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Abstract. This paper is concerned with the persistence and extinction of a randomized non-
autonomous logistic system. Sufficient conditions for extinction, non-persistence in the mean, weak
persistence and stochastic permanence are established. The critical value between weak persistence,
and extinction is obtained. The behaviors of the system in every coefficient case are studied.
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1. Introduction
The logistic equation is one of the most classical models in ecology. The deter-

ministic non-autonomous logistic system can be denoted by

dx(t)/dt=x(t)[r(t)−n(t)x(t)], (1.1)

where x(t) is the population size at time t; r(t) stands for the rate of growth and
r(t)/n(t) denotes the carrying capacity at time t; r(t) and n(t) are continuous bounded
functions on [0,+∞).

Owing to its theoretical and practical significance, Equation (1.1) has received
great attention and has been extensively investigated. Many important results on the
global dynamics of the solutions have been obtained; see e.g. Freedman and Wu [6],
Golpalsamy [7], Kuang [11], Li et al. [12], Lisena [14], and the references therein. In
particular, the books [7, 11] are very good references in this area.

However, in the real world, population systems are often subject to environmental
noise. In reality, parameters involved with the system are not constants, and they
always fluctuate around some average values due to continuous fluctuation in the
environment. May [22] has pointed out that due to environmental noise, the birth
rates, death rates, carrying capacity, competition coefficients, and all other parameters
involved in the system exhibit random fluctuation to a greater or lesser extent. “In
fact, the view that stochastic models are better suited to describe the development of
biological populations, rather than their deterministic counterparts, has been gaining
support” [23].
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There are two main ways considered in the literature to model the effect of the
environmental noises in population systems. The first one is to assume that the most
sensitive parameter is the intrinsic growth rate r(t). The other is to assume that the
noise mainly affects the coefficient n(t). The studies [4, 10, 13, 15, 16, 17, 24] are the
former case, and the investigations [1],[18]-[21] are the latter type.

In the real world the coefficients of the model may have complex and random time
behavior. Their behavior may also be correlated. We study the simplest possible case
of randomly varying coefficients, which is modeled by uncorrelated Brownian motion.
Recall that the parameter r(t) represents the intrinsic growth rate. In practice, we
usually estimate it by an average value plus an error term. In general, by the well-
known central limit theorem, the error term follows a normal distribution. Thus, for
short correlation time, we may replace r(t) by

r(t)→ r(t)+σ1(t)Ḃ1(t).

Furthermore, suppose that parameter −n(t) is stochastically perturbed, with

−n(t)→−n(t)+σ2Ḃ2(t),

where σi(t) is a continuous bounded function on [0,+∞) and σ2
i (t) represents the

intensity of the white noise at time t, i=1,2. Ḃ1(t) and Ḃ2(t) are the white noises,
namely (B1(t),B2(t))

T is a two-dimensional Brownian motion defined on a complete
probability space (Ω,F ,P) with a filtration {Ft}t∈R+

satisfying the usual conditions.
Then we obtain the following non-autonomous stochastic logistic system:

dx(t)=x(t)[r(t)−n(t)x(t)]dt+σ1(t)x(t)dB1(t)+σ2(t)x
2(t)dB2(t). (1.2)

Since (1.2) describes a population system, it is critical to find out when the species
goes to extinction and when does not. As far as we know, there were no persistent
and extinctive results for Equation (1.2). The aim of this work is to investigate this
problem. To this end, we need an appropriate concept of persistence. Hallam and
Ma [8] proposed the concept of weak persistence for some deterministic models and
then Wang and Ma [26] pointed out that there was a critical value between weak
persistence and extinction for general non-autonomous population models.

Definition 1.1.

1. The population x(t) is said to go to extinction if lim
t→+∞

x(t)=0.

2. x(t) is said to be nonpersistent in the mean (see e.g. [26]) if lim
t→+∞

〈x〉=0,

where 〈f〉 := t−1
∫ t

0
f(s)ds.

