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A CONTINUUM MODEL FOR THE DYNAMICS OF DISLOCATION

ARRAYS∗

XIAOHONG ZHU† AND YANG XIANG‡

Abstract. We derive a continuum model for the dynamics of a dislocation array that consists of
dislocations in different slip planes. In the continuum model, the dislocation array is represented by a
continuous surface, of which there are many dislocations in a unit area at the scale of the continuum
model. The continuum model is derived rigorously from the discrete model of the dynamics of the
constituent dislocations in the array using asymptotic analysis. The obtained continuum model
contains an integral over the dislocation array surface representing the long-range interaction of
dislocations, and a local term that comes from the line tension effect of dislocations. The size-
dependent effect due to dislocation line tension is accurately incorporated in the continuum model.
Well-posedness of the continuum model is examined. A generalization to dislocation arrays in an
elastically anisotropic medium is discussed.
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1. Introduction

Dislocations are line defects and the primary carriers of plastic deformation in
crystalline materials [15]. In plastic deformation processes, dislocations are commonly
observed to form wall structures such as arrays and networks. Thus these dislocation
structures play important roles in plastic behaviors of crystalline materials. Many
theoretical and experimental results can be found in the literature on these disloca-
tion structures, e.g., structures and dynamics of low angle grain boundaries modeled
by arrays or networks of dislocations [33, 42, 21, 36, 15, 41, 44, 7, 23], interaction
of dislocation walls with solutes [43] and particles [8], formation of the dislocation
cell-wall structures and implications of these structures in cyclically deformed FCC
metals [26, 16, 25, 22], and propagation of shear bands modeled by interaction of tilt
walls of dislocation arrays with particles [14, 34].

The main difficulty in the modeling and simulation of dislocation arrays and other
structures comes from the multiscale nature of dislocations: on one hand, the interac-
tion of dislocations is long-range; and on the other hand, there are many short-range
interactions such as self-force, annihilation, reaction, and multiplication that play im-
portant roles in the evolution of dislocation microstructures [15]. Dislocations interact
and move under the force associated with the stress field in the medium referred to
as the Peach-Koehler force [15, 30]. In equilibrium states without other effects, the
constituent dislocations in the arrays are straight and the surfaces spanned by the
dislocation arrays are planar. For such arrays of straight dislocations, analytical for-
mulas for the force and energy are available, e.g., in the dislocation model of planar low
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angle grain boundaries consisting of straight dislocations [33, 15, 41] and interaction
between solutes and walls of straight dislocations [43].

In reality, the constituent dislocations in dislocation arrays and the surfaces
spanned by the dislocation arrays are commonly curved during dynamical processes
or when interacting with other defects such as external dislocations or particles. Us-
ing dislocation models, thermal fluctuations in low angle grain boundaries were ana-
lyzed [36]. For walls of curved dislocations, local line tension approximation [14] and
approximation of the curved dislocations with a few straight segments [34] were used
for a uniform finite edge dislocation array bypassing particles. Calculations of the
stress fields of uniform dislocation arrays with three-dimensional perturbations were
performed in [32]. The stress fields of disordered and finite dislocation walls were
studied in [38]. The stabilizing force on perturbed grain boundaries was analyzed
by using a dislocation model in [54]. Migration of low angle grain boundaries in the
presence of extrinsic dislocations was studied in [23]. Interactions of dislocation arrays
with particles were simulated in [8]. Loss of interface coherency around a misfitting
inclusion was examined by using a dislocation model in [31]. In these studies, except
for some special dislocation array configurations, numerical methods are employed to
obtain the interactions among all the constituent dislocations in the arrays and/or
with other defects.

At large length and time scales, continuum models are desired for the model-
ing and simulation of collective behaviors of dislocation ensembles. The continuum
models for dislocation dynamics and plasticity available in the literature are based on
continuous distributions of dislocations, neglecting the details of motion and interac-
tions of individual dislocations [27, 17, 28, 2, 9, 35, 29, 13, 1, 4, 12, 39, 50, 40, 18].
While the long-range interaction of dislocations is relatively well-modeled within these
continuum models [27, 17], a major challenge is how to incorporate various dislocation
short-range interactions into the continuum framework. These available continuum
models incorporate the short-range interactions, if at all, only phenomenologically or
in some average senses, and are not able to accurately reflect the dislocation struc-
tures of dislocation arrays. For example, it has been shown that a recent continuum
model derived from statistical distributions of dislocations [12] does not apply to
some special arrangement of dislocations in the dislocation walls [37]. In our previous
papers [46, 53] we have attempted to derive accurate continuum models for the Peach-
Koehler force and dislocation dynamics in a single slip plane. As far as we know, no
continuum model is available in the literature for the general arrays or network struc-
tures of dislocations in three dimensions such as the low angle grain boundaries and
the dislocation walls discussed above.

Under the Peach-Koehler force, dislocations move by glide in their own slip planes
except at high temperatures, which is widely adopted in discrete dislocation dynamics
simulations (e.g. [19, 51, 11, 47, 3]). For examples of dislocation arrays, it has
been analyzed by theories and observed in experiments that grain boundaries may
form [6, 5] and migrate [42, 21] by dislocation glide at low temperatures; dislocation
walls bypassing particles via dislocation glide have been studied by using discrete
dislocation dynamics simulations [14, 34, 8].

In this paper, we present a continuum model for the dynamics of dislocation
arrays in three dimensions (equations (3.1) and (3.4), see also figure 2.1 for an illus-
trative plot of such a dislocation array). In this continuum model, the dislocation
array is represented by a continuous surface in three dimensions, of which there are
many dislocations in a unit area at the length scale of the continuum model. The
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continuum formula of the force on this surface in an elastically isotropic medium is
derived rigorously from the discrete model of the Peach-Koehler force on the con-
stituent dislocations in the array in the continuum regime. The obtained continuum
force contains an integral over the surface representing the long-range interaction of
dislocations in the array, and a local term that comes from the local line tension effect
of the constituent dislocations. Well-posedness of this continuum model is established
through linear stability analysis of regular dislocation arrays. By an example of dislo-
cation arrays around an obstacle, it is also shown that the continuum model accurately
retains the size-dependent nature of dislocation arrays, which is missing in the contin-
uum theories containing only the long-range dislocation interaction. Generalization
to dislocation arrays in an elastically anisotropic medium is discussed.

The rest of the paper is organized as follows. In Section 2, we review the dis-
crete model for the dynamics of dislocations in a dislocation array, from which our
continuum model is derived. In Section 3, we present our continuum model and sum-
marize its main features. In Section 4, we present the details of the derivation of a
continuum approximation for the Peach-Koehler force from the discrete model using
asymptotic analysis. In Section 5, we examine the well-posedness of the continuum
model by linear stability analysis of regular dislocation arrays. In Section 6, we exam-
ine the accuracy of the continuum model by an example and show that the continuum
model correctly retains the size-dependent effect. In Section 7, a generalization of the
formulation to the context of elastically anisotropic media is discussed.

2. Elasticity theory and the discrete model

In this section, we briefly review the discrete model for the dynamics of a dislo-
cation array, from which our continuum model will be derived.

We consider an array of dislocations γj , j= · · · ,−2,−1,0,1,2, · · · with the same
Burgers vector and lying in parallel equidistant slip planes; see figure 2.1. Without loss
of generality, we choose the normal direction of the slip planes to be the z direction.
The Burgers vector of the dislocations is b=(b1,b2,0). The distance between two
adjacent slip planes is D, which is of order of the length of the Burgers vector b=
√

b21+b
2
2, and

b
D is a small finite number. For example, for a low angle symmetric tilt

boundary consisting of a regular array of straight edge dislocations, θ= b
D is the tilt

angle and θ≤ π
12 ([33], [15] Chap. 19, [41] Chap. 2). We neglect the effect of dislocation

climb, thus these dislocations can only glide in their own slip planes. We consider the
dislocation array in the bulk of the material and assume that the dislocation array
is unbounded, thus the boundary effects due to the image force and finite size of the
array are neglected.

