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EXISTENCE OF GLOBAL BOUNDED WEAK SOLUTIONS TO A
KEYFITZ-KRANZER SYSTEM*

YUN-GUANG LUT AND FENG GU*

Abstract. In this paper, we study the global L°° solutions for the Cauchy problem of the
nonsymmetric Keyfitz-Kranzer system (1.1). In [Y.G. Lu, J. Funct. Anal., 261, 2797-2815, 2011],
the same problem is studied when the nonlinear function ¢(p,w) is of the form ®(w)— P(p). In this
paper, first we study the case ¢(p,w) = f(p*P(w)), where a>1 is a constant and ®(w) >0, f(r) are
two suitable smooth functions of w and the variable r = p*®(w). Using the compensated compact-
ness method with the help of an L' estimate for w®(-,t),, we first prove the pointwise convergence
of the approximation functions 7€ = (p®)*®(w®). Then using a technique different from [Y.G. Lu,
J. Funct. Anal., 261, 2797-2815, 2011], we prove the pointwise convergence of p® and w® respec-
tively. Second, a similar existence result for systems of more than two equations is obtained when
o(p,wi,wa,...wn) = f(p*®(w1,ws,...wy)). Third, we obtain a convergence framework of viscosity so-
lutions of system (1.8) in Euler coordinates for a general nonlinear function ¢(p,w1,w2,...wy) under
the a priori estimate 0 <c<p® < %,c>0, motivated by the papers [L. Ambrosio, F. Bouchut, and
C. De Lellis, Commun. PDE, 29(9-10), 1635-1651, 2004; L. Ambrosio, G. Crippa, A.Figalli, and
L.A. Spinolo, STAM J. Math. Anal., 41, 1890-1920, 2009; L. Ambrosio and C. De Lellis, Int. Math.
Res. Not., 41, 2205-2220, 2003; A. Bressan, Rend. Sem. Mat. Univ. Padova, 110, 103-117, 2003]
on multi-dimensional, symmetric systems of Keyfitz-Kranzer type and [E. Yu. Panov, Arch. Rat.
Mech. Anal., 195, 643-673, 2010; E. Yu. Panov, J. Math. Sci. (N. Y.), 41, 159(2), 180-228, 2009]
for multidimensional scalar conservation laws with discontinuous flux-functions.
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1. Introduction
In this paper, we study the Cauchy problem for the nonsymmetric system of
Keyfitz-Kranzer type

pe+ (pd(p,w))z =0,
{ (pw)e -+ (pu(p.w))s =0, 1)
with bounded measurable initial data
(p(2,0),w(z,0)) = (po(z),wo(z)), po(x)=0, (1.2)
where
d(pw)=f(r), r=p*@(w), (1.3)

a>1is a constant, ®(w)>0 and f(r) are suitable smooth functions of w, and the
variable r = p®®(w). The more general form of (1.1) was first derived as a model for
the elastic string by Keyfitz and Kranzer [12]. The global existence of weak solutions
was well investigated in [11] for the chromatography system, and in [7, 8, 12, 13, 14,
17, 20] for symmetric system

(wi)e + (wip(wr,wa,...wp)) =0, i=1,2,..n, (1.4)
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1134 WEAK SOLUTIONS TO A KEYFITZ-KRANZER SYSTEM

where
pw)=> w}, 1>1, (1.5)

or ¢ is a function only of the norm ||w||. In connection with the symmetric Keyfitz-
Kranzer system, the existence of solutions for multi-dimensional systems are studied
in [1, 2, 3, 5] and references therein.

For the nonsymmetric system (1.1), as far as we know, the existence result of the
Cauchy problem was studied in [4, 9, 10, 15] when ¢(p,w) is of the form ®(w) — P(p) for
two suitable functions ®(w) and P(p). For a general function ¢(p,w) with physically
motivated conditions on the shape, the Cauchy problem of system (1.1) was studied
when po(z) and wg(x) are of bounded variation (cf. [23] for the details).