3. x(t) is said to be weakly persistent (see e.g. [8]) if x∗>0, where f∗ :=
limsup
t→+∞

f(t).

4. x(t) is said to be stochastically permanent (see e.g. [10]) if for any ε∈ (0,1),
there exist two positive constants M =M(ε) and β=β(ε) such that

liminf
t→+∞

P{x(t)≤M}≥1−ε, liminf
t→+∞

P{x(t)≥β}≥1−ε.

The rest of this paper is arranged as follows. In Section 2, we investigate Equa-
tion (1.2). Sufficient conditions for extinction, non-persistence in the mean, weak
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persistence, and stochastic permanence are established. The critical value between
weak persistence and extinction is obtained. In Section 3, we work out some figures
to illustrate our results. The last section gives the conclusions and future directions
of the research.

2. Survival analysis of (1.2)
Throughout this paper we suppose that r(t), n(t), σ1(t), and σ2(t) are continuous

bounded functions on t≥0 and inft≥0n(t)>0. Define ψ̌=inft≥0ψ(t), ψ̂=supt≥0ψ(t).
As x(t) in (1.2) denotes the population size, it should be nonnegative. Thus we

must give some conditions under which (1.2) has a global positive solution.

Lemma 2.1. For any given initial value x(0)=x0>0, (1.2) has a unique solution
x(t) on t≥0 and the solution will remain in R+ := (0,+∞) with probability one.

Proof. The proof is a modification of Theorem 4.1 in Mao, Marion, and Renshaw
[20] and hence is omitted.

Now let us give our main results.

Theorem 2.2. If 〈b〉∗=limsup
t→+∞

〈b(t)〉<0, then the population x(t) represented by

(1.2) goes to extinction almost surely (a.s.), where b(t)= r(t)−0.5σ2
1(t).

Proof. Applying Itô’s formula to Equation (1.2), one can see that

d lnx=
dx

x
− (dx)2

2x2
=[b(t)−n(t)x−0.5σ2

2(t)x
2]dt+σ1(t)dB1(t)+σ2(t)xdB2(t).

Then we have

lnx(t)− lnx0=

∫ t

0

[b(s)−n(s)x(s)−0.5σ2
2(s)x

2(s)]ds+M1(t)+M2(t), (2.1)

where M1(t)=
∫ t

0
σ1(s)dB1(s) and M2(t)=

∫ t

0
σ2(s)x(s)dB2(s). The quadratic varia-

tion of M1(t) is 〈M1(t),M1(t)〉=
∫ t

0
σ2
1(s)ds≤ σ̂2

1t, where σ̂
2
1 =sup

t≥0
σ2
1(t). Making use of

the strong law of large numbers for martingales (see e.g. [19] on page 12) leads to

lim
t→+∞

M1(t)/t=0, a.s. (2.2)

The quadratic variation of M2(t) is 〈M2(t),M2(t)〉=
∫ t

0
σ2
2(s)x

2(s)ds. In view of the
exponential martingale inequality (see e.g. [19] on page 44), for any positive constants
T0,α, and β, we obtain

P
{

sup
0≤t≤T0

[M2(t)−
α

2
〈M2(t),M2(t)〉]>β

}

≤ exp(−αβ). (2.3)

Choose T0=k, α=1, β=2lnk. Then we get

P
{

sup
0≤t≤k

[M2(t)−
1

2
〈M2(t),M2(t)〉]>2lnk

}

≤1/k2.

By the Borel-Cantalli lemma (see e.g. [19] on page 7), for almost all ω∈Ω there is a
random integer k0=k0(ω) such that for k≥k0,

sup
0≤t≤k

[M2(t)−
1

2
〈M2(t),M2(t)〉]≤2lnk.
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In other words,

M2(t)≤2lnk+
1

2
〈M2(t),M2(t)〉=2lnk+0.5

∫ t

0

σ2
2(s)x

2(s)ds

for all 0≤ t≤k, k≥k0 almost surely. Substituting this inequality into (2.1) yields

lnx(t)− lnx0 ≤
∫ t

0
b(s)ds−

∫ t

0
n(s)x(s)ds+2lnk+M1(t)

≤
∫ t

0
b(s)ds+2lnk+M1(t)

(2.4)

for all 0≤ t≤k, k≥k0 almost surely. Then for 0<k−1≤ t≤k,

t−1{lnx(t)− lnx0}≤〈b(t)〉+2(k−1)−1 lnk+M1(t)/t.

