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INSTABILITY OF PERIODIC TRAVELLING WAVES WITH MEAN
ZERO FOR A 1D BOUSSINESQ SYSTEM∗

JOSÉ R. QUINTERO† AND JUAN C. MUÑOZ‡

Abstract. We consider herein the instability properties of the periodic traveling wave solutions
of a general nonlinear Boussinesq system related with a dispersive model for the 1D propagation of
nonlinear long water waves with small amplitude, via an adaptation of the result of M. Grillakis,
J. Shatah, and W. Strauss for systems with a special Hamiltonian structure. In a particular case
of this general system, we use Jacobian elliptic functions to build a curve of L-periodic traveling
wave solutions having mean zero in [0,L] and also verify the validity of the criteria used to establish
instability, in a specific range of the wave speed. Furthermore, we provide numerical evidence on
a type of instability arising when perturbing with small amplitude disturbances by using a highly-
accurate spectral numerical scheme.
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1. Introduction
In this paper we consider the study of orbital instability of periodic traveling

wave solutions for the one-dimensional Boussinesq system for the 1D propagation of
nonlinear dispersive long water waves with small amplitude

{

qt = rx,
rt =B

−1(Aqx−nrqn−1qx−2rxq
n),

(1.1)

where A= I−a∂2x and B= I−b∂2x are linear operator defined through Fourier Series,
a and b being positive numbers such that a−b=σ−1/3 (σ−1 is known as the Bond
number which is associated with surface tension). We also establish the existence of
a curve of periodic traveling wave solutions for this system for n=2. This Boussinesq
system is obtained from the rescaled version of the 1D generalized Benney-Luke model

Φtt−Φxx+µ(aΦxxxx−bΦxxtt)+ǫ
(

nΦt(Φx)
n−1Φxx+2(Φx)

nΦxt

)

=0, (1.2)

by using the variables r=Φt and q=Φx, where the function Φ(x,t) represents the
non-dimensional velocity potential at the bottom fluid boundary, µ represents the
long-wave parameter (dispersion coefficient), ǫ represents the amplitude parameter
(nonlinear parameter).

J. Quintero and R. Pego derived for n=1 the model (1.2) as a first order approxi-
mation (in one spatial dimension) to describe the evolution of long waves propagating
on the surface of an ideal fluid under the force of gravity and taking into account
the effect of surface tension (see [19]). It is important to note that Benney and Luke
derived in [5] a similar model to (1.2) with n=1, but neglected surface tension effects.
P. Milewski [13] also generalized this equation to include joint effects of topographical
forcing, mean flow, and surface tension and Milewski et al. [14, 15, 16] conducted a
numerical study of several properties of solutions of Benney-Luke-type models in the
two-dimensional case.
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As we know, solitary waves have played an important role in the last decades in the
study of dynamics of wave propagation in many applied models such as fluid dynamics,
optics, acoustics, oceanography, and weather forecasting, among others. A recent
important application is the use of optical solitons in fibers as an efficient (reliable and
fast) means of long-distance communication [11]. This means that the study of these
types of solutions and their properties such as existence, orbital stability/instability
under small perturbations and other properties is of great interest and is capturing
the attention of researchers from the analytical and numerical view point. Much of
the effort has been focused on models for unidirectional wave propagation or with
the full Euler equations for surface and internal waves. However less attention has
been given to establish results pertaining to traveling wave solutions of systems of
dispersive evolution equations under periodic spatial conditions.

The Boussinesq System (1.2) with nonlinear exponent n is closely related to the
generalized KdV equation which describes motions of long waves in shallow water un-
der gravity and in an one-dimensional anharmonic nonlinear lattice in the case that
n=2 [24]. The nonlinear generalized KdV equation is also an important mathematical
model with several applications in quantum mechanics, nonlinear optics, and plasma
physics, among others (see [25],[26] and references therein). Furthermore, we are in-
terested in studying what effect dispersion and the exponent n have on traveling-wave
solutions of system (1.1) and their stability/instability behavior. These facts motivate
our study of this system with generalized nonlinear exponent n and in particular the
case n=2.

The stability of traveling wave solutions for models related with the system consid-
ered in the paper as KdV type models and the Schrödinger equation has been widely
studied. In [6], Bona et. al. gave sufficient and necessary conditions for stability of
solitons for the GKdV. In [2], Albert et. al. gave sufficient conditions for stability
of solitary-wave solutions of model equations for long waves. In [4], Angulo et. al.

established stability of cnoidal traveling wave solutions for KdV model. In [3], Angulo
proved stability of dnoidal traveling wave solutions for the GKdV. In [20], Quintero
gave sufficient conditions for stability of periodic traveling waves having the mean zero
property for the GKdV. Stability of periodic traveling wave solutions for the focusing
Schrödinger equation were also treated recently in [3] and [8] by Angulo et. al. and
Gallay et. al., respectively. Stability and instability analysis of solitary waves for a
dispersive system of KdV-type equations was performed in [1] by Alarcon et. al. The
problem of stability of periodic solutions of two coupled nonlinear Schrödinger equa-
tions was considered by Tan et. al. in [23] from the numerical view point and some
stability conditions in terms of the parameters for the model are provided based on
a linear analysis. Modulational instability of nonlinearly interacting two-dimensional
waves in deep water modeled by a pair of two-dimensional coupled Schrödinger equa-
tions was treated in [22] by Shukla et. al. A spectral stability analysis for solitary
waves in a system of coupled nonlinear Schrödinger equations is developed in [18]
by Pelinovsky et. al. Finally, Quintero et. al., in [21], established orbital stability
of cnoidal waves for the 1D Boussinesq equation for n=1 when wave speed is small
enough. Recent developments regarding the stability of traveling wave solutions of
dispersive models such as the KdV equation and some Boussinesq systems using the
Krein signature, a reinterpretation of the works by M. Grillakis, J. Shatah, and W.
Strauss, are [27, 28, 29, 30, 31, 32] and [33].

In this paper for n=2, we will build L-periodic traveling waves Ψc where the
first component ψc is a snoidal function for c∈ (1,

√

a/b), or cnoidal for c∈ (
√

a/b,1).
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Adapting the work by Grillakis et. al. [9], we further establish orbital instability of
snoidal type solutions of the Boussinesq system (1.1) in the case that a>b> a

9 , n=2,

and the wave speed satisfies 1<c<min
(

c∗,

√

1+ 4π2a

L2

1+ 4π2b

L2

)

, where c∗ is such that the

function d(c)=F(Ψc) is concave for 1<c<c∗. Here F denotes the action functional
associated to the model and the constant L>0 denotes the fundamental period of the
snoidal solution.

In the other range of the wave speed (i.e. c∈ (
√

a/b,1)), we see that results in [9]
cannot be applied due to the failure of the spectral hypothesis on the second variation
of the action functional around the traveling wave solution. Thus, in this case we use
the spectral numerical scheme introduced in [17] for exploring the instability issue and
get an insight on the nature of the instability mechanism involved in the phenomenon.

This paper is organized as follows. In Section 2, we adapt some results in [9]
to prove instability of the periodic traveling wave, assuming the concavity of the
function d and the condition 〈F′′(Ψc),Ψc〉<0. We will see that the Boussinesq System
(1.1) has a Hamiltonian structure in the variable (q,p) (p is the conjugate variable
of momentum), which facilitates the analysis of the spectral properties of the second
variation of the action functional F. We also discuss the well-posedness of the Cauchy
problem associated to the Boussinesq System (1.1) in the canonical variables. In
Section 3, for n=2 we build periodic traveling waves of fundamental period L using
Jacobian elliptic functions. Depending on the wave speed we have that the traveling
solution (ψc,pc) has ψc of either snoidal or cnoidal type. We also prove the existence
of a smooth curve of traveling wave solutions for (1.1) with a fixed period L. In
Section 4, we see that the condition 〈F′′(Ψc),Ψc〉<0 holds for 1> b

a >
n

n+(n+2)2 and

wave speed 1< |c|<
√

1+ 4π2a

L2

1+ 4π2b

L2

, for n even. For n=2, we verify the spectral conditions

on the operator F′′(Ψc) assumed in Section 2, which depends on the spectrum of the
periodic eigenvalue problem associated with the linear operator

Lsn=−(a−bc2) d
2

dx2
+(1−c2+4cψ2),

where ψ is a snoidal type function, in case 1<c<
√

a/b. We establish the concavity of

d and also the instability result, for wave speed 1<c≪
√

a/b. In Section 5, we describe
the numerical experiments performed for the two families of periodic traveling-wave
solutions with the mean zero property studied in the paper for n=2.

2. Instability criteria via the Grillakis-Shatah-Strauss approach

In this section we will adapt [9] to provide a criterion of instability for periodic
traveling waves Ψc for the Boussinesq System (1.1), when Ψc has its first component
with the mean zero property.

2.1. Hamiltonian Structure. Hereafter we will set the functional space
X=W1

L×H1
per([0,L]), where Ws

L is the mean zero space of L-periodic functions in
[0,L] defined as

Ws
L=

{

f ∈Hs
per([0,L]) :

∫ L

0

f(x)dx=0

}

, s∈Z.
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We note that f ∈Ws
L if and only if f(x)=

∑∞
−∞ f̂ne

2πinx/L with f̂0=0, and

∞
∑

−∞

(

1+
4π2|n|2
L2

)s

|fn|2<∞.

Note that (1.1) can be written as the system

qt= rx,
[

Br+
1

n+1
qn+1

]

t

=∂x [Aq−rqn] ,

where A= I−a∂2x and B= I−b∂2x are defined through Fourier series. Note that if
we introduce the conjugate momentum variable p=Br+ 1

n+1q
n+1, then the previous

system becomes formally

qt= rx, (2.1)

pt=∂x [Aq−rqn] . (2.2)

Via these canonical variables, we find the Hamiltonian structure H :X→R for (1.1)
is given by

H=
1

2

∫ L

0

(

p− 1

n+1
qn+1

)

B−1

(

p− 1

n+1
qn+1

)

+qAqdx.