We first briefly review the linear elasticity theory in the presence of dislocations
([15], part I). The elastic displacement u has an increment of the Burgers vector b

along any loop L enclosing a dislocation:

∮

L

du=b. (2.1)

This equation can be rewritten in terms of the distortion tensor w, where wij=
∂uj/∂xi for i,j=1,2,3, as

∇×w= tδγ⊗b, (2.2)

where t is the unit tangent vector of the dislocation, δγ is the Dirac delta function of
the dislocation, and the operator ⊗ denotes the tensor product of two vectors. The
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Fig. 2.1. A schematic plot of a dislocation array. The array consists of dislocations γj in the
slip plane z= zj , j= ··· ,−2,−1,0,1,2,···. S is the surface spanned by the dislocation array, which
is used to represent the dislocation array in the continuum model.

strain tensor is given by

ǫij=
1

2
(wij+wji) (2.3)

for i,j=1,2,3. The stress tensor σ is determined from the strain tensor by the linear
elastic constitutive equations

σij=

3
∑

k,l=1

Cijklǫkl (2.4)

for i,j=1,2,3, where {Cijkl} is the elastic constant tensor. For an isotropic medium,
the constitutive equations can be written as

σij=2µǫij+µ
2ν

1−2ν
(ǫ11+ǫ22+ǫ33)δij (2.5)

for i,j=1,2,3, where µ is the shear modulus, ν is the Poisson ratio, and δij is equal
to 1 if i= j and is equal to 0 otherwise. In the absence of body forces, the equilibrium
equation is

∇·σ=0. (2.6)

The Peach-Koehler force on a dislocation due to the stress field in the medium is ([30],
and equation (4-43) in Section 4.6 in [15]):

F=σ ·b×t. (2.7)

For the dislocation array, under isotropic elasticity, at a point X=(x,y,zn) on
the dislocation γn in the array, it can be calculated from the analytical formula of the
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stress field associated with dislocations ([15], equation (4-31) in Section 4.4), that the
Peach-Koehler force in the slip plane in the normal direction of the dislocation γn is

f
d(X)=

∑

j 6=n

∫

γj

[

µb2

4π

rj ·nj
‖rj‖3

+
νµ

4π(1−ν)

(nj ·b)(rj ·b)

‖rj‖3
−

3µ

4π(1−ν)

(zj−zn)
2(nj ·b)(rj ·b)

‖rj‖5

]

ds

+

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)dηdψ

∫

γ
η,ψ
n

[

µb2

4π

rη,ψ ·nη,ψ
‖rη,ψ‖3

+
νµ

4π(1−ν)

(nη,ψ ·b)(rη,ψ ·b)

‖rη,ψ‖3

−
3µ

4π(1−ν)

(zη,ψ−zn)
2(nη,ψ ·b)(rη,ψ ·b)

‖rη,ψ‖5

]

ds,

(2.8)

where µ is the shear modulus, ν is the Poisson ratio, rj=X−Xj , Xj=(xj ,yj ,zj) is
a point on the dislocation γj , nj=nj(Xj) is the unit normal vector of the dislocation
γj at the point Xj , and ds is the element of the line integral along γj . Here the
normal direction of a dislocation is defined by ns×t, where ns is the unit vector in
the z direction and t is the dislocation line direction. The summation of integrals in
fd gives the force from all other dislocations. The last integral in fd is the force due
to the stress generated by γn itself, in which

γ
η,ψ
n ={(xη,ψ,yη,ψ,zη,ψ)=(x1,y1,zn)+ηcosψnn(X1)+(0,0,ηsinψ) :X1=(x1,y1,zn)∈γn} ,

(2.9)

where nη,ψ is the unit normal vector of γη,ψn , rη,ψ=X−Xη,ψ with Xη,ψ ∈γ
η,ψ
n , and δ

is a regularized delta function of the dislocation γn defined in the plane perpendicular
to γn and expressed in terms of the polar coordinates with radius η and angle ψ. See
figure 2.2 for an illustration of the point Xη,ψ ∈γ

η,ψ
n .

Fig. 2.2. A point Xη,ψ ∈γη,ψn defined in equation (2.9) in the vicinity of dislocation γn. Here
(η,ψ) is the polar coordinate defined in the plane perpendicular to γn, with η being the radius and
ψ being the angle with respect to the unit normal vector nn of γn. This parametrization is used in
the expression of the self force of dislocation γn; see equation (2.8).

The regularized delta function δ removes the singularity in the line integral along
γn itself, and physically represents the distribution of the Burgers vector within the
dislocation core whose width is of the order of the length of the Burgers vector b. This
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is one of the standard treatments in the dislocation theory to remove the unphysical
singularities caused by the breakdown of the linear elasticity theory within the dislo-
cation core region [15](Chap. 8) and [20, 17, 24, 47, 3]. In this paper, we assume that
the regularized delta function of the dislocation core has compact support within the
core and is radially symmetric: δ= δ(η).

In discrete dislocation dynamics simulations (e.g. [19, 51, 11, 47, 3]), the disloca-
tions glide in their own slip planes with normal velocity

v=Mfd, (2.10)

where v is the velocity of the dislocation, and M is the mobility.

3. The continuum model

In this section, we present the continuum model for the dynamics of dislocation
arrays, which is derived from the above discrete dislocation model in equations (2.8)
and (2.10).

In the continuum model, a dislocation array is represented by the continuous
surface S spanned by the dislocation lines contained in the array; see figure 2.1. A
constituent dislocation γj in the array is then the intersection of the dislocation array
surface S and the plane z= zj , for j= · · · ,−2,−1,0,1,2, · · · . In the derivation, we
assume that in the length unit of the continuum model, the length of the Burgers
vector is b=‖b‖≪1, and there are many dislocations in a unit area of the continuum
model. We also assume that the curvature radii of the constituent dislocations and
the geodesics perpendicular to the dislocations are both O(1) in the length unit of the
continuum model.

The obtained continuum model for the glide Peach-Koehler force on the con-
stituent dislocations is

f(X)=
1

D

∫

S

[µb2

4π

r · ñd(X
S)

‖r‖3
+

νµ

4π(1−ν)

(ñd(X
S) ·b)(r ·b)

‖r‖3

−
3µ

4π(1−ν)

(r ·ns)
2(ñd(X

S) ·b)(r ·b)

‖r‖5

]

dS

+
µb2

4π(1−ν)
κ

{

(

1+ν−3ν sin2
β
)

log
D

2πrc‖ñd‖
−

3

2
+
ν

2
+

(

5

4
−
ν

2

)

sin2
β

+[3−ν+(−1+ν)sin2
β]‖ñd‖

2−2‖ñd‖
4 sin2

β

}

, (3.1)

where the force is at a point X on the dislocation array surface S in the normal
direction of the constituent dislocation, which is defined as the intersection line of
the dislocation array surface and the slip plane of the dislocation, XS is a point on
the dislocation array surface S, r=X−XS , dS is the surface element, nsurface is the
normal direction of the dislocation array surface, ns is the normal direction of the slip
planes of the constituent dislocations,

ñd=nsurface−(nsurface ·ns)ns (3.2)

is the component of nsurface in the normal direction of the constituent dislocation, κ
is the curvature of the constituent dislocation, β is the angle between the constituent
dislocation and its Burgers vector, and rc is a parameter depending on the dislocation
core:

logrc=

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)logηdηdψ. (3.3)
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Accordingly, the velocity of the dislocation array surface in the continuum model,
from equation (2.10), is

v=Mf
ñd

‖ñd‖
. (3.4)

Note that this velocity is in the normal direction of the constituent dislocation in its
slip plane.