Taking the superior limit on both sides and then making use of (2.2), we have

[t−1 lnx(t)]∗≤〈b〉∗.

That is to say, if 〈b〉∗<0, then lim
t→+∞

x(t)=0.

Theorem 2.3. If 〈b〉∗=0, then x(t) is nonpersistent in the mean a.s.

Proof. For fixed ε>0, there exists a constant T1=T1(ε) such that

t−1

∫ t

0

b(s)ds≤〈b〉∗+ε/2= ε/2

for t>T1. Substituting this inequality into (2.4) yields

lnx(t)− lnx0 ≤
∫ t

0
b(s)ds−

∫ t

0
n(s)x(s)ds+2lnk+M1(t)

≤ εt/2− ň
∫ t

0
x(s)ds+2lnk+M1(t)

for all T1≤ t≤k, k≥k0 almost surely, where ň= inf
t≥0

n(t). Note that for sufficiently

large t satisfying T1<T ≤k−1≤ t≤k and k≥k0, we have lnx0/t≤ ε/8, 2lnk/t≤ ε/8,
and M1(t)/t≤ ε/4. Then we obtain

lnx(t)≤ εt− ň
∫ t

0

x(s)ds; t≥T.

Setting h(t)=
∫ t

0
x(s)ds, we get

ln(dh/dt)<εt− ňh(t).

Thus, for sufficiently large t, eňh(t)(dh/dt)<eεt. Integrating this inequality from T to
t results in

ň−1[eňh(t)−eňh(T )]<ε−1[eεt−eεT ].

Rewriting this inequality we get

eňh(t)<eňh(T )+ ňε−1eεt− ňε−1eεT .

Taking the logarithm of both sides leads to

h(t)<ň−1 ln{ňε−1eεt+eňh(T )− ňε−1eεT }.
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In other words, we have shown that

{
∫ t

0

x(s)ds/t

}∗

≤ ň−1{ln{ňε−1eεt+eňh(T )− ňε−1eεT }/t}∗.

Making use of the l’Hopital’s rule results in

〈x〉∗≤ ň−1{t−1 ln[ňε−1eεt]}∗= ε/ň.

It then follows from the arbitrariness of ε that 〈x〉∗≤0, which is the required
assertion.

Theorem 2.4. If 〈b〉∗>0, then the population x(t) is weakly persistent a.s.

Proof. To begin with, let us prove that

[t−1 lnx(t)]∗≤0 a.s. (2.5)

In fact, applying Itô’s formula to Equation (1.2) results in

d(et lnx) = et lnxdt+etd lnx

= et{[lnx+b(t)−n(t)x−0.5σ2
2(t)x

2]dt+[σ1(t)dB1(t)+σ2(t)xdB2(t)]}.

Consequently,

et lnx(t)− lnx0

=
∫ t

0
es[lnx(s)+b(s)−n(s)x(s)−0.5σ2

2(s)x
2(s)]ds+N1(t)+N2(t),

(2.6)

where N1(t)=
∫ t

0
esσ1(s)dB1(s), N2(t)=

∫ t

0
esσ2(s)x(s)dB2(s). Note that N1(t) is a

local martingale with the quadratic form 〈N1(t),N1(t)〉=
∫ t

0
e2sσ2

1(s)ds. N2(t) also is

a local martingale with the quadratic form 〈N2(t),N2(t)〉=
∫ t

0
e2sσ2

2(s)x
2(s)ds. It then

follows from the exponential martingale inequality (2.3) that

P
{

sup
0≤t≤γk

[Ni(t)−0.5e−γk〈Ni(t),Ni(t)〉]>θeγk lnk
}

≤k−θ,

where θ>1 and γ >0, i=1,2. In view of the Borel-Cantelli lemma, for almost all
ω∈Ω there exists a k0(ω) such that for every k≥k0(ω),