In this paper, we first study the case of ¢(p,w)= f(p*®(w)) and obtain the fol-
lowing theorem about the existence of global entropy solutions:

THEOREM 1.1. Let ¢(p,w)=f(p*®(w)), where a>1 be a constant, the nonlinear
function f(r) is strictly increasing or decreasing on v >0, and the nonlinear function
O (w) >co >0 satisfies

a®(w)d” (w) — (a—1)(d' (w))? >0. (1.6)

Let the initial data (po(x),wo(x)) be bounded, po(x)>0, woz(z) be bounded in
LY(R). Then the Cauchy problem (1.1)-(1.2) has a global bounded entropy solu-
tion (p(xz,t),w(x,t)), where wy(-,t) is bounded in BV (R) in the sense of Laz, namely
(p(z,t),w(x,t)) satisfies (1.1) in the sense of distributions and

/Ooo /:X’ n(p(x,t),w(x,t))0: +q(p(x,t),w(x,t))0,dzdt >0, (1.7)

where (1,q) €C? is a pair of entropy-entropy fluz of system (1.1), n is convex, and
e C°(Rx RT—{t=0}) is a nonnegative function.

Note 1. The conditions of ®(w) in (1.6) are satisfied for the function ®(w)=w”
when w>cg >0, B>a.

Second, a similar existence result for systems of more than two equations is ob-
tained when ¢(p,w1,wa,... w,) = f(p* @ (w1, wa,...wy)).

Consider

pt+(p¢(pawlvw2awn))x:07 (1 8)
(pw;)e + (pwid(p,wr,wa,...wy,)), =0, i=1,2,..n, )

with bounded measurable initial data

(p(z,0),w;(x,0)) = (po(x),win(x)), po(z)>0, i=1,2,...n. (1.9)

THEOREM 1.2. Let ¢(p,w1,wsa,... wy,) = f(p*®(w1,wa,...w,)), where a>1 is a con-
stant, the nonlinear function f(r) is strictly increasing or decreasing on v >0, and the
nonlinear function ®(w1,ws,...wy) =P (w) >co >0 satisfies

ala—1)p" 20 (w)p2 +2(a—1)p>* Z@(w)wiwmpgg + Z PER(W) ;0 Wiz Wiz > 0.
i=1 ij=1

(1.10)
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Let the initial data (po(x),wio(x)) be bounded, po(x)>0, and dquo be bounded in
LY(R). Then the Cauchy problem (1.8)-(1.9) has a global bounded entropy solution
(p(x,t),w;(x,t)), where the wiy(-,t) are bounded in BV (R).

Note 2. In general, when a>1, the conditions in (1.10) are satisfied if the
function p®®(w) is convex about the variables (p,w). In fact, if p*®(w) is convex,
the following inequality is true:

ala— 1)/7(172(1)(1”)%25 + 20‘pa71 Z(I)(w)wiwizpz + Z po‘(I)(w)wiwj WigWjg >0,
i=1 i,j=1
(1.11)

and the coefficient of the term p® 137" | ®(w)y, Wizps in (1.10) is @ —1 and could be
more easily controlled by other terms.

It is worthwhile to remark that if the solution has the bound p>0 away from
vacuum, a more enlightening way to study system (1.1), for a general ¢(p,w) strictly
monotone in p, is to introduce a Lagrangian transformation [20]

oy oy

t: _— _——
A R Y

—po (112)

and reduce the system to

wg =0,
{(}))sfb(pw)y—o. (1.13)

System (1.13) is equivalent to a scalar equation with a discontinuous flux-function,
so the results of Panov [18, 19] about the existence of entropy solutions for multidi-
mensional scalar conservation laws with discontinuous flux-functions can be applied
fairly generally. To prove the existence of global solutions of system (1.13), Panov
assumes a technical condition ¢(a,w)=¢(b,w)=0 for some 0 <a <b for obtaining the
a priori estimate 0 <a<p®<b. From our research in [15], when system (1.1) is in
Euler coordinates, the bound of the viscosity solutions p° can be obtained for more
general function ¢ by the invariant region theorem.

Based on the above analysis, although (1.1) and (1.13) are equivalent when p >0
and the global solutions of system (1.13) were well studied by Panov in [18, 19], we
are still interested in studying the convergence of viscosity solutions of (1.1) and give
a different, short proof of the following theorem.

THEOREM 1.3. Let the initial data (po(x),wio(x)) satisfy

0<($§p0(.’£)§M1, — M, S’LUZ()(SU)SMg (114)

for some constants §,M;,j=1,2,3, assume that the total variation of w;o(z) be
bounded, and for any fized constants c;,j=1,2,..n, and —Ms <c; < Ms, assume that

the function f(p)=¢(p,c1,ca,...cy,) satisfies
FeC*RY), meas {r:2f'(r)+rf"(r)=0}=0. (1.15)

If the viscosity solutions p° of the Cauchy problem (2.26) and (1.9) have the a-priori
L estimate

0<c1<p®<ecy (1.16)



1136 WEAK SOLUTIONS TO A KEYFITZ-KRANZER SYSTEM

for suitable positive constants c¢1 and co independent of €, then there exists a subse-
quence of solutions (p®,ws) (still denoted (p°,w5)), of the Cauchy problem (2.26) and
(1.9), which converges pointwise to functions (p,w;) and the limit (p,w;) is a weak
entropy solution of the Cauchy problem (1.8)-(1.9) in the sense of Lax, where the
Wiz (+,t) are bounded in BV (R).

