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EXISTENCE OF GLOBAL BOUNDED WEAK SOLUTIONS TO A

KEYFITZ-KRANZER SYSTEM∗

YUN-GUANG LU† AND FENG GU‡

Abstract. In this paper, we study the global L∞ solutions for the Cauchy problem of the
nonsymmetric Keyfitz-Kranzer system (1.1). In [Y.G. Lu, J. Funct. Anal., 261, 2797-2815, 2011],
the same problem is studied when the nonlinear function φ(ρ,w) is of the form Φ(w)−P (ρ). In this
paper, first we study the case φ(ρ,w)=f(ραΦ(w)), where α>1 is a constant and Φ(w)>0,f(r) are
two suitable smooth functions of w and the variable r=ραΦ(w). Using the compensated compact-
ness method with the help of an L1 estimate for wε(·,t)x, we first prove the pointwise convergence
of the approximation functions rε=(ρε)αΦ(wε). Then using a technique different from [Y.G. Lu,
J. Funct. Anal., 261, 2797-2815, 2011], we prove the pointwise convergence of ρε and wε respec-
tively. Second, a similar existence result for systems of more than two equations is obtained when
φ(ρ,w1,w2,...wn)=f(ραΦ(w1,w2,...wn)). Third, we obtain a convergence framework of viscosity so-
lutions of system (1.8) in Euler coordinates for a general nonlinear function φ(ρ,w1,w2,...wn) under
the a priori estimate 0<c≤ρε≤ 1

c
,c>0, motivated by the papers [L. Ambrosio, F. Bouchut, and

C. De Lellis, Commun. PDE, 29(9-10), 1635-1651, 2004; L. Ambrosio, G. Crippa, A.Figalli, and
L.A. Spinolo, SIAM J. Math. Anal., 41, 1890-1920, 2009; L. Ambrosio and C. De Lellis, Int. Math.
Res. Not., 41, 2205-2220, 2003; A. Bressan, Rend. Sem. Mat. Univ. Padova, 110, 103-117, 2003]
on multi-dimensional, symmetric systems of Keyfitz-Kranzer type and [E. Yu. Panov, Arch. Rat.
Mech. Anal., 195, 643-673, 2010; E. Yu. Panov, J. Math. Sci. (N. Y.), 41, 159(2), 180-228, 2009]
for multidimensional scalar conservation laws with discontinuous flux-functions.
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1. Introduction

In this paper, we study the Cauchy problem for the nonsymmetric system of
Keyfitz-Kranzer type

{

ρt+(ρφ(ρ,w))x=0,
(ρw)t+(ρwφ(ρ,w))x=0,

(1.1)

with bounded measurable initial data

(ρ(x,0),w(x,0))=(ρ0(x),w0(x)), ρ0(x)≥0, (1.2)

where

φ(ρ,w)=f(r), r=ραΦ(w), (1.3)

α>1 is a constant, Φ(w)>0 and f(r) are suitable smooth functions of w, and the
variable r=ραΦ(w). The more general form of (1.1) was first derived as a model for
the elastic string by Keyfitz and Kranzer [12]. The global existence of weak solutions
was well investigated in [11] for the chromatography system, and in [7, 8, 12, 13, 14,
17, 20] for symmetric system

(wi)t+(wiφ(w1,w2, ...wn))x=0, i=1,2, ...n, (1.4)
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1134 WEAK SOLUTIONS TO A KEYFITZ-KRANZER SYSTEM

where

φ(w)=

n
∑

i=1

wl
i, l≥1, (1.5)

or φ is a function only of the norm ‖w‖. In connection with the symmetric Keyfitz-
Kranzer system, the existence of solutions for multi-dimensional systems are studied
in [1, 2, 3, 5] and references therein.

For the nonsymmetric system (1.1), as far as we know, the existence result of the
Cauchy problem was studied in [4, 9, 10, 15] when φ(ρ,w) is of the form Φ(w)−P (ρ) for
two suitable functions Φ(w) and P (ρ). For a general function φ(ρ,w) with physically
motivated conditions on the shape, the Cauchy problem of system (1.1) was studied
when ρ0(x) and w0(x) are of bounded variation (cf. [23] for the details).

