩Ḃ−s
1,∞(R3), l≥3, and s∈ [0,1], with δ :=

‖n0‖Hl+1∩Ḃ−s
1,∞

+‖m0‖Hl∩Ḃ−s
1,∞

small enough. Then there is a unique global solution

(ρ,m) to the IVP (1.1) satisfying

ρ− ρ̄∈C0(R+,H l+1(R3))∩C1(R+,H l(R3)),

m∈C0(R+,H l(R3))∩C1(R+,H l−2(R3)),

and

‖∂kx(ρ− ρ̄)(t)‖L2(R3)+‖∂kxm(t)‖L2(R3)≤Cδ(1+ t)−
3
4−

s
2−

|k|
2 ,

for |k|=0,1, where C is a positive constant independent of time.

It should be noted that the time decay rates above are optimal. Indeed, we shall
establish the lower bound decay rate for the global solution.

Theorem 1.3. Under the assumption of Theorem 1.2, then, the global solution (ρ,m)
given by Theorem 1.2 satisfies

c1(1+ t)
− 3

4−
s
2 ≤‖(ρ− ρ̄)(t)‖L2(R3)+‖m(t)‖L2(R3)≤C(1+ t)−

3
4−

s
2 ,

where c1,C are positive constants independent of time.

With additional regularity given for the initial data, we can also prove the optimal
Lp time decay rate for the global classical solution.

Theorem 1.4. Let P ′(ρ)>0 for ρ>0. Assume that ρ0− ρ̄∈H l+1(R3)∩Ḃ−s
1,∞(R3),

m0∈H l(R3)∩Ḃ−s
1,∞(R3), and s∈ [0,1], with δ :=‖ρ0− ρ̄‖Hl+1∩Ḃ−s

1,∞
+‖m0‖Hl∩Ḃ−s

1,∞

small enough. Then there is a unique global classical solution (ρ,m) to the IVP (1.1)
satisfying

‖(ρ− ρ̄)(t)‖Lp(R3)≤Cδ(1+ t)−
3
2 (1−

1
p
)− s

2 , if l≥4,

‖m(t)‖Lp(R3)≤Cδ(1+ t)−
3
2 (1−

1
p
)− s

2 , if l≥5,

for p∈ [2,+∞].

Remark 1.5. Since the initial data belong to the homogeneous Besov space Ḃ−s
1,∞(R3)

with s∈ [0,1], and we get the inequality

sup
ξ∈R3\{0}

(|ξ|−s|n̂0(ξ)|+ |ξ|−s|m̂0(ξ)|)≤C‖(n0,m0)‖Ḃ−s
1,∞(R3),
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it is not difficult to find that the initial data, being in the Besov space, have better
behavior in the low frequency (see Section 2). So we obtain the faster time decay
rates of the global solution (n,m)(x,t) as in Theorem 1.2.

Remark 1.6. In the paper Li-Zhang [18], there is an assumption

|n̂0(ξ)|>c0δ|ξ|s and m̂0=0 for 0≤|ξ|≪1, c0>0,

which is necessary to gain the optimal time decay rates as in Theorem 1.3. However,
because of the influence of the Korteweg term, we can obtain the optimal time decay
rates by a straightforward computation in the present paper.

Notation 1.7. In the following parts of the paper, C>0 and ci>0, with i≥1 an

integer, denote the generic positive constants independent of time.

The present paper is structured as follows. Section 2 is devoted to establishing
the L2 time decay rate of the global solution for the linearized system. We prove
Theorem 1.2 and Theorem 1.3 in Section 3. In Section 4, we show the Lp time decay
rates.

2. The linearized system

In this section, we consider the Cauchy problem for the linearized Navier-Stokes-
Korteweg system:







∂tn+∇·m=0,
∂tm−µ∆m−ν∇div m+γ∇n−κ∇∆n=0,
(n,m)|t=0 := (ρ0− ρ̄,m0), x∈R

3,

(2.1)

where γ=P ′(ρ̄). Introducing the Leray projector P := Id+∇(−∆)−1div on
divergence-free vector fields, and P⊥ := Id−P, the first two equations of the system
(2.1) translate into







∂tn+∇·P⊥m=0,
∂tP⊥m−µ∆P⊥m−ν∇divP⊥m+γ∇n−κ∇∆n=0,
∂tPm−µ∆Pm=0.

(2.2)

Note that the equation for Pm reduces to an ordinary equation, independent from
the others. Moreover, if we denote by Λs the pseudo differential operator defined by
Λsy :=F−1(|ξ|sŷ(ξ)), it is equivalent to study P⊥m or y :=Λ−1div m and Pm or
ω :=Λ−1curl m (with (curl z)ji =∂iz

j−∂jzi). So we are led to consider:







∂tn+Λy=0,
∂ty−(µ+ν)∆y−γΛn−κΛ3n=0,
∂tω−µ∆ω=0.

(2.3)

Indeed, as the definitions of y, ω, and the relation

m=−Λ−1∇y−Λ−1div ω (2.4)

involve pseudo-differential operators of degree zero, the estimates in the space H l(R3)
for the original function m will be the same as for (y,ω).

