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THE EFFECT OF FINITE ELEMENT DISCRETIZATION ON THE

STATIONARY DISTRIBUTION OF SPDES∗

JOCHEN VOSS†

Abstract. This article studies the effect of discretization error on the stationary distribution
of stochastic partial differential equations (SPDEs). We restrict the analysis to the effect of space
discretization performed by finite element schemes. The main result is that under appropriate as-
sumptions the stationary distribution of the finite element discretization converges in total variation
norm to the stationary distribution of the full SPDE.
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Introduction. In this article we consider the finite element discretization for
stochastic partial differential equations (SPDEs) of the form

∂tu(t,x)=∂
2
xu(t,x)+f

(

u(t,x)
)

+
√
2∂tw(t,x), ∀(t,x)∈ [0,∞)× [0,1], (0.1)

where ∂tw is space-time white noise and f : R→R is a smooth function with bounded
derivatives, and where the differential operator ∂2x is equipped with boundary condi-
tions such that it is a negative operator on the space L2

(

[0,1],R
)

. More specifically,
we are considering the effect that discretization of the SPDE has on its stationary
distribution.

Our motivation for studying this problem lies in a recently proposed, SPDE-based
sampling technique: when trying to sample from a distribution on path-space, e.g. in
filtering/smoothing problems to sample from the conditional distribution of a process
given some observations, one can do so using a Markov chain Monte Carlo approach.
Such MCMC methods require a process with values in path-space, and it transpires
that in some situations SPDEs of the form (0.1) can be used; see e.g. [11, 12] and [13]
for a review. When implementing the resulting methods on a computer, the sampling
SPDEs must be discretized and, because MCMC methods use the sampling process
only as a source of samples from its stationary distribution, the effect of the discretiza-
tion error on an MCMC method depends on how well the stationary distribution of
the SPDE is approximated. While there are many results of approximation of trajec-
tories of SPDEs [20, 21, 14, 10, 16], approximation of the stationary distribution does
not seem to be well-studied.

When discretizing an SPDE, discretization of space and time can be considered
to be two independent problems. In cases where only the stationary distribution of
the process is of interest, such as Metropolis sampling, using the next time step of
the time discretization as a proposal will completely eliminate the error introduced
by time discretization [2]. For this reason, in this article we restrict the analysis to
the effect of space discretization alone. The discretization technique discussed here
is a finite element discretization, which is a much-studied technique for deterministic
PDEs. The approximation problem for stochastic PDEs, as studied in this article,
differs from the deterministic case significantly, since here we have to compare the full
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distribution of the solutions instead of considering the approximation of the solution
as a function.

Finally, the error of the resulting sampling method is not only affected by the error
in the stationary distribution, but also by the time it takes for the sampling equation
to reach equilibrium. Here, we concentrate on the error in the equilibrium distribution
itself and refer to [3] for discussion of the speed of convergence to equilibrium.

While the results of this article are formulated for SPDEs with values in R, we
expect the results and techniques to carry over to SPDEs with values in R

d,d>1
without significant changes. We only restrict discussion to the one-dimensional case
to ease notation. This is in contrast to the domain of the SPDEs: we consider the case
of one spatial dimension because this is the relevant case for the sampling techniques
discussed above, but this choice significantly affects the proofs and a different approach
would likely be required to study the case of higher-dimensional spatial domains.

The text is structured as follows: In Section 1 we present the results required to
characterize the stationary distribution of the SPDE (0.1). In Section 2 we introduce
the finite element discretization scheme for (0.1) and identify the stationary distribu-
tion of the discretized equation. Building on these results, in Section 3, we state our
main result about convergence of the discretized stationary distributions to the full
stationary distribution. Finally, in Section 4, we give two examples in order to illus-
trate the link to the MCMC methods discussed above and also to demonstrate that
the considered finite element discretization forms a concrete and easily implemented
numerical scheme.

1. The infinite-dimensional equation

In order to study the SPDE (0.1), it is convenient to rewrite the equation as an
evolution equation on the Hilbert space H=L2

(

[0,1],Rd
)

; For a description of the
underlying theory we refer, for example, to the monograph of [7]. We consider

du(t)=Lu(t)dt+f
(

u(t)
)

+
√
2dw(t), ∀t≥0, (1.1)

where the solution u takes values inH and f acts pointwise on u, i.e. f(u)(x)= f̃
(

u(x)
)

for almost all x∈ [0,1] for some function f̃ : Rd→R
d such that f maps H into itself.

Furthermore, w is an L2-cylindrical Wiener process and we equip the linear operator
L=∂2x with boundary conditions given by the domain

D(L)=
{

u∈H2([0,1],R)
∣

∣α0u(0)−β0∂xu(0)=0, α1u(1)+β1∂xu(1)=0
}

(1.2)

where α0,α1,β0,β1∈R. The boundary conditions in (1.2) include the cases of Dirichlet
(βi=0) and v. Neumann (αi=0) boundary conditions. The general case of αi,βi 6=0
is known as Robin boundary conditions.

We start our analysis by considering the linear equation

du(t)=Lu(t)dt+
√
2dw(t), ∀t≥0. (1.3)

For equation (1.3) to have a stationary distribution, we require L to be negative
definite. The following lemma states necessary and sufficient conditions on αi and βi
for this to be the case.
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Lemma 1.1. The operator L is a self-adjoint operator on the Hilbert space H. The

operator L is negative definite if and only if α0,β0,α1,β1 are contained in the set

A=
{

β0(α0+β0)>0, β1(α1+β1)>0,
∣

∣(α0+β0)(α1+β1)
∣

∣> |β0β1|
}

∪
{

β0=0,α0 6=0, β1(α1+β1)>0
}

∪
{

β0(α0+β0)>0, β1=0,α1 6=0
}

∪
{

β0=0,α0 6=0, β1=0,α1 6=0
}

.