In this paper, we first study the case of φ(ρ,w)=f(ραΦ(w)) and obtain the fol-
lowing theorem about the existence of global entropy solutions:

Theorem 1.1. Let φ(ρ,w)=f(ραΦ(w)), where α>1 be a constant, the nonlinear
function f(r) is strictly increasing or decreasing on r>0, and the nonlinear function
Φ(w)>c0>0 satisfies

αΦ(w)Φ′′(w)−(α−1)(Φ′(w))2≥0. (1.6)

Let the initial data (ρ0(x),w0(x)) be bounded, ρ0(x)≥0, w0x(x) be bounded in
L1(R). Then the Cauchy problem (1.1)-(1.2) has a global bounded entropy solu-
tion (ρ(x,t),w(x,t)), where wx(·,t) is bounded in BV (R) in the sense of Lax, namely
(ρ(x,t),w(x,t)) satisfies (1.1) in the sense of distributions and

∫ ∞

0

∫ ∞

−∞

η(ρ(x,t),w(x,t))θt+q(ρ(x,t),w(x,t))θxdxdt≥0, (1.7)

where (η,q)∈C2 is a pair of entropy-entropy flux of system (1.1), η is convex, and
θ∈C∞

0 (R×R+−{t=0}) is a nonnegative function.

Note 1. The conditions of Φ(w) in (1.6) are satisfied for the function Φ(w)=wβ

when w≥ c0>0, β≥α.

Second, a similar existence result for systems of more than two equations is ob-
tained when φ(ρ,w1,w2, ...wn)=f(ραΦ(w1,w2, ...wn)).

Consider
{

ρt+(ρφ(ρ,w1,w2, ...wn))x=0,
(ρwi)t+(ρwiφ(ρ,w1,w2, ...wn))x=0, i=1,2, ...n,

(1.8)

with bounded measurable initial data

(ρ(x,0),wi(x,0))=(ρ0(x),wi0(x)), ρ0(x)≥0, i=1,2, ...n. (1.9)

Theorem 1.2. Let φ(ρ,w1,w2, ...wn)=f(ραΦ(w1,w2, ...wn)), where α>1 is a con-
stant, the nonlinear function f(r) is strictly increasing or decreasing on r>0, and the
nonlinear function Φ(w1,w2, ...wn)=Φ(w)>c0>0 satisfies

α(α−1)ρα−2Φ(w)ρ2x+2(α−1)ρα−1
n
∑

i=1

Φ(w)wi
wixρx+

n
∑

i,j=1

ραΦ(w)wiwj
wixwjx≥0.

(1.10)
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Let the initial data (ρ0(x),wi0(x)) be bounded, ρ0(x)≥0, and dwi0

dx
be bounded in

L1(R). Then the Cauchy problem (1.8)-(1.9) has a global bounded entropy solution
(ρ(x,t),wi(x,t)), where the wix(·,t) are bounded in BV (R).

Note 2. In general, when α>1, the conditions in (1.10) are satisfied if the
function ραΦ(w) is convex about the variables (ρ,w). In fact, if ραΦ(w) is convex,
the following inequality is true:

α(α−1)ρα−2Φ(w)ρ2x+2αρα−1
n
∑

i=1

Φ(w)wi
wixρx+

n
∑

i,j=1

ραΦ(w)wiwj
wixwjx≥0,

(1.11)
and the coefficient of the term ρα−1

∑n
i=1Φ(w)wi

wixρx in (1.10) is α−1 and could be
more easily controlled by other terms.

It is worthwhile to remark that if the solution has the bound ρ>0 away from
vacuum, a more enlightening way to study system (1.1), for a general φ(ρ,w) strictly
monotone in ρ, is to introduce a Lagrangian transformation [20]

t=s,
∂y

∂x
=ρ,

∂y

∂t
=−ρφ (1.12)

and reduce the system to

{

ws=0,
( 1
ρ
)s−φ(ρ,w)y =0.

(1.13)

System (1.13) is equivalent to a scalar equation with a discontinuous flux-function,
so the results of Panov [18, 19] about the existence of entropy solutions for multidi-
mensional scalar conservation laws with discontinuous flux-functions can be applied
fairly generally. To prove the existence of global solutions of system (1.13), Panov
assumes a technical condition φ(a,w)=φ(b,w)=0 for some 0<a<b for obtaining the
a priori estimate 0<a≤ρε≤ b. From our research in [15], when system (1.1) is in
Euler coordinates, the bound of the viscosity solutions ρε can be obtained for more
general function φ by the invariant region theorem.