Ni(t)≤0.5e−γk〈Ni(t),Ni(t)〉+θeγk lnk, 0≤ t≤γk

for i=1,2. Substituting the above inequalities into (2.6), we obtain

et lnx(t)− lnx0 ≤
∫ t

0
es[lnx(s)+b(s)−n(s)x(s)−0.5σ2

2(s)x
2(s)]ds

+0.5e−γk
∫ t

0
e2sσ2

1(s)ds+θe
γk lnk

+0.5e−γk
∫ t

0
e2sσ2

2(s)x
2(s)ds+θeγk lnk

=
∫ t

0
es[lnx(s)+b(s)+0.5es−γkσ2

1(s)−n(s)x(s)
−0.5σ2

2(s)x
2(s)(1−es−γk)]ds+2θeγk lnk.
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Since b(t), σ2
1(t), and σ2

2(t) are bounded and ň= inf
t≥0

n(t)>0, for any 0≤s≤γk and

x>0 there exists a constant C independent of k such that

lnx+b(s)+0.5es−γkσ2
1(s)−n(s)x−0.5σ2

2(s)x
2(1−es−γk)≤C.

Thus, for any 0≤ t≤γk we get

et lnx(t)− lnx0≤C[et−1]+2θeγk lnk.

That is to say

lnx(t)≤ e−t lnx0+C[1−e−t]+2θe−teγk lnk.

Consequently, if γ(k−1)≤ t≤γk and k≥k0(ω), one can observe that

t−1 lnx(t)≤ e−tt−1 lnx0+Ct
−1[1−e−t]+2θe−γ(k−1)eγkt−1 lnk,

which is the required assertion (2.5) by letting k→+∞.

Now suppose that 〈b〉∗>0, we will prove x∗>0 a.s. If this assertion is not true,
denote S={x∗=0} and suppose P(S)>0. In view of (2.1),

t−1 ln(x(t)/x0)= 〈b(t)〉−〈n(t)x(t)〉−0.5〈σ2
2(t)x

2(t)〉+M1(t)/t+M2(t)/t. (2.7)

On the other hand, for all ω∈S we have lim
t→+∞

x(t,ω)=0, and the boundedness of σ2(t)

and the law of large numbers for local martingales indicate that lim
t→+∞

M2(t)/t=0.

Substituting this equality and (2.2) into (2.7), we have [t−1 lnx(t,ω)]∗= 〈b(t)〉∗>0.
Then P{[t−1 lnx(t)]∗>0}>0, which contradicts (2.5).

Theorem 2.5. If b∗=liminf
t→+∞

(r(t)−0.5σ2
1(t))>0, then the population x(t) is stochas-

tically permanent.

Proof. Firstly, let us show that for arbitrary given ε>0, there exists a constant
β>0 such that P∗{x(t)≥β}≥1−ε. Define V1(x)=1/x2 for x∈R+. Applying Itô’s
formula to Equation (1.2) leads to

dV1(x(t)) =−2x−3dx+3x−4(dx)2

=2V1(x)[n(t)x−r(t)]dt+3σ2
1(t)V1(x)dt+3σ2

2(t)dt

−2σ1(t)V1(x)dB1(t)−2σ2(t)x
−1dB2(t)

=2V1(x)[1.5σ
2
2(t)x

2+n(t)x−r(t)+1.5σ2
1(t)]dt

−2σ1(t)V1(x)dB1(t)−2σ2(t)x
−1dB2(t).