Proof. From the definition of L it is easy to see that the operator is self-adjoint.
We have to show that L is negative if and only if (α0,β0,α1,β1)∈A. Without

loss of generality we can assume βi≥0 for i=1,2 and αi≥0 whenever βi=0 (since
we can replace (αi,βi) by (−αi,−βi) if required). Assume that λ is an eigenvalue of
L. If λ>0, the corresponding eigenfunctions are of the form

u(x)= c1e
√
λx+c2e

−
√
λx,

where c1 and c2 are given by the boundary conditions; for u to be in the domain of
L, the coefficients c1 and c2 need to satisfy

(

α0−β0
√
λ α0+β0

√
λ

(α1+β1
√
λ)e

√
λ (α1−β1

√
λ)e−

√
λ

)

(

c1
c2

)

=

(

0
0

)

.

Non-trivial solutions exist only if the matrix is singular or, equivalently, if its deter-
minant

f(λ)=α0α1+
(

α0β1+α1β0
)
√
λcoth

√
λ+β0β1λ (1.4)

satisfies f(λ)=0. For λ=0 the eigenfunctions are of the form u(x)= c11+c2x, and an
argument similar to the one above shows that the boundary conditions can be satisfied
if and only if α0α1+α0β1+α1β0=0. Since xcoth(x)→1 as x→0, this condition can
be written as f(0)=0, where

f(0)= lim
λ↓0

f(λ)=α0α1+α0β1+α1β0.

This shows that L is negative whenever f(λ) 6=0 for all λ≥0.
Let (α0,β0,α1,β1)∈A. Assume first βi 6=0 for i=1,2 and let ξi=αi/βi. Then,

by the first condition in A, we have ξ0,ξ1>−1 and (ξ0−1)(ξ1−1)>1, and for λ≥0
we get

f(λ)= ξ0ξ1+
(

ξ0+ξ1
)
√
λcoth

√
λ+λ≥ (ξ0+1)(ξ1+1)−1>0.

The cases β0=0 or β1=0 can be treated similarly. Thus, for (α0,β0,α1,β1)∈A there
are no eigenvalues with λ≥0 and the operator is negative.

For the converse statement, assume that (α0,β0,α1,β1) /∈A. We then have to show
that there is a λ≥0 with f(λ)=0. Assume first βi>0 for i=1,2 and define ξi as above.
If (ξ0+1)(ξ1+1)=1, we have f(0)=0. If (ξ0+1)(ξ1+1)<1, the function f satisfies
f(0)<0 and f(λ)→∞ as λ→∞; by continuity there is a λ>0 with f(λ)=0. Finally,
if (ξ0+1)(ξ1+1)>1 but ξ0,ξ1≤−1, we have f(0)>0 and for λ with

√
λ=−(ξ0+

ξ1)/2>0 we find f(λ)<ξ0ξ1+
(

ξ0+ξ1
)√

λ+λ= ξ0ξ1−(ξ0+ξ1)
2/4=−(ξ0−ξ1)2/4≤
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0, so by continuity there is a λ>0 with f(λ)=0. Again, the cases β0=0 and β1=0
can be treated similarly.

A representation of the eigenvalues of L which is similar to the one in the proof
of Lemma 1.1 can be found in Section 3 of [5].

The statement from Lemma 1.1 reproduces the well-known results that the Lapla-
cian with Dirichlet boundary conditions (αi=1,βi=0) is negative definite whereas the
Laplacian with von Neumann boundary conditions (αi=0,βi=1) is not (since con-
stants are eigenfunctions with eigenvalue 0).

Lemma 1.2. Let L be negative definite. Then the following statements hold:

1. The linear SPDE (1.3) has global, continuous H-valued solutions.

2. Equation (1.3) has a unique stationary distribution ν on H. The measure ν is

Gaussian with mean 0 and covariance function

C(x,y)=
β0β1+α0β1xy+β0α1(1−x)(1−y)

α0α1+α0β1+β0α1
+x∧y−xy, (1.5)

where x∧y denotes the minimum of x and y.

3. The measure ν coincides with the distribution of U ∈C
(

[0,1],R
)

given by

U(x)=(1−x)L+xR+B(x), ∀x∈ [0,1],

where L∼N (0,σ2
L), R∼N (0,σ2

R) with Cov(L,R)=σLR, the process B is a Brow-

nian bridge, independent of L and R, and

σ2
L=

β0(α1+β1)

α0α1+α0β1+β0α1
,

σ2
R=

(α0+β0)β1
α0α1+α0β1+β0α1

,

σLR=
β0β1

α0α1+α0β1+β0α1
.

Proof. From [15, 8] and [11] we know that (1.3) has global, continuous H-valued
solutions as well as a unique stationary distribution given by ν=N (0,−L−1). An
easy computation shows that C, as given in equation (1.5), is a Green’s function
for the operator −L, i.e. −∂2xC(x,y)= δ(x−y) and for every y∈ (0,1) the function
x 7→C(x,y) satisfies the boundary conditions (1.2). This completes the proof of the
first two statements.