We find that H
′

:X→X∗ is given by

H
′

(

q
p

)

=









−B−1
(

p− 1
n+1q

n+1
)

qn+Aq

B−1
(

p− 1
n+1q

n+1
)









.

Note that

qt=∂xB
−1

(

p− 1

n+1
qn+1

)

=∂xHp,

pt=∂x

(

−B−1

(

p− 1

n+1
qn+1

)

qn+Aq

)

=∂xHq.

This implies that system (1.1) is equivalent to the system which is in canonical Hamil-
tonian form

(

q
p

)

t

=∂xJ0H
′

(

q
p

)

(2.3)

=J1H
′

(

q
p

)

,

where J1=∂xJ0 and J0 is the linear operator given by

J0=

(

0 I
I 0

)

.

It is straightforward to see that the operator ∂x :W
s
L→W

s−1
L is a bijection and that

the operator ∂x :H
s
per([0,L])→Hs−1

per ([0,L]) is one to one (but not onto). This implies
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that the skew symmetric operator ∂xJ0 :W
0
L×H0

per([0,L])⊂X∗→X is a one to one,
but not onto. In other words, J1 does not satisfy the general framework in [9], which
is also the case for solitons of the GKdV equation (see Bona et. al. [6]).

We also have that due to the translation invariance of the equation of motion,
Noether’s Theorem assures the existence of the following conserved quantity (charge),

N

(

q
p

)

=

∫ L

0

pqdx.

In this canonical variables, we have the existence of a mass invariant functional

I(U)=

∫ L

0

U(x)dx,

which is cleverly utilized in the instability result in the case of the KdV type models
(see [6]).

If we consider that (q,p)(x,t)=(Q,P )(x−ct,t) is a solution of the equation (2.3),
then we obtain that (Q,P ) has to satisfy the new system

(

Q
P

)

t

=∂xJ0 [H
′+cN ′]

(

Q
P

)

=J1F
′
(

Q
P

)

, (2.4)

where F=H+cN , showing that traveling waves are equilibrium solutions of system
(2.4), up to constants. In accordance with the adaptation of the results in [9], we
must analyze the spectrum of the operator (evaluated in q= qc and p=pc)

F′′
(

q
p

)

=







−nB−1
(

p− 1
n+1q

n+1
)

qn−1+B−1 (qn(·))qn+A −qnB−1+cI

−B−1 (qn(·))+cI B−1






.

If we want to find periodic traveling-waves solutions (q,r)(x,t)=(qc(x−ct),rc(x−ct))
for system (1.1), we see that the couple (qc,pc) satisfies the nonlinear system

−c∂xqc=∂xB−1

(

pc−
1

n+1
qn+1
c

)

,

−c∂xpc=∂x
(

B−1

(

pc−
1

n+1
qn+1
c

)

qnc +Aqc

)

.

Moreover, after integrating we have that

−cqc=B−1

(

pc−
1

n+1
qn+1
c

)

+A0,

−cpc=−B−1

(

pc−
1

n+1
qn+1
c

)

qnc +Aqc+A1,

where A0 and A1 are integration constants. Then we conclude that

pc=
1

n+1
qn+1
c −cBqc−A0,

Aqc−c2Bqc+
(n+2)c

n+1
qn+1
c =−A0q

n
c −A1+cA0.
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On the other hand, if we look for periodic traveling-wave solutions Φ(x,t)=φ(x−ct)
for (1.2) (µ= ǫ=1), we have that qc=φ

′ has mean zero and satisfies

Aρ−c2Bρ+ (n+2)c

n+1
ρn+1=A, (2.5)

where A is an integration constant. It follows by comparing the last two equations
for qc that A0 must be zero. In other words, the couple (qc,pc) satisfies the nonlinear
system

pc−
1

n+1
qn+1
c +cBqc=0,

Aqc−c2Bqc+
(n+2)c

n+1
qn+1
c =−A1.

Note that if qc is a periodic solution with mean zero on [0,L], then A1 6=0 for n
odd. This simple observation shows that Ψc=(qc,pc)

t cannot be a critical point of
the action functional, so we need to adapt the approach used in [9] to obtain orbital
instability to the present case considered in this paper. We note that if W ∈X, then

F′(Ψc)W =

〈(

A1

0

)

,W

〉

=0.

As we mention in the introduction, Grillakis et. al. in [9] established a general result
which characterizes orbital instability for a general class of systems with a Hamiltonian
structure of the form

∂tV =JE′(V ),

where J is a skew operator on a Hilbert space. Now, in the periodic case in [0,L],
the model does not fit completely into the results in [9] since the eigenfunction χc

associated with unique negative eigenvalue for Lc,n=F′′(qc,pc) does not necessarily
have the mean zero property in [0,L], and also because the operator J1=∂xJ0 is not
onto in X. So, we need to overcome this by extending and adapting slightly [9] to the
periodic case, in spaces having the mean zero property in the first component.

2.2. Adaptation of the Grillakis-Shatah-Strauss approach. Hereafter
we identify (qc,pc)

t=Ψc. Note that we have that ∂xΨc∈ (W1
L)

2 is the eigenfunction
of Lc,n associated with the zero eigenvalue. By hypothesis (H.2), we are assuming
that λ=0 is a simple eigenvalue for Lc,n, and the rest of the spectrum of Lc,n in
(H2

per)
2 is positive and bounded away from zero. Unfortunately, we do not know if

the eigenfunction χc associated with the unique negative eigenvalue of Lc,n is in the
space X=W1

L×H1
per.

In order to adapt [9] to establish instability of periodic traveling waves for the
Boussinesq System (1.1), we will impose the same type of hypotheses adopted by
Bona et. al. in [6] to obtain sufficient conditions to guarantee instability of L-periodic
traveling wave solutions of the Boussinesq type system (1.1) in the space X, which
satisfy that their first components have the mean zero property in [0,L].

Assumptions on Lc,n and Ψc.

(H1) There is an interval (c1,c2)⊂ [1,∞) such that for every c∈ (c1,c2), there is
a solution Ψc of (2.5). The curve c→Ψc is C1 with values in X.
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(H2) The operator Lc,n has a unique, negative, simple eigenvalue with eigen-
function χc∈ (H1

per([0,L]))
2, λ=0 is a simple eigenvalue of Lc,n with eigenfunction

∂xΨc, and the rest of the spectrum of Lc,n is positive and bounded away from zero.
Moreover, the curve c→χc is a continuous function with values in (H1

per([0,L]))
2.

(H3) 〈Lc,n(Ψc),Ψc〉<0 in some neighborhood of c.
Under these hypotheses, we are able to establish an important property of χc and Ψc.

Lemma 2.1. Assume that Lc,n satisfies condition (H2) and (H3). Then 〈χc,Ψc〉 6=0.
In particular, χc can be taken such that 〈Ψc,χc〉>0.

Proof. By the hypothesis, Lc,n has a unique, negative, simple eigenvalue, with
eigenfunction χc∈ (H1

per([0,L])
2. Now note that

〈Ψc,∂xΨc〉=1/2

∫ L

0

∂x||Ψc||2dx=0.

Then we can write Ψc=γχc+ρP0, for some P0 in the positive subspace of L2×L2

orthogonal to χc and ∂xΨc. In this case, 〈Ψc,χc〉=γ 6=0, otherwise Ψc=ρp0 and
〈Lc,n(Ψc),Ψc〉=ρ2 〈Lc,n(P0),P0〉≥0, contradicting (H3).

Before we go further, we note that d(c)=F(Ψc). Then using that Ψc∈X, a direct
computation shows that

d′′(c)=
d

dc
N(Ψc). (2.6)

Theorem 2.2. Under the hypotheses (H1)-(H3), if d′′(c)<0 then there is a curve
ω→Φω ∈X which passes through Ψc and lies on the surface N(U)=N(Ψc). More-
over, H(U) has a strict local maximum on the curve at U =Ψc in X.

Proof. We proceed as in the work by Bona et. al. in [6]. For ω near c, we want
to define a curve (ω,s)→Φ(ω,s)∈X of the form Φω,s=Ψω+sΨc, with s(ω) satisfying
the conditions s(c)=0. We set the curve ω→Φω =Φ(ω,s(ω)). Note for s=0 and ω= c
that Φc=Ψc and N(Φc)=N(Ψc). We observe that

∂

∂s
N(Φω)|{s=0, ω=c}=N

′(Ψc)(Ψc)

=

∫ L

0

〈(

pc
qc

)

,

(

qc
pc

)〉

dx

=2

∫ L

0

pcqcdx

=− 2

c(n+2)

∫ L

0

(c2(n+1)qcBqc+qcAqc)dx<0,

since A and B are positive operators. From the Implicit Function Theorem, we assure
the existence of a function s(ω) defined for ω near c such that N(Φω) is constant along
the curve s(ω). Now, since Ψω ∈X we have that

∂ωH(Φω)
∣

∣

{ω=c}=

〈

H′(Φc),
dΦω

dω

∣

∣

∣

{ω=c}

〉

=0.
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Moreover, since N(Φω)=N(Ψc), we conclude that

d2

dω2
H(Φω)=

d2

dω2
(H(Φω)+ωN(Φω))

=

〈

H′(Φω)+ωN
′(Φω),

d2Φω

dω2

〉

+

〈

(H′′(Φω)+ωN
′′(Φω))

(

dΦω

dω

)

,
dΦω

dω

〉

.

Evaluating this at ω= c, and after noting that

A
d2

dω2

∫ L

0

Φω(x)|{ω=c}dx=0,

we have that

d2

dω2
H(Φω)|{ω=c}= 〈Lc,nY,Y 〉 , where Y =

dΦω

dω
|{ω=c}=

dΨc

dc
+s′(c)Ψc∈X.