The integral term in our continuum model in equation (3.1) gives the long-range
interaction of dislocations in the array. The local term in it gives correction due to
the dislocation line tension effect. It is widely known that the line tension effect of
dislocations, which is an important short-range effect and may lead to size dependent
properties, is missing in the integral models for the interaction of continuous distri-
butions of dislocations [28, 2, 35, 39, 50, 40, 18, 46, 53]. Here we give an accurate
expression without an adjustable parameter for this line tension effect for dislocations
in a three dimensional array, which is not available in the literature to the best of our
knowledge.

The details of the derivation using asymptotic analysis is presented in Section 4.
As the length of the Burgers vector b→0 in the length unit in the continuum model,
we keep the O(1) integral term representing the long-range interaction of dislocations
and terms at O(b logb) coming from the line tension effect of the dislocations. We
also keep those O(b) terms due to dislocation line tension in the continuum model
to incorporate the complete contribution from the dislocation line tension effect. It
will be shown in Section 5 by linear stability analysis that the obtained continuum
model is well-posed and is very accurate as an approximation to the discrete model
in the continuum regime. The size effect of the dislocation interaction is correctly
incorporated in the continuum model, as will be shown by an example in Section 6.

In addition to those O(b) terms due to dislocation line tension, it is tempting
to include all the rest O(b) terms to increase the accuracy of the continuum model.
However, these terms other than the line tension effect atO(b) will lead to ill-posedness
of the continuum model. Alternatively, one can try to solve this problem of ill-
posedness by including even higher order terms in the continuum model. However, this
alternative method will make the expression extremely complicated and will involve
even higher derivatives, resulting in severe stability restrictions on the time steps (the
CFL condition) in numerical simulations. We choose not to include these terms in
the continuum model. More discussion can be found in Section 5.

Finally, a generalization of the formulation to the context of elastically anisotropic
media will be discussed in Section 7.

4. Derivation of the continuum approximation

In this section, we present the derivation of the continuum Peach-Koehler force on
the dislocation array from the discrete dislocation model by using asymptotic analysis.

4.1. Outline of the derivation. For convenience of derivation, we as-
sume that the dislocation array surface S is smooth. The dislocation γj in the
slip plane z= zj is the intersection of the surface S and the plane z= zj= jD, for
j= · · · ,−2,−1,0,1,2, · · · .

We will derive a continuum model from the discrete model given in equation (2.8).
The derivation method is a generalization of those used to obtain continuum models
for the Peach-Koehler force on dislocations in a single slip plane [46, 53] and the
elastic interaction on epitaxial surfaces [45, 48, 49, 55].
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First of all, the discrete model fd(X) in equation (2.8) for the Peach-Koehler
force on the point X∈γn can be written as

fd(X)=
∑

j 6=n

h(X,zj)+I1(X,zn,h), (4.1)

where h(X,zj) is the integral along γj given by

h(X,zj)=

∫

γj

[

µb2

4π

rj ·nj
‖rj‖3

+
νµ

4π(1−ν)

(nj ·b)(rj ·b)

‖rj‖3
−

3µ

4π(1−ν)

(zj−zn)
2(nj ·b)(rj ·b)

‖rj‖5

]

ds,

(4.2)
and I1(X,zn,h) is the integral around γn given by

I1(X,zn,h)=

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)dηdψ

∫

γ
η,ψ
n

[

µb2

4π

rη,ψ ·nη,ψ
‖rη,ψ‖3

+
νµ

4π(1−ν)

(nη,ψ ·b)(rη,ψ ·b)

‖rη,ψ‖3

−
3µ

4π(1−ν)

(zη,ψ−zn)
2(nη,ψ ·b)(rη,ψ ·b)

‖rη,ψ‖5

]

ds, (4.3)

where γη,ψn is a line near γn defined in equation (2.9).
The discrete summation in equation (4.1) can be regarded as a numerical scheme

of the integral

f0(X)=
1

D

∫ +∞

−∞

h(X,z)dz, (4.4)

where

h(X,z)=

∫

γz

[

µb2

4π

rz ·nz
‖rz‖3

+
νµ

4π(1−ν)

(nz ·b)(rz ·b)

‖rz‖3
−

3µ

4π(1−ν)

(z−zn)
2(nz ·b)(rz ·b)

‖rz‖5

]

ds,

(4.5)

the curve γz={(x,y,z)∈S : any x,y}, rz=X−Xz, Xz=(xz,yz,z) is a point on the
curve γz, and nz is the unit normal vector of γz. Thus, the integral expression
f0(X) in equation (4.4) gives a leading order approximation of the discrete model in
equation (4.1), and it can be written as

f
0(X)=

1

D

∫

S

[µb2

4π

r · ñd(X
S)

‖r‖3
+

νµ

4π(1−ν)

(ñd(X
S) ·b)(r ·b)

‖r‖3

−
3µ

4π(1−ν)

(r ·ns)
2(ñd(X

S) ·b)(r ·b)

‖r‖5

]

dS. (4.6)

However, it is widely known that the line tension effect of dislocations, which is an
important short-range effect and may lead to size dependent properties, is missing in
the integral models for the interaction of continuous distributions of dislocations [28, 2,
35, 39, 50, 40, 18]. Except for the accurate continuum models we obtained previously
for distributions of dislocations in a single slip plane [46, 53] (which do not apply here),
the available models incorporating this local line tension effect all contain adjustable
parameters and the forms of the additional local terms do not agree with one another.

Mathematically, the above discussion indicates that the integral approximation
in equation (4.4) is not good enough for the discrete summation in equation (4.1).
This problem is caused by the singularity in the integrand h(X,z) of the integral in
equation (4.4). In order to obtain more accurate continuum approximation, we shall
keep the leading order error terms of the integral approximation in equation (4.4) in
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the continuum model. For this purpose, we need the following asymptotic behavior
near the singularity of h(X,z) and the theorem on the error estimate associated with
singular integrand.

Asymptotic Behavior of the Integrand h(X,z). From the asymptotic be-
havior of the self-stress of a dislocation [52], when X is very close to γz, i.e., z→zn,
we have

h(X,z)=
µb2

2π

(

1−sin2β+
1

1−ν
sin2β cos2θ̃

)

cos θ̃
1

d

−
µb2

4π(1−ν)
(1+ν−3ν sin2β)κ logd+O(1), (4.7)

where β is the angle between the Burgers vector b and the line direction of the
dislocation γn at the point X, θ̃ is the angle between the vector (X−X0

z) and the
normal direction of the curve γz at the point X0

z where (X−X0
z)⊥γz, d=O(z−zn)

is the distance between the point X and the curve γz, and κ is the curvature of the
dislocation γn at the point X.

Error Estimate Theorem [49]. Suppose that interval [a1,a2] is divided into m
subintervals with ∆x=(a2−a1)/m, xj=a1+(j−1)∆x, j=1, · · · ,m+1. Let G(x)=
g1(x)log |x− t|+g2(x)/(x− t)+g3(x) with t=xj0 for some j0, where g1(x), g2(x), and
g3(x) are twice continuously differentiable functions. Then

∫ a2

a1

G(x)dx=∆x





G(a1)+G(a2)

2
+

∑

2≤j≤m,j 6=j0

G(xj)





+

∫ t+∆x
2

t−∆x
2

G(x)dx−(logπ−1)g1(t)∆x+O((∆x)2). (4.8)

Applying the above theorem and the asymptotic behavior of h(X,z) to the integral
with respect to z in equation (4.4), with ∆z=D=O(b), we have

fd(X)=f0(X)−(logπ−1)
µb2

4π(1−ν)
(1+ν−3ν sin2β)κ+I1−I2+O(b3), (4.9)

where I1 is defined in equation (4.3), and I2 is an integral (corresponding to the term
∫ t+∆x

2

t−∆x
2

G(x)dx in equation (4.8) in the above theorem) given by

I2=
1

D

∫ zn+
D
2

zn−
D
2

dz

∫

γz

[µb2

4π

rz ·nz
‖rz‖3

+
νµ

4π(1−ν)

(nz ·b)(rz ·b)

‖rz‖3

−
3µ

4π(1−ν)

(z−zn)
2(nz ·b)(rz ·b)

‖rz‖5

]

ds. (4.10)

The remaining task is to find the leading order terms of the difference of the two
integrals in the above equation: I1−I2, which will be done in the rest of this section.
In particular, in Subsection 3.2, we reformulate the two integrals; in Subsection 3.3, we
calculate the asymptotic behavior of I1−I2; finally, in Subsection 3.4, we summarize
the result of the asymptotic behavior.
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4.2. Reformulation of the two integrals. In order to calculate the differ-
ence between the two integrals I1 and I2 in equations (4.3) and (4.10), respectively, we
first rewrite both of them as line integrals along the dislocation γn in this subsection.

