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On line 16 from the bottom on page 518 of Comm. Math. Sci. Vol. 6, No. 2
(2008), we conclude that C̃k satisfies (1) and (2) in the definition of Condition (E).
This is a mistake; C̃k does not satisfy (2). Accordingly, the last sentence of Theorem
5.9 and the Z-eigenvalue part in Corollary 5.10 do not hold.

In fact, to an irreducible nonnegative tensor A we can only conclude that there
exists a positive Z-eigenvalue with a Z-eigenvector x0∈ intP . Unlike the H-eigenvalue
problem, there is no uniqueness for the positive Z-eigenvalue with positive eigenvector.
The following is an example.

We define a 4-order 2-dimensional nonnegative irreducible tensor A=(ai1i2i3i4),
where
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Then (u,λ), where u=(x,y), is a Z-eigenvector/eigenvalue of A if it satisfies the
system
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We thank Prof. Huang Zhenghai for pointing out to us that (2) is not satisfied
by C̃k.
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