For the third statement we note that U is centered Gaussian with covariance
function

C(x,y)=Cov
(

U(x),U(y)
)

=Cov
(

(1−x)L+xR+B(x),(1−y)L+yR+B(y)
)

=(1−x)(1−y)σ2
L+

(

(1−x)y+x(1−y)
)

σLR+xyσ2
R+x∧y−xy.

The fact that this covariance function can be written in the form (1.5) can be checked
by a direct calculation.

Using the results for the linear SPDE (1.3) we can now study the full SPDE (1.1).
The result is given in the following lemma.
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Lemma 1.3. Let L be negative definite. Furthermore, let f =F ′, where F ∈C2(R,R)
is bounded from above with bounded second derivative. Then the following statements

hold:

1. The nonlinear SPDE (1.1) has global, continuous H-valued solutions.

2. Equation (1.1) has a unique stationary distribution µ which is given by

dµ

dν
(u)=

1

Z
exp
(

∫ 1

0

F
(

u(x)
)

dx
)

,

where ν is the stationary distribution of (1.3) from Lemma 1.2 and Z is the

normalisation constant.

Proof. This result is well known; see e.g. [22] or [12].

2. Finite element approximation

In this section we consider finite dimensional approximations of the SPDE (1.1),
obtained by discretizing space using the finite element method. The approximation
follows the same approach as for deterministic PDEs. For background on the deter-
ministic case we refer to [4] or [17].

To discretize space, let n∈N, ∆x=1/n, and consider x-values on the grid k∆x for
k∈N. Since the differential operator L in (1.1) is a second order differential operator,
we can choose a finite element basis consisting of “hat functions” ϕi for i∈Z which
have ϕi(i∆x)=1, ϕi(j∆x)=0 for all j 6= i, and which are affine between the grid
points. Formally, the weak (in the PDE-sense) formulation of SPDE (1.1) can be
written as

〈v,du(t)〉=B(v,u)dt+〈v,f
(

u(t)
)

〉+
√
2〈v,dw(t)〉,

where 〈· , ·〉 denotes the L2-inner product and the bilinear form B is given by

B(u,v)= 〈v,Lu〉=u(1)v′(1)−u(0)v′(0)−
∫ 1

0

u′(x)v′(x)dx.

The discretized solution is found by taking u and v to be in the space spanned by the
functions ϕi, i.e. by using the ansatz

u(t)=
∑

j

Uj(t)ϕj

and then considering the following system of equations:

〈ϕi,
∑

j

dUjϕj〉= 〈ϕi,∂
2
x

∑

j

Ujϕj〉dt+〈ϕi,f
(

∑

j

Ujϕj

)

〉dt+
√
2〈ϕi,dw〉. (2.1)

The domain V of the bilinear form B depends on the boundary conditions of L;
there are four different cases:

1. If β0,β1 6=0 in (1.2), i.e. for von Neumann or Robin boundary conditions,
we have V =H1

(

[0,1],R
)

and we consider the basis functions ϕi for i∈ I=
{0,1, . . . ,n−1,n}.

2. If β0=0 and β1 6=0, i.e. for a Dirichlet boundary condition at the left bound-
ary, we have V =

{

u∈H1
(

[0,1],R
) ∣

∣u(0)=0
}

and we consider the basis func-
tions ϕi for i∈ I={1, . . . ,n−1,n}.
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3. If β0 6=0 and β1=0, i.e. for a Dirichlet boundary condition at the right bound-
ary, we have V =

{

u∈H1
(

[0,1],R
) ∣

∣u(1)=0
}

and we consider the basis func-
tions ϕi for i∈ I={0,1, . . . ,n−1}.

4. If β0,β1=0, i.e. for Dirichlet boundary conditions at both boundaries, we
have V =

{

u∈H1
(

[0,1],R
) ∣

∣u(0)=u(1)=0
}

and we consider the basis func-
tions ϕi for i∈ I={1, . . . ,n−1}.

Throughout the rest of the text we will write I for the index set of the finite
element discretization as above, and the discretized solution u=

∑

j∈IUjϕj will be

described by the coefficient vector U ∈R
I . In all cases we define the “stiffness matrix”

L(n)∈R
I×I by L

(n)
ij =B(ϕi,ϕj) for all i,j∈ I. For the given basis functions we get

L
(n)
ij =































− 2
∆x if i= j /∈{0,n},

+ 1
∆x if i∈{j−1,j+1},

− 1
∆x − α0

β0
if i= j=0,

− 1
∆x − α1

β1
if i= j=n,

0 otherwise,

where the cases i= j=0 and i= j=n cannot occur for Dirichlet boundary conditions.
The “mass matrix” M ∈R

I×I is defined by Mij = 〈ϕi,ϕj〉, and for i,j∈ I we get

Mij =



















4
6∆x if i= j /∈{0,n},
1
6∆x if i∈{j−1,j+1},
2
6∆x if i= j∈{0,n},
0 otherwise,

where again the cases i= j=0 and i= j=n do not occur for Dirichlet boundary
conditions. We note that the matrix L(n) only has the prefactor 1/∆x instead of the
1/∆x2 one would expect for a second derivative. The “missing” ∆x appears in the
matrix M .