Note 3. Theorem 1.3 is an extension of Panov’s result in [18, 19]. We have the
existence of the global solution of system (1.1) so long as we have the estimate (1.16)
for some conditions on ¢. For instance, as we did in Section 3 in [15], we add a factor
p—39 before the function w— P(p) and study the case of ¢(p,w)=(p—3)(w—P(p)),
then repeating the proof in [15] we have the positive, lower estimate p®>d >0 and
the bound from above p* <M by using the invariant region theorem, for any fixed §.

We will prove Theorems 1.1-1.3 in the next section. The main technique is the
compensated compactness method coupled with the artificial viscosity.

2. Proofs of Theorems 1.1-1.3
Consider the Cauchy problem for the related parabolic system

pi+(pp(p,w))z = EPa,
{ (o) + (pw(p, 1)) = £(p0)as, @1)
with initial data
(pg(z,O),wE(x,O)):(po(a:)—i-e,wo(x)), Po(x)ZO» (22)

where (po(z),wo(z)) is given by (1.2).

First, since p®(x,0) >¢e >0, we may choose a small time ¢; such that the local
solution p®(x,t), of the Cauchy problem (2.1), and (2.2), has the lower bound p°(z,t) >
5 for t€[0,t;]. After we have the a priori estimates given in (2.4), (2.7) and (2.8), we
may extend the local solution step by step to obtain a global solution. This process
is standard.

Substituting the first equation in (2.1) into the second, we have

2e
wt+¢(p,w)wx:€wm+szwx. (2.3)

By applying the maximum principle to (2.3), we first have the estimate
—MQS’U)ESM?, (24)

for two suitable constants My, M3, which depend only on the initial date, but are
independent of €.

We multiply the first equation in (2.1) by r, and the equation (2.3) by r,, then
add the results to obtain

e+ ¢(T)T:D + prp(b'(r)u
2
=ETrpy — E(’l"pppi + 27 P Wy + rwwwi) + —Epzrwwm
p

= e —e(oa—1)p" PR (w)pl +2(a—1)p" @ (w)psw, +p* @ (w)u)

x

<eree (2.5)

due to the condition (1.6).
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By applying the maximum principle to (2.5), we have the estimate
e <M, (2.6)
and hence the estimate
pF < My (2.7)

due to the conditions in Theorem 1.1.

Since ¢(p,w) = f(p*®(w)), a>1, and ®(w) >0, ¢(p,w) is bounded. Therefore,
using an argument by Bereux and Sainsaulieu (cf. [15]), we have the following positive,
lower bound estimate on p°:

p°>e(t,e)>0, since pg(z)>e>0, (2.8)

where ¢(t,¢) could tend to zero as the time ¢ tends to infinity or ¢ tends to zero.
The estimates in (2.4), (2.7), and (2.8) ensure the existence of viscosity solutions
(p%,w®) of the Cauchy problem (2.1) and (2.2) for any fixed & > 0.
Now we prove the pointwise convergence of (p°,w®) as ¢ goes to zero.
We rewrite (2.5) as

re+d(r)re +ard (r)ry=crgs — 1 (2.9)
due to pr,=ar, where

I=<(aa—1)p""2B(w)p? +2(a—1)p" ¥ (w)p,w, +p"@" (w)u?)  (2.10)

x

is nonnegative due to the condition (1.6), and so we can prove that I is bounded in
L}, .(Rx RT) if we multiply (2.9) by a suitable test function.