This section is devoted to the proof of the following results.
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Proposition 2.1. Let n0∈H l+1(R3)∩Ḃ−s
1,∞(R3), m0∈H l(R3)∩Ḃ−s

1,∞(R3), l≥3, s∈
[0,1], and (n,m) satisfy the system (2.1). Let y=Λ−1div m and ω=Λ−1curl m. Then

there exists a constant C such that for 0≤|k|≤ l,

‖∂kxω(t)‖L2(R3)≤ C(1+ t)−
3
4−

s
2−

|k|
2 (‖(n0,m0)‖Ḃ−s

1,∞(R3)

+‖(∂kxn0,∂kxm0)‖L2(R3)),
(2.5)

‖n(t)‖L2(R3)≤C(1+ t)−
3
4−

s
2 (‖(n0,m0)‖Ḃ−s

1,∞(R3)+‖(n0,m0)‖L2(R3))

‖∂|k|+1
x n(t)‖L2(R3)≤C(1+ t)−

3
4−

s
2−

|k|+1
2 (‖(n0,m0)‖Ḃ−s

1,∞(R3)

+‖(∂|k|+1
x n0,∂

k
xm0)‖L2(R3)),

(2.6)

‖∂kxy(t)‖L2(R3)+‖∂kxm(t)‖L2(R3)

≤ C(1+ t)−
3
4−

s
2−

|k|
2 (‖(n0,m0)‖Ḃ−s

1,∞(R3)+‖(∂|k|+1
x n0,∂

k
xm0)‖L2(R3)).

(2.7)

Remark 2.2. Because the third equation of (2.3) is an independent heat equation,
we easily obtain the estimate of ω by using the Fourier transform.

Proof. The estimate for ω is obvious, so let us focus on the first two equations
of (2.3). Taking the Fourier transform with respect to the space variable yields

d

dt

(

n̂

ŷ

)

=A(ξ)

(

n̂

ŷ

)

, with A(ξ) :=

(

0 −|ξ|
κ|ξ|3+γ|ξ| −(µ+ν)|ξ|2

)

.

The characteristic polynomial of A(ξ) is λ2+(µ+ν)|ξ|2λ+κ|ξ|4+γ|ξ|2, the eigenval-
ues of which are

λ±(ξ)=−η
2
|ξ|2± 1

2

√

(η2−4κ)|ξ|4−4γ|ξ|2,

where η=µ+ν.
So,

(n̂, ŷ)T = etA ·(n̂0, ŷ0)T .

The semigroup etA is expressed as

etA= eλ+tP++eλ−tP−,

where the projection operators P± can be computed as

P±=
A(ξ)−λ∓I
λ±−λ∓

.

By a direct computation, we have

etA := Ĝ1(ξ,t)+Ĝ2(ξ,t)

=





λ+eλ−t−λ−eλ+t

λ+−λ−

eλ−t−eλ+t

λ+−λ−
|ξ|

eλ+t−eλ−t

λ+−λ−
γ|ξ| λ+eλ−t−λ−eλ+t

λ+−λ−





+

[

0 0
eλ+t−eλ−t

λ+−λ−
κ|ξ|3 eλ−t−eλ+t

λ+−λ−
η|ξ|2

]

. (2.8)
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The representation above holds for |ξ| 6=0, 2γ√
η2−4κ

when κ<κ∗; and for |ξ| 6=0 when

κ≥κ∗, where

κ∗=
η2

4
≡ (µ+ν)2

4
. (2.9)

We denote

b=
1

2

√

4γ|ξ|2−(η2−4κ)|ξ|4.

For κ≥κ∗, b>0 is a real number for any fixed |ξ| 6=0, hence

λ±(ξ)=−η
2
|ξ|2±bi,

that is, the eigenvalues of the linear system in Fourier transform are not real. There-
fore, in this case we have

eλ+t−eλ−t

λ+−λ−
=

sin(bt)

b
e−

η
2 |ξ|

2t, (2.10)

λ+e
λ−t−λ−eλ+t

λ+−λ−
=

[

cos(bt)+
η

2

sin(bt)

b
|ξ|2

]

e−
η
2 |ξ|

2t. (2.11)

Thus we can show the pointwise estimates for etA explicitly. While for 0<κ<κ∗,
(2.10) and (2.11) still hold for |ξ|≪1 but do not hold globally. For the high frequencies
|ξ|≫1, b is a pure imaginary number, so that the eigenvalues are real.

Now we study the behavior of etA for both the low frequency and high frequency.
We simply denote by ĝ11, ĝ12, ĝ21, ĝ22 the four components of Ĝ1, and by ĝ1, ĝ2
the nonzero components of Ĝ2. We shall estimate them term by term and divide the
arguments into two cases in terms of the value of the capillary coefficient κ. Let R>0
be any fixed constant.