Since

Cov(〈ϕi,w〉,〈ϕj ,w〉)= 〈ϕi,ϕj〉=Mij ,

Equation (2.1) can be written as

MdUt=L
(n)Utdt+fn(Ut)dt+

√
2M1/2dWt,

where fn : R
I →R

I is defined by

fn(u)i=
〈

ϕi,f
(

∑

j∈I

ujϕj

)〉

(2.2)

for all u∈R
I and i∈ I. Multiplication with M−1 then yields the following SDE

describing the evolution of the coefficients (Ui)i∈I :

Definition 2.1. The finite element discretization of SPDE (1.1) is given by

dUt=M
−1L(n)Utdt+M

−1fn(Ut)dt+
√
2M−1/2dWt, (2.3)

where W is an |I|-dimensional standard Brownian motion, I⊆{0,1, . . . ,n} is the index

set of the finite element discretization, and L(n) and M are as above.
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Our aim is to show that the stationary distribution of (2.3) converges to the
stationary distribution of the SPDE (1.1). We start our analysis by considering the
linear case f ≡0. For this case the finite element discretization simplifies to (2.4)
below.

Lemma 2.2. Let L be negative definite. Then νn=N
(

0,(−L(n))−1
)

is the unique

stationary distribution of

dUt=M
−1L(n)Utdt+

√
2M−1/2dWt. (2.4)

Proof. Since L is a negative operator, the matrix L(n) is a symmetric, negative
definite matrix. As the product of a positive definite symmetric matrix and a negative
definite symmetric matrix, M−1L(n) is negative definite; its eigenvalues coincide with
the eigenvalues of

M−1/2L(n)M−1/2=−
(

(−L(n))1/2M−1/2
)⊤(

(−L(n))1/2M−1/2
)

.

From [1, Theorem 8.2.12] we know that the unique stationary distribution of the
SDE (2.4) is N (0,C(n)), where C(n) solves the Lyapunov equation

M−1L(n)C(n)+C(n)L(n)M−1=−2M−1.

By Theorem 5.2.2 of [19], this system of linear equations has a unique solution, and
it is easily verified that this solution is given by C(n)=(−L(n))−1.

The following lemma shows that for f ≡0 there is no discretization error at all:
the stationary distributions of the SPDE (1.3), projected to R

I , and of the finite
element discretization (2.3) coincide.

Lemma 2.3. Define Π: C
(

[0,1],R
)

→R
I by

(Πu)i=u(i∆x), ∀i∈ I. (2.5)

Let ν be the stationary distribution of the linear SPDE (1.3) on C
(

[0,1],R
)

, and let

νn be the stationary distribution of the linear finite element discretization (2.4). Then
we have

νn=ν ◦Π−1

for every n∈N.

Proof. Let Cexact be the covariance matrix of ν ◦Π−1 and let C(n) be the covari-
ance matrix of νn. Since both measures under consideration are centered Gaussian,
it suffices to show Cexact=C(n). By Lemma 1.2, the matrix Cexact satisfies

Cexact
i,j =C(i∆x,j∆x), ∀i,j∈ I,

where C is given by equation (1.5). By Lemma 2.2 we have C(n)=(−L(n))−1. A
simple calculation, using the fact that both Cexact and L(n) are known explicitly, shows
CexactL(n)=−I and thus Cexact=C(n) (the four different cases for the boundary
conditions need to be checked separately). This completes the proof.

The preceding results only consider the linear case; for the general case, in the
presence of the non-linearity f , we can of course no longer expect a similar result to
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hold. As a starting point for analyzing this case, we reproduce a well-known result
which allows us to identify the stationary distribution of the discretized finite element
equation.

Lemma 2.4. Let F ∈C2
(

R
d,R) have bounded second derivatives and satisfy the con-

dition Z=
∫

Rd e
2F (x)dx<∞. Furthermore, let A∈R

d×d be invertible. Then the SDE

dXt=AA
⊤∇F (Xt)dt+AdWt (2.6)

has a unique stationary distribution which has density

ϕ(x)=
1

Z
e2F (x)

with respect to the Lebesgue measure on R
d.

Proof. Define G(y)=F (Ay) for all y∈R
d. By the assumptions on F we have G∈

C2
(

R
d,R) with bounded second derivatives and ZG=

∫

Rd e
2G(y)dy<∞. Therefore, the

SDE

dYt=∇G(Yt)dt+dWt

has a unique stationary distribution with density

ψ(y)=
1

ZG
e2G(y).

Since ∇G(y)=A⊤∇F (Ay), we have

dYt=A
⊤∇F (AYt)dt+dWt,

and multiplying this equation by A gives

d(AYt)=AA
⊤∇F (AYt)dt+AdWt.

Consequently, Xt=AYt satisfies the SDE (2.6) and has a unique stationary distri-

bution with density proportional to ψ(A−1x)∝ e2G(A−1x)=e2F (x). Since this function,
up to a multiplicative constant, coincides with ϕ, the process X has stationary den-
sity ϕ.

Because the stationary distribution in the lemma does not depend on A, the
stationary distribution of (2.6) does not change when we remove/add A from the
equation. The process of introducing the matrix A is sometimes called “precondition-
ing the SDE”.

In cases where we are only interested in the stationary distribution of a discretized
SPDE, the argument from Lemma 2.4 allows us to omit the mass matrix M from the
finite element SDE (2.3). In particular we do not need to consider the potentially
computationally expensive square root M1/2 in numerical simulations.

Lemma 2.5. Let L be negative definite. Furthermore, let f =F ′, where F ∈C2(R,R) is
bounded from above with bounded second derivative. Then the finite element SDE (2.3)
has a unique stationary distribution µn given by

dµn

dνn
=

1

Zn
exp
(

Fn

)

, (2.7)
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where

Fn(u)=

∫ 1

0

F
(

∑

j∈I

ujϕj(x)
)

dx, ∀u∈R
I ,

Zn is the normalisation constant and νn is the stationary distribution of the linear

equation from Lemma 2.2.