From the fact that N is constant along Ψω, we have from equation (2.6) that

0=
d

dω
N(Φω)

∣

∣

{ω=c}=

∫ L

0

N ′(Ψc)Y dx

=

〈

N ′(Ψc),
d

dc
Ψc

〉

+s′(c)〈N ′(Ψc),Ψc〉

=
d

dc
N(Ψc)+s

′(c)〈N ′(Ψc),Ψc〉

=d′′(c)+s′(c)〈N ′(Ψc),Ψc〉 .

Thus we conclude that

∫ L

0

N ′(Ψc)Y dx= 〈J0(Ψc),Ψc〉=0, and d′′(c)=−s′(c)〈N ′(Ψc),Ψc〉 . (2.7)

On the other hand,

Lc,n

(

dΨc

dc

)

=

(

∂cA
0

)

−N ′(Ψc). (2.8)

Using this, we have that

Lc,nY =Lc,n

(

dΨc

dc

)

+s′(c)Lc,n(Ψc)=

(

∂cA
0

)

−N ′(Ψc)+s
′(c)Lc,n(Ψc). (2.9)

Since 〈N ′(Ψc),Y 〉=0 and Ψc∈X, we conclude that

〈Lc,nY,Y 〉=s′(c)〈Lc,n(Ψc),Y 〉

=s′(c)

(〈

Lc,n(Ψc),
d

dc
Ψc

〉

+s′(c)〈Lc,n(Ψc),Ψc〉
)

=s′(c)

(〈

Lc,n

(

d

dc
Ψc

)

,Ψc

〉

+s′(c)〈Lc,n(Ψc),Ψc〉
)

=s′(c)

〈(

∂cA
0

)

−N ′(Ψc),Ψc

〉

+(s′(c))2 〈Lc,n(Ψc),Ψc〉
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=−s′(c)〈N ′(Ψc),Ψc〉+(s′(c))2 〈Lc,n(Ψc),Ψc〉
=d′′(c)+(s′(c))2 〈Lc,n(Ψc),Ψc〉<0,

since we are assuming that d′′(c)<0 and 〈Lc,n(Ψc),Ψc〉<0. In other words, we have
shown that

d2

dω2
H(Φω)

∣

∣

{ω=c}= 〈Lc,n(Y ),Y 〉<0.

as claimed.

Before we consider instability, we will prove an important result in this work,

Lemma 2.3. Under the hypotheses (H1)-(H3), we have that

〈Y,χc〉 6=0. (2.10)

Proof. From previous result, we have that

〈Lc,nY,Y 〉<0.

We note that Y can be decomposed in L2×L2 as Y =α0χc+α1∂xΨc+α2P , where P
belongs to the positive subspace of Lc,n. Then a direct computation shows that

〈Lc,nY,Y 〉=λ0α2
0 〈χc,χc〉+α2

2 〈Lc,nP,P 〉<0.

This fact implies that α0= 〈χc,Y 〉 6=0, since 〈Lc,nP,P 〉≥0 and λ0<0.

Hereafter we only present the analogous result for the periodic case obtained in
[9] (or in [6]), pointing out the appropriate changes. For ǫ>0, consider the tube in X

Uǫ=
{

V ∈X : inf
r
‖V −τrΨc‖(H1

per([0,L]))
2 <ǫ

}

,

where τr(f)(x)=f(r+x), x∈R. The set Uǫ is a neighborhood in X of the collection
of all translates of Ψc.

Lemma 2.4. There exist ǫ>0 and a C1 map α :Uǫ→R such that

1. 〈U(·+α(U),∂xΨc〉=0,

2. α(U(·+r))=α(U)−r modulo the period,

3. α(Ψc)=0,

4. α′(U)=
∂xΨc(·−α(U))

∫

R
U(x)∂2xΨc(x−α(U))dx

.

Recall that we showed the existence of Y = dΨc

dc +s′(c)Ψc∈X such that

〈Lc,n(Y ),Y 〉<0 and 〈J0(Ψc),Y 〉=0.

Theorem 2.5. Under the hypotheses (H1)-(H3), the function B :Uǫ→X defined as

B(U)=Y (·−α(U))− 〈J0(U),Y (·−α(U))〉
〈U,∂2xΨc(·−α(U))〉 ∂

2
xJ0Ψc(·−α(U))

is C1 from Uǫ into X such that it commutes with translations, B(Ψc)=Y , and
〈B(U),J0(U)〉=0, for U ∈Uǫ.
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The only comment is that B(U) has the mean zero property in [0,L]. In fact,

∫ L

0

B(U)(x)dx=

∫ L

0

Y (x−α(U))dx− 〈J0(U),Y (·−α(U))〉
〈U,∂2xΨc(·−α(U))〉 ∂xJ0Ψc(·−α(U))

∣

∣

∣

L

0
=0.

As in [9] (see also in [6]), consider the initial value problem

{

dU
dλ =B(U),

U(0) =V ∈Uǫ.
(2.11)

Corollary 2.6. Suppose the hypotheses (H1)-(H3) hold. If U =R(λ,V ) denotes
the solution of the initial value problem (2.11), then we have

1. R is a C1 function for |λ|<λ0(v) for any V ∈Uǫ,

2. R commutes with translations for each λ,

3. N(R(λ,V )) is independent of λ, and

4. ∂R
∂λ (0,Ψc)=Y .

We want to point out that the proofs of the previous result and the the coming
lemma are the same as those in [9] or [6].

Lemma 2.7. Under the hypotheses (H1)-(H3), there is a C1 function Λ:{V ∈Uǫ :
N(V )=N(Ψc)}→R such that

1. For all V ∈Uǫ such that V 6∈ {Ψc(·+s) :s∈R},

H(Ψc)<H(R(Λ(V ),V )),

2. For all V ∈Uǫ such that V 6∈ {Ψc(·+s) :s∈R},

H(Ψc)<H(V )+Λ(V )〈H′(V ),B(V )〉 .

3. The curve Φω satisfies H(Φω)<H(Ψc) for ω 6= c, N(Φω)=N(Ψc), and
Λ(V )〈H′(V ),B(V )〉 changes sign as ω passes through c.

Now we make precise the meaning of the stability and instability concept,

Definition 2.8. The periodic traveling wave Ψc is stable if and only if for ǫ>0
there exists η>0 such that if V0∈Uη, then V (·,t)∈Uǫ for all t∈ [0,L], where V (·,t)
denotes the unique solution of the Cauchy problem associated with the Boussinesq type
system (1.1) in the space X, with initial condition V (·,0)=V0(·). We will say that
the periodic traveling wave Ψc is unstable if Ψc is not stable.

2.3. The Cauchy periodic problem. We note that system (1.1) has the
form

(

q
r

)

t

=M

(

q
r

)

+G

(

q
r

)

, (2.12)

where

M=

(

0 ∂x
∂xB

−1A 0

)

and G

(

q
r

)

=

(

0
−B−1(2rqn−1qx+2qnrx)

)

.

As done by J. Quintero et. al. for n=1 in [21], it is easy to see that M is the infinites-
imal generator of a bounded C0-group S(t) on X

1=H1
per([0,L])×H1

per([0,L]). More-

over, we have M∈Lb

(

X2,X1
)

, where X2=H2
per([0,L])×∈H2

per([0,L]). Since B−1
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is a bounded linear operator from L2
per([0,L]) to H2

per([0,L]). On the other hand, if
f ∈H1

per([0,L]), then f ∈L∞(R). Thus, if we assume that (q,r)t∈X1, then q and r are
bounded functions. Since qx, rx∈L2

per([0,L]), we conclude that 2rqn−1qx+2qnrx∈
L2
per([0,L]) and so we have that B−1

(

2rqn−1qx+2qnrx
)

∈H2
per([0,L]). In other words,

we have shown that G maps X1 into X2, meaning that G gains some regularity. More-
over,

‖B−1
(

2r1q
n−1
1 (q1)x+2qn1 (r1)x

)

−B−1
(

2r2q
n−1
2 (q2)x+2qn2 (r2)x

)

‖H2
per

≤‖(q1,r1)−(q2,r2)‖X1 ,

which means that G is locally Lipschitz from X1 into X2. In other words, we have
that

Theorem 2.9. Suppose that (q0,r0)
t∈X1. Then the initial value problem associated

with the system (2.12) with (q0,r0)=(q(0, ·),r(0, ·)) has a unique global mild solution
(q,r)∈X1. Moreover, if

(q0,r0)
t∈Y1=

{

(q,r)∈ (H1
per([0,L]))

2 :

∫ L

0

q(x)dx=0

}

,

then the initial value problem associated with system (2.12) with (q0,r0)=
(q(0, ·),r(0, ·)) has a unique global mild solution (q,r)∈Y1.

The result is a consequence that a solution (q,r) satisfies the conserved quantities

M1(q,r)=

∫ L

0

q(x)dx.

Moreover, from this fact and the relation between q, r, and p, we are able to establish
that

Corollary 2.10. Let (q0,p0)
t∈X. Then the initial value problem associated with

system (2.3) with (q0,p0)=(q(0, ·),p(0, ·)) has a unique global mild solution (q,p)∈X.

2.4. Instability analysis. Following the setting used in Theorem 4.7 of [9],
we define the operator A in Uǫ as

A(U)=−〈Z(·−α(U)),U〉 ,

where J1Z=Y . The first observation is that

−J1A
′(U)=B(U).

In fact,

A′(U)=−Z(·−α(U))−〈Z,∂xU(·+α(U))〉α′(U).

On the other hand, from (4) in Lemma (2.7),

J1α
′(U)=

∂2xJ0Ψc(·−α(U))
∫

R
U(x)∂2xΨc(x−α(U))dx

.