Since b∗>0, we can choose a positive constant θ such that it obeys

b∗>θ(σ
2
1)

∗.
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Define V2(x)=(1+V1(x))
θ. Using Itô’s formula again results in

dV2(x) =θ(1+V1(x))
θ−1dV1+0.5θ(θ−1)(1+V1(x))

θ−2(dV1)
2

=θ(1+V1(x))
θ−2{(1+V1(x))2V1(x)[1.5σ2

2(t)x
2+n(t)x−r(t)+1.5σ2

1(t)]

+2(θ−1)V 2
1 (x)σ

2
1(t)+2(θ−1)V1(x)σ

2
2(t)}dt

−2θ(1+V1(x))
θ−1σ1(t)V1(x)dB1(t)−2θ(1+V1(x))

θ−1x−1σ2(t)dB2(t)

=θ(1+V1(x))
θ−2{−2[b(t)−θσ2

1(t)]V
2
1 (x)+2n(t)V 1.5

1 (x)

+[(2θ+1)σ2
2(t)−2r(t)+3σ2

1(t)]V1(x)+2n(t)V 0.5
1 (x)+3σ2

2(t)}dt
−2θ(1+V1(x))

θ−1σ1(t)V1(x)dB1(t)−2θ(1+V1(x))
θ−1x−1σ2(t)dB2(t)

≤θ(1+V1(x))θ−2{−2(b∗−θ(σ2
1)

∗−ε)V 2
1 (x)+2n̂V 1.5

1 (x)

+[(2θ+1)σ̂2
2−2ř+3σ̂2

1 ]V1(x)+2n̂V 0.5
1 (x)+3σ̂2

2}dt
−2θ(1+V1(x))

θ−1σ1(t)V1(x)dB1(t)−2θ(1+V1(x))
θ−1x−1σ2(t)dB2(t)

for sufficiently large t≥T , where ε>0 obeys b∗−θ(σ2
1)

∗−ε>0. Now let η>0 be
sufficiently small to guarantee that

0<η/θ<2(b∗−θ(σ2
1)

∗−ε).

Define V3(x)= e
ηtV2(x)= e

ηt(1+V1(x))
θ. In view of Itô’s formula,

dV3(x(t)) =ηe
ηtV2(x)dt+e

ηtdV2(x)

≤θeηt(1+V1(x))θ−2{η(1+V1(x))2/θ−2(b∗−θ(σ2
1)

∗−ε)V 2
1 (x)

+2n̂V 1.5
1 (x)+[(2θ+1)σ̂2

2−2ř+3σ̂2
1 ]V1(x)+2n̂V 0.5

1 (x)+3σ̂2
2}dt

−2eηtθ(1+V1(x))
θ−1[σ1(t)V1(x)dB1(t)+x

−1σ2(t)dB2(t)]

=θeηt(1+V1(x))
θ−2{−2(b∗−θ(σ2

1)
∗−ε−0.5η/θ)V 2

1 (x)+2n̂V 1.5
1 (x)

+[(2θ+1)σ̂2
2−2ř+3σ̂2

1+2η/θ]V1(x)+2n̂V 0.5
1 (x)+3σ̂2

2+η/θ}dt
−2θeηt(1+V1(x))

θ−1[σ1(t)V1(x)dB1(t)+x
−1σ2(t)dB2(t)]

=:eηtJ(x)dt−2θeηt(1+V1(x))
θ−1[σ1(t)V1(x)dB1(t)+x

−1σ2(t)dB2(t)]

for sufficiently large t≥T . Note that J(x) is upper bounded in R+, namely J1 :=
sup
x∈R+

J(x)<+∞. Consequently,

dV3(x(t))≤J1eηtdt−2θeηt(1+V1(x))
θ−1[σ1(t)V1(x)dB1(t)+x

−1σ2(t)dB2(t)]

for sufficiently large t. Integrating both sides of the above inequality and then taking
expectations, we can derive that

E[eηt(1+V1(x(t)))
θ]≤ (1+V1(x(T )))

θ+J1(e
ηt−eηT )/η.