Suppose that γn is parameterized by its arc length s. The unit tangent vector
and unit normal vector at a point X1(s)=(x1(s),y1(s),zn)∈γn are

t(X1)=(x′1(s),y
′
1(s),0) (4.11)

and

n(X1)=(−y′1(s),x
′
1(s),0), (4.12)

respectively.
The first integral I1 in equation (4.3) comes from the self force of dislocation γn.

The curve γη,ψn (defined in equation (2.9)) in it can also be parameterized by s (no
longer arc length) as

Xη,ψ=(xη,ψ(s),yη,ψ(s),zη,ψ)=(x1(s)−ηcosψy
′
1(s),y1(s)+ηcosψx

′
1(s),zn+η sinψ)

(4.13)

(see also figure 2.2), and its tangent vector and normal vector (not normalized) are
tη,ψ(Xη,ψ)=(1−ηcosψκ(s))t(X1) and nη,ψ(Xη,ψ)=(1−ηcosψκ(s))n(X1), respec-
tively, where κ(s) is the curvature of γn at point X1(s). Note that (x′′1(s),y

′′
1 (s),0)=

κ(s)(−y′1(s),x
′
1(s),0). Thus we can rewrite I1 in equation (4.3) as

I1=

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)dηdψ

∫

γn

(1−ηcosψκ(s))

×

[

µb2

4π

rη,ψ ·n(X1)

‖rη,ψ‖3
+

νµ

4π(1−ν)

(n(X1) ·b)(rη,ψ ·b)

‖rη,ψ‖3

−
3µ

4π(1−ν)

η2 sin2ψ(n(X1) ·b)(rη,ψ ·b)

‖rη,ψ‖5

]

ds, (4.14)

where rη,ψ=X−Xη,ψ.
We then rewrite the second integral I2 in equation (4.10) also as an integral along

the dislocation γn. When z∈
[

zn−
D
2 ,zn+

D
2

]

, the curve γz can be parameterized by
the arc length s of γn in the following way: for a given pointX1(s)=(x1(s),y1(s),zn)∈
γn, we determine a point Xz(s)=(xz(s),yz(s),z)∈γz such that Xz−X1 is normal to
γn at X1, by

Xz(s)=X1(s)+A(X1,z)n(X1)+(0,0,z−zn), (4.15)

where the coefficient A(X1,z) will be determined in the next subsection. See figure 4.1
for an illustration of this expression for Xz(s). We then have

rz=X−Xz=X−X1−A(X1,z)n(X1)−(0,0,z−zn), (4.16)

nz=
1

√

x′z(s)
2+y′z(s)

2

[

(1−A(X1,z)κ(X1))n(X1)−
∂A(X1,z)

∂s
t(X1)

]

, (4.17)

and

A(X1,z),
∂A(X1,z)

∂s
=O(z−zn)=O(D)=O(b), z∈

[

zn−
D

2
,zn+

D

2

]

. (4.18)
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Fig. 4.1. A point Xz(s) on a nearby dislocation γz is expressed in terms of X1(s) on the
dislocation γn and the normal direction n(X1) of γn; see equation (4.15). This expression is used
in the new formulation of I2 in equation (4.19).

Thus I2 in equation (4.10) can be written as

I2=
1

D

∫ zn+
D
2

zn−
D
2

dz

∫

γn

{

(1−A(X1,z)κ(X1))
[µb2

4π

rz ·n(X1)

‖rz‖3
+

νµ

4π(1−ν)

(n(X1) ·b)(rz ·b)

‖rz‖3

−
3µ

4π(1−ν)

(z−zn)
2(n(X1) ·b)(rz ·b)

‖rz‖5

]

−
∂A(X1,z)

∂s

[µb2

4π

rz ·t(X1)

‖rz‖3

+
νµ

4π(1−ν)

(t(X1) ·b)(rz ·b)

‖rz‖3
−

3µ

4π(1−ν)

(z−zn)
2(t(X1) ·b)(rz ·b)

‖rz‖5

]

}

ds.

(4.19)

4.3. Difference between I1 and I2. In this subsection, we calculate the
difference between the integrals I1 and I2, given in equations (4.14) and (4.19), re-
spectively.

We use a shifted arc length parameter s for the dislocation γn with X=(x,y,zn)=
γn(0). Let γAn be the segment of γn for s∈ [−bα,bα] with 0<α< 1

2 , and let γBn =
γn−γ

A
n . We first consider I1 and I2 on γBn . Under the given assumptions, we have

‖X−X1‖≥
1

2
bα, X1∈γ

B
n . (4.20)

Thus when X1∈γ
B
n and η=O(b), from equations (2.9) and (4.20) we have

rη,ψ=X−Xη,ψ=X−X1−η[cosψn(X1)+(0,0,sinψ)]=r
(

1+O(b1−α)
)

, (4.21)

where r=X−X1. Using equations (4.20) and (4.21), when the inner line integral is
along γBn in I1 in equation (4.14), and η=O(b), we have

IB1 =

∫

γBn

[

µb2

4π

r ·n

‖r‖3
+

νµ

4π(1−ν)

(n ·b)(r ·b)

‖r‖3

]

ds+O(b3−3α). (4.22)
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Similarly, for the integral I2 given by equation (4.19) on γBn , using equation (4.16)
and D=O(b), we have

rz=r
(

1+O(b1−α)
)

(4.23)

and

IB2 =

∫

γBn

[

µb2

4π

r ·n

‖r‖3
+

νµ

4π(1−ν)

(n ·b)(r ·b)

‖r‖3

]

ds+O(b3−3α). (4.24)

We then consider I1 and I2 on γAn . When X1∈γn is close to X,

X1=X+

(

s−
1

6
κ2s3

)

t0+

(

1

2
κs2+

1

6
κ′s3

)

n0+O(s4), (4.25)

where t0 is the unit tangent vector of γn at point X, n0 is the unit normal vector

of γn at point X, κ is the curvature of γn at X, and κ′= dκ(s)
ds

∣

∣

∣

s=0
. Then the unit

tangent vector, unit normal vector, and curvature at X1 are

t(X1)=

(

1−
1

2
κ2s2

)

t0+

(

κs+
1

2
κ′s2

)

n0+O(s3), (4.26)

n(X1)=

(

−κs−
1

2
κ′s2

)

t0+

(

1−
1

2
κ2s2

)

n0+O(s3), (4.27)

and

κ(X1)=κ+O(s), (4.28)

respectively. We also denote

b/b= b01t
0+b02n

0=cosβ t0+sinβ n0. (4.29)

Recall that β is the angle between the Burgers vector b and the dislocation line
direction t0.