The left-hand side of (2.9) has only the variable r, so we may use Tartar’s result
[22] on the scalar equation to prove the pointwise convergence of r¢:

re(z,t) = 1(z,t), as e—0, (2.11)

for a bounded function I(z,t).
To prove the pointwise convergence of p®, we rewrite the first equation in system
(2.1) as

pit 02 (F(r)+ap ®(w) /(1)) + p7 18 (w) (1w, = P (2.12)

Using the equation (2.3) and the same technique given in [15] or [21], we have the
estimate

/ |wm|(a:,t)d:n§/ oo |(z,0)dz < M. (2.13)
Let p®=wu. We multiply (2.12) by ap®~! to obtain
g + U [f(u®) + aud f (ud)] = cuge — a(a—1)p* 2 p2 — au® f' (ud)®,, (2.14)

or

ug+ (/0 [f(T@)JraT(I)f'(T(I))}dT)

x

= Uy —ca(a—1)p* 2 p2 — au® f' (u®) P, + </u[f(7'¢)) +a7’<1>f'(7’<1>)]d7’> D,
0 @
(2.15)
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Since the estimate in (2.13), the terms

—au? f'(u®)®, + (/Ou[f(ﬂl))—i—aT(I)f'(T(I))]dT) @,

P

from the right-hand side of (2.15) are bounded in L} (R x RT). Multiplying (2.15)
by a suitable test function, we have that the

ep®2p?  are bounded in L}, (Rx R"). (2.16)
So we can use Murat’s theorem [16] to prove that the left-hand side of (2.15)

uy + (/u [f(T<I>)+aT<I>f’(TfI))]dT> are compact in  H L(Rx RT).  (2.17)
0

By simple calculation,

/ )+ ard [ (r®)]dr = é / L)+ ard £ (r0)]d(r D)
0 0

(2.18)

(0%

-3/ ) var =2 [ 1) ars e
Similarly, we can prove that the left-hand side of the first equation in (2.1)
pi+(p°f(rf)). are compact in Hj!(Rx R"). (2.19)
So, applying the Curl-Div theorem to the pairs of functions
(05" f (%))

and

£

o ()" / ") tarf (),

(),

we have

(x7t) 0

I(z,t)
(l 1 / [f(T)+OéTf'(T)]dT—f(l($,t))> (p=)ott
(2.20)

1 l(ac,t) .
~\iap | U rarr @l s |7
l(l’,t) 0
due to the pointwise convergence of r¢(z,t) — I(x,t) and p° >0, where 0¢ denotes the
weak-star limit of 6.
Since f(r) is strictly increasing or decreasing on 7 >0,

3 "f(r)+arf (D)dr— f(r) =0 only on 0.
0

r

Therefore we have from (2.20)

(p=)tt =p=(p7), (2.21)
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and so p° — p(x,t) a.e. on the region r > 0.
To prove the pointwise convergence of w®, we first have that both wg and ((w®)?),
are compact in H, ! (Rx R*) since they are bounded both in L} (Rx R*) and in

W=5(Rx R*). Thus we may apply the Curl-Div Theorem to the pairs of functions

(050" f(r®) +w®) (2.22)
and
(p*w®, pw® f(r°) + (w)?) (2.23)
to obtain
P (p7we f(re) + (w®)2) — (p7w?) (p* f (r) + w®) = 0. (2.24)

By the pointwise convergence of p® and f(r¢), we have
p((w?)? —(w®)*) =0, (2.25)

which includes the pointwise convergence of w® on the region p > 0. Thus, we complete
the proof of Theorem 1.1.

Proof of Theorem 1.2. The proof of Theorem 1.2 is same to that of Theorem
1.1 except the reduction of (2.5).

We add the viscosity terms to the right-hand side of system (1.8) and consider
the related parabolic system

pt+(p¢(p7w17w27wn))z:5pm:v7 (2 26)
(pwi)t+(pwi¢(p7w17w27-~-wn))w:€<pwi)wwa 7’:172777/ '

Substituting the first equation in (2.26) into the second, we have
2e

We multiply the first equation in (2.26) by r, and equation (2.27) by ry,, then add
the results to obtain

T+ (;5(7“)7‘1 + p"'p¢/(r)7'x

n n 2¢ n
=ETzx _5(Tpppz+2 rpwipcrwix+ rwiijizwjz)'i_ — Pz rwiwim
i=1 2,j=1 P i=1

=ery, —e(a(a— 1)p“_2<1>p925 +2(a— l)p‘)‘_1 Z@wiwmpm + Z PPy, Wig Wi )
i=1 ij=1
< e (2.28)

due to the condition (1.10) in Theorem 1.2. So, we may obtain the uniform L
estimate of (p%,w$), and so the existence of the viscosity solutions of the parabolic
system (2.26). Similarly to the proof of Theorem 1.1, we may prove the pointwise
convergence of r¢ first by using the left-hand side of equation (2.28) coupled with
Tartar’s result on the scalar equation. Repeating the process of the proof of Theorem
1.1, we may prove the pointwise convergence of p* and w5, and complete the proof of
Theorem 1.2.
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Proof of Theorem 1.3. We prove Theorem 1.3 in the following several steps.
First, using equation (2.27), we have the estimates