Consequently,

limsup
t→+∞

E[V θ
1 (x(t))]≤ limsup

t→+∞
E[(1+V1(x(t)))

θ]≤J1/η=:C.
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For any given ε>0, denote β= ε0.5/θ/C0.5/θ. By virtue of Chebyshev’s inequality (see
e.g. [19], page 5), we get

P{x(t)<β}=P{x−2θ(t)>β−2θ}≤E[x−2θ(t)]/β−2θ =β2θE[x−2θ(t)],

that is to say P∗{x(t)<β}≤β2θC= ε. Consequently P∗{x(t)≥β}≥1−ε.
Next we show that for arbitrary fixed ε>0, there exists a M>0 such that

P∗{x(t)≤M}≥1−ε. The following proof is motivated by the work of Luo and Mao
[18, Lemma 3.2]. Define V (x)=xq for x∈R+, where 0<q<1. Then by Itô’s formula

dV (x) = qxq−1dx+
q(q−1)

2
xq−2(dx)2

={qxq−1x[r(t)−n(t)x]+0.5q(q−1)xq−2[σ2
1(t)x

2+σ2
2(t)x

4]}dt
+σ1(t)xdB1(t)+σ2(t)x

2dB2(t)

= qxq[r(t)+0.5(q−1)σ2
1(t)−n(t)x+0.5(q−1)σ2

2(t)x
2]dt

+σ1(t)xdB1(t)+σ2(t)x
2dB2(t).

Let k0>0 be so large that x0 lies within the interval [1/k0,k0]. For each integer k≥k0,
define the stopping time τk=inf{t≥0 :x(t) /∈ (1/k,k)}. Clearly τk→∞ almost surely
as k→∞. An application of Itô’s formula again leads to

d(etV (x)) = etV (x)dt+etdV (x)

= et[xq+qxq[r(t)+0.5(q−1)σ2
1(t)−n(t)x+0.5(q−1)σ2

2(t)x
2]]dt

+et[σ1(t)xdB1(t)+σ2(t)x
2dB2(t)]

≤ etK+et[σ1(t)xdB1(t)+σ2(t)x
2dB2(t)],

where K is a positive constant. Integrating this inequality and then taking expecta-
tions on both sides yields

E[et∧τkxq(t∧τk)]−xq0≤E
∫ t∧τk

0

esKds≤K(et−1).

Letting k→∞ results in etE[xq(t)]≤xq0+K(et−1), which indicates that E[xq(t)]≤
e−txq0+K. In other words, limsup

t→+∞
E[xq(t)]≤K. Then the desired assertion follows

immediately from Chebyshev’s inequality.

Remark 2.6. By using the Fokker-Plank equation, Pasquali [25] studied Equation
(1.2) in autonomous case:

dx(t)=x(t)[r−nx(t)]dt+σ1x(t)dB1(t)+σ2x
2(t)dB2(t). (2.8)

Associated to the equilibrium solution x(t)=0, it is easy to see that (2.8) has an
invariant Dirac delta distribution. Pasquali [25] claimed that (2.8) has another in-
variant distribution if and only if σ2

1<2r. If σ2
1>2r, the solution x(t)=0 is stable in

probability, i.e., for every ε>0 and s≥0,

lim
y→0

P
{

sup
t∈[s,+∞)

|x(t;s,y)|≥ ε
}

=0,
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where x(t;s,y) stands for the solution of (2.8) satisfying the constant initial condition
x(s)=y. Now let us compare our results with [25]. On the one hand, our system (1.2)
is more realistic than (2.8). On the other hand, our results are parallel to [25]. For
example, we show that if 〈b〉∗<0, then every solution x(t) of (1.2) obeys lim

t→+∞
x(t)=

0 a.s. However, lim
t→+∞

x(t)=0 a.s. does not mean lim
y→0

P{supt∈[s,+∞) |x(t;s,y)|≥ ε}=
0. In contrast, lim

y→0
P{supt∈[s,+∞) |x(t;s,y)|≥ ε}=0 does not imply lim

t→+∞
x(t)=0 a.s.

either.