Proof. Let Φ(u)= 1
2u

⊤L(n)u+Fn(u) for all u∈R
I . Then

∂iΦ(u)=(L(n)u)i+
〈

ϕi,F
′(
∑

j∈I

ujϕj

)〉

=
(

L(n)u+fn(u)
)

i

for all i∈ I, and thus (2.3) can be written as

dUt=M
−1∇Φ(Ut)dt+

√
2M−1/2dWt.

By Lemma 2.4, this SDE has a unique stationary distribution µn whose density with
respect to the |I|-dimensional Lebesgue measure λ is given by

dµn

dλ
(u)=

1

Z̃n

eΦ(u)=
1

Z̃n

exp
(

−1

2
u⊤(−L(n))u+Fn(u)

)

.

From Lemma 2.2 we know that the density of νn with respect to λ is

dνn
dλ

(x)=
1

(

2π
)|I|/2(

det(−L(n))
)

1
2

exp
(

−1

2
xT(−L(n))x

)

,

and consequently the distribution µn satisfies

dµn

dνn
(x)=

dµn

dλ
(x)/

dνn
dλ

(x)∝ exp
(

Fn

)

.

Since the right-hand side, up to constants, coincides with the expression in (2.7), the
proof is complete.

3. Main result

Now that we have identified the stationary distribution of the SPDE (in Section 1)
and of the SDE (in Section 2), we can compare the two stationary distributions. The
result is given in the following theorem.

Theorem 3.1. Let µ be the stationary distribution of the SPDE (1.1) on C
(

[0,1],R
)

.

Let µn be the stationary distribution of the finite element equation (2.3) on R
I . Let L

be negative and assume f =F ′, where F ∈C2(R) is bounded from above with bounded

second derivative. Then

∥

∥µ◦Π−1−µn

∥

∥

TV
=O

( 1

n

)

as n→∞, where ‖ · ‖TV denotes total-variation distance between probability distribu-

tions on R
I .

Before we prove this theorem, we first show some auxiliary results. The following
lemma will be used to get rid of the (not explicitly known) normalization constant Zn.
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Lemma 3.2. Let (Ω,F ,µ) be a measure space and f1,f2 : Ω→ [0,∞] integrable with

Zi=
∫

fidµ>0 for i=1,2. Then

∫

∣

∣

∣

f1
Z1

− f2
Z2

∣

∣

∣dµ≤ 2

max(Z1,Z2)

∫

∣

∣f1−f2
∣

∣dµ.

Proof. Using the L1-norm ‖f‖=
∫

|f |dµ we can write

∥

∥

∥

f1
Z1

− f2
Z2

∥

∥

∥≤
∥

∥

∥

f1
Z1

− f2
Z1

∥

∥

∥+
∥

∥

∥

f2
Z1

− f2
Z2

∥

∥

∥=
1

Z1

∥

∥f1−f2
∥

∥+
|Z2−Z1|
Z1Z2

∥

∥f2
∥

∥.

Since Zi=‖fi‖ we can conclude

∥

∥

∥

f1
Z1

− f2
Z2

∥

∥

∥≤ 1

Z1

∥

∥f1−f2
∥

∥+

∣

∣‖f2‖−‖f1‖
∣

∣

Z1
≤ 2

Z1

∥

∥f1−f2
∥

∥,

where the second inequality comes from the inverse triangle inequality. Without loss
of generality we can assume Z1≥Z2 (otherwise interchange f1 and f2 in the above
argument), and thus the claim follows.

Lemma 3.3. Let µ and ν be probability measures on C
(

[0,1],R
)

with µ≪ν and let

Π: C
(

[0,1],R
)

→R
I be the projection from (2.5). Then µ◦Π−1≪ν ◦Π−1 and

d(µ◦Π−1)

d(ν ◦Π−1)
◦Π=Eν

(dµ

dν

∣

∣

∣
Π
)

.

Proof. Let ϕ= dµ
dν . Since E(ϕ|Π) is Π-measurable, there is a function ψ : R→R

with E(ϕ|Π)=ψ◦Π. Let A⊆R
I be measurable. Then

∫

R

ψ1Ad(ν ◦Π−1)=

∫

C
(

[0,1],R
)
ψ◦Π1Π−1(A)dν

=

∫

C
(

[0,1],R
)
E(ϕ|Π)1Π−1(A)dν=

∫

C
(

[0,1],R
)
ϕ1Π−1(A)dν=µ◦Π−1(A)

by the definition of conditional expectation. This shows that ψ is indeed the required
density.

Proof. (of Theorem 3.1.) Let Π, ν, and νn be as in Lemma 2.3. Using Lemma
2.3 and 3.3 we find

∥

∥µ◦Π−1−µn

∥

∥

TV
=Eνn

∣

∣

∣

dµ◦Π−1

dνn
− dµn

dνn

∣

∣

∣

=Eν

∣

∣

∣

dµ◦Π−1

dν ◦Π−1
◦Π− dµn

dνn
◦Π
∣

∣

∣

=Eν

∣

∣

∣Eν

(dµ

dν
− dµn

dνn
◦Π
∣

∣Π
)∣

∣

∣

≤Eν

∣

∣

∣

dµ

dν
− dµn

dνn
◦Π
∣

∣

∣.