For the integral I1 in equation (4.14) on γAn , we have

I
A
1 =

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)dηdψ

∫ bα

−bα

{

µb2

4π

[

1
2
κs2−ηcosψ+κη2 cos2ψ

(s2+η2)3/2
−

3
2
κη2s2 cos2ψ

(s2+η2)5/2

]

+
νµb2

4π(1−ν)

[

−b01b
0
2s−(b02)

2ηcosψ+3κb01b
0
2ηscosψ+κ

[

(b01)
2− 1

2
(b02)

2
]

s2

(s2+η2)3/2

+
κ(b02)

2η2 cos2ψ

(s2+η2)3/2
+

− 3
2
κb01b

0
2ηs

3 cosψ− 3
2
κ(b02)

2η2s2 cos2ψ

(s2+η2)5/2

]

−
3µb2

4π(1−ν)

[

−b01b
0
2η

2ssin2ψ−(b02)
2η3 sin2ψcosψ+3κb01b

0
2η

3ssin2ψcosψ

(s2+η2)5/2

+
κ
[

(b01)
2− 1

2
(b02)

2
]

η2s2 sin2ψ+κ(b02)
2η4 sin2ψcos2ψ

(s2+η2)5/2

−
5
2
κb01b

0
2η

3s3 sin2ψcosψ+ 5
2
κ(b02)

2η4s2 sin2ψcos2ψ

(s2+η2)7/2

]

+O(b2)

}

ds
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=

∫ +∞

0

∫ 2π

0

ηδ(η,ψ)dηdψ

{

µb2

4π

[

κ
(

log(2bα)− logη−1+cos2ψ
)

−
2cosψ

η

]

+
νµ

4π(1−ν)

[

(b02)
2

(

κcos2ψ−
2cosψ

η

)

+κ
(

2(b01)
2−(b02)

2)(log(2bα)−1− logη
)

]

−
µ

4π(1−ν)

[

4(b02)
2

(

κsin2
ψcos2ψ−

sin2ψcosψ

η

)

+κ
(

2(b01)
2−(b02)

2)sin2
ψ

−2κ(b02)
2 sin2

ψcos2ψ

]

+O(b2+α)

}

. (4.30)

Note that since δ is a two-dimensional regularized delta function,
∫ +∞

0

∫ 2π

0
ηδ(η,ψ)dηdψ=1.

If δ(η,ψ) is independent of the angle ψ, i.e., δ(η,ψ)= δ(η), we have

IA1 =
µb2

4π
κ

(

log
2bα

rc
−

1

2

)

+
µ

4π(1−ν)
κ

[

ν
(

2(b01)
2−(b02)

2
)

log
2bα

rc
−ν

(

2(b01)
2−

3

2
(b02)

2

)

−(b01)
2+

1

4
(b02)

2

]

+O(b2+α), (4.31)

where rc is a parameter depending on the dislocation core given in equation (3.3).
Next we calculate the integral I2 in equation (4.19) on γAn . Using the arclength s of

γn and z for the parametrization of the dislocation array S, as given in equation (4.15),
when z∈ [zn−

D
2 ,zn+

D
2 ] and s∈ [−bα,bα], the surface S can be written as

y0=
κ

2
(x0)2+

1

2
κn(1+A

2
1)

3/2(z0)2+A2x
0z0+A1z

0+O((x0)3+(z0)3), (4.32)

where (x0,y0,z0= z−zn) is the coordinate of a point Xz on the surface S in the
coordinate system {t0,n0,ns=(0,0,1)} at the point X, κn is the normal curvature of
the surface S in the direction perpendicular to the dislocation γn,

A1(X)=
nsurface(X) ·ns

‖ñd(X)‖
, (4.33)

and

A2(X)=
∂2Xz

∂t0∂ns

∣

∣

∣

∣

X

·n0. (4.34)

Recall that nsurface is the unit normal vector of the dislocation array surface S, ns is
the unit normal vector of the slip planes of the dislocations, and ñd is the component of
nsurface in the normal direction of the constituent dislocation given in equation (3.2).
Note that A2 is associated with the variation of the dislocation line direction, in the
direction normal to the slip plane. It can be calculated from equations (4.15), (4.25),
and (4.32) that

A(X1,z)=A1(z−zn)+A2s(z−zn)+
1

2
κn(1+A

2
1)

3/2(z−zn)
2+O(s3+(z−zn)

3).

(4.35)
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Then I2 in equation (4.19) on γAn can be written as

I
A
2 =

1

D

∫ zn+
D
2

zn−
D
2

dz

∫ bα

−bα

{

µb2

4π

[

−A1(z−zn)+
1
2
κs2−A2s(z−zn)+

(

−
κn(1+A

2
1
)3/2

2
+A2

1κ
)

(z−zn)
2

(s2+(1+A2
1)(z−zn)

2)3/2

−
3
2
A2

1κs
2(z−zn)

2−3A2
1A2s(z−zn)

3− 3
2
A2

1κn(1+A
2
1)

3/2(z−zn)
4

(s2+(1+A2
1)(z−zn)

2)5/2

]

+
νµb2

4π(1−ν)





−b01b
0
2s−(b02)

2A1(z−zn)+
(

3b01b
0
2A1κ−(b02)

2A2

)

s(z−zn)

(s2+(1+A2
1)(z−zn)

2)3/2

+

(

(b01)
2− 1

2
(b02)

2
)

κs2+(b02)
2
(

−
κn(1+A

2
1
)3/2

2
+A2

1κ
)

(z−zn)
2

(s2+(1+A2
1)(z−zn)

2)3/2

−
3
2
b01b

0
2A1κs

3(z−zn)+
(

3
2
(b02)

2A2
1κ−3b01b

0
2A1A2

)

s2(z−zn)
2

(s2+(1+A2
1)(z−zn)

2)5/2

+
3A1

(

(b02)
2A1A2+b

0
1b

0
2
κn(1+A

2
1
)3/2

2

)

s(z−zn)
3+ 3

2
(b02)

2A2
1κn(1+A

2
1)

3/2(z−zn)
4

(s2+(1+A2
1)(z−zn)

2)5/2







−
3µb2

4π(1−ν)





−b01b
0
2s(z−zn)

2−(b02)
2A1(z−zn)

3+
(

3b01b
0
2A1κ−(b02)

2A2

)

s(z−zn)
3

(s2+(1+A2
1)(z−zn)

2)5/2

+

(

(b01)
2− 1

2
(b02)

2
)

κs2(z−zn)
2+(b02)

2
(

−
κn(1+A

2
1
)3/2

2
+A2

1κ
)

(z−zn)
4

(s2+(1+A2
1)(z−zn)

2)5/2

−
5
2
b01b

0
2A1κs

3(z−zn)
3+

(

5
2
(b02)

2A2
1κ−5b01b

0
2A1A2

)

s2(z−zn)
4

(s2+(1+A2
1)(z−zn)

2)7/2

+

(

5(b02)
2A2

1A2+
5
2
b01b

0
2A1κn(1+A

2
1)

3/2
)

s(z−zn)
5+ 5

2
(b02)

2A2
1κn(1+A

2
1)

3/2(z−zn)
6

(s2+(1+A2
1)(z−zn)

2)7/2





+
µb2

4π

[

A2s(z−zn)

(s2+(1+A2
1)(z−zn)

2)3/2

]

+
νµb2

4π(1−ν)

[

(b01)
2A2s(z−zn)+b

0
1b

0
2A1A2(z−zn)

2

(s2+(1+A2
1)(z−zn)

2)3/2

]

−
3µb2

4π(1−ν)

[

(b01)
2A2s(z−zn)

3+b01b
0
2A1A2(z−zn)

4

(s2+(1+A2
1)(z−zn)

2)5/2

]

+O(b2)

}

ds

=
µb2

4π
κ

(

log
4bα

D
− log

√

1+A2
1

)

+
νµb2

4π(1−ν)
κ
(

2(b01)
2−(b02)

2)
(

log
4bα

D
− log

√

1+A2
1

)

+
µb2

4π

[

−κn(1+A
2
1)

3/2+A2
1κ

1+A2
1

+
2A2

1κn
√

1+A2
1

]

+
νµb2

4π(1−ν)

[

−(b02)
2κn(1+A

2
1)

3/2+2b01b
0
2A1A2+(b02)

2A2
1κ

1+A2
1

+
2(b02)

2A2
1κn

√

1+A2
1

]

−
µb2

4π(1−ν)

[

−2(b02)
2κn(1+A

2
1)

3/2+4b01b
0
2A1A2+2(b02)

2A2
1κ

(1+A2
1)

2
+

2(b01)
2−(b02)

2

1+A2
1

κ
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+
8(b02)

2A2
1κn

(1+A2
1)

3/2

]

+
µb2

4π(1−ν)
b
0
1b

0
2A1A2

[

2ν

1+A2
1

−
4

(1+A2
1)

2

]

+O(b2+α). (4.36)

Therefore, the difference I1−I2=(IA1 −IA2 )+(IB1 −IB2 ) can be calculated from
equations (4.22), (4.24), (4.31), and (4.36).

