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MULTISCALE TAILORED FINITE POINT METHOD FOR SECOND

ORDER ELLIPTIC EQUATIONS WITH ROUGH OR HIGHLY
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Abstract. We develop a multiscale tailored finite point method (MsTFPM) for second order
elliptic equations with rough or highly oscillatory coefficients. The finite point method has been
tailored to some particular properties of the problem, so that it can capture the multiscale solutions
using coarse meshes without resolving the fine scale structure of the solution. Several numerical
examples in one- and two-dimensions are provided to show the accuracy and convergence of the
proposed method. In addition, some analysis results based on the maximum principle for the one-
dimensional problem are proved.
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1. Introduction

The second order elliptic boundary value problems with rough or highly oscillatory
coefficients arise in many fields, such as composite materials and porous media [1, 2, 3].
In this paper, we consider the multiscale tailored finite point method (MsTFPM) for
the second order elliptic boundary value problem with highly oscillatory coefficients
given by

−∇·(Aǫ(x)∇uǫ(x))+bǫ(x)uǫ(x)= f ǫ(x), x∈Ω, (1.1)

uǫ(x)=0, x∈∂Ω. (1.2)

Here x=x∈R1 for the one-dimensional problem and x=(x,y)∈R2 for the two-
dimensional problem. Ω is a bounded domain, which is an interval for the one-
dimensional problem and a rectangle for the two-dimensional problem. The function
bǫ(x)≥ 0, ∀x∈Ω. The matrix function Aǫ(x), function bǫ(x), and the force term f ǫ(x)
contain a small scale parameter ǫ.

In practical applications, Equation (1.1) is the equation of steady state heat con-
duction through a composite material, with uǫ(x) and Aǫ(x) interpreted as the tem-
perature and the thermal conductivity. The Equation (1.1) is also the pressure equa-
tion in modelling two phase flow in porous media, with uǫ(x) and Aǫ(x) interpreted
as the pressure and the relative permeability tensor; see [8].

In the one dimensional case, Aǫ(x)=aǫ(x) and the Equation (1.1) becomes

−(aǫ(x)uǫ(x)′)′+bǫ(x)uǫ(x)= f ǫ(x), x∈Ω. (1.3)

In the two dimensional case, Aǫ(x) is a 2×2 matrix function, defined by

Aǫ(x)=
(

aǫij(x)
)

2×2
, x=(x,y)∈Ω. (1.4)
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We assume the matrix Aǫ(x) is positive definite with upper and lower bounds, namely,
that there exist positive constants m and M such that

m‖ξ‖2≤
2

∑

i,j=1

aǫij(x)ξiξj ≤M‖ξ‖2, ξ=(ξ1,ξ2)
T ∈R2, x=(x,y)∈Ω. (1.5)

In the typical situation of multiscale modelling, one assumes that Aǫ(x)=
(aij(x,ǫ))2×2, bǫ(x)= b(x,ǫ), and f ǫ(x)= f(x,ǫ) are oscillatory functions involving
a small scale parameter ǫ. The solution oscillates rapidly and requires a very refined
mesh to resolve. It is numerically difficult for traditional numerical methods to handle
due to the tremendous amount of computer memory and CPU time.

There are a lot of studies on the numerical solutions to the problem (1.1)-(1.2).
For instance, Babuska et al. proposed a generalized finite element methods approach
to this kind of problem. In [4], theoretical proofs were provided for the one dimensional
case and an arbitrary order approximation was obtained based on the continuous
finite element method. The two dimensional case was considered in [5], where second-
order accurate elements were considered based on the non-conforming finite element
methods. Engquist and Luo studied the convergence of the multigrid method for
highly oscillatory elliptic problems on a new coarse-grid finite difference scheme; see
[6, 7]. Hou et al. developed the multiscale finite element methods (MsFEM) to study
the multiscale problem. The main idea of the multiscale finite element methods is to
construct multiscale bases which are adapted to the local properties of the differential
operators within each element. The small scale information is then brought to the
large scales through the coupling of the global stiffness matrix. Thus, the effect of
small scales on the large scales is correctly captured; see [8, 9, 10, 11]. In [12], E
and Engquist proposed the heterogeneous multiscale method (HMM) for multiscale
problems. The heterogeneous multiscale method consists of two main components: a
macroscopic scheme for the macro-scale variables on a macro-scale grid and estimating
the missing macroscopic data from the microscopic model. In [13], E et al. presented a
systematic review of the heterogeneous multiscale method, including the fundamental
designing philosophy and the error analysis. Recently, Shu et al. have developed a
multiscale discontinuous Galerkin (DG) method for solving a class of second order
elliptic problems with rough coefficients. They adopted a non-polynomial multiscale
approximation space in the DG method to capture the multiscale solutions using
coarse meshes without resolving the fine scale structure of the solution; see [15]. The
multiscale finite element method and multiscale discontinuous Galerkin method are
based on the finite element framework. After obtaining the local bases, one needs
numerical integration to compute the global stiffness matrix and load vector.

The tailored finite point method (TFPM) is a new discrete method for solving
differential equations numerically; see [16]. For each given problem, the discrete
scheme has been tailored to some particular properties of the given problem. There
are some successful applications of the tailored finite point method for solving singular
perturbation problems [16, 17], interface problems [18], high frequency waves [19], and
steady-state reaction-diffusion problems [20]. In this paper, we propose a multiscale
tailored finite point method to deal with the second order elliptic problem (1.1)-(1.2)
both in one- and two-dimensions.

The paper is organized as follows. In Section 2, we propose the multiscale tailored
finite point method (MsTFPM) in one-dimension. In addition, we give some analysis
results about the stability and convergence of the proposed method based on the
maximum principle. We also extend our method to two-dimensional problems in
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Section 3. In Section 4, we use some numerical examples to show the efficiency of our
new method. Finally in Section 5, we give some concluding remarks.

2. MsTFPM in one-dimensional domains

We study the second order elliptic equations with rough or highly oscillatory
coefficients on the domain Ω= [0,1]:

−(aǫ(x)uǫ(x)′)′+bǫ(x)uǫ(x)= f ǫ(x), x∈ (0,1) (2.1)

uǫ(0)=0, uǫ(1)=0, (2.2)

where aǫ(x)=a(x,ǫ), bǫ(x)= b(x,ǫ), and f ǫ(x)= f(x,ǫ) are assumed to be oscillatory
functions involving a small scale parameter ǫ, or discontinuous functions. Moreover,
we assume the coefficient aǫ(x) satisfies 0<α≤aǫ(x)≤β, where α and β are constants
and bǫ(x)≥ 0 for any x∈ [0,1]. Let

F = max
0≤x≤1

|f ǫ(x)|,

which is independent of ǫ.