Then we obtain that

〈Z,∂xU(·+α(U))〉=−〈J0Y,U(·+α(U))〉=−〈Y (·−α(U)),J0U〉 .
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Putting the pieces together, we conclude that

−J1A
′(U)=J1Z(·−α(U))−〈Y (·−α(U)),K(U)〉 ∂2xJ0Ψc(·−α(U))

∫

R
U(x)∂2xΨc(x−α(U))dx

=B(U).

(2.13)
Theorem 2.11. Suppose the hypotheses (H1)-(H3) hold and that d′′(c)<0. Then
the Ψc-orbit is X-unstable with respect to the flow of equation (2.3).

Proof. Let Ψc be fixed, and take ǫ>0 small enough such that Lemma (2.7)
holds. Thus, we can take U0=Ψω arbitrarily close to Ψc such that

N(Ψω)=N(Ψc), H(U0)<H(Ψc), 〈H′(U0),B(U0)〉>0.

Now, if U(t) is the solution of the Boussinesq system with U(0)=U0, then we have,
as in Theorem 4.7 of[9], that

d

dt
A(U(t))=

〈

d

dt
U(t),A′(U(t))

〉

= 〈H′(U(t)),−J1A
′(U(t))〉

= 〈H′(U(t)),B(U(t))〉 .

Now in any interval [0,t1) on which U(t)∈Uǫ,

0<H(Ψc)−H(U0)<Λ(U(t))〈H′(U(t)),B(U(t))〉< 〈H′(U(t)),B(U(t))〉 ,

where we are assuming that Λ(U(t))<1 for ǫ small enough, since Λ(Ψc)=0. As a
consequence of this,

d

dt
A(U(t))>H(Ψc)−H(U0). (2.14)

We note that for any U ∈Uǫ, we have the estimates

|A(U)|≤‖Z‖L2
per

(‖Ψc‖H1
per

+ǫ)

≤‖Y ‖L2
per

(‖Ψc‖H1
per

+ǫ). (2.15)

So, we are able to conclude from inequality (2.15) that

(H(Ψc)−H(U0))t1≤C1‖Y ‖L2
per

(‖Ψc‖H1
per

+ǫ).

But we are allowed to take ‖Y ‖L2
per

small (using ρY instead Y ) in such a way that

t1≤
C1‖Y ‖L2

per
(‖Ψc‖H1

per
+ǫ)

(H(Ψc)−H(U0))
<L.

In other words, the solution leaves the tube before reaching the period L, and so the
Ψc-orbit is unstable.

3. Existence of smooth curves of periodic traveling waves (n=2)
In this section we are interested in building explicit traveling wave solutions Ψc=

(ψc,pc) for the system (1.1) for n=2. Our analysis will show that the initial profile of
ψc could be of either snoidal type for c∈ (1,

√

a/b), or cnoidal type for c∈ (
√

a/b,1).
Our main interest here will be the construction of smooth curves c→ψc of periodic
traveling waves with a fixed fundamental period L, depending on the range of the
wave speed c.
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3.1. Building periodic solutions. One can see directly that if we look for
traveling wave solutions for the system (1.1), i.e. solutions of the form

(q(x,t),p(x,t))=( qc(x−ct),pc(x−ct)),

with rc=−cqc, then qc has to satisfy the equation

(a−bc2)ψ′′

+(c2−1)ψ− 4c

3
ψ3=A0,

For the propose of this paper, we will consider solutions for which we have that A0=0.
In other words, we look for functions qc satisfying the equation

(a−bc2)ψ′′

+(c2−1)ψ− 4c

3
ψ3=0 (3.1)

Case I. c∈ I1=(1,
√

a/b).
We start by scaling ψ on this range of the wave speed. Define

ψ1(x)=β1(c)ϕ1(θ1(c)x), with β1(c)=
3

2c

√

c2−1 and θ21(c)=
3(c2−1)

c(a−bc2) . (3.2)

Then ϕ1 satisfies the ordinary differential equation

Λ1,c(ϕ1)=ϕ
′′

1 −ϕ3
1+

c

3
ϕ1=0. (3.3)

Multiplying by ϕ′
1 and integrating over [0,x] we see that ϕ1 already satisfies the

equation

1

2
(ϕ

′

1)
2− 1

4
ϕ4
1+

c

6
ϕ2
1=D1,

with D1=D(ϕ1) being an integration constant. In other words, ϕ′ has to satisfy the
quadrature form

(ϕ′
1)

2=
1

2

(

ϕ4
1−

2c

3
ϕ2
1+4D1

)

. (3.4)

Note that formula (3.4) may be written as

[ϕ′
1(z)]

2=
1

2
P1(ϕ1(z)), (3.5)

where P1 is the fourth degree polynomial P1(t)= t
4− 2c

3 t
2+4D1. By supposing that

P1 has only real root, say −η2<−η1<0<η1<η2, one sees that

P1(t)=(η21− t2)(η22− t2), (3.6)

and that (3.5) can be written

(ϕ′
1)

2=
1

2
(η21−ϕ2

1)(η
2
2−ϕ2

1), (3.7)

with η1 and η2 satisfying conditions
{

η21+η
2
2 =

2c
3 ,

η21η
2
2 =4D1.

(3.8)
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It follows immediately from (3.5)-(3.6) that ϕ1 must take values in the range −η2<
−η1≤ϕ1≤η1<η2. Change variables again by letting

ϕ1(x)=η1̺(ζ), ζ=
η2√
2
x,

with ̺(0)=0 and ̺ continuous. Then substituting into (3.7) yields the equation

(̺′)2=(1−̺2)(1−k21̺2),

where the modulus 0<k1<1 is defined as

k21 =
η21
η22
.

But from formula 128.01 of [7], we have that the solution is ̺(ζ,η1,η2)=sn(ζ;k1). As
a consequence of this we have that equation (3.3) has a snoidal wave solution of the
form

ϕ1(x,η1,η2)=η1sn

(

η2√
2
x;k1

)

.

It is well known that sn is a 4K periodic function where K is the elliptic integral of
the first class defined by

K(k1)=

∫ π/2

0

dt
√

1−k21 sin2 t
.

Thus ϕ1 has fundamental period

Tϕ1
=

4
√
2

η2
K(k1).

Recall that for given c>0, we have that 0<η1<η2<
√

2c/3, so that η2=
√

2λ−η21
where λ= c/3. Then we see that the period Tϕ1

:=T1 and the modulus k1 depend on
η1 :=η,

T1(η)=
4
√
2

√

2λ−η2
K(k1(η)), k21(η)=

η2

2λ−η2 . (3.9)

In particular, if η→0, then k1→0. This implies that K(k1)→π/2, and so T1→ 2√
λ
π.

On the other hand, if η→
√
λ, then k1→1 and K(k1)→∞ implying that T1→∞.

But the function η→T1(η) is an increasing function for 0<η<
√
λ. In fact,

dT1
dη

=4
√
2

(

(2λ−η2)−3/2η K(k1(η))+(2λ−η2)−1/2 dK

dk1

dk1
dη

)

.

Using that

dk1
dη

=
2λη

k1(2λ−η2)2
,
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we obtain

dT1
dη

=
4
√
2η

(2λ−η2)5/2
(

(2λ−η2) K(k1(η))+
2λ

k1

dK

dk1

)

.

Since K is a strictly increasing function on k1 and 2λ−η2>0, we conclude that T1 is
an increasing function for 0<η<

√
λ. In particular, we have that

T1(η)>
2π√
λ
. (3.10)

In terms of η and λ, the solution takes the form

ψ1(x,η1,η2)=
3η

√
c2−1

2c
sn

(
√

3(2λ−η2)(c2−1)

2c(a−bc2) x;k1

)

,

We also can consider the degenerates cases η→
√
λ and η→0. In the first case, we

have that the period tends to infinity and k1→1. Thus

ψ1(x)→
1

2

√

3(c2−1)

c
sn

(
√

(c2−1)

2(a−bc2)x;1
)

=
1

2

√

3(c2−1)

c
tanh

(
√

(c2−1)

2(a−bc2)x
)

,

which is a traveling wave solution for equation (3.1) in the real line. In the second
case, ψ1→0, which is one of the constant traveling wave solutions.

Case II. c∈ I2=(
√

a/b,1).
To scale ψ on this range of the wave speed, we define

ψ2(x)=β2(c)ϕ2(θ2(c)x), with β2(c)=
3

2c

√

1−c2 and θ22(c)=
3(1−c2)
c(bc2−a) . (3.11)

Then ϕ2 satisfies the ordinary differential equation

Λ2,c(ϕ2)=ϕ
′′

2 +ϕ
3
2+

c

3
ϕ2=0. (3.12)

As in Case I, we have that equation (3.12) has a cnoidal wave solution of the form

ϕ2(x,η1,η2)=η1cn

(
√

η21+η
2
2

2
x;k2

)

,

where η1 and η2 satisfy conditions
{

η22−η21 = 2c
3 ,

η21η
2
2 =4D2,

(3.13)

and the modulus 0<k2<
√

1/2 is defined as

k22 =
η21

η21+η
2
2

, k′22 =1−k22.

Now, since cn is a 4K periodic function, ϕ2 has fundamental period

Tϕ2
=

4
√
2

√

η21+η
2
2

K(k2). (3.14)
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Now from the definition η2=
√

2λ+η21 where λ= c/3 and the period Tϕ2
:=T2 and

the modulus k2 depend only on η=η1,

T2(η)=
4

√

λ+η2
K(k2(η)), k22(η)=

η2

2(λ+η2)
.

It is not hard to see that Tϕ2
is a decreasing function for η>0. So we conclude that

0<T2(η)<
2π√
λ
. (3.15)

In terms of η and λ, the solution takes the form

ψ2(x,η)=
3η

√
1−c2
2c

cn

(

√

η2+λ

√

3(1−c2)
c(bc2−a)x;k2

)

.

If we consider the degenerate case η→0, then k2→0 and K→π/2. In this case we
capture the unique constant solution ψ2≡0.