3. Numerical simulations
In this section we use the Euler-Maruyama method mentioned in Higham [9] to

illustrate our analytical results.
Consider the discretization equation:

xk+1=xk+xk[r(k ∆t)−n(k ∆t)xk]∆t+σ1(k ∆t)xk
√
∆tηk+σ2(k ∆t)x2k

√
∆tξk,

where both ηk and ξk are N(0,1) Gaussian random variables.
In Figure 3.1, we choose r(t)=0.5+0.02sint, n(t)=0.7+0.1sint and σ2

2(t)=8.
The only difference between conditions of Figure 3.1(a), Figure 3.1(b), Figure 3.1(c),
and Figure 3.1(d) is that the representation of σ2

1(t) is different. In Figure 3.1(a),
we choose σ2

1(t)/2=0.501+0.002sint. Then it is easy to obtain 〈b(t)〉∗<0. In view
of Theorem 2.2, the population x goes to extinction. Figure 3.1(a) confirms this.
In Figure 3.1(b), we choose σ2

1(t)/2=0.5+0.01sint. Then we have 〈b(t)〉∗=0. It
follows from Theorem 2.3 that the population is nonpersistent in the mean. This can
be seen from Figure 3.1(b). In Figure 3.1(c), we choose σ2

1(t)/2=0.499+0.002sint.
Then the condition 〈b(t)〉∗>0 is valid. By virtue of Theorem 2.4, the population
is weakly persistent; see Figure 3.1(c). In Figure 3.1(d), we choose σ2

1(t)/2=0.45+
0.03sint. Then liminf

t→+∞
b(t)>0. In view of Theorem 2.5, the population is stochastically

permanent. Figure 3.1(d) confirms this.

4. Concluding remarks
The logistic equation, which is widely used in many cases as a basic model, is the

most basic and important equation in ecological models and biomathematics. More-
over, population models are inevitably affected by the random perturbations. Thus
the investigation of the stochastic logistic system is useful for better understanding
of the real world. This paper studied the persistence and extinction of the stochastic
non-autonomous logistic model (1.2). We established the sufficient conditions for ex-
tinction, non-persistence in the mean, weak persistence, and stochastic permanence.
The critical value between weak persistence and extinction was obtained. More pre-
cisely,

(I) If 〈b〉∗<0, then the population x(t) goes to extinction a.s.

(II) If 〈b〉∗=0, then the population is non-persistent in the mean a.s.

(III) If 〈b〉∗>0, then the population is weakly persistent a.s.

(IV) If b∗>0, then the population is stochastically permanent.

We conclude that the persistence and extinction of x(t) depend only on the intrin-
sic growth rate (i.e., r(t)) and the white noise on r(t) (i.e., σ2

1(t)), but are independent
of initial population size (i.e., x0), n(t), and the white noise on n(t) (i.e., σ2(t)).

Some interesting topics deserve further investigation. In this paper, we used two
independent Brownian motions to model the random noises. It is interesting to use
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Fig. 3.1. Solutions of system (1.2) for r(t)=0.5+0.02sint, n(t)=0.7+0.1sint, σ2
2(t)=

8, x(0)=1, step size ∆t=0.001. (a) is with σ2
1(t)/2=0.501+0.002sint; (b) is with σ2

1(t)/2=
0.5+0.01sint; (c) is with σ2

1(t)/2=0.499+0.002sint; (d) is with σ2
1(t)/2=0.45+0.03sint.

non-independent Brownian motions to model the noises. Another problem of interest
is to consider some realistic but complex models. An example is to take colored noise
(such as continuous-time Markov chain) into account. The motivation is that the
population may suffer sudden environmental changes, e.g. changes in nutrition or food
resources and rain falls, etc; frequently, the switching among different environments is
memoryless and the waiting time for the next switch is exponentially distributed, and
sudden environmental changes can be modelled by a continuous-time Markov chain
(see e.g. [15, 18]). It is also interesting to study the persistence and extinction of
non-autonomous Lotka-Volterra models with random perturbations.
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