2.1. Uniform estimate of the solution. We now give the uniform estimate
of the solution uǫ(x) of the problem (2.1)-(2.2).

Theorem 2.1.1. The solution uǫ(x) of the problem (2.1)-(2.2) is uniformly
bounded on Ω, namely,

max
x∈Ω

|uǫ(x)|≤Cmax
x∈Ω

|f ǫ(x)|=CF. (2.3)

The constant C depends only on the length of the domain Ω and α, the lower bound
of aǫ(x).

Proof. We define a differential operator Lǫ on the solution uǫ(x) of Equation
(2.1), that is

Lǫ(uǫ(x)) :=−(aǫ(x)uǫ(x)′)′+bǫ(x)uǫ(x)= f ǫ(x), x∈ (0,1). (2.4)

To obtain a bound on the solution uǫ(x), we first define a comparison function

wǫ(x)=F

∫ x

0

1−s

aǫ(s)
ds.

Obviously wǫ(x)≥ 0,∀x∈ [0,1]. By a direct calculation, we obtain

Lǫ(wǫ(x))≥F, x∈ (0,1).

If we write

M ǫ(x)=wǫ(x)+uǫ(x), x∈ (0,1),

then we have

Lǫ(M ǫ(x))≥F +f ǫ(x)≥ 0, x∈ (0,1).

According to the maximum principle [21], we find that M ǫ(x) cannot be smaller than
all the boundary values. Recall that

M ǫ(0)=wǫ(0)+uǫ(0)=0,

M ǫ(1)=wǫ(1)+uǫ(1)≥ 0,
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therefore we have the result M ǫ(x)≥ 0, x∈ [0,1], that is,

uǫ(x)≥−F

∫ x

0

1−s

aǫ(s)
ds, x∈ [0,1]. (2.5)

Notice that this is a one-side bound. Similarly we define M ǫ(x)=wǫ(x)−uǫ(x), and
we get

uǫ(x)≤F

∫ x

0

1−s

aǫ(s)
ds, x∈ [0,1]. (2.6)

Combining inequalities (2.5)-(2.6) together, we arrive at

|uǫ(x)|≤F

∫ x

0

1−s

aǫ(s)
ds≤

F

α

∫ x

0

(1−s)ds=
F

2α
:=CF, x∈ [0,1]. (2.7)

From (2.7), we immediately get that maxx∈Ω |u
ǫ(x)|≤Cmaxx∈Ω |f

ǫ(x)|. The constant
C depends only on the length of the domain Ω and α, the lower bound of aǫ(x).
Theorem 2.1 is proved completely.

The Theorem 2.1 shows that the upper bound of the absolute value of uǫ(x) does
not depend on the small parameter ǫ. We next show that similar result also holds in
the numerical solution to the problem (2.1)-(2.2). Let h=1/K denote the mesh size,
where K is a positive integer. Then the mesh grid is given by

Ωh= {xj | xj = jh, j=0, · · ·K}.

Suppose Uh= {Uj | 0≤ j≤K} is a grid function on the grid Ωh. We discretize (2.1)
by the finite difference scheme







aǫ

j− 1
2

(Uj−Uj−1)

h2 −
aǫ

j+1
2

(Uj+1−Uj)

h2 +bǫjUj = f ǫ
j , j=1, · · ·K−1,

U0=UK =0,
(2.8)

where aǫ
j− 1

2

=aǫ(xj−
h
2 ), a

ǫ
j+ 1

2

=aǫ(xj+
h
2 ), b

ǫ
j = bǫ(xj) and f ǫ

j = f ǫ(xj).

Theorem 2.1.2. The numerical solution {Uj,j=0, · · ·K} of the difference scheme
(2.8) satisfies the estimate

max
j=0,···K

|Uj |≤C max
j=0,···K

|fj |. (2.9)

The constant C depends only on the length of the domain Ω and α, the lower bound
of aǫ(x).

Proof. We now define an operator Lǫ
h on the grid function Uh,

Lǫ
hUj :=

aǫ
j− 1

2

(Uj−Uj−1)

h2
−

aǫ
j+ 1

2

(Uj+1−Uj)

h2
+bǫjUj = f ǫ

j , j=1, · · ·K−1.

(2.10)

To obtain a bound for the grid function Uh, we define a comparison function on the
grid Ωh







W0=0,

Wj =F
∑j

k=1

(1−x
k−

1
2
)

aǫ

k−

1
2

h, j=1, · · · ,K.
(2.11)
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By a direct calculation, we obtain

Lǫ
hWj ≥F, j=1, · · ·K−1.

If we define Mj =Wj+Uj , j=1, · · ·K−1, then we get Lǫ
hMj ≥F +fj ≥ 0, j=1, · · ·K−

1. According to the discrete maximum principle [22], Mj cannot be smaller than all
the boundary values. Recall that M0=W0+U0=0 and MK =WK+UK ≥ 0, therefore
we have the result Mj ≥ 0, j=0, · · ·K, namely,

Uj ≥−F

j
∑

k=1

(1−xk− 1
2
)

aǫ
k− 1

2

h, j=0, · · ·K. (2.12)

Next we define Mj =Wj−Uj , j=1, · · ·K−1 and repeat the same analysis, then we
get

Uj ≤F

j
∑

k=1

(1−xk− 1
2
)

aǫ
k− 1

2

h, j=0, · · ·K. (2.13)

Combining inequalities (2.12)-(2.13) together, we arrive at

|Uj |≤F

j
∑

k=1

(1−xk− 1
2
)

aǫ
k− 1

2

h, j=0, · · ·K. (2.14)

From (2.14), we immediately obtain

max
j=0,···K

|Uj |≤F

K
∑

k=1

(1−xk− 1
2
)

aǫ
k− 1

2

h≤
F

2α
:=CF. (2.15)

The constant C depends only on the length of the domain Ω and α, the lower bound
of aǫ(x). Theorem 2.2 is proved completely.