Based on the above analysis, although (1.1) and (1.13) are equivalent when ρ>0
and the global solutions of system (1.13) were well studied by Panov in [18, 19], we
are still interested in studying the convergence of viscosity solutions of (1.1) and give
a different, short proof of the following theorem.

Theorem 1.3. Let the initial data (ρ0(x),wi0(x)) satisfy

0<δ≤ρ0(x)≤M1, −M2≤wi0(x)≤M3 (1.14)

for some constants δ,Mj ,j=1,2,3, assume that the total variation of wi0(x) be
bounded, and for any fixed constants cj ,j=1,2, ...n, and −M2≤ cj ≤M3, assume that
the function f(ρ)=φ(ρ,c1,c2, ...cn) satisfies

f ∈C2(R+), meas {r : 2f ′(r)+rf ′′(r)=0}=0. (1.15)

If the viscosity solutions ρε of the Cauchy problem (2.26) and (1.9) have the a-priori
L∞ estimate

0<c1≤ρε≤ c2 (1.16)
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for suitable positive constants c1 and c2 independent of ε, then there exists a subse-
quence of solutions (ρε,wε

i ) (still denoted (ρε,wε
i )), of the Cauchy problem (2.26) and

(1.9), which converges pointwise to functions (ρ,wi) and the limit (ρ,wi) is a weak
entropy solution of the Cauchy problem (1.8)-(1.9) in the sense of Lax, where the
wix(·,t) are bounded in BV (R).

Note 3. Theorem 1.3 is an extension of Panov’s result in [18, 19]. We have the
existence of the global solution of system (1.1) so long as we have the estimate (1.16)
for some conditions on φ. For instance, as we did in Section 3 in [15], we add a factor
ρ−δ before the function w−P (ρ) and study the case of φ(ρ,w)=(ρ−δ)(w−P (ρ)),
then repeating the proof in [15] we have the positive, lower estimate ρε≥ δ>0 and
the bound from above ρε≤M by using the invariant region theorem, for any fixed δ.

We will prove Theorems 1.1-1.3 in the next section. The main technique is the
compensated compactness method coupled with the artificial viscosity.

2. Proofs of Theorems 1.1-1.3

Consider the Cauchy problem for the related parabolic system

{

ρt+(ρφ(ρ,w))x= ερxx,

(ρw)t+(ρwφ(ρ,w))x= ε(ρw)xx,
(2.1)

with initial data

(ρε(x,0),wε(x,0))=(ρ0(x)+ε,w0(x)), ρ0(x)≥0, (2.2)

where (ρ0(x),w0(x)) is given by (1.2).
First, since ρε(x,0)≥ ε>0, we may choose a small time t1 such that the local

solution ρε(x,t), of the Cauchy problem (2.1), and (2.2), has the lower bound ρε(x,t)≥
ε
2 for t∈ [0,t1]. After we have the a priori estimates given in (2.4), (2.7) and (2.8), we
may extend the local solution step by step to obtain a global solution. This process
is standard.

Substituting the first equation in (2.1) into the second, we have

wt+φ(ρ,w)wx= εwxx+
2ε

ρ
ρxwx. (2.3)

By applying the maximum principle to (2.3), we first have the estimate

−M2≤wε≤M3 (2.4)

for two suitable constants M2,M3, which depend only on the initial date, but are
independent of ε.

We multiply the first equation in (2.1) by rρ and the equation (2.3) by rw, then
add the results to obtain

rt+φ(r)rx+ρrρφ
′(r)rx

= εrxx−ε(rρρρ
2
x+2rρwρxwx+rwww

2
x)+

2ε

ρ
ρxrwwx

= εrxx−ε(α(α−1)ρα−2Φ(w)ρ2x+2(α−1)ρα−1Φ′(w)ρxwx+ραΦ′′(w)w2
x)

≤ εrxx (2.5)

due to the condition (1.6).
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By applying the maximum principle to (2.5), we have the estimate

rε≤M, (2.6)

and hence the estimate

ρε≤M1 (2.7)

due to the conditions in Theorem 1.1.
Since φ(ρ,w)=f(ραΦ(w)), α>1, and Φ(w)>0, φ(ρ,w) is bounded. Therefore,

using an argument by Bereux and Sainsaulieu (cf. [15]), we have the following positive,
lower bound estimate on ρε:

ρε≥ c(t,ε)>0, since ρε0(x)≥ ε>0, (2.8)

where c(t,ε) could tend to zero as the time t tends to infinity or ε tends to zero.
The estimates in (2.4), (2.7), and (2.8) ensure the existence of viscosity solutions

(ρε,wε) of the Cauchy problem (2.1) and (2.2) for any fixed ε>0.
Now we prove the pointwise convergence of (ρε,wε) as ε goes to zero.
We rewrite (2.5) as

rt+φ(r)rx+αrφ′(r)rx= εrxx−I (2.9)

due to ρrρ=αr, where

I= ε(α(α−1)ρα−2Φ(w)ρ2x+2(α−1)ρα−1Φ′(w)ρxwx+ραΦ′′(w)w2
x) (2.10)

is nonnegative due to the condition (1.6), and so we can prove that I is bounded in
L1
loc(R×R+) if we multiply (2.9) by a suitable test function.

The left-hand side of (2.9) has only the variable r, so we may use Tartar’s result
[22] on the scalar equation to prove the pointwise convergence of rε:

rε(x,t)→ l(x,t), as ε→0, (2.11)

for a bounded function l(x,t).
To prove the pointwise convergence of ρε, we rewrite the first equation in system

(2.1) as

ρt+ρx(f(r)+αραΦ(w)f ′(r))+ρα+1Φ′(w)f ′(r)wx= ερxx. (2.12)

Using the equation (2.3) and the same technique given in [15] or [21], we have the
estimate

∫ ∞

−∞

|wx|(x,t)dx≤

∫ ∞

−∞

|wx|(x,0)dx≤M. (2.13)

Let ρα=u. We multiply (2.12) by αρα−1 to obtain

ut+ux[f(uΦ)+αuΦf ′(uΦ)]= εuxx−α(α−1)ρα−2ρ2x−αu2f ′(uΦ)Φx, (2.14)

or

ut+

(

∫ u

0

[f(τΦ)+ατΦf ′(τΦ)]dτ

)

x

= εuxx−εα(α−1)ρα−2ρ2x−αu2f ′(uΦ)Φx+

(

∫ u

0

[f(τΦ)+ατΦf ′(τΦ)]dτ

)

Φ

Φx.

(2.15)
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Since the estimate in (2.13), the terms

−αu2f ′(uΦ)Φx+

(

∫ u

0

[f(τΦ)+ατΦf ′(τΦ)]dτ

)

Φ

Φx

from the right-hand side of (2.15) are bounded in L1
loc(R×R+). Multiplying (2.15)

by a suitable test function, we have that the

ερα−2ρ2x are bounded in L1
loc(R×R+). (2.16)

So we can use Murat’s theorem [16] to prove that the left-hand side of (2.15)

uε
t +

(

∫ uε

0

[f(τΦ)+ατΦf ′(τΦ)]dτ

)

x

are compact in H−1
loc (R×R+). (2.17)

By simple calculation,
∫ u

0

[f(τΦ)+ατΦf ′(τΦ)]dτ =
1

Φ

∫ u

0

[f(τΦ)+ατΦf ′(τΦ)]d(τΦ)

=
1

Φ

∫ uΦ

0

[f(τ)+ατf ′(τ)]dτ =
ρα

r

∫ r

0

[f(τ)+ατf ′(τ)]dτ.

(2.18)

Similarly, we can prove that the left-hand side of the first equation in (2.1)

ρεt +(ρεf(rε))x are compact in H−1
loc (R×R+). (2.19)

So, applying the Curl-Div theorem to the pairs of functions

(ρε,ρεf(rε))

and

((ρε)α,
(ρε)α

rε

∫ rε

0

[f(τ)+ατf ′(τ)]dτ),

we have
(

1

l(x,t)

∫ l(x,t)

0

[f(τ)+ατf ′(τ)]dτ−f(l(x,t))

)

(ρε)α+1

=

(

1

l(x,t)

∫ l(x,t)

0

[f(τ)+ατf ′(τ)]dτ−f(l(x,t))

)

ρε(ρε)α

(2.20)

due to the pointwise convergence of rε(x,t)→ l(x,t) and ρε≥0, where θε denotes the
weak-star limit of θε.