3.2. Characterization of the fundamental period. A clever result needed
in discussing orbital instability is the existence of smooth curves of periodic traveling
wave solutions with a fixed period, which are parametrized by the wave speed c. We
want to point out that this is not straightforward since the period of these periodic
traveling waves solutions depend strongly on the wave speed c. We will see that the
proof of these facts is a direct consequence of the Implicit Function Theorem. We
start the discussion by characterizing the period.

Lemma 3.1. Let L>2
√
3π be arbitrary but fixed. Consider 1<c20<a/b such that

c0>
12π2

L2 , and a unique η1,0=η1(c0)∈
(

0,
√

c0
3

)

such that L=Tc0,1. Let ϕc0(·)=
ϕc0(·,η1,0,η2,0) satisfy the equation (3.3) with η2,0=

√

2c0
3 −η21,0, and define

ρ(c)=

√

(a−bc20)(c2−1)

(a−bc2)(c20−1)

for c>0 such that 1<c2<a/b. Then

1. There is an interval J1(c0) around c0, an interval B(η2,0) around η1,0, and a
unique smooth function η :J1(c0)−→B(η1,0) satisfying that η(c0)=η1,0 and

√

c

c0

4
√
2

√

2c/3−η2
K(k1(η))=ρ(c)Tc0,1, (3.16)

where k21(c)=
η2

2c/3−η2 .

2. The snoidal wave ϕc(·)=ϕc0(·,
√

c0
c η1(c),

√

c0
c η2(c)), where η=η1 and η2=

√

2c
3 −η2, has fundamental period Tc=ρ(c)Tc0,1 and satisfies the equation

ϕ
′′

+
c0
3
ϕ−ϕ3=0. (3.17)
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Lemma 3.2. Let L<2
√
3π be arbitrary but fixed. Consider a/b<c20<1 such that

c0<
12π2

L2 , and a unique η1,0=η1(c0)∈
(

0,
√

2c0
3

)

such that L=Tc0,2. Let ϕc0(·)=

ϕc0(·,η1,0,η2,0) satisfy the equation (3.12) with η2,0=
√

2c0
3 +η21,0, and define

ρ(c)=

√

(bc20−a)(1−c2)
(bc2−a)(1−c20)

for c>0 such that a/b<c2<1. Then

1. There is an interval J2(c0) around c0, an interval B(η2,0) around η2,0, and a
unique smooth function η :J2(c0)−→B(η2,0) satisfying that η(c0)=η1,0 and

√

c

c0

4
√

c/3+η2
K(k2)=ρ(c)Tc0,2, (3.18)

where k22(c)=
η2

2(c/3+η2) .

2. The cnoidal wave ϕc(·)=ϕc0(·,
√

c0
c η1(c),

√

c0
c η2(c)), where η=η1 and η2=

√

2c
3 +η2, has fundamental period Tc=ρ(c)Tc0,2 and satisfies the equation

ϕ
′′

+
c0
3
ϕ+ϕ3=0. (3.19)

Proof of these lemmas follows by noting that we can define, in an appropriate
range for c, functions

Π1(η,c)=

√

c

c0

4
√
2

√

2λ−η2
K(k1(η))−ρ(c)Tc0,1 in Ω1=

{

(η,c) : 0<η<

√

c

3
, c>

12π2

T 2
c0,1

}

,

Π2(η,c)=

√

c

c0

4
√

λ+η2
K(k2(η))−ρ(c)Tc0,2 in Ω2=

{

(η,c) : 0<η<

√

2c

3
, c<

12π2

T 2
c0,2

}

,

where λ= c/3. First observe that Πi(η,c)=
√

c
c0
Ti(η)−ρ(c)Tc0,i (see (3.16), (3.18)).

We also have that Πi(η0,c0)=0 and that ∂ηΠi(η0,c0)=
√

c
c0
∂ηTi(η0) 6=0, since we

show in these three cases that the period function Ti is a monotone function for 0<η<
√

c
3 for i=1 and for 0<η<

√

2c
3 for i=2. So, the first part in these lemmas follows by

the Implicit Function Theorem. The second part in these lemmas is straightforward.

3.3. Curves of periodic solutions. As a consequence of the previous results,
we will prove the existence of smooth curves of periodic waves for equation (3.1) with

a fixed period characterized as T0,i=
Tc0,i

θi(c0)
for c∈Ji(c0)

⋂

Ii with i=1,2.

These curves of periodic wave solutions are given by the following result

Theorem 3.3. For any c∈Ji(c0), there exists ψc,i∈W1
L with fundamental period

L=T0,i satisfying the equation

(a−bc2)ψ′′

+(c2−1)ψ− 4c

3
ψ3=0
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and having the form

ψc,1(x) =
3η1

√
c2−1

2c sn
(

η2

√

3(c2−1)
2c(a−bc2) x;k1

)

, with k21 =
η2

1

η2
2

, η21+η
2
2 =

2c
3 ,

ψc,2(x) =
3η1

√
1−c2

2c cn
(

√

η21+η
2
2

√

3(1−c2)
2c(bc2−a) x;k2

)

, with k22 =
η2

1

η2
1
+η2

2

, η22−η21 = 2c
3 .

for i=1,2, respectively.
Moreover, the map

Ji(c0)→W1
L×H1

per[0,L],

c→
(

ψc,i,−cB(ψc,i)+
1

3
ψ3
c,i

)

is smooth (i=1,2).

Proof. Let ϕc,i be the periodic wave determined by the corresponding previous
lemmas with ηi=ηi(c) for c∈Ji(c0). Define

ϕi(x)=

√

c

c0
ϕc,i

(√

c

c0
x

)

, x∈R.

Then ϕi has period Tϕi
≡γ(c)Tc0,i with

γ(c)=
θi(c)

θi(c0)
.

But a direct computation shows that ϕi satisfies the equation

Λi,c(ϕi)=0.

Next we obtain a smooth curve of the solution for (3.1). From the change of variables
in the i-case, we define

ψc,i(x)=βi(c)ϕi (θi(c)x,η1(c),η2(c)) . (3.20)

Then it is a straightforward calculation to see that ψc,i has period T0,i=
Tc0,i

θi(c0)
and

that ψc,i has the form desired in the conclusion of the Theorem for i=1,2. Regularity
of the map c→ψc,i follows from the properties of ϕc0,i and ηj .

Remark 3.4. By a continuation argument, Ji in the previous result can be taken as

J1=
(

1,
√

a/b
)

, J2=
(

√

a/b,1
)

.

4. Instability result for n=2
We start proving a basic result before we follow the approach in [9]. First note

that Lc,n=F′′(Ψc) is given by

Lc,n=





ncqnc +B
−1 (qnc (·))qnc +A −qncB−1+cI

−B−1 (qnc (·))+cI B−1



 .
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So, it is straightforward to see that

〈Lc,n(Ψc),Ψc〉=
∫ L

0

[

ncqn+2
c +qcAqc+q

n+1
c B−1

(

qn+1
c

)

−2qn+1
c B−1 (pc)

+pcB
−1 (pc)+2cpcqc

]

dx. (4.1)

Now on the other hand, a direct computation shows that

qn+1
c B−1 (pc)=

1

n+1
qn+1
c B−1

(

qn+1
c

)

−cqn+2
c ,

2cpcqc=
2c

n+1
qn+2
c −2c2qcBqc,

pcB
−1 (pc)=

1

(n+1)2
qn+1
c B−1

(

qn+1
c

)

− 2c

n+1
qn+2
c +c2qcBqc,

1

(n+1)2
qn+1
c B−1

(

qn+1
c

)

=
1

(n+2)2c2

[

c4qcBqc−2c2qcAqc+AqcB
−1 (Aqc)

+
(

−c2Bqc+Aqc+A1−c2qc+B−1 (Aqc)
)

A1

]

.

Using that qc has zero mean in [0,L] we have that

n2

(n+1)2

∫ L

0

qn+1
c B−1

(

qn+1
c

)

dx

=
n2A2

1L

(n+2)2c2
+

n2

(n+2)2c2

∫ L

0

[

c4qcBqc−2c2qcAqc+AqcB
−1 (Aqc)

]

dx.

As a consequence of these equalities, we have that

〈Lc,n(Ψc),Ψc〉=
∫ L

0

[

(n+2)cqn+2
c +qcAqc−c2qcBqc+

n2

(n+1)2
qn+1
c B−1

(

qn+1
c

)

]

dx

=
n2A2

1L

(n+2)2c2
+

∫ L

0

[

n(c2qcBqc−qcAqc)+
n2

(n+2)2c2

[

c4qcBqc

−2c2qcAqc+AqcB
−1(Aqc)

]]

dx

=
n2A2

1L

(n+2)2c2
+

n

(n+2)2c2

∫ L

0

[

[n+(n+2)2]c4qcBqc

− [2n+(n+2)2]c2qcAqc+nAqcB
−1(Aqc)

]

dx

=
n2A2

1L

(n+2)2c2
+

n

(n+2)2c2
I1,

where

I1=

∫ L

0

[

[n+(n+2)2]c4qcBq−[2n+(n+2)2]c2qcAqc+nAqcB
−1(Aqc)

]

dx.

Moreover, for n even we can take A1=0 (see case n=2 in Section 3), and so

〈Lc,n(Ψc),Ψc〉=
n

(n+2)2c2
I1.
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Now we observe for ρ̂k=
4π2ρk2

L2 , with ρ=a,b that

I1
L

=
1

L

∫ L

0

[

[n+(n+2)2]c4qcBqc− [2n+(n+2)2]c2qcAqc+nAqcB
−1(Aqc)

]

dx

=
∑

k 6=0

[

[n+(n+2)2]c4
[

1+
4π2bk2

L2

]

− [2n+(n+2)2]c2
[

1+
4π2ak2

L2

]

+n

[

1+ 4π2ak2

L2

]2

[

1+ 4π2bk2

L2

]

]

|q̂k|2

=
∑

k 6=0

[

[n+(n+2)2](1+ b̂k)
2c4− [2n+(n+2)2](1+ b̂k)(1+ âk)c

2+n(1+ âk)
2
]

(1+ b̂k)
|q̂k|2.