Let ej =Uj−uǫ(xj), j=1, · · ·K−1, then

Lǫ
hej =−

1

12
aǫj

d4uǫ(xj)

dx4
h2−

1

6

daǫ(xj)

dx

d3uǫ(xj)

dx3
h2+Rǫ(xj ,h) :=T ǫ

jh
2,

(2.16)

where Rǫ(xj ,h) is the remainder term involving high-order derivatives. We have the
estimate |Rǫ(xj ,h)|≤Cǫh3. By the Theorem 2.1.2 and (2.16), we immediately get

Theorem 2.1.3. In the difference scheme (2.8), the following error estimate
holds:

max
j=1,···K−1

|ej|≤Ch2 max
j=1,···K−1

|T ǫ
j |, (2.17)

where C depends only on the length of the domain Ω and α, the lower bound of aǫ(x).

2.2. Numerical scheme I. We consider the numerical solution to the problem
(2.1)-(2.2) by the multiscale tailored finite point method. Let H=1/N denote the
coarse mesh size, where N is a positive integer. Then the coarse grid is given by

ΩH = {xi | xi= iH, i=0, · · ·N}.
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Suppose U = {ui | 0≤ i≤N} is a grid function on the coarse grid ΩH . We propose
the first multiscale tailored finite point scheme to obtain the numerical solution of the
problem (2.1)-(2.2).

For the interior gird points {xi | i=1, · · ·N−1}, we consider the cell Ii=
[xi−1,xi+1] and xi is the center of the Ii. On each cell Ii, we consider the follow-
ing three local problems:

{

−(aǫ(x)p−i (x)
′)′+bǫ(x)p−i (x)=0, x∈ (xi−1,xi+1),

p−i (xi−1)=1, p−i (xi+1)=0,
(2.18)

{

−(aǫ(x)p+i (x)
′)′+bǫ(x)p+i (x)=0, x∈ (xi−1,xi+1),

p+i (xi−1)=0, p+i (xi+1)=1,
(2.19)

{

−(aǫ(x)pfi (x)
′)′+bǫ(x)pfi (x)= f ǫ(x), x∈ (xi−1,xi+1),

pfi (xi−1)=0, pfi (xi+1)=0.
(2.20)

The local problems (2.18)-(2.20) have unique solutions separately. Furthermore we
can see that on each cell Ii, the solution uǫ(x) of the problem (2.1)-(2.2) can be
represented by

uǫ(x)=uǫ(xi−1)p
−
i (x)+uǫ(xi+1)p

+
i (x)+pfi (x), ∀x∈ [xi−1,xi+1]. (2.21)

Letting x=xi in the Equation (2.21) we arrive at

uǫ(xi)=uǫ(xi−1)p
−
i (xi)+uǫ(xi+1)p

+
i (xi)+pfi (xi). (2.22)

Recall that ui represents the value of the solution of uǫ(x) on the grid point x=xi,
namely ui=uǫ(xi). If we can obtain all the exact solutions of the local problems
(2.18)-(2.20) for i=1,2, · · · ,N−1, then from (2.22) we immediately obtain the follow-
ing discrete scheme for the problem (2.1)-(2.2) on the coarse grid ΩH :

{

ui=αiui−1+βiui+1+γi, i=1, · · · ,N−1,
u0=0, uN =0,

(2.23)

with αi=p−i (xi), βi=p+i (xi), and γi=pfi (xi), i=1, · · · ,N−1.

Lemma 2.2.1. In the discrete scheme (2.23) for the multiscale elliptic problem
(2.1)-(2.2), the constants {αi,βi,i=1, · · · ,N−1} satisfy the following conditions:

0<αi< 1,

0<βi< 1,

0<αi+βi≤ 1,

where i=1, · · · ,N−1.

Proof. Since αi=p−i (xi) and p−i (x) is the solution of the local cell problem
(2.18) on the cell Ii=[xi−1,xi+1]. By the maximum principle [21], we find that

0≤p−i (x)≤ 1, ∀x∈ [xi−1,xi+1],

and

0<αi=p−i (xi)< 1, i=1, · · · ,N−1.
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Namely the inequality 0<αi< 1 holds. The proof of the inequality 0<βi< 1 is similar.
Furthermore, let pi(x)=p−i (x)+p+i (x). Then pi(x) satisfies

{

−(aǫ(x)p(x)′)′+bǫ(x)p(x)=0, x∈ (xi−1,xi+1),
p(xi−1)=1, p(xi+1)=1.

(2.24)

By the maximum principle [21], we can see that

0<pi(x)≤ 1, ∀x∈ [xi−1,xi+1].

Since αi+βi=pi(xi), the inequality 0<αi+βi≤ 1 follows immediately.

The system of equations in the scheme (2.23) is tridiagonal, so the matrix of the
system is a diagonal matrix. The Lemma 2.2.1 ensures that the matrix is diagonal
dominant, thus it is invertible. We immediately obtain

Theorem 2.2.2. The discrete scheme (2.23) for the multiscale elliptic problem
(2.1)-(2.2) has a unique solution {ui | ui=uǫ(xi), 0≤ i≤N}.

The Theorem 2.2.2 means that from the discrete scheme (2.23) we can get the
exact solution of the problem (2.1)-(2.2) on the coarse grid points x=xi, 0≤ i≤N ,
if we can solve the local problems (2.18)-(2.20) for i=1,2, · · · ,N−1 exactly. In this
case, the discrete scheme (2.23) is the numerical scheme for the problem (2.1)-(2.2).
This is the essence of the tailored finite point method [16, 17, 18, 19, 20]. In general,
however, one cannot obtain the exact solution of the local problems (2.18)-(2.20) for
i=1, · · · ,N−1. Therefore the constants αi, βi, γi, i=1, · · · ,N−1 are unknown and
one cannot use the discrete scheme (2.23) to obtain the numerical solution of the
problem (2.1)-(2.2) on the coarse grid ΩH .

In practical computation, one can first solve the local problems (2.18)-(2.20) nu-
merically on each cell to obtain the constants αi, βi, γi, i=1, · · · ,N−1 approximately,
then use the discrete scheme (2.23) with αi, βi, γi replaced by their approximations
to obtain the numerical solution of the problem (2.1)-(2.2). This is the main idea of
the multiscale tailored finite point method proposed in this paper.

Here we solve the local cell problems (2.18)-(2.20) numerically to demonstrate
this idea. Let h=H/M denote the fine mesh size, where H=1/N is the pre-defined
coarse mesh size and M is a positive integer. On the cell Ii, i=1, · · · ,N−1, we define
a fine mesh grid by

Ωi,h= {xi,j | xi,j =xi+jh, j=−M, · · · ,0, · · · ,M},

with xi,−M =xi−1, xi,0=xi, xi,M =xi+1. In fact, all of the local fine mesh grids Ωi,h

form a fine mesh grid on [0,1],

Ωh= {yj | yj = jh, j=0,1, · · · ,NM}.