(3.1)

From Lemma 1.3 we know

dµ

dν
(U)=

1

Z
exp
(

∫ 1

0

F
(

Ux

)

dx
)

.
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Lemma 2.5 gives

dµn

dνn
=

1

Zn
exp
(

Fn

)

,

and by the definition of Fn we have

dµn

dνn
◦Π(U)=

1

Zn
exp
(

∫ 1

0

F
(

U (n)
x

)

dx
)

where U
(n)
x =

∑

Π(U)jϕj(x) for all U ∈C
(

[0,1],R
)

and ϕj , j∈ I are the finite element
basis functions. Using Lemma 3.2 we get

∥

∥µ◦Π−1−µn

∥

∥

TV
≤Eν

∣

∣

∣

dµ

dν
− dµn

dνn
◦Π
∣

∣

∣

≤ 2

Z

∫

∣

∣

∣exp
(

∫ 1

0

F
(

Ux

)

dx
)

−exp
(

∫ 1

0

F
(

U (n)
x

)

dx
)∣

∣

∣dν(U).

Since the inequality
∣

∣ex−1
∣

∣≤|x|exp
(

|x|
)

holds for all x∈R, we conclude

∥

∥µ◦Π−1−µn

∥

∥

TV

≤ 2

Z
E

(

exp
(

∫ 1

0

F
(

U (n)
x

)

dx
)

·
∣

∣

∣
exp
(

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
)

−1
∣

∣

∣

)

≤ 2

Z
E

(

exp
(

∫ 1

0

F
(

U (n)
x

)

dx
)

·
∣

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

∣ ·exp
(

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

)

)

where U is distributed according to the Gaussian measure ν. Since F is bounded from
above we can estimate the the first exponential in the expectation by a constant. Using
the Cauchy-Schwarz inequality we get

∥

∥µ◦Π−1−µn

∥

∥

TV

≤ c1
∥

∥

∥

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∥

∥

∥

2
·
∥

∥

∥exp
(

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

)∥

∥

∥

2
(3.2)

for some constant c1.
The main step in the proof is to estimate the right-hand side of 3.2 by showing

that
∣

∣

∫ 1

0
F (Ux)−F (U (n)

x )dx
∣

∣ gets small as n→∞. By Lemma 1.2, the path U in sta-
tionarity is just a Brownian bridge (with random boundary values) and, by definition,
U (n) is the linear interpolation of the values of U at the grid points (see figure 3.1 for
illustration). Thus, the difference U (n)−U can be written as

(

U−U (n)
)

(x)=
n
∑

i=1

1[ i−1
n

, i

n
](x)

1√
n
B

(i)
nx−(i−1),

where B(1), . . . ,B(n) are standard Brownian bridges, independent of each other and of
U (n). Using the Taylor approximation for F we find
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x0 1/n 2/n 1

U

U (n)

Fig. 3.1. Illustration of the convergence of U(n) to U . Under the distribution ν, the path U

is a Brownian Bridge with random boundary conditions. Since U(n) is the linear interpolation of

U between the grid points, the difference U(n)
−U consists of a chain of n independent Brownian

bridges.

∣

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

∣

≤
∣

∣

∣

∫ 1

0

f
(

U (n)
x

)(

Ux−U (n)
x

)

dx
∣

∣

∣
+

1

2
‖F ′′‖∞

∫ 1

0

(

Ux−U (n)
x

)2
dx

=:
∣

∣Pn

∣

∣+
1

2
‖F ′′‖∞Qn. (3.3)

For the term |Pn| we find

Pn=
n
∑

i=1

∫ 1/n

0

f
(

U
(n)
i−1
n

+x

) 1√
n
B(i)

nxdx=n
−3/2

n
∑

i=1

∫ 1

0

f(U
(n)
i−1
n

+y/n
)B(i)

y dy,

where B(i) are the Brownian bridges defined above. As an abbreviation write f̄i(y)=

f
(

U
(n)
i−1
n

+y/n

)

. Conditioned on the value of U (n), the integrals
∫ 1

0
f̄i(y)B

(i)
y dy are

centered Gaussian with

Var
(

∫ 1

0

f̄i(y)B
(i)
y dy

∣

∣

∣
U (n)

)

=

∫ 1

0

f̄i(y)

∫ 1

0

(y∧z−yz)f̄i(z)dzdy

≤ c2‖f̄i‖2∞≤ c23
(

‖U (n)‖∞+1
)2

for some constants c2,c3>0, where the last inequality uses the fact the f is Lipschitz
continuous. We get E

(

Pn

∣

∣Π(U)
)

=0 and, since the B(i) are independent,

E
(

P 2
n

∣

∣U (n)
)

≤ c23
(

‖U (n)‖∞+1
)2
n−2.

Using the tower property for conditional expectations, and using ‖U (n)‖∞≤‖U‖∞,
we get

E
(

P 2
n

)

≤ c23E
(

(

‖U‖∞+1
)2
)

n−2.