Now, a simple computation shows that

(n+(n+2)2)(1+ b̂k)
2c4−(2n+(n+2)2)(1+ b̂k)(1+ âk)c

2+n(1+ âk)
2

=(n+(n+2)2)(1+ b̂k)
2

(

c2− (1+ âk)

(1+ b̂k)

)(

c2− n(1+ âk)

(n+(n+2)2)(1+ b̂k)

)

.

If we assume for example that 1> b
a >

n
n+(n+2)2 and that 1< |c|<

√

1+ 4π2a

L2

1+ 4π2b

L2

, then we

have for any k∈Z\{0} that
(

c2− (1+ âk)

(1+ b̂k)

)(

c2− n(1+ âk)

(n+(n+2)2)(1+ b̂k)

)

<0.

This follows since for a>b and k∈Z\{0}, we have that
√

1+ 4π2a
L2

1+ 4π2b
L2

≤
√

1+ âk

1+ b̂k
<

√

a

b
.

On the other hand,

|c|>1=

√

a

b

√

b

a
>

√

n(1+ âk)

(n+(n+2)2)(1+ b̂k)
,

which implies that
√

n(1+ âk)

(n+(n+2)2)(1+ b̂k)
< |c|<

√

1+ âk

1+ b̂k
.

In other words, for n even we have established the instability hypothesis (H3).

Lemma 4.1. Let n be even. If 1> b
a >

n
(n+(n+2)2) and 1<c2<

1+ 4π2a

L2

1+ 4π2b

L2

, then we have

that

〈Lc,n(Ψc),Ψc〉<0.
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4.1. Spectral Analysis of Lc,n for 1<c<
√

a/b and n=2. We will see
below that the spectral analysis is based on the fact that Lc,n can be diagonalized.
In fact, set D as the linear transformation

D=

(

I 0
qnc −cB I

)

,

whose transpose operator Dt is given by

Dt=

(

I qnc −cB
0 I

)

.

It is not hard to show that D is a bounded linear operator from Hs
per([0,L])×

Hs−2
per ([0,L])→Hs

per([0,L])×Hs−2
per ([0,L]), with bounded inverse. On the other hand,

L(n)
c =DtF′′

(

qc
pc

)

D=

(

Lsn 0
0 B−1

)

,

where Lsn=A−c2B+(n+2)cqnc . From this diagonal form the spectral analysis of
the operator Lc,2, is reduced to the analysis of the spectral properties of the operator

L(2)
c =

(

Lsn 0
0 B−1

)

,

where

Lsn=−(a−bc2) d
2

dx2
+(1−c2+4cq2c,1) (4.2)

is the operator associated to the snoidal-wave solution (qc,1,pc,1)
t for system (1.1)

determined by Theorem (3.3). As a consequence of this result, now we are able to
complete the spectral analysis for Lc,2. In other words, we have to consider the
periodic eigenvalue problem

{

Lc,2χ=λχ,
χ(0)=χ(L), χ′(0)=χ′(L).

(4.3)

where the operator Lc,2 is given by

Lc,2=





2q2c,1+B
−1
(

q2c,1(·)
)

q2c,1+A −q2c,1B−1+cI

−B−1
(

q2c,1(·)
)

+cI B−1



 .

Regarding this eigenvalue problem, we obtain the following result

Theorem 4.2. Let qc,1 be the snoidal wave solution given by Theorem 2.4. and

1<c<
√

a/b. Then the periodic eigenvalue problem (4.3) on H2
per([0,L])×H2

per([0,L])
has exactly one negative eigenvalue which is simple, λ=0 is a simple eigenvalue with
eigenfunction (q′c,1,0)

t and the rest of the spectrum is positive and away from zero.

Proof. Since B−1 is a positive operator, we only need to analyze the periodic
eigenvalue problem for the linear operator Lsn:

{

Lsnv =λv,
v(0) =v(L), v′(0)=v′(L).

(4.4)
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Recall that Lsnv=λv is simply a Hill’s equation, so it is not hard to check (see [12])
that the linear operator Lsn in (4.4) defined on H2

per([0,L]) has exactly its first three
eigenvalues simple: the first eigenvalue is negative, the second eigenvalue is zero with
eigenfunction q′c,1, and the third eigenvalue is positive. The rest of the spectrum is a
discrete set of eigenvalues which are double. The eigenvalues only accumulate at +∞.

Now, let ζ=(q′c,1,0)
t. Then we have that L

(2)
c ζ=(Lsnq

′
c,0)

t=(0,0)t. In other words,

λ=0 is an eigenvalue of L
(2)
c with eigenvector ζ=(ψ′

c,0)
t. Let us check that λ=0

is simple. Take χ=(f,g)t such that L
(2)
c χ=(0,0)t. Then we obtain that B−1(g)=0

and Lsnf =0. But we conclude that f =αq′c,1 and therefore (f,g)=α(q′c,1,0). Thus
we have that λ=0 is simple. Now, given ζ=(f,g)t we have that

〈L(2)
c ζ,ζ〉= 〈Lsnf,f〉+‖B−1/2g‖2, (4.5)

where B−1/2 is the square root of the positive linear operator B−1. So, by taking
χ0 such that Lsnχ0=λ0χ0 for λ0<0 and ζ0=(χ0,0)

t, we obtain from (4.5) that

〈L(2)
c ζ0,ζ0〉= 〈Lsnχ0,χ0〉<0. Therefore, L

(2)
c has a negative eigenvalue, which must

be simple. Now, let ζ1=(χ0,0)
t and ζ2=(q′c,1,0)

t. Then for ϕ=(f,g)t, ‖ϕ‖=1, it

follows from the Min-max principle that the third eigenvalue for L
(2)
c , η3, satisfies

η3= sup
[ξ1,ξ2]

inf
ϕ⊥ξ1,ϕ⊥ξ2

〈L(2)
c ϕ,ϕ〉≧ inf

ϕ⊥ζ1,ϕ⊥ζ2
〈L(2)

c ϕ,ϕ〉

≧ inf
f⊥χ0,f⊥q′c,1

[〈Lsnf,f〉+‖B1/2g‖2]≧ δ0>0,

where in the last inequality we have used the spectral properties of linear operator
Lsn.

Finally, we are able to establish for n=2 the hypothesis (H2).

Theorem 4.3. Suppose that 1<c<
√

a/b. Then Lc,2 has exactly one negative simple
eigenvalue with eigenfunction χc∈H1

per[(0,L)]×H1
per([0,L]), has its kernel spanned by

∂xΨc,1∈X, and the rest of the spectrum in H2
per[(0,L)]×H2

per([0,L]) is positive and
away from zero.

Proof. From the spectral analysis of the operator L
(2)
c on H2

per[0,L]×H2
per([0,L])

we have that Lc,2 has a unique negative simple eigenvalue. Now we will see that the
kernel of Lc,2 is spanned by ∂xΨc,1∈X. We know that (qc,pc)

t satisfies the following
equations:

Aq−c2Bq+ 4c

3
q3=0, p=

1

3
q3−cBq.

Then we also have that

Aq′−c2Bq′+4cq2q′=0, p′= q2q′−cBq′. (4.6)

Now, Lc,2(f,g)
t=(0,0)t is equivalent to

B−1(q2f)−B−1(g)= cf, Af+2cq2+B−1(q2f)q2−q2B−1(g)+cg=0.

Then f satisfies Af−c2Bf+4cq2f =0. From (4.6) we conclude that (f,g)=

α(q′c,1,p
′
c,1). Again, from the spectral analysis on the operator L

(2)
c , the rest of the

spectrum of Lc,2 in H2
per([0,L])×H2

per([0,L]) is positive and away from zero.
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4.2. Concavity of d for c∈ (1,
√

a/b) and n=2. In order to establish orbital
instability for such traveling wave solutions using Theorem (2.11) for n=2 , we must
verify that d′′(c)<0, where d is defined as

d(c)=F

(

qc,1
pc,1,

)

(4.7)

where pc,1=−cBqc,1+ 1
3q

3
c,1, with qc,1 being the wave solution obtained in Theorem

3.3. If we differentiate (4.7) with respect to c, we get that

d
′

(c)=N(Vc)

=

∫ L

0

pc,1qc,1dx

=

∫ L

0

(

−cq2c,1−bc(q′c,1)2+
1

3
q4c,1

)

dx. (4.8)

We will see that d′ in (4.8) can be rewritten as

d′(c)=
a+3bc2

3(a−bc2)

∫ L

0

q4c,1(x)dx−
c(a−b)
(a−bc2)

∫ L

0

q2c,1(x)dx. (4.9)

In fact, multiplying equation (3.1) by qc and integrating over [0,L] we obtain that

(a−bc2)
∫ L

0

(q′c,1)
2dx=(c2−1)

∫ L

0

q2c,1(x)dx−
4c

3

∫ L

0

q4c,1(x)dx.

So, replacing in d′(c) we obtain the desired expression. On the other hand, for 1<
c<
√

a/b, we know from Theorem (3.3) that

qc,1(x)=
3η1

√
c2−1

2c
sn

(

η2

√

3(c2−1)

2c(a−bc2) x;k1
)

,

with η21(c)+η
2
2(c)=

2c
3 and k1(c)=

η1(c)
η2(c)

. Then a direct computation shows that

∫ L

0

q2c,1(x)dx=
6(a−bc2)k21K

cL

∫ 4K

0

sn2(y)dy, (4.10)

∫ L

0

q4c,1(x)dx=
144(a−bc2)2k41K3

c2L3

∫ 4K

0

sn4(y)dy (4.11)

=
9(a−bc2)(c2−1)k41K

c2(k21+1)L

∫ 4K

0

sn4(y)dy. (4.12)

But we know that k21sn
2(y)=1−dn2(y), and that

∫ 4K

0

dn2(y)dy=4

∫ K

0

dn2(y)dy=4E,

∫ 4K

0

dn4(y)dy=4

∫ K

0

dn4(y)dy=
4

3

[

(k21−1)K+2(2−k21)E
]

,
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where E and F are the Elliptic integrals of the first class defined by

E(k1)=

∫ π/2

0

√

1−k21 sin2 tdt and F (k1)=

∫ π/2

0

1
√

1−k21 sin2 t
dt.