Since f(r) is strictly increasing or decreasing on r>0,

1

r

∫ r

0

[f(τ)+ατf ′(τ)]dτ−f(r)=0 only on r=0.

Therefore we have from (2.20)

(ρε)α+1=ρε(ρε)α, (2.21)
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and so ρε→ρ(x,t) a.e. on the region r>0.
To prove the pointwise convergence of wε, we first have that both wε

x and ((wε)2)x
are compact in H−1

loc (R×R+) since they are bounded both in L1
loc(R×R+) and in

W−1,∞(R×R+). Thus we may apply the Curl-Div Theorem to the pairs of functions

(ρε,ρεf(rε)+wε) (2.22)

and

(ρεwε,ρεwεf(rε)+(wε)2) (2.23)

to obtain

ρε(ρεwεf(rε)+(wε)2)−(ρεwε)(ρεf(rε)+wε)=0. (2.24)

By the pointwise convergence of ρε and f(rε), we have

ρ((wε)2−(wε)2)=0, (2.25)

which includes the pointwise convergence of wε on the region ρ>0. Thus, we complete
the proof of Theorem 1.1.

Proof of Theorem 1.2. The proof of Theorem 1.2 is same to that of Theorem
1.1 except the reduction of (2.5).

We add the viscosity terms to the right-hand side of system (1.8) and consider
the related parabolic system

{

ρt+(ρφ(ρ,w1,w2, ...wn))x= ερxx,

(ρwi)t+(ρwiφ(ρ,w1,w2, ...wn))x= ε(ρwi)xx, i=1,2, ...n.
(2.26)

Substituting the first equation in (2.26) into the second, we have

wit+φ(ρ,w)wix= εwixx+
2ε

ρ
ρxwix. (2.27)

We multiply the first equation in (2.26) by rρ and equation (2.27) by rwi
, then add

the results to obtain

rt+φ(r)rx+ρrρφ
′(r)rx

= εrxx−ε(rρρρ
2
x+2

n
∑

i=1

rρwi
ρxwix+

n
∑

i,j=1

rwiwj
wixwjx)+

2ε

ρ
ρx

n
∑

i=1

rwi
wix

= εrxx−ε(α(α−1)ρα−2Φρ2x+2(α−1)ρα−1
n
∑

i=1

Φwi
wixρx+

n
∑

i,j=1

ραΦwiwj
wixwjx)

≤ εrxx (2.28)

due to the condition (1.10) in Theorem 1.2. So, we may obtain the uniform L∞

estimate of (ρε,wε
i ), and so the existence of the viscosity solutions of the parabolic

system (2.26). Similarly to the proof of Theorem 1.1, we may prove the pointwise
convergence of rε first by using the left-hand side of equation (2.28) coupled with
Tartar’s result on the scalar equation. Repeating the process of the proof of Theorem
1.1, we may prove the pointwise convergence of ρε and wε

i , and complete the proof of
Theorem 1.2.
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Proof of Theorem 1.3. We prove Theorem 1.3 in the following several steps.
First, using equation (2.27), we have the estimates

−M2≤wε
i (x,t)≤M3,

∫ ∞

−∞

|wix|(x,t)dx≤M (2.29)

due to the conditions in Theorem 1.3.
We multiply the first equation in (2.26) by g′(ρ) to obtain

g(ρ)t+g′(ρ)(φ+ρφρ)ρx+g′(ρ)ρ

n
∑

i=1

φwi
wix= εg(ρ)xx−εg′′(ρ)ρ2x (2.30)

or

g(ρ)t+

(

∫ ρ

0

g′(s)(φ(s,w1,w2, ...wn)+sφρ(s,w1,w2, ...wn))ds

)

x

= εg(ρ)xx−εg′′(ρ)ρ2x−g′(ρ)ρ

n
∑

i=1

φwi
wix

+

n
∑

i=1

(

∫ ρ

0

g′(s)(φ(s,w1,w2, ...wn)+sφρ(s,w1,w2, ...wn))ds

)

wi

wix. (2.31)

By the second estimate in (2.29), the last two terms on the right-hand side of (2.31)
are bounded in L1

loc(R×R+), so we may choose a strictly convex function g(ρ) to
obtain that

ε(ρεx)
2 are bounded in L1

loc(R×R+) (2.32)

with the help of (2.31).
Let η(ρ,w1,w2, ...wn)=ρF (w1,w2, ...wn), where F is a strictly convex function.