Since U is a Gaussian process,
∥

∥‖U‖∞+1
∥

∥

2
is finite, and we can conclude

E
(

P 2
n

)

≤ c24n−2
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for some constant c4. Similarly, for Qn we find

Qn=

n
∑

i=1

∫ 1

0

(

B(i)
y )2dy ·n−2 (3.4)

and thus, using independence of the B(i) again,

E
(

Q2
n

)

= c25n
−3

for some constant c5. Combining these estimates we get

∥

∥

∥

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∥

∥

∥

2
=
∥

∥Pn

∥

∥

2
+

1

2

∥

∥F ′′∥
∥

∞
∥

∥Qn

∥

∥

2
≤ c4n−1+c5n

−3/2, (3.5)

and thus we have shown the required bound for the first factor of (3.2).
Finally, we have to show that the second factor in (3.2) is bounded, uniformly

in n: From (3.3) we get

∥

∥

∥exp
(∣

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

∣

)∥

∥

∥

2
≤E

(

exp
(

2|Pn|+‖F ′′‖∞Qn

)

)1/2

≤
∥

∥e2|Pn|
∥

∥

1/2

2
·
∥

∥e‖F
′′‖∞Qn

∥

∥

1/2

2
. (3.6)

It is easy to check that, for all σ>0, an N (0,σ2)-distributed random variable X

satisfies the inequality E(e|X|)≤2eσ
2/2, and thus we have

∥

∥e2|Pn|
∥

∥

1/2

2
=E

(

e4|Pn|)1/4≤2exp(8c24n
−2)<1 (3.7)

for all sufficiently large n. Furthermore, using (3.4) and the fact that the B(i) are
i.i.d., we find

∥

∥e‖F
′′‖∞Qn

∥

∥

1/2

2
=E

(

exp
(

2‖F ′′‖∞|B(1)|2L2 n−2
)

)n/4

, (3.8)

where we write | · |L2 for the L2-norm on the space L2
(

[0,1],R
)

. By Fernique’s theorem

[9] there exists an ε>0 with E
(

exp(ε |B(1)|2L2)
)

<∞. For all λ>0 we have

E
(

eλ|B
(1)|2

L2
)

=

∫ ∞

0

P
(

eλ|B
(1)|2

L2 ≥a
)

da≤1+

∫ ∞

0

P
(

|B(1)|2L2 ≥ b
)

λeλbdb,

and using Markov’s inequality P
(

|B(1)|2L2 ≥ b
)

≤E
(

eε|B
(1)|2

L2
)

e−εb we get

E
(

eλ|B
(1)|2

L2
)

≤1+

∫ ∞

0

E
(

eε|B
(1)|2

L2
)

e−εbλeλbdb=1+
λ

ε−λE
(

eε|B
(1)|2

L2
)

for all λ<ε. Substituting this bound into (3.8) we have

∥

∥e‖F
′′‖∞Qn

∥

∥

1/2

2
≤
(

1+
c6
n2

)n

≤2 (3.9)

for some constant c6 and all sufficiently large n. From (3.7) and (3.9) we see that the
right-hand side of (3.6) is bounded uniformly in n, i.e.

∥

∥

∥exp
(∣

∣

∣

∫ 1

0

F
(

Ux

)

−F
(

U (n)
x

)

dx
∣

∣

∣

)∥

∥

∥

2
≤ c7 (3.10)
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for all n∈N and some constant c7.
Combining (3.5) and (3.10) we see that the right-hand side in (3.2) is of or-

der O(n−1). This completes the proof.

For deterministic problems, the interpolation error of finite element methods can
often be reduced by considering basis functions composed of higher-order polynomials
instead of the linear basis functions considered here. This is a consequence of Céa’s
lemma, which states that the rate of error of the finite element approximation is
determined by how well the exact solution can be approximated by the basis functions
(see e.g. Theorem 2.8.1 in [4]). In contrast, when approximating Brownian motion
by splines, the approximation error is always of order 1/

√
n where n is the number

of spline-nodes, independent of the polynomial order of the splines [18, 6]. For this
reason we would expect that, for the situation considered here, the order of the leading
error term Pn in (3.3) cannot be improved by considering higher order polynomial
basis functions.

In Theorem 3.1 we compared the stationary distribution µn of the finite element
SDE on R

I and the stationary distribution µ of the SPDE on C
(

[0,1],R
)

by projecting
µ onto the finite dimensional space R

I . An alternative approach is to embed R
I into

C
(

[0,1],R
)

instead. A näıve implementation of this idea would be to extend vectors
from R

I to continuous functions via linear interpolation. Unfortunately, the image
of µn when projected to C

(

[0,1],R
)

in this way would be mutually singular with µ
and thus the total variation norm would not provide a useful measure for the distance
between the two distributions. For this reason, we choose here a different approach,
described in the following definition.

Definition 3.4. Given a probability measure µn on R
I , we define a distribution µ̂n

as follows: Consider a random variable X which is distributed according to µn. Given

X, construct Y ∈C
(

[0,1],R
)

by setting Y (k∆x)=Xk for k=0,1, . . . ,n and filling the

gaps between these points with n Brownian bridges, independent of X and of each

other. Then we denote the distribution of Y by µ̂n.

Lemma 3.5. Let µn and νn be probability measures on R
I with µn≪νn. Then

µ̂n≪ ν̂n with

dµ̂n

dν̂n
=
dµn

dνn
◦Π

on C
(

[0,1],R
)

.

Proof. Let ψ= dµn

dνn

. Using substitution we get

Eµ̂n

(

f ◦Π
)

=

∫

RI

f dµn=

∫

RI

fψdνn=Eν̂n

(

f ◦Π ·ψ◦Π
)

for all integrable f : RI →R. Since, conditioned on the value of Π, the distributions
µ̂n and ν̂n are the same, we can use the tower property to get

µ̂(A)=Eµ̂n

(

Eµ̂n
(1A|Π)

)

=Eµ̂n

(

Eν̂n
(1A|Π)

)

=Eν̂n

(

Eν̂n
(1A|Π) ·ψ◦Π

)

=Eν̂n

(

1Aψ◦Π
)

for every measurable set A. This shows that ψ◦Π is the required density.
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Corollary 3.6. Let µ be the stationary distribution of the SPDE (1.1) on

C
(

[0,1],R
)

. Let µn be the stationary distribution of the finite element equation (2.3)
on R

I . Let L be negative and assume f =F ′, where F ∈C2(R) is bounded from above

with bounded second derivative. Then

∥

∥µ− µ̂n

∥

∥

TV
=O

( 1

n

)

as n→∞.