We solve the local cell problems (2.18)-(2.20) numerically on each local fine mesh

grid Ωi,h. Let p−i,h(x), p
+
i,h(x), and pfi,h(x), x∈Ωi,h, i=1, · · · ,N−1 be the numerical

solutions, respectively. From the proof of the Lemma 2.2.1, we know that

0<p−i,h(x), p+i,h(x)< 1, x∈Ωi,h, i=1, · · · ,N−1,

0<p−i,h(x)+p+i,h(x)≤ 1, x∈Ωi,h, i=1, · · · ,N−1. (2.25)
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Using the numerical solutions p−i,h(x), p
+
i,h(x), and pfi,h(x), x∈Ωi,h, i=1, · · · ,N−1, we

construct the numerical solutions on each local fine mesh grid Ωi,h

uǫ
h(x)=uǫ

h(xi−1)p
−
i,h(x)+uǫ

h(xi+1)p
+
i,h(x)+pfi,h(x), x∈Ωi,h, i=1, · · · ,N−1.

(2.26)

Letting x=xi,0=xi, we arrive at

uǫ
h(xi)=uǫ

h(xi−1)p
−
i,h(xi)+uǫ

h(xi+1)p
+
i,h(xi)+pfi,h(xi), i=1, · · · ,N−1.

(2.27)

We obtain a multiscale tailored finite point scheme for the multiscale elliptic problem
(2.1)-(2.2)

{

ui,h=αi,hui−1,h+βi,hui+1,h+γi,h, i=1, · · · ,N−1,
u0,h=0, uN,h=0,

(2.28)

with αi,h=p−i,h(xi), βi,h=p+i,h(xi), and γi,h=pfi,h(xi), i=1, · · · ,N−1. From the prop-
erties of the local numerical solutions, we immediately find.

Lemma 2.2.3. In the multiscale tailored finite point scheme (2.28) for the multi-
scale elliptic problem (2.1)-(2.2), we have the following estimates:

0<αi,h< 1,

0<βi,h< 1,

0<αi,h+βi,h≤ 1, i=1, · · · ,N−1.

The system of equations in the scheme (2.28) is tridiagonal. The Lemma 2.2.3 ensures
that the matrix is diagonal dominant, thus it is invertible. We immediately obtain

Theorem 2.2.4. The multiscale tailored finite point scheme (2.28) for the multi-
scale elliptic problem (2.1)-(2.2) has a unique numerical solution {ui,h | 0≤ i≤N}.

2.3. Numerical scheme II. We propose the second multiscale tailored finite
point scheme for the given problem (2.1)-(2.2) based on the flux continuity condition,
which can specially be applied to problems with discontinuous coefficient. For the
interior grid points {xi | i=1, · · ·N−1}, we consider the left cell ILi =[xi−1,xi] and
the right cell IRi =[xi,xi+1]. On the left cell ILi , we consider the following three local
cell problems:

{

−(aǫ(x)p+
i− 1

2

(x)′)′+bǫ(x)p+
i− 1

2

(x)=0, x∈ (xi−1,xi),

p+
i− 1

2

(xi−1)=0, p+
i− 1

2

(xi)=1,
(2.29)

{

−(aǫ(x)p−
i− 1

2

(x)′)′+bǫ(x)p−
i− 1

2

(x)=0, x∈ (xi−1,xi),

p−
i− 1

2

(xi−1)=1, p−
i− 1

2

(xi)=0,
(2.30)

{

−(aǫ(x)pf
i− 1

2

(x)′)′+bǫ(x)pf
i− 1

2

(x)= f ǫ(x), x∈ (xi−1,xi),

pf
i− 1

2

(xi−1)=0, pf
i− 1

2

(xi)=0.
(2.31)

On the right cell IRi , we consider the following three local cell problems:
{

−(aǫ(x)p+
i+ 1

2

(x)′)′+bǫ(x)p+
i+ 1

2

(x)=0, x∈ (xi,xi+1),

p+
i+ 1

2

(xi)=0, p+
i+ 1

2

(xi+1)=1,
(2.32)
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{

−(aǫ(x)p−
i+ 1

2

(x)′)′+bǫ(x)p−
i+ 1

2

(x)=0, x∈ (xi,xi+1),

p−
i+ 1

2

(xi)=1, p−
i+ 1

2

(xi+1)=0,
(2.33)

{

−(aǫ(x)pf
i+ 1

2

(x)′)′+bǫ(x)pf
i+ 1

2

(x)= f ǫ(x), x∈ (xi,xi+1),

pf
i+ 1

2

(xi)=0, pf
i+ 1

2

(xi+1)=0.
(2.34)

The local problems (2.29)-(2.31) and (2.32)-(2.34) have unique solutions separately.
Furthermore we can see that on the left cell ILi , the solution uǫ(x) of the problem
(2.1)-(2.2) can be represented by

uǫ(x)=uǫ(xi−1)p
−
i− 1

2

(x)+uǫ(xi)p
+
i− 1

2

(x)+pf
i− 1

2

(x), ∀x∈ [xi−1,xi]. (2.35)

On the right cell IRi , the solution uǫ(x) of the problem (2.1)-(2.2) can be represented
by

uǫ(x)=uǫ(xi)p
−
i+ 1

2

(x)+uǫ(xi+1)p
+
i+ 1

2

(x)+pf
i+ 1

2

(x), ∀x∈ [xi,xi+1]. (2.36)

On the point xi, u
ǫ(x) satisfies the continuity condition

uǫ(x)|x=x
−

i
=uǫ(x)|x=x

+

i
(2.37)

and the flux conservative relation

(aǫ(x)uǫ(x)′)|x=x
−

i
=(aǫ(x)uǫ(x)′)|x=x

+

i
(2.38)

By the equations (2.35)–(2.38) we immediately arrive at

aǫ(x−
i )[u

ǫ(xi−1)(p
−
i− 1

2

)′(x−
i )+uǫ(xi)(p

+
i− 1

2

)′(x−
i )+(pf

i− 1
2

)′(x−
i )]

=aǫ(x+
i )[u

ǫ(xi)(p
−
i+ 1

2

)′(x+
i )+uǫ(xi+1)(p

+
i+ 1

2

)′(x+
i )+(pf

i+ 1
2

)′(x+
i )], (2.39)

where i=1, · · · ,N−1. According to our assumption, we have aǫ(x−
i )> 0 and aǫ(x+

i )>
0. By the strong maximum principle [21], also called the Hopf Lemma, we have
(p+

i− 1
2

)′(x−
i )> 0 and (p−

i+ 1
2

)′(x+
i )< 0. Therefore we get

Dǫ
i :=aǫ(x−

i )(p
+
i− 1

2

)′(x−
i )−aǫ(x+

i )(p
−
i+ 1

2

)′(x+
i )> 0. (2.40)