My < iz t) < Ms, / lwia | (z, £)dz < M (2.29)

— 00

due to the conditions in Theorem 1.3.
We multiply the first equation in (2.26) by ¢’(p) to obtain

9(P)e+9' (0)(D+pBp)pa+9' ()Y buw, Win =29(p)az —29" (p) 3 (2.30)

i=1

or

g(p)e+ (/Opg'(S)(cb(&whwg,-.-wn)+8¢>p(8,w1,wz,-..wn))d8>

x

n
=2g(p)za—29"(P)P2 =9 (P)PY _ bus, Wia
=1

n p
+Z</ g’(s)(¢(s,w1,w2,...wn)+s¢p(s,w1,w2,...wn))ds> Wig. (2.31)
i=1 \”0

wq

By the second estimate in (2.29), the last two terms on the right-hand side of (2.31)
are bounded in Lj, (R x R"), so we may choose a strictly convex function g(p) to
obtain that

e(pS)? are bounded in L}, .(Rx R") (2.32)

with the help of (2.31).

Let n(p,w1,ws,...wy,) = pF (wy,ws,...w,), where F is a strictly convex function.
We multiply the first equation in (2.26) by n,, (2.27) by 7.,, and add the results to
obtain

n(pawlaw27-~-wn)t+(¢n(paw17w2a---wn))w :En(pawlaw27-~-wn)za:;

n n (2.33)
—ep Z Fuw; WigWje <en(p,wi,wa,.. 0n) ca —ECOprfz
i,j=1 i=1
for a suitable positive constant ¢g. Thus we obtain that
n
5p2wfx are bounded in L], (Rx R™). (2.34)
i=1

If we have the a priori L™ estimate (1.16), we have from (2.32) and (2.34) that
the first term in the right-hand side of (2.27) is compact in H,,!(R x R*), the second
term is bounded in L} (Rx R'), and from (2.29) that the second term in the left-
hand side is bounded in L} (Rx R"). So, we can prove that the first term in the

loc
left-hand side of (2.27)

w§, are compact in H, !(Rx RT). (2.35)
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Therefore both (w$)¢+ ((wf)?), and ((w$)?);+2((ws)?), are compact in H; ! (R x
R™). Using Tartar’s result on the scalar equation again, we obtain the pointwise
convergence of w;.

It remains to prove the pointwise convergence of p°.

We rewrite the first equation in (2.26) as

pe+(9(p,w) + pg,(p,w)) pa JFPZ Guw, (P, W) Wiz =EPra (2.36)
1=1
or
Pt +F(paw)x =E&Pzz *pz ¢7Ui (p,w)wm - ZEW (wa)wiz, (237)
1=1 =1

where F(p,w):fopgb(s,w)—l—sqﬁp(s,w)ds. Since the last two terms in the right-hand
side of (2.37) are bounded in L} (R x Rt), we can prove that

loc
pf +F(p°,w), arecompactin H_ '(RxR"). (2.38)

Similarly, we multiply (2.36) by F,(p,w), (2.27) by Fy, (p,w), and add the results to
obtain

=eF(p,w)ze —Fpp(p,w)p3

_2€ZFP’UJ7L (P7w)mem —£ Z Fwiwj (paw)wiijz
i=1 i,j=1

n n

—pF,(pw) Y Fu, (p7w>wm+e(2’; ~0(pw)) Y Fu,(pw)wis  (2.39)
i=1 i=1

or
P 2
Flpw)+ ([ Fsiw)is)
0
=eF(p,w)pe — €Fpp(P7w)P92c

n n
_252pri (wa)waix —& Z Fwiwj (paw)wixw]’x
i=1 ij=1

+(prp(p,w) +e(2% - (p,w))) Zn:Fwi (p, w)wis

i=1
+;(/0 F, (s,w)ds)wiwm. (2.40)

Thus, using the estimates given in (1.16), (2.29), (2.32), and (2.34), we can prove that

x

=

P
F(p®,w®)+ (/ sz(s,ws)ds> are compact in  H,,'(Rx R™). (2.41)
0 x

Using the Curl-Div Theorem in the compensated compactness theory ([16, 22]) to the
function pairs given in (2.38) and (2.41), and by paying attention to the pointwise
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convergence of w? and the condition in (1.15), we obtain the pointwise convergence
of p® and so complete the proof of Theorem 1.3.
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