4.4. The continuum approximation. Using equations (4.4), (4.5), (4.9),
(4.22), (4.24), (4.31), and (4.36), and letting α=1/4, the continuum approxima-
tion of fd(X), keeping the terms of the leading two orders as b→0, written in a
parametrization-independent form, is

f
c(X)

=
1

D

∫

S

[

µb2

4π

r · ñd(X
S)

‖r‖3
+

νµ

4π(1−ν)

(ñd(X
S) ·b)(r ·b)

‖r‖3

−
3µ

4π(1−ν)

(r ·ns)
2(ñd(X

S) ·b)(r ·b)

‖r‖5

]

dS

+
µb2

4π(1−ν)
κ

{

(

1+ν−3ν sin2
β
)

log
D

2πrc‖ñd‖
−

3

2
+
ν

2
+

(

5

4
−
ν

2

)

sin2
β

+[3−ν+(−1+ν)sin2
β]‖ñd‖

2−2‖ñd‖
4 sin2

β

}

+
µb2

4π(1−ν)

κn

‖ñd‖

{

(−1+ν−ν sin2
β)+[2−2ν+(6+2ν)sin2

β]‖ñd‖
2−8sin2

β‖ñd‖
4

}

+
µb2

π(1−ν)

(

∂2
X
S

∂t0∂ns

∣

∣

∣

∣

X

·n0

)

(nsurface ·ns)sinβ cosβ(−ν‖ñd‖+2‖ñd‖
3), (4.37)

where S is the dislocation array surface with dislocations being the intersection of
S with planes normal to the z axis, X is a point on the surface S where the force is
evaluated, XS is the point that varies on the surface S, r=X−XS , nsurface is the unit
normal vector of the dislocation array surface S, ns is the unit normal vector of the
slip planes of the dislocations, ñd is the component of nsurface in the normal direction
of the constituent dislocation given in equation (3.2), t0 is the unit tangent vector
of the dislocation, n0 is the unit normal vector of the dislocation, b is the Burgers
vector of the constituent dislocations, D is the distance between two adjacent slip
planes of the dislocations, β is the angle between the dislocation line direction and
the Burgers vector b, κ is the curvature of the dislocation, κn is the normal curvature
of the dislocation array surface S in the direction perpendicular to the dislocation,
and rc is a parameter depending on the dislocation core given in equation (3.3).

The continuum approximation in equation (4.37) is accurate up to two orders of b.
The integral term in it gives the long-range interaction of dislocations in the array, and
the other local terms give corrections at the next order. The local terms containing the
dislocation curvature κ come from the line tension effect of the dislocations. The local
terms containing the normal curvature κn of the dislocation array surface represent
the effect of the variation of the dislocation array surface in the direction perpendicular
to the dislocation. The local terms in the last line of equation (4.37) are associated
with the variation of the dislocation line direction normal to the slip plane.

For the continuum model of the dynamics of the dislocation array surface, the
velocity of the surface is determined from the continuum Peach-Koehler force by the
mobility law in equation (3.4), following that of the discrete model in equation (2.10).
Well-posedness of the continuum model will be examined in the next section by linear
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stability analysis. It turns out that when we keep the leading order integral term
(denoted as the O(1) term), and the O(b logb) terms which are from the dislocation
line tension effect, the continuum model is well-posed. For completeness of physics and
increase of accuracy, we also keep those O(b) terms from the dislocation line tension
effect, and the resulting continuum model, as presented in equation (3.1) in Section 3,
is also well-posed and is very accurate in the continuum regime, which will be shown
in the next section. Whereas the complete asymptotic expansion up to O(b) given in
equation (4.37), unfortunately, will lead to ill-posedness in the continuum dynamics
model.

5. Well-posed continuum model

In this section, by linear stability analysis of regular arrays of dislocations and
comparisons with the results from the discrete model, we examine the well-posedness
of the continuum dynamics model when the continuum Peach-Koehler force f in
equation (3.1) or the complete continuum approximation f c in equation (4.37) is
incorporated.

We consider a regular array of straight edge dislocations forming a low angle
symmetric tilt boundary ([33], Chap. 19 in [15], Chap. 2 in [41]). This disloca-
tion array is subject to small perturbations of the constituent dislocations in their
slip planes [36, 54]; see the schematic plot in figure 2.1. Assume that initially the
regular array of dislocations form a plane located at y=0, and the constituent dis-
locations are in the slip planes z= jD, j= · · · ,−2,−1,0,1,2, · · · , respectively. The
Burgers vector of these constituent dislocations is b=(0,b,0). For a perturbation of
amplitude ε with wavenumber k1 along the dislocations and phase shift α for differ-
ent dislocations, the constituent dislocations in the perturbed array can be written
as γj(t)=(x,εeik1x+ijα+ω(k1,α)t,jD), j= · · · ,−2,−1,0,1,2, · · · , where ω(k1,α) is the
growth rate of the amplitude of the perturbation.

The discrete model in equations (2.8) and (2.10), by keeping only the linear terms
of ε, gives the following dispersion relation:

ω(k1,α)

=
Mµb2

2π(1−ν)

∑

j 6=0

[

−
1

j2D2
+ν cos(jα)k21K0(|k1||j|D)+cos(jα)

|k1|

|j|D
K1(|k1||j|D)

]

+
Mµb2

2(1−ν)

∫ +∞

0

ηδ(η)dη

[

(2ν−1)k21K0(|k1||η|)−
1

4
|η||k1|

3K1(|k1||η|)

]

, (5.1)

where K0 and K1 are the modified Bessel functions of the second kind.
We choose the Poisson ratio ν= 1

3 . The distance between neighboring dislocations
is D=50b. The regularized delta function that represents the dislocation core is

δ(η,ψ)= δ(η)= π
(π2−4)η2

0

[

1+cos
(

πη
η0

)]

if 0≤η≤η0 and 0 otherwise, where the width

of the dislocation core is η0=3b. The core parameter rc in the continuum model is
then 0.38η0 from equation (3.3).

In the continuum models, the perturbed tilt boundary can be written as y=
εeik1x+ik3z+ωt, where k1 and k3 are frequencies of the perturbations along and normal
to the constituent dislocations, respectively, with k3=α/D.

5.1. Well-posedness using the continuum Peach-Koehler force f .
We first examine the well-posedness of the continuum dynamics model when the
continuum Peach-Koehler force f in equation (3.1) is used. Recall that f is obtained
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by keeping the leading order integral term and the O(b logb) terms (relative to the
leading order) which are from the dislocation line tension effect, together with other
terms from dislocation line tension at O(b). For convenience of expression, in this
section, the continuum force f is referred to as the modified continuum force.

When incorporated into the evolution equation in equation (3.4), this modified
continuum Peach-Koehler force f gives the following dispersion relation for this prob-
lem:

ω(k1,k3)=
Mµb2

4π(1−ν)

{

−
2π

D

(1−ν)k21+k
2
3

√

k21+k
2
3

−

[

(1−2ν)log
D

2πrc
−

1

4

]

k21

}

. (5.2)

The O(
√

k21+k
2
3) term in this dispersion relation comes from the integral term in f

which represents the long-range interaction of dislocations. The O(k21) term comes
from the dislocation curvature κ term in f which is due to the dislocation line tension
effect, and has a negative sign due to the assumption that D/b is a large finite number
(low angle grain boundary). The fact that both the O(

√

k21+k
2
3) and O(k21) terms

have negative sign shows well-posedness of the continuum model in this problem.
The comparisons of the dispersion relation in equation (5.2) from the modified

continuum Peach-Koehler force f with the dispersion relation in equation (5.1) from
the discrete model are shown in figure 5.1.