Case 1: κ≥κ∗. For |ξ|≥R, using the fact that

∣

∣

∣

∣

sin(bt)

b
|ξ|2e− η

2 |ξ|
2t

∣

∣

∣

∣

≤ t|ξ|2e− η
2 |ξ|

2t≤ 4

η
e−

η
4 |ξ|

2t, (2.12)

and substituting (2.10), (2.11) into (2.8), we deduce that, setting η′= η
4 ,

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ2(ξ,t)|≤Ce−η′|ξ|2t, |ĝ12(ξ,t), ĝ21(ξ,t)|≤C|ξ|−1e−η′|ξ|2t,

|ĝ1(ξ,t)|≤C|ξ|e−η′|ξ|2t, |ξ|≥R.
(2.13)

While for |ξ|≤R, noticing that b=O(|ξ|), we easily obtain

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ12(ξ,t), ĝ21(ξ,t), ĝ2(ξ,t)|≤Ce−η′|ξ|2t,

|ĝ1(ξ,t)|≤C|ξ|2e−η′|ξ|2t, |ξ|≤R. (2.14)

Case 2: 0<κ<κ∗. Observe that if we define a=η−
√

η2−4κ, then a>0 and

Re(λ±(ξ))≤−a
2
|ξ|2, ∀ ξ∈R

3. (2.15)
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Now for |ξ|≥R, since |λ±|, |λ+−λ−|=O(|ξ|2), we derive from the expression
(2.8) and (2.15) that, setting a′= a

2 ,

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ2(ξ,t)|≤Ce−a′|ξ|2t, |ĝ12(ξ,t), ĝ21(ξ,t)|≤C|ξ|−1e−a′|ξ|2t,

|ĝ1(ξ,t)|≤C|ξ|e−a′|ξ|2t, |ξ|≥R.
(2.16)

While for |ξ|≤R, since |λ±|, |λ+−λ−|=O(|ξ|), we derive from the expression
(2.8) and (2.15) that

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ12(ξ,t), ĝ21(ξ,t), ĝ2(ξ,t)|≤Ce−a′|ξ|2t,

|ĝ1(ξ,t)|≤C|ξ|2e−a′|ξ|2t, |ξ|≤R. (2.17)

We may conclude from (2.13), (2.14), (2.16), and (2.17) that for any κ>0 there exists

some β :=β(κ)>0 such that

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ12(ξ,t), ĝ21(ξ,t), ĝ1(ξ,t), ĝ2(ξ,t)|≤Ce−β|ξ|2t, |ξ|≤R, (2.18)

and

|ĝ11(ξ,t), ĝ22(ξ,t), ĝ2(ξ,t)|≤Ce−β|ξ|2t, |ĝ12(ξ,t), ĝ21(ξ,t)|≤C|ξ|−1e−β|ξ|2t,

|ĝ1(ξ,t)|≤C|ξ|e−β|ξ|2t, |ξ|≥R.
(2.19)

Now, by the expression (2.8) we have

n̂(ξ,t)= ĝ11n̂0+ ĝ12ŷ0, ŷ(ξ,t)= ĝ21n̂0+(ĝ22+ ĝ2)ŷ0+ ĝ1n̂0. (2.20)

Let R>0 be a fixed constant as before. By the pointwise estimates (2.18), (2.19),
together with the Parseval theorem and Hausdorff-Young’s inequality, we obtain

‖n(t)‖2L2(R3)=

∫

R3

|ĝ11(ξ,t)n̂0(ξ)+ ĝ12(ξ,t)ŷ0(ξ)|2dξ

≤C
∫

|ξ|≤R

e−β|ξ|2t(|n̂0|2+ |ŷ0|2)dξ

+Ce−βR2t

∫

|ξ|≥R

(|n̂0|2+ |ξ|−2|ŷ0|2)dξ

≤C‖(n0,y0)‖2Ḃ−s
1,∞(R3)

∫

|ξ|≤R

e−β|ξ|2t|ξ|2sdξ

+Ce−βR2t‖(n0,y0)‖2L2(R3)

≤C(1+ t)− 3
2−s‖(n0,y0)‖2L2(R3)

⋂
Ḃ−s

1,∞(R3)

≤C(1+ t)− 3
2−s‖(n0,m0)‖2L2(R3)

⋂
Ḃ−s

1,∞(R3)
, (2.21)

‖∂|k|+1
x n(t)‖2L2(R3)=

∫

R3

|ξ|2(|k|+1)|ĝ11(ξ,t)n̂0(ξ)+ ĝ12(ξ,t)ŷ0(ξ)|2dξ

≤C
∫

|ξ|≤R

e−β|ξ|2t|ξ|2(|k|+1)(|n̂0(ξ)|2+ |ŷ0(ξ)|2)dξ

+C

∫

|ξ|≥R

e−β|ξ|2t(|ξ|2(|k|+1)|n̂0(ξ)|2
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+|ξ|2|k||ŷ0(ξ)|2)dξ
≤C(1+ t)− 3

2−s−|k|−1(‖(n0,y0)‖2Ḃ−s
1,∞(R3)

+‖(∂|k|+1
x n0,∂

k
xy0)‖2L2(R3))

≤C(1+ t)− 3
2−s−|k|−1(‖(n0,m0)‖2Ḃ−s

1,∞(R3)

+‖(∂|k|+1
x n0,∂

k
xm0)‖2L2(R3)), (2.22)

and

‖∂kxy‖2L2(R3)=

∫

R3

|ξ|2|k||ĝ21(ξ,t)n̂0(ξ)+(ĝ22(ξ,t)+ ĝ2(ξ,t))ŷ0(ξ)