We multiply the first equation in (2.26) by ηρ, (2.27) by ηwi
, and add the results to

obtain

η(ρ,w1,w2, ...wn)t+(φη(ρ,w1,w2, ...wn))x= εη(ρ,w1,w2, ...wn)xx,

−ερ

n
∑

i,j=1

Fwiwj
wixwjx≤ εη(ρ,w1,w2, ...wn)xx−εc0ρ

n
∑

i=1

w2
ix

(2.33)

for a suitable positive constant c0. Thus we obtain that

ερ

n
∑

i=1

w2
ix are bounded in L1

loc(R×R+). (2.34)

If we have the a priori L∞ estimate (1.16), we have from (2.32) and (2.34) that
the first term in the right-hand side of (2.27) is compact in H−1

loc (R×R+), the second
term is bounded in L1

loc(R×R+), and from (2.29) that the second term in the left-
hand side is bounded in L1

loc(R×R+). So, we can prove that the first term in the
left-hand side of (2.27)

wε
it are compact in H−1

loc (R×R+). (2.35)
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Therefore both (wε
i )t+((wε

i )
2)x and ((wε

i )
2)t+

4
3 ((w

ε
i )

3)x are compact in H−1
loc (R×

R+). Using Tartar’s result on the scalar equation again, we obtain the pointwise
convergence of wε

i .
It remains to prove the pointwise convergence of ρε.
We rewrite the first equation in (2.26) as

ρt+(φ(ρ,w)+ρφρ(ρ,w))ρx+ρ

n
∑

i=1

φwi
(ρ,w)wix= ερxx (2.36)

or

ρt+F (ρ,w)x= ερxx−ρ

n
∑

i=1

φwi
(ρ,w)wix−

n
∑

i=1

Fwi
(ρ,w)wix, (2.37)

where F (ρ,w)=
∫ ρ

0
φ(s,w)+sφρ(s,w)ds. Since the last two terms in the right-hand

side of (2.37) are bounded in L1
loc(R×R+), we can prove that

ρεt +F (ρε,wε)x are compact in H−1
loc (R×R+). (2.38)

Similarly, we multiply (2.36) by Fρ(ρ,w), (2.27) by Fwi
(ρ,w), and add the results to

obtain

F (ρ,w)t+F 2
ρ (ρ,w)ρx

=εF (ρ,w)xx−εFρρ(ρ,w)ρ
2
x

−2ε
n
∑

i=1

Fρwi
(ρ,w)ρxwix−ε

n
∑

i,j=1

Fwiwj
(ρ,w)wixwjx

−ρFρ(ρ,w)

n
∑

i=1

Fwi
(ρ,w)wix+ε

(2ρx
ρ

−φ(ρ,w)
)

n
∑

i=1

Fwi
(ρ,w)wix (2.39)

or

F (ρ,w)t+
(

∫ ρ

0

F 2
ρ (s,w)ds

)

x

= εF (ρ,w)xx−εFρρ(ρ,w)ρ
2
x

−2ε

n
∑

i=1

Fρwi
(ρ,w)ρxwix−ε

n
∑

i,j=1

Fwiwj
(ρ,w)wixwjx

+
(

−ρFρ(ρ,w)+ε
(2ρx

ρ
−φ(ρ,w)

))

n
∑

i=1

Fwi
(ρ,w)wix

+
n
∑

i=1

(

∫ ρ

0

F 2
ρ (s,w)ds

)

wi

wix. (2.40)

Thus, using the estimates given in (1.16), (2.29), (2.32), and (2.34), we can prove that

F (ρε,wε)t+
(

∫ ρε

0

F 2
ρ (s,w

ε)ds
)

x
are compact in H−1

loc (R×R+). (2.41)

Using the Curl-Div Theorem in the compensated compactness theory ([16, 22]) to the
function pairs given in (2.38) and (2.41), and by paying attention to the pointwise
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convergence of wε
i and the condition in (1.15), we obtain the pointwise convergence

of ρε and so complete the proof of Theorem 1.3.
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