From (2.39), we obtain the following equations:

{

uǫ(xi)=Aiu
ǫ(xi−1)+Biu

ǫ(xi+1)+Ci, i=1, · · · ,N−1,
uǫ(x0)=0, uǫ(xN )=0,

(2.41)

where

Ai=−aǫ(x−
i )(p

−
i− 1

2

)′(x−
i )/D

ǫ
i ,

Bi=aǫ(x+
i )(p

+
i+ 1

2

)′(x+
i )/D

ǫ
i ,

Ci=(aǫ(x+
i )(p

f

i+ 1
2

)′(x+
i )−aǫ(x−

i )(p
f

i− 1
2

)′(x−
i ))/D

ǫ
i . (2.42)
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Recall that ui represents the value of the solution uǫ(x) on the grid point x=xi,
namely, ui=uǫ(xi). We obtain the following discrete scheme for the problem (2.1)-
(2.2) on the coarse mesh ΩH :

{

ui=Aiui−1+Biui+1+Ci, i=1, · · · ,N−1,
u0=0, uN =0,

(2.43)

where Ai, Bi, Ci are defined in the Equation (2.42).

Lemma 2.3.1. In the discrete scheme (2.43) for the multiscale elliptic problem
(2.1)-(2.2), we have the following estimates:

0<Ai< 1,

0<Bi< 1,

0<Ai+Bi≤ 1,

where i=1, · · · ,N−1.

Proof. After solving the local cell problems (2.29)-(2.31) and (2.32)-(2.34),

we have the solutions p−
i− 1

2

(x), p+
i− 1

2

(x), pf
i− 1

2

(x) on [xi−1,xi] and p−
i+ 1

2

(x), p+
i+ 1

2

(x),

pf
i+ 1

2

(x) on [xi,xi+1], respectively. Then the solution p−i (x) of the problem (2.18) can

be written as

p−i (x)=

{

p−
i− 1

2

(x)+λ1
i p

+
i− 1

2

(x), x∈ [xi−1,xi],

λ2
i p

−
i+ 1

2

(x), x∈ [xi,xi+1],
(2.44)

where the constants λ1
i and λ2

i can be determined by the conditions

{

p−i (x
−
i )=p−i (x

+
i ),

aǫ(x−
i )(p

−
i (x

−
i ))

′=aǫ(x+
i )(p

−
i (x

+
i ))

′.
(2.45)

Plugging the definition of the solution p−i (x) into the conditions (2.45), we obtain
that

λ1
i =λ2

i =Ai=
−aǫ(x−

i )(p
−
i− 1

2

)′(x−
i )

aǫ(x−
i )(p

+
i− 1

2

)′(x−
i )−aǫ(x+

i )(p
−
i+ 1

2

)′(x+
i )

.

Similarly the solution p+i (x) of the problem (2.19) can be written as

p+i (x)=

{

µ1
i p

+
i− 1

2

(x), x∈ [xi−1,xi],

µ2
i p

−
i+ 1

2

(x)+p+
i+ 1

2

(x), x∈ [xi,xi+1],
(2.46)

with

µ1
i =µ2

i =Bi=
aǫ(x+

i )(p
+
i+ 1

2

)′(x+
i )

aǫ(x−
i )(p

+
i− 1

2

)′(x−
i )−aǫ(x+

i )(p
−
i+ 1

2

)′(x+
i )

.

Finally, the solution pfi (x) of the problem (2.20) can be written as

pfi (x)=

{

pf
i− 1

2

(x)+ν1i p
+
i− 1

2

(x), x∈ [xi−1,xi],

pf
i+ 1

2

(x)+ν2i p
−
i+ 1

2

(x), x∈ [xi,xi+1],
(2.47)
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with

ν1i = ν2i =Ci=
aǫ(x+

i )(p
f

i+ 1
2

)′(x+
i )−aǫ(x−

i )(p
f

i− 1
2

)′(x−
i )

aǫ(x−
i )(p

+
i− 1

2

)′(x−
i )−aǫ(x+

i )(p
−
i+ 1

2

)′(x+
i )

.

Recalling the equations (2.21), (2.22), and (2.23) in the numerical scheme I, we have
the corresponding relations Ai=αi, Bi=βi, and Ci=γi, i=1, · · · ,N−1. Then the
results 0<Ai< 1, 0<Bi< 1, and 0<Ai+Bi≤ 1, i=1, · · · ,N−1, are immediately ob-
tained by Lemma 2.2.1.

In general one cannot obtain the exact solution of the local problems (2.29)-(2.31)
and (2.32)-(2.34) for i=1, · · · ,N−1. Therefore one cannot use the discrete scheme
(2.43) to obtain the numerical solution of the problem (2.1)-(2.2). The same as the
numerical scheme I, one can first solve the local problems (2.29)-(2.31) and (2.32)-
(2.34) numerically on each cell to obtain the approximations of the constants Ai, Bi,
Ci, i=1, · · · ,N−1, then use the discrete scheme (2.43) with Ai, Bi, Ci replaced by
their approximations to obtain the numerical solution of the problem (2.1)-(2.2). We
omit the details here.

Remark 2.3.2. By either numerical scheme (2.23) or (2.43) we can obtain the
numerical solution of uǫ(x) on the coarse grid ΩH . We can also recover the numerical
solution of uǫ(x) on the fine scale by using (2.21) or (2.35)-(2.36). In this case, we
need to save all the numerical solutions of the local cell problems (2.18)-(2.20) or
(2.29)-(2.34).

3. MsTFPM in two-dimensional domain

We now consider the second order elliptic equations with rough or highly oscilla-
tory coefficients on a square domain Ω= [0,1]× [0,1]:

−∇·(Aǫ(x)∇uǫ(x))+bǫ(x)uǫ(x)= f ǫ(x), x∈Ω, (3.1)

uǫ(x)=0, x∈∂Ω, (3.2)

where x=(x,y)∈R2. The operator Aǫ(x) is given by (1.4) and the coefficient
bǫ(x)≥ 0. For the simplicity in the statement of the MsTFPM, we assume that
aǫ12(x)=aǫ21(x)=0 in the Aǫ(x). For general matrix functions Aǫ(x)= (aǫij(x))2×2,
the MsTFPM can be used directly without any difficulty.