+ĝ1(ξ,t)n̂0(ξ)|2dξ

≤C
∫

|ξ|≤R

e−β|ξ|2t|ξ|2|k|(|n̂0(ξ)|2+ |ŷ0(ξ)|2)dξ

+C

∫

|ξ|≥R

e−β|ξ|2t(|ξ|2(|k|+1)|n̂0(ξ)|2+ |ξ|2|k||ŷ0(ξ)|2)dξ

≤C(1+ t)− 3
2−s−|k|(‖(n0,y0)‖2Ḃ−s

1,∞(R3)

+‖(∂|k|+1
x n0,∂

k
xy0)‖2L2(R3))

≤C(1+ t)− 3
2−s−|k|(‖(n0,m0)‖2Ḃ−s

1,∞(R3)

+‖(∂|k|+1
x n0,∂

k
xm0)‖2L2(R3)), (2.23)

for 06 |k|6 l. By the relation between m and (y,ω), we can easily get the estimate
for m:

‖∂kxm(t)‖2L2(R3)≤C(1+ t)−
3
2−s−|k|(‖(n0,m0)‖2Ḃ−s

1,∞(R3)
+‖(∂k+1

x n0,∂
k
xm0)‖2L2(R3)).

(2.24)
The proof of Proposition 2.1 is completed.

It should be noted that the L2-decay rates derived above are optimal. Indeed, we
have:

Proposition 2.3. Assume that n0∈H l+1(R3)∩Ḃ−s
1,∞(R3), m0∈H l(R3)∩Ḃ−s

1,∞(R3),
l≥3, s∈ [0,1]. Then, the solution (n,m) to the IVP (2.1) given by Proposition 2.1

satisfies

c1(1+ t)
− 3

4−
s
2 ≤‖n(t)‖L2(R3)+‖m(t)‖L2(R3)≤C(1+ t)−

3
4−

s
2 .

Proof. We only deal with the estimate of ‖m(t)‖L2(R3) for simplicity. From
(2.18)-(2.20) we obtain

|ŷ(ξ,t)|∼











c (|e− η
2 |ξ|

2t sin(bt)
b (γ|ξ|+κ|ξ|3)n̂0

+e−
η
2 |ξ|

2t(cos(bt)− 1
2
sin(bt)

b η|ξ|2)ŷ0|) :=T1,
|ξ|≪1,

ce−
η
2 |ξ|

2t(|ξ|3|n̂0|+ |ξ|2|ŷ0|), |ξ|≫1.

From Parseval’s equality, we have

‖y(t)‖2L2 =‖ŷ(t)‖2L2 =

∫

|ξ|≤R

|ŷ(ξ,t)|2dξ+
∫

|ξ|≥R

|ŷ(ξ,t)|2dξ
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≥ c2
∫

|ξ|≤R

|T1|2dξ−Ce−ηR2t

≥ c3
∫

|ξ|≤R

e−η|ξ|2t|ξ|2s|ξ|4t2dξ−Ce−ηR2t

≥ c4(1+ t)−
3
2−s. (2.25)

By (2.4) and the pseudo-differential operators of degree zero, we obtain

‖m(t)‖2L2 ≥ c5(‖y(t)‖2L2 −‖ω(t)‖2L2)

≥ c5(1+ t)−
3
2−s−C(1+ t)− 3

2−s

≥ c1(1+ t)−
3
2−s. (2.26)

The time-decay rate of n can be showed in a similar fashion.

3. The proof of global well-posedness

Let us reformulate the nonlinear system (1.1) for (ρ,m) near the equilibrium state
(ρ̄,0)=(1,0). Denote

n=ρ−1, m=m.

The IVP for U := (n,m)T is







∂tn+∇·m=0,
∂tm−µ∆m−ν∇div m+γ∇n−κ∇∆n=−∇·H,
(n,m)|t=0=(n0,m0)=(ρ0(x)−1,m0(x)), x∈R

3,

(3.1)

where

H= m⊗m
1+n −µ∇( nm

1+n )+κ∇n⊗∇n+[−ν∇·( nm
1+n )

+(P (1+n)−P (1)−γn)−κn∆n− 1
2κ(∇n)2]I3×3.

As in Section 2, let y :=Λ−1div m and ω :=Λ−1curl m; we then have















∂tn+Λy=0,
∂ty−(µ+ν)∆y−γΛn−κΛ3n=−F,
∂tω−µ∆ω=−G,
n(x,0)=n0(x),y(x,0)=Λ−1div m0(x),ω(x,0)=Λ−1curl m0(x), x∈R

3,

(3.2)

where

F =Λ−1div ∇·H,
G=Λ−1curl (∇·(m⊗m

1+n −µ∇( nm
1+n )+κ∇n⊗∇n)).

If we denote

B̂1(ξ,t)=( ˆg11, ˆg12) , B̂2(ξ,t)=( ˆg21+ ĝ1, ˆg22+ ĝ2) ,

then as in Section 2 we can represent the solution of system (3.2) as

ω(x,t)=
1

(4πµt)
3
2

∫

R3

e−
|x−z|2

4µt ω0(z)dz−
∫ t

0

1

(4πµ(t−τ)) 3
2

(

∫

R3

e
−

|x−z|2

4µ(t−τ)G(z,τ)dz
)

dτ,

(3.3)
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n(x,t)=B1(t)∗V0(x)+
∫ t

0

B1(t−τ)∗Q(U)(τ)dτ, (3.4)

y(x,t)=B2(t)∗V0(x)+
∫ t

0

B2(t−τ)∗Q(U)(τ)dτ, (3.5)

with V0=(n0,y0)
T and Q(U)=(0,−F )T .