Figure 5.1(a) shows the dispersion relations when the perturbation is normal to
the constituent dislocations. In this case, the dislocations remain straight, i.e., k1=0,
and the dispersion relation in equation (5.1) from the discrete model can be calcu-

lated as ω(0,α)=− Mπµb2

(1−ν)D2

(

1
n−

1
n2

)

, where n=2π/α is the number of dislocations

in one perturbation period normal to the dislocations. From the discrete model, the
effect of the Peach-Koehler force always stabilizes the tilt boundary, i.e., the growth
rate of the amplitude of the perturbation ω<0. The resulting dispersion relation in

equation (5.2) of the continuum model in this case is ω(0,k3)=− Mµb2

2D(1−ν) |k3|, which

gives stability that agrees quantitatively with the result of the discrete model for not
small n and qualitatively in the discrete limit of small n; see figure 5.1(a).

The dispersion relations when the perturbation is along the constituent disloca-
tions, i.e. α=0 and k3=0, are shown in figure 5.1(b). The effect of the Peach-Koehler
force always stabilizes the tilt boundary from the discrete model. It can be seen from
the figure that our continuum approximation gives accurate results compared with
those of the discrete model.

In this case, in the continuum Peach-Koehler force f in equation (3.1), in addition
to the leading order long-range interaction of dislocations, the dislocation curvature
terms from the local line tension effect of dislocations also contribute to the stability
effect and give the negative O(k21) term in the dispersion relation in equation (5.2). To
see the importance of the dislocation curvature terms in the continuum approximation,
we also plot the dispersion relation of the leading order continuum approximation
without curvature terms in figure 5.1(b). It can be clearly seen from the figure that
without the dislocation curvature terms, the error of the continuum approximation
in the dispersion relation is large for large k1. Therefore it is crucial to include the
dislocation curvature terms in the continuum model. The curvature terms are also
crucial to incorporate in the continuum model the transition from the long-range
interaction dominant regime to the curvature dominant regime (see [54]) and the size
dependent effect (to be shown in the next section) as the length scale decreases.

Figure 5.1 (d) shows the full dispersion relation in equation (5.2) from the modified
continuum Peach-Koehler force f , which is compared with that in equation (5.1) from
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Fig. 5.1. The dispersion relations for a perturbed symmetric tilt boundary consisting of edge
dislocations. (a) The perturbation is normal to the constituent dislocations with n dislocations in
one period. (b) The perturbation is along the constituent dislocations with wavenumber k1. (c) The
full dispersion relation from the discrete dislocation model. (d) The full dispersion relations from
the modified continuum model. Here n=2π/α is the number of dislocations in one perturbation
period normal to the dislocations, and λ‖=2π/k1 is the wavelength of the perturbation along the
dislocations. The distance between neighboring dislocation is D=50b. The size of the domain is
L=3000b.

the discrete model shown in figure 5.1 (c). It can be seen that this continuum model
gives a more accurate dispersion relation compared with the discrete model, except
in the discrete limit where only a few dislocations are contained in the unit area; in
the latter case, the continuum model is able to give qualitative stability.

5.2. Ill-posedness using the full continuum Peach-Koehler force f c.
When the full continuum Peach-Koehler force f c in equation (4.37) is used, together
with equation (3.4), we obtain the dispersion relation

ω(k1,k3)=
Mµb2

4π(1−ν)

{

−
2π

D

(1−ν)k21+k
2
3

√

k21+k
2
3

−

[

(1−2ν)log
D

2πrc
−

1

4

]

k21+k
2
3

}

. (5.3)

The additional O(k23) term (compared with the dispersion relation in equation (5.2)
from the modified continuum force f) comes from the κn terms in f c which are
associated with the normal curvature of the dislocation array surface S in the direction
on S perpendicular to the local dislocation line direction. This O(k23) term in the
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dispersion relation has a positive sign, resulting in instability for large values of k1
(small values of n=2π/k3D) which is in contradiction with the stability results of
the discrete model; see figure 5.1(a). Thus the κn terms in the full continuum Peach-
Koehler force f c in equation (4.37) lead to unphysical instability and ill-posedness of
the continuum model.

The terms due to the variation of the dislocation line direction normal to the slip
planes in the continuum Peach-Koehler force f c in the last line in equation (4.37)
make no contribution to the dispersion relation in the linear stability of a symmetric
tilt boundary discussed above. To examine the well-posedness effect of these terms
in the continuum model, we consider a dislocation array surface y= cz with Burgers
vector b=(b1,b2,0) subject to small perturbations: y= cz+εeik1x+ik3z+ωt. Then
the contribution to the dispersion relation from these terms due to the variation of
dislocation line direction normal to the slip planes are

ω3=
Mµb2

4π(1−ν)
k1k3

[

−
4νc

1+c2
+

8c

(1+c2)2

]

sinβ cosβ. (5.4)

Except for the special cases of c=0, sinβ=0, or cosβ=0, ω3 is always positive for
certain ranges of large values of k3 and is at the highest order (O(k21+k

2
3) of the

dispersion relation), thus this contribution also leads to ill-posedness of the continuum
evolution equation.

5.3. Summary of well-posed continuum model. The modified continuum
Peach-Koehler force f containing the leading order long-range dislocation interaction
and terms due to the dislocation line tension effect gives a well-posed continuum model
and is seen to be very accurate compared with the discrete model by linear stability
analysis. Whereas the other two contributions in the full continuum Peach-Koehler
force f c, namely the contribution from the normal curvature of the dislocation array
surface S in the direction on S perpendicular to the local dislocation line direction
and that from the variation of dislocation line direction normal to the slip planes,
lead to ill-posedness of the continuum model.

Alternatively, one can seek even higher order terms to stabilize the evolution
equation to keep the later two contributions. However, this will make the expression
extremely complicated and will involve even higher derivatives, resulting in severe
stability restrictions on the time steps (the CFL condition) in numerical simulations.
Thus this solution is not feasible in practice.

6. Accuracy of the continuum model and the size-dependent effect

In this section, beyond linear stability of planar dislocation arrays, we further ex-
amine the accuracy of the modified continuum Peach-Koehler force f in equation (3.1)
via dislocation array structures that may form by interactions with particles and have
been studied using discrete dislocation models [14, 34, 8, 31]. We focus on the accuracy
as well as the size-dependent effect [28, 2, 9, 35, 29, 13, 1, 4, 12, 39, 50, 40, 18, 46, 53].

We consider an example of an array of dislocation loops surrounding a spherical
particle; see figure 6.1(a). The distance between adjacent dislocation loops is D=50b,
and the radius of the sphere is R=ND for an integer N . There are a total of 2N−1
dislocation loops and the middle one is in the plane containing the sphere center. We
consider the Peach-Koehler force on an edge point on the dislocation loop with height
R/2 from the sphere center; see figure 6.1(a).

The results using the continuum model f and comparisons with the results from
the discrete model fd are shown in figure 6.1(b). The Poisson ratio ν=1/3 and the
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Fig. 6.1. (a) An array of dislocation loops surrounding a spherical particle. The dot on the
surface indicates the location where the Peach-Koehler force is evaluated. The distance between
adjacent dislocation loops is D=50b, and the radius of the sphere is R=ND for an integer N . (b)
The Peach-Koehler force using different models when the size of the particle varies.

dislocation core profile is the same as that in the previous section. The radius of the
sphere R=ND sets the length scale of the continuum model: as the parameter N
varies from 2 to 100, the length unit R in the continuum model varies from 100b to
5000b. It can be seen that the continuum model f in equation (3.1) is very accurate
as an approximation to the discrete model fd in equation (2.8), and gives the correct
size effect as the length unit of the continuum model decreases. On the other hand,
the leading order continuum approximation f0 in equation (4.6) has relatively large
error, especially when the length unit of the continuum model is not very large, and
is size independent.