Proof. Let ν be the stationary distribution of the linear SPDE (1.3) on
C
(

[0,1],R
)

and let νn be the stationary distribution of the linear finite element equa-
tion (2.4) on R

I . By construction of the process U in the third statement of Lemma 1.2
and by the Markov property for Brownian bridges, the distribution of U between the
grid points, conditioned on the values at the grid points, coincides with the distribu-
tion of n independent Brownian bridges. By Lemma 2.3 the distribution of U on the
grid points is given by νn. Thus we have ν= ν̂n. Using this equality and Lemma 3.5
we find

∥

∥µ− µ̂n

∥

∥

TV
=Eν

∣

∣

∣

dµ

dν
− dµ̂n

dν

∣

∣

∣
=Eν

∣

∣

∣

dµ

dν
− dµn

dνn
◦Π
∣

∣

∣
.

Now we are in the situation of equation (3.1), and the proof of Theorem 3.1 applies
without further changes.

4. Examples

To illustrate that the suggested finite element method is a concrete and imple-
mentable scheme, this section gives two examples for the finite element discretization
of SPDEs, both in the context of infinite dimensional sampling problems.

For the first example, fix c>0 and consider the SPDE

∂tu(t,x)=∂
2
xu(t,x)−c2u(t,x)+

√
2∂tw(t,x), ∀(t,x)∈R+×(0,1),

with Robin boundary conditions

∂xu(t,0)= cu(t,0), ∂xu(t,1)=−cu(t,1), ∀t∈R+, (4.1)

where ∂tw is space-time white noise. From [12] we know that the stationary distri-
bution of this SPDE on C

(

[0,1],R
)

coincides with the distribution of the process X
given by

dXτ =−cXτ dτ+dWτ , ∀τ ∈ [0,1],

X0∼N
(

0,
1

2c

)

,
(4.2)

where the time τ in the SDE plays the rôle of the space x in the SPDE. In the
framework of Section 1, the boundary conditions (4.1) correspond to the case α0=
α1= c and β0=β1=1. Since βi 6=0, we need to include both boundary points in the
finite element discretization and thus have I={0,1, . . . ,n} and R

I ∼=R
n+1. The matrix

L(n) is given by

L(n)=
1

∆x













−1−c∆x 1
1 −2 1

1 −2 1
1 −2 1

1 −1−c∆x













∈R
(n+1)×(n+1),
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where the middle rows are repeated along the diagonal to obtain tridiagonal (n+1)×
(n+1)-matrices. Similarly, the mass matrix M is given by

M =
∆x

6













2 1
1 4 1
1 4 1
1 4 1
1 2













∈R
(n+1)×(n+1),

where the middle rows are repeated along the diagonal. Finally, it transpires that the
discretized drift for this example is given by fn(u)=−cMu. By Lemma 2.4 the n+1
dimensional SDEs

dUt=M
−1L(n)Utdt−cUtdt+

√
2M−1/2dWt

and

dUt=L
(n)Utdt−cMUtdt+

√
2dWt,

where W is an (n+1)-dimensional Brownian motion, both have the same station-
ary distribution, and this stationary distribution converges to the distribution of the
process X from (4.2) in the sense given in Theorem 3.1 and Corollary 3.6.

As a second example, consider the SPDE

∂tu(t,x)=∂
2
xu(t,x)−

(

gg′+
1

2
g′′)(u)+

√
2∂tw(t,x), ∀(t,x)∈R+×(0,1),

with Dirichlet boundary conditions

u(t,0)=u(t,1)=0, ∀t∈R+,

where g∈C3
(

R,R
)

has bounded derivatives g′, g′′, and g′′′. From [12] we know that

the stationary distribution of this SPDE on C
(

[0,1],R
)

coincides with the conditional
distribution of the process X given by

dXτ =g(Xτ )dτ+dWτ , ∀τ ∈ [0,1],

X0=0,
(4.3)

conditioned on X1=0.
Since we have Dirichlet boundary conditions, the boundary points in the finite

element discretization are not included: we have I={1,2, . . . ,n−1} and R
I ∼=R

n−1.
The matrices L(n) and M are given by

L(n)=
1

∆x





−2 1
1 −2 1

1 −2



∈R
(n−1)×(n−1)

and

M =
∆x

6





4 1
1 4 1
1 4



∈R
(n−1)×(n−1).

where the middle rows are repeated along the diagonal to obtain matrices of the
required size. The discretized drift fn can be computed from (2.2); if an analytical



J. VOSS 1159

solution is not available, numerical integration can be used. By the assumptions
on g, the function F =− 1

2 (g
2+g′) satisfies the conditions of Theorem 3.1. Thus, the

stationary distributions of the (n−1)-dimensional SDEs

dUt=M
−1L(n)Utdt+M

−1fn(Ut)dt+
√
2M−1/2dWt

and

dUt=L
(n)Utdt+fn(Ut)dt+

√
2dWt

coincide and converge to the conditional distribution of X from (4.3), conditioned
on X1=0.
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