It is easy to verify that

n(x,t)= B1(t)∗V0+
∫ t

0

B1(t−τ)∗Q(U)(τ)dτ, (3.6)

m(x,t)=−Λ−1∇y−Λ−1div ω

=−Λ−1∇{B2(t)∗V0(x)+
∫ t

0

B2(t−τ)∗Q(U)(τ)dτ}

−Λ−1div

{

1

(4πµt)
3
2

∫

R3

e−
|x−z|2

4µt ω0(z)dz

−
∫ t

0

1

(4πµ(t−τ)) 3
2

(

∫

R3

e
−

|x−z|2

4µ(t−τ)G(z,τ)dz)dτ

}

(3.7)

is the solution of the IVP (3.1).

Remark 3.1.

ω̂(ξ,t)= e−µ|ξ|2tω̂0(ξ,t)+

∫ t

0

e−µ|ξ|2(t−τ)Ĝ(U)(ξ,τ) dτ.

By Proposition 2.1, we have the following time decay rates for the linear parts:

‖B1 ∗V0(t)‖L2(R3)≤C(1+ t)−
3
4−

s
2 (‖V0‖Ḃ−s

1,∞(R3)+‖V0‖L2(R3)), (3.8)

‖∂|α|+1
x B1 ∗V0(t)‖L2(R3)≤ C(1+ t)−

3
4−

s
2−

|α|+1
2 (‖V0‖Ḃ−s

1,∞(R3)

+‖(∂|α|+1
x n0,∂

α
x y0)‖L2(R3)),

(3.9)

‖∂αxB2 ∗V0(t)‖L2(R3)≤ C(1+ t)−
3
4−

s
2−

|α|
2 (‖V0‖Ḃ−s

1,∞(R3)

+‖(∂|α|+1
x n0,∂

α
x y0)‖L2(R3)),

(3.10)

for |α|≥0. Applying arguments similar to those in the proof of Proposition 2.1, we
can obtain that

‖∂αxB1 ∗Q(U)(t)‖L2(R3)

≤ C(1+ t)−
5
4−

|α|
2 (‖Ĥ(U)‖L∞(R3)+‖∂αxH(U)‖L2(R3)),

(3.11)

‖∂αxB1 ∗Q(U)(t)‖L2(R3)

≤ C(1+ t)−
3
4−

|α|
2 (‖DH(U)‖L1(R3)+‖∂αxH(U)‖L2(R3)),

(3.12)

‖∂αxB2 ∗Q(U)(t)‖L2(R3)

≤ C(1+ t)−
5
4−

|α|
2 (‖Ĥ(U)‖L∞(R3)+‖∂|α|+1

x H(U)‖L2(R3)),
(3.13)
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‖∂αxB2 ∗Q(U)(t)‖L2(R3)

≤ C(1+ t)−
3
4−

|α|
2 (‖DH(U)‖L1(R3)+‖∂|α|+1

x H(U)‖L2(R3)),
(3.14)

for |α|≥0.

Global existence and L2-decay rates. We are now ready to prove Theo-
rem 1.2 and Theorem 1.3. First of all, the local existence and uniqueness of the
solution can be established by following the methods in [20]. To prove global
existence of a smooth solution with small initial data, we establish uniform a priori
estimates of the solution.

Lemma 3.2. Under the assumption of Theorem 1.2, the solution (n,m) to the IVP

(3.1) satisfies for l=3 that

‖Dk
x(n,m)(t)‖L2(R3)≤C(1+ t)−

3
4−

s
2−

k
2 , k=0,1, ‖D2

xn(t)‖L2(R3)≤C(1+ t)−
5
4−

s
2 .

Proof. Assume that (n,m)∈H4(R3)×(H3(R3))3 corresponds to the strong
solution to the IVP (3.1) for t∈ [0,T ]. Assume that the classical solution of the IVP
(3.1) exists for t∈ [0,T ], and denote

Ω(t) := sup
0≤τ≤t,k=0,1

{(1+τ) 3
4+

s
2+

k
2 ‖Dk

x(n,m)(τ)‖L2(R3)

+(1+τ)
5
4+

s
2 ‖D2

xn(τ)‖L2(R3)

+‖(D2
xm,D

3
xm,D

3
xn,D

4
xn)‖L2(R3)}. (3.15)

We claim that it holds for any t∈ [0,T ] that

Ω(t)≤Cδ, (3.16)

with δ defined in Theorem 1.2. The proof of the claim (3.16) consists of following
three steps.