As a consequence of this and previous formulas, we find that

∫ L

0

q2c,1(x)dx=
24(a−bc2)

cT0
K(K−E),

∫ L

0

q4c,1(x)dx=
192(a−bc2)2

c2L3
K3
[

(k21+2)K−2(k21+1)E
]

=
12(a−bc2)(c2−1)

c2(k21+1)L
K
[

(k21+2)K−2(k21+1)E
]

.

Replacing these into d′(c) we finally get that

d′(c)=
4(a+3bc2)(c2−1)

c2L
K

[(

k21+2

k21+1

)

K−2E

]

− 24(a−b)
L

K[K−E] (4.13)

=
4(a+3bc2)(c2−1)

c2L
J1(c)−

24(a−b)
L

J2(c), (4.14)

where J1(c)=K
[(

k2

1
+2

k2
1
+1

)

K−2E
]

≥0 and J2(c)=K[K−E]≥0.

The first observation is that d is a non increasing function. In fact, a simple
computation shows that

2J1−3J2=
(1−k21)K2−(1+k21)KE

1+k21
≤0.

On the other hand,

d′(c)=
4

c2L

(

(a+3bc2)(c2−1)J1(c)−6(a−b)c2J2(c)
)

=
4

c2L

(

[(a+3bc2)(c2−1)−4(a−b)c2]J1(c)+2(a−b)c2(2J1−3J2(c))
)

=
4

c2L

(

−(3c2+1)(a−bc2)J1(c)+2(a−b)c2(2J1−3J2(c))
)

≤0.

Now we have to compute d′′(c). We start computing dk1

dc . To do this, we have to
recall that η is defined implicitly by the equation

Π(η,c)=
4
√
2K(k1(η))

(2c/3−η2)1/2 −θ(c)L=
4
√
2K(k1(η))

(2c/3−η2)1/2 −
√

3(c2−1)

c(a−bc2)L=0. (4.15)

Lemma 4.4.

d

dc
k1(c)=

k1(1+k
2
1)(1−k21)K(k1)Q1

cH(k1,c)
≥0, (4.16)

where

Q1=(a−bc2)(c2−1)k21+2(a−b)c2≥0, and
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H(k1,c)=2(a−bc2)(c2−1)
[

(1+k21)E(k1)−(1−k21)K(k1)
]

.

Proof. First we have to observe that

∂ηk1(η)=
2cη

3k1(2c/3−η2)2
, 1+k21 =

2c

3(2c/3−η2) , and
d

dk1
K(k1)=

E−(1−k21)K
k1(1−k21)

.

Then we have that

∂ηΠ(η,c)=
4
√
2η

(2c/3−η2)5/2

[

(2c/3−η2)K+
2cK

′

(k1)

3k1

]

=
4
√
2k1

(2c/3−η2)2
[(

2c

3
−η2− 2c

3k21

)

K+
2cE(k1)

3k21(1−k21)

]

=
4
√
2(2c/3)

(2c/3−η2)2k1

[

E(k1)

1−k21
− K

1+k21

]

=
6
√
2(1+k21)

ck1(1−k21)
[

(1+k21)E(k1)−(1−k21)K
]

.

Moreover, it is straightforward to see that

Lθ
′

(c)=
3(bc2(c2−1)+(a−b)c2+a−bc2)L

2θc2(a−bc2)2 =
(bc4+(a−3b)c2+a)θL

2c(c2−1)(a−bc2) ≥0.

On the other hand,

∂cΠ(η,c)=− 4
√
2K(k1)

3(2c/3−η2)3/2 −θ
′

(c)T0

=− 4
√
2K(k1)

3(2c/3−η2)3/2 −
(bc4+(a−3b)c2+a)

2c(c2−1)(a−bc2)
4
√
2K(k1)

(2c/3−η2)1/2

=− 4
√
2K(k1)

3(2c/3−η2)3/2
[

1+
3(bc4+(a−3b)c2+a)

2c(a−bc2)(c2−1)
(2c/3−η2)

]

=− 4
√
2K(k1)

3(2c/3−η2)3/2
[

1+
bc4+(a−3b)c2+a

(a−bc2)(c2−1)(1+k21)

]

=−2
√
2K(k1)(1+k

2
1)k1

cη

[

(a−bc2)(c2−1)k21+2(a−b)c2
(a−bc2)(c2−1)(1+k21)

]

.

Using this and chain rule, we have that

d

dc
η(c)=− ∂cΠ(η,c)

∂ηΠ(η,c)

=
k21(1−k21)K(k1)Q1

3η(a−bc2)(c2−1)(1+k21)[(1+k
2
1)E(k1)−(1−k21)K(k1)]

≥0,

where

Q1=(a−bc2)(c2−1)k21+2(a−b)c2≥0.

As a consequence of this,

d

dc
k1(c)=∂ηk1(η)

d

dc
η(c)
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=
2cη

3k1(2c/3−η2)2
k21(1−k21)K(k1)Q1

3η(a−bc2)(c2−1)(1+k21)[(1+k
2
1)E(k1)−(1−k21)K(k1)]

=
k1(1+k

2
1)(1−k21)K(k1)Q1

2c(a−bc2)(c2−1)[(1+k21)E(k1)−(1−k21)K(k1)]
≥0.

Finally we are able to establish the concavity of d.

Lemma 4.5. There are 1<c∗≤ c∗<
√

a/b such that d(c) is concave for c∈ (1,c∗) and

for c∈ (c∗,
√

a/b).

Proof. We have that

Lc3d′′(c)

4
=2(3bc4+a)J1+(a+3bc2)(c2−1)(cJ ′

1(c))−6(a−b)c2(cJ ′
2(c)), (4.17)

where ′= d
dc . Now we observe that

(a+3bc2)(c2−1)cJ ′
1(c)−6(a−b)c2(cJ ′

2(c))=
2KQ1

(

H1KE+H2K
2+H3E

2
)

(1+k21)H(k1,c)
(4.18)

=
KW

(1+k21)H(k1,c)
, (4.19)

where

W =2Q1

(

H1KE+H2K
2+H3E

2
)

,

H1=(a+3bc2)(c2−1)(2+k21)(1+k
2
1)−6(a−b)c2(1+k21)2,

H2=−(a+3bc2)(c2−1)(1+2k21)(1−k21)+3(a−b)c2(1+k21)2(1−k21),
H3=[−(a+3bc2)(c2−1)+3(a−b)c2](1+k21)2.

By defining Γ=(a+3bc2)(c2−1), Θ=3(a−b)c2, and

γ1=(2+k21)(1+k
2
1), γ2=(1+2k21)(1−k21), γ3=(1+k21)

2,
η1=2(1+k21)

2, η2=(1+k21)
2(1−k21), η3=(1+k21)

2,

we find that

H1=Γγ1−Θη1,

H2=−Γγ2+Θη2,

H3=−Γγ3+Θη3.

Moreover, we also have that

H1=

(

Γ− 4

3
Θ

)

γ1+Θ

(

4

3
γ1−η1

)

,

H2=−
(

Γ− 4

3
Θ

)

γ2+Θ

(

η2−
4

3
γ2

)

,

H3=−
(

Γ− 4

3
Θ

)

γ3+Θ

(

η3−
4

3
γ3

)

.
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In particular,

H1KE+H2K
2+H3E

2=

(

Γ− 4

3
Θ

)

(

γ1KE−γ2K2−γ3E2
)

+
Θ

3

(

2(1−k41)KE−(1−k21)2(1+3k21)K
2−(1+k21)

2E2
)

.

Now, using that 1+k21 ≥ (1+2k21)(1−k21) we are able to see that

γ1KE−γ2K2−γ3E2=(2+k21)(1+k
2
1)KE−(1+2k21)(1−k21)K2−(1+k21)

2E2

=K[(1+k21)E−(1+2k21)(1−k21)K]+(1+k21)
2[K−E]E

≥
(

(1+2k21)(1−k21)K[E−K]+(1+k21)
2[K−E]E

)

≥ [K−E]
(

(1+k21)
2E−(1+2k21)(1−k21)K

)

≥0,

since we have that K−E>0 and (1+k21)
2E−(1+2k21)(1−k21)K≥0.

Note that we also have for c∈ (1,
√

a/b) that

Γ− 4

3
Θ=(a+3bc2)(c2−1)−4(a−b)c2=−(3c2+1)(a−bc2)≤0,

which implies that for c∈ (1,
√

a/b) and k1∈ (0,1),

(

Γ− 4

3
Θ

)

(

γ1KE−γ2K2−γ3E2
)

≤0.

It can be also shown using MATLAB that

G(k1)=2(1−k41)KE−(1−k21)2(1+3k21)K
2−(1+k21)

2E2≤0, for k1∈ (0,1).

In figure (4.1) we display the coefficient G(k1) as a function of the modulus k1. In
this plot we can see clearly that G(k1)≤0 for 0≤k1≤1.

0 0.2 0.4 0.6 0.8 1
−4

−3.5

−3
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−1.5

−1

−0.5

0

k
1

Figure 4.1. The coefficient G(k1) as a function of the modulus k1.