Let H=1/N denote the coarse mesh size, where N is a positive integer. We
divide the domain Ω by a set of lines parallel to the x-, y-axis to form a coarse mesh
grid. The crossing points set ΩH is called the coarse grid

ΩH = {(xi,yj) | xi= iH, yj = jH, i=0, ...,N, j=0, ...,N}.

Suppose U = {uij | 0≤ i≤N, 0≤ j≤N} is a grid function defined on the coarse gird
ΩH . We present two multiscale tailored finite point schemes to obtain the numerical
solution of the problem (3.1)-(3.2).

3.1. Numerical scheme I. For the interior grid points {(xi,yj) | 1≤ i≤
N−1,1≤ j≤N−1}, we consider the local cell

Ωij = {(x,y) | (x−xi)
2+(y−yj)

2≤H2},

which is a disc with the center point x0=(xi,yj) and radius H in the domain Ω. On
the boundary of the local cell Ωij , we take four points

x1=(xi+1,yj), x2=(xi,yj+1), x3=(xi−1,yj), x4=(xi,yj−1).



956 MULTISCALE TAILORED FINITE POINT METHOD

We try to find a numerical scheme for the numerical solution uij at the points x0, x1,
x2, x3, and x4. We point out that the essential difference between the one dimensional
and two dimensional problems on the local cell is the boundary condition. For the one
dimensional problem, the boundary only consists of two points. It is natural to assign
the boundary conditions according to the equations (2.18)-(2.20) or the equations
(2.29)-(2.34). For the two dimensional problem, the boundary is a circle. One needs
to specify the boundary condition to make the local cell problem well-posed. In [8, 9],
Hou et al. proposed an oversampling technique to impose a boundary condition for
local problems. In this paper, we proposed a boundary approximation technique to
impose boundary conditions and solve the local cell problems.

First we present the boundary approximation technique based on the Fourier
approximation. On the circle ∂Ωij , assume the solution of (3.1) can be expanded as

uǫ(x)|∂Ωij
=uǫ(H,θ)

=
aǫ0(H)

2
+

∞
∑

n=1

(aǫn(H)cos(nθ)+bǫn(H)sin(nθ)), (3.3)

where (H,θ) is the ordered pair of polar coordinates of x=(x,y)∈∂Ωij with the pole
at x0. The expansion (3.3) is the Fourier expansion of the function uǫ(H,θ). On each
local cell Ωij , we consider the following cell problems

{

−∇·(Aǫ(x)∇U ǫ
0(x))+bǫ(x)U ǫ

0(x)=0, x∈Ωij ,
U ǫ
0(x)=1, x∈∂Ωij .

(3.4)

{

−∇·(Aǫ(x)∇U ǫ
n(x))+bǫ(x)U ǫ

n(x)=0, x∈Ωij ,
U ǫ
n(x)=cos(nθ), x∈∂Ωij , n=1,2,3, · · · .

(3.5)

{

−∇·(Aǫ(x)∇V ǫ
n (x))+bǫ(x)V ǫ

n (x)=0, x∈Ωij ,
V ǫ
n (x)= sin(nθ), x∈∂Ωij , n=1,2,3, · · · .

(3.6)

{

−∇·(Aǫ(x)∇U ǫ
f (x))+bǫ(x)U ǫ

f (x)= f ǫ(x), x∈Ωij ,

U ǫ
f(x)=0, x∈∂Ωij .

(3.7)

The local cell problems (3.4)-(3.7) have unique solutions separately. The solutions
U ǫ
0(x), U

ǫ
n(x), V

ǫ
n (x), n=1,2,3, · · · of the local cell problems (3.4)-(3.6) form a com-

plete basis for the homogeneous equation of the problem (3.1)-(3.2) on the local cell
Ωij . The solution U ǫ

f (x) comes form the inhomogeneous part, namely the force term
f ǫ(x).

Furthermore we can see that on the local cell Ωij , the solution uǫ(x) of the problem
(3.1)-(3.2) can be represented by

uǫ(x)|∂Ωij
=

1

2
aǫ0(H)U ǫ

0(x)+
∞
∑

n=1

(aǫn(H)U ǫ
n(x)+bǫn(H)V ǫ

n (x))+U ǫ
f (x). (3.8)

In practical computation, for instance in the five points numerical scheme, we only
have the solution values at the boundary grid points x=x1, x2, x3, x4. Therefore we
take the solution in the space spanned by U ǫ

0(x), U
ǫ
1(x), V

ǫ
1 (x), U

ǫ
2(x), and U ǫ

f (x) to
approximate the solution uǫ(x). Recall that

U ǫ
0(x)|∂Ωij

=1, U ǫ
1(x)|∂Ωij

=cos(θ), V ǫ
1 (x)|∂Ωij

=sin(θ), U ǫ
2(x)|∂Ωij

=cos(2θ).
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We define the basis functions as follows. Let

P ǫ
1 (x)=

1

4
U ǫ
0(x)+

1

2
U ǫ
1(x)+

1

4
U ǫ
2(x),

P ǫ
2 (x)=

1

4
U ǫ
0(x)+

1

2
V ǫ
1 (x)−

1

4
U ǫ
2(x),

P ǫ
3 (x)=

1

4
U ǫ
0(x)−

1

2
U ǫ
1(x)+

1

4
U ǫ
2(x),

P ǫ
4 (x)=

1

4
U ǫ
0(x)−

1

2
V ǫ
1 (x)−

1

4
U ǫ
2(x), (3.9)

then at the boundary grid points x=x1, x2, x3, x4, we have P ǫ
i (x)|x=xj

= δij . On
the local cell Ωij , let

uǫ,F (x)=uǫ(x1)P
ǫ
1 (x)+uǫ(x2)P

ǫ
2 (x)+uǫ(x3)P

ǫ
3 (x)+uǫ(x4)P

ǫ
4 (x)+U ǫ

f (x)

(3.10)

denote the approximate solution based on the Fourier approximation. Moreover, let
Eǫ(x)=uǫ(x)−uǫ,F (x) denote the error function. It is easy to see that Eǫ(x) satisfies

−∇·(Aǫ(x)∇Eǫ(x))+bǫ(x)Eǫ(x)=0, x∈Ωij , (3.11)

and

Eǫ(xk)=0, xk ∈∂Ωij , k=1,2,3,4. (3.12)

Therefore we use uǫ,F (x) to approximate the solution of the problem (3.1)-(3.2).
Plugging x=x0 into the Equation (3.10), we arrive at

uǫ(x0)≈uǫ,F (x0)

=uǫ(x1)P
ǫ
1 (x0)+uǫ(x2)P

ǫ
2 (x0)+uǫ(x3)P

ǫ
3 (x0)+uǫ(x4)P

ǫ
4 (x0)+U ǫ

f (x0).