Step 1: The basic energy estimates From (3.4), (3.8), (3.11) and the a priori
assumption (3.15), we have, after a complicated but straightforward computation,
that

‖(n(t)−B1 ∗V0(t))‖L2(R3)≤
∫ t

0

‖B1(t−τ)∗Q(U)(τ)‖L2(R3)dτ

≤C
∫ t

0

(1+ t−τ)− 5
4 (‖Ĥ(U)‖L∞(R3)

+‖H(U)‖L2(R3))dτ)

≤C
∫ t

0

(1+ t−τ)− 5
4 (1+τ)−

3
2−s(Ω(t))2dτ

≤C(1+ t)− 5
4 (Ω(t))2, (3.17)

where we have made use of (3.15) and the Gagliardo-Nirenberg inequality

‖f‖L∞(R3)≤C‖Df‖
1
2

L2(R3)‖D
2f‖

1
2

L2(R3),

‖f‖L4(R3)≤C‖f‖
1
4

L2(R3)‖Df‖
3
4

L2(R3),
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to estimate the right-hand side term as

‖Ĥ(U)(t)‖L∞(R3)≤‖H(U)(t)‖L1(R3)

≤C{‖m(t)‖2L2(R3)+‖n(t)‖L2(R3)‖Dm(t)‖L2(R3)

+‖Dn(t)‖L2(R3)‖m(t)‖L2(R3)+‖n(t)‖2L2(R3)

+‖D2n(t)‖L2(R3)‖n(t)‖L2(R3)+‖Dn(t)‖2L2(R3)}
≤C(1+ t)− 3

2−s(Ω(t))2, (3.18)

‖H(U)(t)‖L2(R3)≤C{‖m(t)‖2L4(R3)+‖Dn(t)‖L4(R3)‖m(t)‖L4(R3)

+‖Dm(t)‖L2(R3)‖n(t)‖L∞(R3)+‖n(t)‖2L4(R3)

+‖D2n(t)‖L2(R3)‖n(t)‖L∞(R3)+‖Dn(t)‖2L4(R3)}
≤C(1+ t)− 9

4−s(Ω(t))2. (3.19)

Thus, we have

‖n(t)‖L2(R3) ≤‖B1 ∗V0(t)‖L2(R3)+C(1+ t)
− 5

4 (Ω(t))2

≤C(1+ t)− 3
4−

s
2 [δ+(Ω(t))2].

(3.20)

Similarly, we have

‖DH(U)(t)‖L2(R3)

≤C{‖Dm(t)‖L2(R3)‖m(t)‖L∞(R3)+‖m(t)‖2L∞(R3)‖Dn(t)‖L2(R3)

+‖D2n(t)‖L2(R3)‖m(t)‖L∞(R3)+‖D2n(t)‖L2(R3)‖Dn(t)‖L∞(R3)

+‖Dm(t)‖L2(R3)‖Dn(t)‖L∞(R3)+‖D2m(t)‖L2(R3)‖n(t)‖L∞(R3)

+‖D3n(t)‖L2(R3)‖n(t)‖L∞(R3)+‖Dn(t)‖L2(R3)‖n(t)‖L∞(R3)}
≤C(1+ t)− 5

4−
s
2 (Ω(t))2, (3.21)

and

‖Dn(t)‖L2(R3)≤‖D(B1 ∗V0)(t)‖L2(R3)+

∫ t

0

‖D(B1 ∗Q(U)(τ))‖L2(R3)dτ

≤Cδ(1+ t)− 3
4−

s
2−

1
2 +C

∫ t

0

(1+ t−τ)− 5
4−

1
2

·(‖Ĥ(U)(τ)‖L∞(R3)+‖DH(U)(τ)‖L2(R3))dτ

≤C(δ(1+ t)− 5
4−

s
2 +

∫ t

0

(1+ t−τ)− 7
4 (1+τ)−

5
4−

s
2Ω2(t)dτ)

≤C(1+ t)− 5
4−

s
2 [δ+(Ω(t))2]. (3.22)

As for D2n, it is easy to verify from the right-hand side of (3.4) that the nonlinear

dominating terms consist of D2( m2

1+n ),D
3( nm

1+n ) and D
2(n∆n),D2((∇n)2), and can be

estimated due to the following facts:

∥

∥

∥
D2

( m2

1+n

)∥

∥

∥

L2(R3)
+
∥

∥

∥
D3

( nm

1+n

)∥

∥

∥

L2(R3)
≤C(1+ t)− 5

4−
s
2 (Ω(t))2,
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‖D2(n∆n)‖L2(R3)+‖D2((∇n)2)‖L2(R3)≤C(1+ t)−
5
4−

s
2 (Ω(t))2.

Thus, we can obtain after a straightforward computation that

‖D2H(U)(t)‖L2(R3)≤C(1+ t)−
5
4−

s
2 (Ω(t))2, (3.23)

and

‖D2n(t)‖L2(R3)≤‖D2(B1 ∗V0)(t)‖L2(R3)+

∫ t

0

‖D2(B1(t−τ)∗Q(U)(τ))‖L2(R3)dτ

≤Cδ(1+ t)− 7
4−

s
2 +C

∫ t

0

(1+ t−τ)− 9
4 (‖Ĥ(U)(τ)‖L∞(R3)

+‖D2H(U)(τ)‖L2(R3))dτ

≤Cδ(1+ t)− 7
4−

s
2 +C(1+ t)−

5
4−

s
2 (Ω(t))2

≤C(1+ t)− 5
4−

s
2 [δ+(Ω(t))2]. (3.24)

As for H, we can obtain the estimates of M :

‖M̂(U)(t)‖L∞(R3)≤C(1+ t)−
3
2−s(Ω(t))2,

‖DM(U)(t)‖L1(R3)≤C(1+ t)−2−s(Ω(t))2,
(3.25)

where M := m⊗m
1+n −µ∇( nm

1+n )+κ∇n⊗∇n, so G=Λ−1curl (∇·M).
Now, from s∈ [0,1], (2.4), (3.3), (3.5), (3.10), (3.13), (3.21), (3.22), (3.25), the

a priori assumption (3.15), and the Gagliardo-Nirenberg inequality, we can establish
the time-decay rates for m and its derivatives as follows:

‖m(t)‖L2(R3)

≤C(‖y(t)‖L2(R3)+‖ω(t)‖L2(R3))

≤C(‖B2 ∗V0(t)‖L2(R3)+

∫ t

0

‖B2(t−τ)∗Q(U)(τ)‖L2(R3)dτ+‖ω̂(t)‖L2(R3))

≤C(1+ t)− 3
4−

s
2 δ+C

∫ t

0

(1+ t−τ)− 5
4 (1+τ)−

5
4−

s
2 (Ω(t))2dτ+C(1+ t)−

3
4−

s
2 δ

+C

∫ t

0

(1+ t−τ)− 5
4 (1+τ)−

3
2−s(Ω(t))2dτ

≤C(1+ t)− 3
4−

s
2 [δ+(Ω(t))2], (3.26)

‖Dm(t)‖L2(R3)

≤C(‖Dy(t)‖L2(R3)+‖Dω(t)‖L2(R3))

≤C(‖D(B2 ∗V0)(t)‖L2(R3)+

∫ t

0

‖D(B2(t−τ)∗Q(U)(τ))‖L2(R3)dτ

+‖|ξ|ω̂(t)‖L2(R3))

≤C(1+ t)− 5
4−

s
2 δ+C

∫ t

0

(1+ t−τ)− 7
4 (1+τ)−

5
4−

s
2 (Ω(t))2dτ+C(1+ t)−

5
4−

s
2 δ

+C

∫ t/2

0

(1+ t−τ)− 7
4 (1+τ)−

3
2−s(Ω(t))2dτ
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+C

∫ t

t/2

(1+ t−τ)− 5
4 (1+τ)−2−s(Ω(t))2dτ

≤C(1+ t)− 5
4−

s
2 [δ+(Ω(t))2]. (3.27)

Step 2: The higher-order estimates. To enclose the a priori estimates and prove
the claim (3.16), we need to derive the time-decay rates of (n,m) with respect to the
higher-order derivatives as in [19]. Indeed, using the energy methods, we can easily
obtain

‖n‖2H4(R3)+‖m‖2H3(R3)+

∫ t

0

(‖Dn‖2H4(R3)+‖Du‖2H3(R3))dτ ≤Cδ2. (3.28)

Step 3: Closure of the estimate (3.16). From (3.20), (3.22), (3.24), and (3.26)-
(3.28), we have

Ω(t)≤Cδ+C(Ω(t))2, t∈ [0,T ],

which together with the smallness of δ>0 leads to the estimate (3.16).

Similarly, we can obtain the following Lemmas, and omit the details.

Lemma 3.3. Under the assumption of Theorem 1.2, the solution (n,m) to the IVP

(3.1) satisfies for l=4 that

‖Dk
xn(t)‖L2(R3)≤C(1+ t)−

3
4−

s+k
2 δ, k=0,1,

‖D2
xn(t)‖L2(R3)+‖D3

xn(t)‖L2(R3)≤C(1+ t)−
5
4−

s
2 δ,

‖Dk
xm(t)‖L2(R3)≤C(1+ t)−

3
4−

s+k
2 δ, k=0,1,

‖D2
xm(t)‖L2(R3)≤C(1+ t)−

5
4−

s
2 δ,

where C is a positive constant independent of time.

Lemma 3.4. Under the assumption of Theorem 1.2, the solution (n,m) to the IVP

(3.1) satisfies for l=5 that

‖Dk
xn(t)‖L2(R3)≤C(1+ t)−

3
4−

s+k
2 δ, k=0,1,2,

‖D3
xn(t)‖L2(R3)+‖D4

xn(t)‖L2(R3)≤C(1+ t)−
5
4−

s
2 δ,

‖Dk
xm(t)‖L2(R3)≤C(1+ t)−

3
4−

s+k
2 δ, k=0,1,

‖D2
xm(t)‖L2(R3)+‖D3

xm(t)‖L2(R3)≤C(1+ t)−
5
4−

s
2 δ,

where C is a positive constant independent of time.

Remark 3.5.

‖D2n(t)‖L2(R3)≤ ‖D2(B1 ∗V0)(t)‖L2(R3)

+
∫ t

0
‖D2(B1(t−τ)∗Q(U)(τ))‖L2(R3)dτ

≤ Cδ(1+ t)−
7
4−

s
2 +C

∫ t/2

0
(1+ t−τ)− 9

4 (‖Ĥ(U)(τ)‖L∞(R3)

+‖D2H(U)(τ)‖L2(R3))dτ+C
∫ t

t/2
(1+ t−τ)− 7

4

·(‖DH(U)(τ)‖L1(R3)+‖D2H(U)(τ)‖L2(R3))dτ

≤ Cδ(1+ t)−
7
4−

s
2 +C(1+ t)−

9
4 (Ω(t))2+C(1+ t)−2−s(Ω(t))2

≤ C(1+ t)−
7
4−

s
2 [δ+(Ω(t))2],
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for l=5, where

‖DH‖L1 ≤C(1+ t)−2−s(Ω(t))2,‖D2H‖L2 ≤C(1+ t)− 5
2−s(Ω(t))2.