7. Generalization to elastic anisotropy

In this section, we discuss the generalization of our continuummodel to dislocation
arrays in an elastically anisotropic medium. For this purpose, we write the continuum
Peach-Koehler force in an isotropic medium in equation (3.1) as

f(X)=
1

D

∫

S

[

µb2

4π

r · ñd(X
S)

‖r‖3
+

νµ

4π(1−ν)

(ñd(X
S) ·b)(r ·b)

‖r‖3

−
3µ

4π(1−ν)

(r ·ns)
2(ñd(X

S) ·b)(r ·b)

‖r‖5

]

dS

+
µb2

4π(1−ν)

(

1+ν−3ν sin2
β
)

κ log
D

2πr̃c(β,ñd)‖ñd‖
, (7.1)

where r̃c(β,ñd) is a function depending on the dislocation core and the orientations
of the dislocation array surface, the constituent dislocation, and the Burgers vector.

The pre-logarithm factor of the curvature term, µb2

4π(1−ν)

(

1+ν−3ν sin2β
)

, comes from

the singular asymptotic behavior of the self stress; see equation (4.7) in Section 4 and
[10, 52]. Inside the logarithm, D/‖ñd‖ is the distance between adjacent dislocations
in the array.

When the medium is elastically anisotropic, using the classical formula for the
asymptotic behavior of the dislocation self force (equation (5.4) in [10]) and Mura’s
formula for the stress field of continuous distributions of dislocations (equation (37.13)
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in Chap. 6 of [27]), we can write down the generalization of the continuum Peach-
Koehler force in such a medium in the following form:

f(X)=

∫

S

∑

k,l,p,q,m,n,h

(b1C13kl+b2C23kl)ǫlnkCpqmn
∂Gkp(r)

∂xq
bmthdS

+[ed(β)+e
′′
d(β)]κ log

D

2πr̃c(β,ñd)‖ñd‖
, (7.2)

where the summations are taken for repeated indices. Here {Gkp(r)} are the
Green’s functions (equation (3.22) in Chap. 1 of [27]), {Cijkl} are the elastic con-
stants, ǫlnk is the permutation tensor, which is 1 when lnk=123,231,312, −1 when
lnk=132,213,321, and 0 otherwise, t=(t1,t2,0) is the unit tangent vector of the dis-
location, and ec(β) is the orientation-dependent pre-logarithmic energy factor for an
infinite straight dislocation in the elastically anisotropic medium.

The rigorous derivation of the above continuum model in an anisotropic medium
can follow the same procedure as presented in Section 4 for an isotropic medium.
However, it will be extremely complicated to obtain the exact expression of r̃c(β,ñd)
in an anisotropic medium and may require numerical evaluation. Rigorous verification
or numerical calculation for such term will be considered in the future work.

8. Conclusions and discussion

We have derived a continuum model for the dynamics of a dislocation array
that consists of dislocations in different slip planes. In the continuum model, the
dislocation array is represented by a continuous surface, of which there are many
dislocations in a unit area at the scale of the continuum model. The continuum
model is derived rigorously from the discrete model of the Peach-Koehler force on
the constitutive dislocations in the array using asymptotic analysis. The obtained
continuum force contains an integral over the surface representing the long-range
interaction of dislocations in the array, and a local curvature term due to the line
tension effect of dislocations. Well-posedness of the continuum model is examined by
stability analysis of a regular array of straight dislocations. The size-dependent effect
due to dislocation line tension is accurately incorporated in the continuum model.
Generalizations to anisotropic elasticity are discussed.

By asymptotic analysis, we have also obtained other higher order local terms in
the continuum formulation for the interactions of dislocations in a dislocation array.
These terms represent the local effects of dislocations normal to the slip planes, in-
cluding the normal curvature of the dislocation array surface in the direction on the
surface perpendicular to the local dislocation and the variation of the dislocation line
direction in the normal direction of the slip plane; see equation (4.37). These higher
order terms are not able to be included in our continuum model for the dynamics
of dislocation arrays due to the requirements of well-posedness. However, they are
still very important for further understanding of dislocation interactions at the con-
tinuum level. For example, they provide mathematical insight for the fact that some
available continuum theories with higher order terms with similar physical origins
(dislocation correlations) derived from stochastically distributed dislocations [12] do
not apply generally to deterministic arrangements of dislocations such as dislocation
arrays [37].

The continuum model derived in this paper applies to dislocation arrays that
consist of dislocations in equidistant slip planes with the same Burgers vector. Con-
tinuum models for dislocation arrays that consist of dislocations with multiple Burgers
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vectors and dislocations in non-equidistant slip planes, which are associated with dis-
location climb, are being studied and the results will be reported elsewhere. Some
other physical implications of the continuum model have been published in [54].

REFERENCES

[1] A. Acharya, A model of crystal plasticity based on the theory of continuously distributed dislo-
cations, J. Mech. Phys. Solids, 49, 761–784, 2001.

[2] E.C. Aifantis, On the dynamical origin of dislocation patterns, Mater. Sci. Eng., 81, 563–574,
1986.

[3] A. Arsenlis, W. Cai, M. Tang, M. Rhee, T. Oppelstrup, G. Hommes, T.G. Pierce, and V.V.
Bulatov, Enabling strain hardening simulations with dislocation dynamics, Modelling Simul.
Mater. Sci. Eng., 15, 553–595, 2007.

[4] A. Arsenlis and D.M. Parks, Modeling the evolution of crystallographic dislocation density in
crystal plasticity, J. Mech. Phys. Solids, 50, 1979–2009, 2002.

[5] C.J. Ball, Surface distributions of dislocations in metals: II, Phil. Mag., 2, 977–984, 1957.
[6] C.J. Ball and P.B. Hirsch, Surface distributions of dislocations in metals, Phil. Mag., 7, 1343–

1352, 1955.
[7] J.W. Cahn, Y. Mishin, and A. Suzuki, Coupling grain boundary motion to shear deformation,

Acta Mater., 54, 4953–4975, 2006.
[8] K.T. Chu, D.J. Srolovitz, and Y. Xiang, Level set method approaches to dislocation models of

grain boundaries, minisymposium presentation at SIAM Conference on Analysis of Partial
Differential Equations, 2006.

[9] N.A. Fleck and J.W. Hutchinson, A phenomenological theory for strain gradient effects in plas-
ticity, J. Mech. Phys. Solids, 41, 1825–1857, 1993.

[10] S.D. Gavazza and D.M. Barnett, The self-force on a planar dislocation loop in an anisotropic
linear-elastic medium, J. Mech. Phys. Solids, 24, 171–185, 1976.

[11] N.M. Ghoniem, S.H. Tong, and L.Z. Sun, Parametric dislocation dynamics: A thermodynamics-
based approach to investgations of mesoscopic plastic deformation, Phys. Rev. B, 61, 913–
927, 2000.

[12] I. Groma, F.F. Csikor, and M. Zaiser, Spatial correlations and higher-order gradient terms in
a continuum description of dislocation dynamics, Acta Mater., 51, 1271–1281, 2003.

[13] M.E. Gurtin, On plasticity of crystals: Free energy, microforces, plastic strain gradients, J.
Mech. Phys. Solids, 48, 989–1036, 2000.

[14] J. Hirth, A model for a propagating shear band on the basis of a tilt wall dislocation array,
Appl. Mech. Rev., 45, S71–S74, 1992.

[15] J. Hirth and J. Lothe, Theory of Dislocations, Wiley, New York, 2nd ed., 1982.
[16] U. Kocks, T. Hasegawa, and R. Scattergood, On the origin of cell walls and of lattice misori-

entations during deformation, Scripta Metall., 14, 449–454, 1980.
[17] A. Kosevich, Crystal dislocations and the theory of elasticity, in Dislocations in Solids,

F. Nabarro, ed., North-Holland, Amsterdam, 1, 33–141, 1979.
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