(3.13)

If we can get all the solutions of the local cell problems (3.4)-(3.7), then from (3.13)
we immediately obtain the following discrete scheme for the problem (3.1)-(3.2) on
the coarse grid ΩH :







uij =ui+1,jp
1
ij+ui,j+1p

2
ij+ui−1,jp

3
ij+ui,j−1p

4
ij+Uf

ij , i,j=1, · · · ,N−1,

uij =0, j=0 or j=N,
uij =0, i=0 or i=N,

(3.14)

with pkij =P ǫ
k(x0)=P ǫ

k(xi,yj), k=1,2,3,4, and Uf
ij =U ǫ

f(x0)=U ǫ
f(xi,yj).

Remark 3.1.1. The discrete maximum principle is very important for the stabil-
ity of the numerical scheme. Numerical experiments indicate that discrete maximum
principle still holds for the numerical scheme (3.14) on the condition that in (3.1)
the operator Aǫ(x) is positive definite with upper and lower bounds and the coeffi-
cient bǫ(x)≥ 0. However, the theoretical analysis about the stability of the numerical
scheme (3.14) (based on the Fourier approximation on the boundary) is still open and
will be our further consideration.

In general, we cannot obtain the exact solutions of the local problems (3.4)-(3.7).

Therefore the coefficients pkij , k=1,2,3,4, and Uf
ij in the scheme (3.14) are unknown
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and we cannot directly use the discrete scheme (3.14) to obtain the numerical solution
of the problem (3.1)-(3.2) on the coarse grid ΩH . We first need to solve the local

problems (3.4)-(3.7) numerically to obtain the coefficients pkij , k=1,2,3,4, and Uf
ij .

Here we demonstrate this idea by solving the local problem (3.4) with the finite
difference method.

Let h=H/M denote the fine mesh size, where H=1/N is the coarse mesh size
and M , N are two positive integers. On each fixed local cell

Ωij = {(x,y) | (x−xi)
2+(y−yj)

2≤H2}, i,j=1, · · ·N−1,

we define a fine mesh grid by

Ωh
ij = {(xm,yn) | xm=xi+mh,yn= yj+nh,m2+n2≤M2,m,n= · · · ,−1,0,1, · · ·},

where i, j are fixed.

Suppose U = {Uh
mn | m2+n2≤M2,m,n= · · · ,−1,0,1, · · ·} is a grid function on the

fine grid Ωh
ij , where Uh

mn represents the approximate solution of U ǫ
0(x) on the grid

point (xm,yn). The equation of the cell problem (3.4) can be rewritten as

−
∂

∂x

(

aǫ1(x,y)
∂U ǫ

0(x,y)

∂x

)

−
∂

∂y

(

aǫ2(x,y)
∂U ǫ

0(x,y)

∂y

)

+bǫ(x,y)U ǫ
0(x,y)=0.

(3.15)

At the interior mesh point (xm,yn) in Figure 3.1, the Equation (3.15) is dis-

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0
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0.08

0.1

0.12

0.14

0.16

0.18

0.2

x

y

 

 
Interior mesh points
Boundary mesh points

Uh
m n

Uh
m−1 n

Uh
m n−1

Uh
m n+1

Uh
BUh

m+1 n

Figure 3.1. The fine grid of a local cell.
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cretized by the five points numerical scheme

−
aǫ1(xm+ 1

2
,yn)U

h
m+1,n−(aǫ1(xm+ 1

2
,yn)+aǫ1(xm− 1

2
,yn))U

h
mn+aǫ1(xm− 1

2
,yn)U

h
m−1,n

h2

−
aǫ2(xm,yn+ 1

2
)Uh

m,n+1−(aǫ2(xm,yn+ 1
2
)+aǫ2(xm,yn− 1

2
))Uh

mn+aǫ2(xm,yn− 1
2
)Uh

m,n−1

h2

+bǫ(xm,yn)U
h
mn=0. (3.16)

At the boundary mesh points, we adopt the linear interpolation to obtain a numerical
scheme; see [23]. For instance, at the point (xm+1,yn) in Figure 3.1, we select a
neighbor point (xm,yn) such that the horizontal line through (xm+1,yn) and (xm,yn)
cuts the boundary of Ωij at a point (xB ,yn), which is not a mesh point. For this
boundary mesh point (xm+1,yn), we define the numerical scheme

Uh
m+1,n−αm+1U

h
m,n−(1−αm+1)U

h
B =0, (3.17)

where αm+1=
|xm+1−xB |

h+|xm+1−xB | ∈ (0, 12 ] and Uh
B =U ǫ

0(x)|x=(xB,yn).

The numerical scheme obtained by combining (3.16) and (3.17) satisfies the
discrete maximum principle [22]. Therefore we obtain the following result.

Lemma 3.1.2. The discrete scheme (3.16) and (3.17) for the local cell problem
(3.4) has a unique solution Uh

mn.

Remark 3.1.3. By solving the local cell problem (3.4), we obtain the grid func-
tion U = {Uh

mn | m2+n2≤M2,m,n= · · · ,−1,0,1, · · ·} on Ωh
ij . We only need to save the

value of the grid function at the center of Ωh
ij , namely, Uh

00 and pass it to the coarse
grid solver (3.14). From discrete scheme (3.14) we can get the numerical solution of
the problem (3.1)-(3.2) on the coarse grid ΩH . If we want more detailed structure of
the solution, then we need to save the grid function U on the fine grid Ωh

ij and recover
the numerical solution on the fine scale according to (3.10).

The local cell problems (3.5)-(3.7) can be discretized and solved by the same
approach. We omit the details here.