Proof of Theorem 1.2 and Theorem 1.3.

Proof. The global existence of smooth solutions to the IVP of the system
(1.1) follows from the short-time existence of classical solution, the uniformly a priori
estimates, and the continuity argument. The time-decay rate in Theorem 1.2 follows
from the Lemma 3.2. The optimal time-decay rate of ρ in Theorem 1.3 follows from
the combination of the Proposition 2.3 and the uniform estimates (3.16). We also
need to establish the lower bound decay rate for m. From (3.7) we have

‖m(t)‖L2(R3)≥ c2‖ω̂(t)‖L2(R3)

−C(‖B2 ∗V0(t)‖L2(R3)+
∫ t

0
‖B2(t−τ)∗Q(U)(τ)‖L2(R3)dτ)

≥ c3(1+ t)
− 3

4−
s
2 −C

∫ t

0
(1+ t−τ)− 5

4 (1+τ)−
3
2−sdτ

−c4(1+ t)−
3
4−

s
2 −C

∫ t

0
(1+ t−τ)− 5

4 (1+τ)−
5
4−

s
2 dτ

≥ c1(1+ t)
− 3

4−
s
2 .

Now the proof is completed.

4. Lp-time-decay rates

In this section, we investigate the Lp-time-decay rates of the solution to the
system (3.1), with p∈ [2,+∞]. Making use of Lemma 3.4 and the Gagliardo-Nirenberg
inequality, we can prove Theorem 1.4.

The proof of Theorem 1.4.

Proof. By Lemmas 3.3, 3.4 and the Gagliardo-Nirenberg inequality, (3.12),
(3.14), we have

‖n(t)‖L∞(R3)≤ C‖B1 ∗V0(t)‖L∞(R3)+C
∫ t

0
‖B1(t−τ)∗Q(U)(τ)‖L∞(R3)dτ

≤ C(1+ t)−
3
2−

s
2 δ+C

∫ t

0
‖D(B1(t−τ)∗Q(U)(τ))‖

1
2

L2(R3)

·‖D2(B2(t−τ)∗Q(U)(τ))‖
1
2

L2(R3)dτ

≤ C(1+ t)−
3
2−

s
2 δ+C

∫ t/2

0
[(1+ t−τ)− 7

4 (‖Ĥ‖L∞ +‖DH‖L2)]
1
2

·[(1+ t−τ)− 9
4 (‖Ĥ‖L∞ +‖D2H‖L2)]

1
2 dτ

+C
∫ t

t/2
[(1+ t−τ)− 5

4 (‖DH‖L1 +‖DH‖L2)]
1
2

·[(1+ t−τ)− 7
4 (‖DH‖L1 +‖D2H‖L2)]

1
2 dτ

≤ C(1+ t)−
3
2−

s
2 δ+C(1+ t)−2δ+C(1+ t)−

13
8 − 3

4 sδ

≤ C(1+ t)−
3
2−

s
2 δ,

for l≥4, where

‖DH‖L1 ≤C(1+ t)−2−sδ,‖DH‖L2 ≤C(1+ t)− 5
2−sδ,‖D2H‖L2 ≤C(1+ t)− 5

4−
s
2 δ.
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and

‖y(t)‖L∞(R3)≤ C‖B2 ∗V0(t)‖L∞(R3)+C
∫ t

0
‖B2(t−τ)∗Q(U)(τ)‖L∞(R3)dτ

≤ C(1+ t)−
3
2−

s
2 δ+C

∫ t

0
‖D(B2(t−τ)∗Q(U)(τ))‖

1
2

L2(R3)

·‖D2(B2(t−τ)∗Q(U)(τ))‖
1
2

L2(R3)dτ

≤ C(1+ t)−
3
2−

s
2 δ+C

∫ t/2

0
[(1+ t−τ)− 7

4 (‖Ĥ‖L∞ +‖D2H‖L2)]
1
2

·[(1+ t−τ)− 9
4 (‖Ĥ‖L∞ +‖D3H‖L2)]

1
2 dτ

+C
∫ t

t/2
[(1+ t−τ)− 5

4 (‖DH‖L1 +‖D2H‖L2)]
1
2

·[(1+ t−τ)− 7
4 (‖DH‖L1 +‖D3H‖L2)]

1
2 dτ

≤ C(1+ t)−
3
2−

s
2 δ+C(1+ t)−2δ+C(1+ t)−

7
4−

3
4 sδ

≤ C(1+ t)−
3
2−

s
2 δ,

for l≥5, where

‖DH‖L1 ≤C(1+ t)−2−sδ, ‖D2H‖L2 ≤C(1+ t)− 5
2−sδ, ‖D3H‖L2 ≤C(1+ t)− 3

2−
s
2 δ.

So,

‖m(t)‖L∞(R3)≤ C(‖y(t)‖L∞(R3)+‖ω(t)‖L∞(R3))

≤ C(1+ t)−
3
2−

s
2 δ,

where C>0 is a constant independent of time. From Theorem 1.2 and the interpola-
tion, we can finish the proof of Theorem 1.4.
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tient compte des forces capillaires causées par des variations de densité considérables mais
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