As a consequence, we have established that

W =2Q1(H1KE+H2K
2+H3E

2)<0, for c∈ (1,
√

a/b), k1∈ (0,1).
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By using (4.17) and (4.19), we see that d′′ can be written as

Lc3d′′(c)

4
=
K
{

2(3bc4+a)(a−bc2)(c2−1)
[

(2+k21)K−2(1+k21)E
]

+W1

}

(1+k21)(a−bc2)(c2−1)
,

where

W1=
W

2(1+k21)E(k1)−(1−k21)K(k1)
.

But from (4.15), we observe for either β=1+ or β=(
√

a/b)− that

lim
c→β

(a−bc2)(c2−1)
[

(2+k21)K(k1)−2(1+k21)E(k1)
]

≤ lim
c→β

4(1+k21)(a−bc2)(c2−1)K(k1)≤8 lim
c→β

(a−bc2)(c2−1)K(k1)=0.

Moreover, there exists 0<M <∞ such that

sup
k1∈[0,1]

[

(1+k21)E(k1)−(1−k21)K(k1)
]

=M.

As a consequence of these facts, we conclude that there are 1<c∗≤ c∗<
√

a/b such
that d is concave, since

d′′(c)=
4K
{

2(3bc4+a)(a−bc2)(c2−1)
[

(2+k21)K−2(1+k21)E
]

+W1

}

Lc3(1+k21)(a−bc2)(c2−1)
≤0

in that range, since 2(1+k21)E(k1)−(1−k21)K(k1)>0.

Remark 4.6. As we have seen in previous computations, to determine analytically
the sign of d′′ is not quite trivial. Note that the relation between k1 and c is not
explicit, and so, we do not know where the range of k1 is localized. In accordance
with numerical simulations for many values of the parameter a and b, we conjecture
that d is in fact concave in (1,

√

a/b). To give an insight on this conjecture, we
performed some numerical experiments. See numerical Section 5 below.

As a consequence of the previous result and the general instability result (2.11),
we obtain for n=2 the following instability result.

Corollary 4.7. Let a>b> a
9 , 1<c<min

(

c∗,

√

1+ 4π2a

L2

1+ 4π2b

L2

)

, n=2, and let qc,1 be the

snoidal wave branch of period L given in Theorem 3.3. Then the orbit {(qc,1(·+
s),pc,1(·+s))}s∈R is X-unstable with regards to periodic perturbations and the flow
generated by system (2.3).

5. Description of numerical experiments
For solving the Cauchy problem associated to the generalized system

qt= rx, (5.1)

pt=∂x(Aq−rqn), (5.2)

we use a spectral numerical scheme as in [17], where we use that p=Br+ 1
n+1q

n+1.
In previous sections we have explained the method to build spatially-periodic traveling
wave solutions to system (1.1) when n=2 in two different cases, depending on the
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Figure 5.1. The coefficient d′′(c,k1) for two values of the model’s parameters a and b. In (A)
a=0.8, b=0.1. In (B) a=50, b=0.5. Observe that d′′(c,k1) is negative in the entire range.
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Figure 5.2. (A) Deviation E(t) of an unstable snoidal wave solution with a=0.8, b=0.1. The
perturbation has period L=39.56 (fundamental period of the snoidal wave) and wave speed c=1.03.
(B) Comparison between the perturbed numerical solution and the analytic snoidal solution.

regime of wave velocity and the parameters a and b. For c∈ (1,
√

a/b), we proved
analytically the instability of the L-spatially periodic snoidal wave solution (qc,1,pc,1)
under perturbations having the same period L, provided that the wave speed c is near
enough the critical value 1 and 9b>a>b.

As mentioned above, it is difficult to study analytically the sign of the function
d′′(c) on the entire range (1,

√

a/b). A large set of numerical experiments performed
with MATLAB plotting the coefficient d′′(c) for several values of the parameters a
and b indicates that d′′(c) is negative for all c∈ (1,

√

a/b). To illustrate this issue,
we display in figure (5.1) the coefficient d′′(c,k1) as a function of the wave speed
0<c<

√

a/b and the modulus k1∈ (0,1), for a=0.8, b=0.1 and for a=50, b=0.5.
Even though we know that we can not apply the Grillakys-Shatah-Strauss approach to
study stability/instability of cnoidal wave solutions in the case c∈ (

√

a/b,1) (cnoidal
type solutions) we will provide numerical evidence of instability in such a case in
Section 5.2, by using the numerical scheme implemented.
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Figure 5.3. (A) Deviation F (t) of an unstable snoidal wave solution witha=0.8, b=0.1. The
perturbation has period L=39.56 (fundamental period of the scnoidal wave) and wave speed c=1.03.
Comparison between the perturbed numerical solution and the analytic snoidal solution.
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Figure 5.4. (A) Deviation E(t) of an unstable cnoidal wave solution with a=0.3, b=0.7. The
perturbation has period 2L, with fundamental period L=3.69886 and the wave speed c=0.8.

0 20 40 60 80 100
0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

t (time)

F(t
)

0 2 4 6 8
−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

x

q at t=100

(A) (B)

Figure 5.5. (A) Deviation F (t) of an unstable cnoidal wave solution with a=0.3, b=0.7. The
perturbation has period 2L, with fundamental L=3.69886 and the wave speed c=0.8.

5.1. Instability of snoidal waves. To measure the deviation of the solution
pair (q(t),p(t)) from the orbit of the snoidal wave qc= qc,1,pc=pc,1, we introduce the
time-dependent functions
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E(t)

= min
k=1,..N

√

√

√

√

L

N

N
∑

j=1

[

|p(j∆x,t)−pc(j∆x+k∆x)|2+ |px(j∆x,t)−p′c(j∆x+k∆x)|2
]

,

(5.3)

F (t)= min
k=1,..N

√

√

√

√

L

N

N
∑

j=1

[

|q(j∆x,t)−qc(j∆x+k∆x)|2+ |qx(j∆x,t)−q′c(j∆x+k∆x)|2
]

(5.4)

where N is the number of grid points used in the numerical calculation of p(x,t)
and q(x,t) on the computational domain [0,L]. Furthermore, px,p

′
c, qx,q

′
c denote the

derivatives with respect to x of the functions p,pc, q,qc, respectively. In the numerical
experiments to be presented, we will study the behavior of the deviations E(t) and
F (t) as long as time t increases. These functions are computed at every time step by
using the numerical solution (q(t),p(t)) to system (5.1)-(5.2).

We explore the dynamics of the branch of snoidal wave solution qc= qc,1,pc=pc,1
for (5.1)-(5.2) when time increases. We run the numerical scheme with perturbed
initial conditions

q(x,0)= qc(x)+ǫ cos
(

5
2πx

L

)

, (5.5)

p(x,0)=pc(x)+ǫ sin
(

5
2πx

L

)

, (5.6)

where the scale ǫ>0 controls the strength of the perturbation introduced into the
cnoidal wave (qc,pc). Observe that this amounts to introducing perturbations having
the same period L that the snoidal wave. In our first simulation we set ǫ=0.005.
Furthermore, the initial deviations introduced are E(0)=0.0284, F (0)=0.0285. We
take a=0.8, b=0.1, η1=0.5472, η2=0.6223, the wave speed adopted is c=1.03 (i.e.
near one), and the fundamental period of the snoidal wave is L=39.56. This set of
parameters satisfies all conditions required in Section 3. The numerical parameters
are 28 FFT points equally spaced along the computational domain [0,L] and the time
step is ∆t=0.001. In figures (5.2)(A) and (5.3)(A) we present the outcome of the
deviations E(t) and F (t) for the solutions p(x,t) and q(x,t) of the perturbed problem.
Observe that the total deviation E(t)+F (t) increases up to approximately 1.5 times
the initial perturbation introduced, which indicates an unstable nature of the snoidal
wave solution. This is in accordance with the analytic results presented above for c
near one. In figures (5.2)(B) and (5.3)(B) we can see the profiles corresponding to
the numerical solution to system (5.1)-(5.2) (with perturbed initial data in the form
(5.5)-(5.6)), and the snoidal wave (qc,1, pc,1) after an appropriate spatial translation
in order to compare their shapes. Observe that the discrepancy of the derivative of
these profiles is very dramatic near the left-side boundary and at the center of the
interval.

5.2. Instability of cnoidal waves. By using the implemented numerical
scheme we provide experiments showing that the cnoidal-wave solution qc= qc,2,pc=



1204 INSTABILITY OF MEAN ZERO PERIODIC TRAVELING WAVES

pc,2 with period L is unstable when perturbed by 2L-periodic disturbances of the form

q(x,0)= qc(x)+ǫqc(x/2), (5.7)

p(x,0)=pc(x)+ǫpc(x/2), (5.8)

with ǫ=0.05. In this case, we do not have analytic results since it is not possible to
adapt the Grillakis-Shatah-Strauss approach.

E(t)= min
k=1,..N

√

√

√

√

L

N

N
∑

j=1

|p(j∆x,t)−pc(j∆x+k∆x)|2, (5.9)

F (t)= min
k=1,..N

√

√

√

√

L

N

N
∑

j=1

|q(j∆x,t)−qc(j∆x+k∆x)|2. (5.10)

Here we set a=0.3, b=0.7, η1=0.2582, η2=0.7746, the wave speed c=0.8, and the
fundamental period L=3.69886. The numerical parameters are 26 FFT points equally
distributed on the computational domain [0,2L] and the time step is ∆t=3.3×10−4.
In figures (5.4)(A), (5.5)(A) we feature the deviations E(t) and F (t) computed in
this numerical simulation. The initial deviations are E(0)=3.28×10−2 and F (0)=
2.77×10−2. In figures (5.4)(B) and (5.5)(B) we can see the profiles corresponding
to the numerical solution to system (5.1)-(5.2) (with initial data (5.7)-(5.8)), and the
cnoidal wave (qc,2, pc,2) after an appropriate spatial translation in order to compare
their shapes. The deviation of the perturbed solution increases up to roughly 10
times its initial deviation, providing us with clear numerical evidence with regard to
the instability of this type of periodic solutions under 2L-periodic disturbances.
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