3.2. Numerical scheme II. We proposed another multiscale tailored finite
point scheme based on the Lagrange interpolation approximation. On the circle ∂Ωij ,
we assume the solution of the Equation (3.1) can be approximated by

uǫ(x)|∂Ωij
=uǫ(H,θ)

≈uǫ(H,0)L1(θ)+uǫ
(

H,
π

2

)

L2(θ)+uǫ(H,π)L3(θ)+uǫ
(

H,
3π

2

)

L4(θ),

(3.18)

where (H,θ) is the ordered pair of polar coordinates of x=(x,y)∈∂Ωij with the pole
at x0. The Lagrange interpolation base functions are defined by

L1(θ)=



















1− 2θ
π
, 0≤ θ≤ π

2 ,

0,
π

2
<θ<

3π

2
,

2θ

π
−3,

3π

2
≤ θ< 2π,

(3.19)
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L2(θ)=







2θ
π
, 0≤ θ≤ π

2 ,
2− 2θ

π
, π

2 <θ≤π,
0, π<θ< 2π,

(3.20)

L3(θ)=















0, 0≤ θ< π
2 ,

2θ
π
−1, π

2 ≤ θ≤π,
3− 2θ

π
, π<θ≤ 3π

2 ,
0, 3π

2 <θ< 2π,

(3.21)

L4(θ)=







0, 0≤ θ<π,
2θ
π
−2, π≤ θ≤ 3π

2 ,
4− 2θ

π
, 3π

2 <θ< 2π.
(3.22)

On each local cell Ωij , we consider the following cell problems:

{

−∇·(Aǫ(x)∇W ǫ
k (x))+bǫ(x)W ǫ

k(x)=0, x∈Ωij ,
W ǫ

k(x)=Lk(θ), x∈∂Ωij , k=1,2,3,4.
(3.23)

{

−∇·(Aǫ(x)∇W ǫ
f (x))+bǫ(x)W ǫ

f (x)= f ǫ(x), x∈Ωij ,

W ǫ
f (x)=0, x∈∂Ωij .

(3.24)

The local cell problems (3.23) and (3.24) have unique solutions separately. Let

uǫ,L(x)=uǫ(x1)W
ǫ
1 (x)+uǫ(x2)W

ǫ
2 (x)+uǫ(x3)W

ǫ
3 (x)+uǫ(x4)W

ǫ
4 (x)+W ǫ

f (x)

(3.25)

denote the approximate solution based on the Lagrange approximation. Moreover,
let Eǫ(x)=uǫ(x)−uǫ,L(x) denote the error function. It is easy to see that Eǫ(x) also
satisfies the equations (3.11)-(3.12). We use uǫ,L(x) to approximate the solution of
the problem (3.1)-(3.2) on Ωij . Plugging x=x0 into the Equation (3.25), we arrive
at

uǫ(x0)≈uǫ,L(x0),

=uǫ(x1)W
ǫ
1 (x0)+uǫ(x2)W

ǫ
2 (x0)+uǫ(x3)W

ǫ
3 (x0)+uǫ(x4)W

ǫ
4 (x0)+W ǫ

f (x0).

(3.26)

If we can get all the solutions of the local cell problems (3.23) and (3.24), then from
(3.26) we immediately obtain the following discrete scheme for the problem (3.1)-(3.2)
on the coarse grid ΩH :







uij =ui+1,jw
1
ij+ui,j+1w

2
ij+ui−1,jw

3
ij+ui,j−1w

4
ij+wf

ij , i,j=1, · · · ,N−1,

uij =0, j=0 or j=N,
uij =0, i=0 or i=N,

(3.27)

with wk
ij =W ǫ

k(x0)=W ǫ
k(xi,yj), k=1,2,3,4, and wf

ij =W ǫ
f (x0)=W ǫ

f (xi,yj). From the
definition of the Lagrange interpolation basis functions (3.19)-(3.22) and the maximum
principle [21], we obtain



H. HAN AND Z.-W. ZHANG 961

Lemma 3.2.1. In the discrete scheme (3.27) of the problem (3.1)-(3.2), we have
the estimates

0<wk
ij < 1, 1≤k≤ 4, i,j=1, · · · ,N−1,

0<

4
∑

k=1

wk
ij ≤ 1, i,j=1, · · · ,N−1.

From Lemma 3.2.1, we immediately find that the matrix of the linear equation system
(3.27) is diagonal dominant, thus it is invertible. Therefore the discrete scheme (3.27)
for the problem (3.1)-(3.2) has a unique solution U = {uij|0≤ i≤N,0≤ j≤N}.

In general, we cannot obtain the analytic solution of the local problems (3.23)

and (3.24). Therefore the coefficients wk
ij , k=1,2,3,4, and wf

ij in the scheme (3.27)
are unknown and we cannot directly use the discrete scheme (3.27) to obtain the
numerical solution of the problem (3.1)-(3.2). The local problems (3.23) and (3.24)
can be solved by the same numerical method proposed in the Section 3.1. We omit
the details here.

In the multiscale tailored finite point method (MsTFPM), the construction of the
base functions and load functions is fully decoupled from cell to cell; thus, this method
is perfectly parallel and is naturally adapted to massively parallel computers. For the
same reason, this method has the ability to handle multiscale problems with extremely
large degrees of freedom, which are intractable by conventional finite element method
(FEM) or finite difference method (FDM). For example, letN be the partition number
of the coarse grid in each spatial direction, and let M be the partition number of the
fine grid in each direction for solving the local cell problem. Let d be the dimension
of the problem (d=1,2 in this paper). Then there are total (NM)d unknowns at the
fine grid level. For a traditional FEM or FDM, the computer memory needed for
solving the problem on the fine grid is O(MdNd). In contrast, the multiscale tailored
finite point method (MsTFPM) requires only O(Md+Nd) amount of memory. In this
sense, the multiscale tailored finite point method (MsTFPM) has the same advantage
as the multiscale finite element methods (MsFEM) [8].

4. Numerical example

In this section, we present both the one- and two-dimensional examples to demon-
strate the efficiency and accuracy of the multiscale tailored finite point method
(MsTFPM). Especially, we want to show that our method can capture the small
scales information on a very coarse mesh grid.

4.1. Examples of one dimensional problems. In this section, we consider
the numerical solution to the one dimensional multiscale elliptic problem with highly
oscillatory or rough coefficients. The problem is given by

{

−(aǫ(x)uǫ(x)′)′+bǫ(x)uǫ(x)= f ǫ(x), x∈ (0,1),
uǫ(0)=0, uǫ(1)=0.

(4.1)

Example 4.1. Consider the one dimensional multiscale elliptic problem (4.1) with

aǫ(x)=
1

2+P cos(x/ǫ)
, bǫ(x)=0, f ǫ(x)=1,

where ǫ=0.01 and P =1.99. This example is a model problem from the book [14].
The coefficient aǫ(x) is periodic in 2πǫ and has clear scale separation; see the Figure
4.1.1.
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Figure 4.1.1. The coefficient aǫ(x) of Example 4.1.
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Figure 4.1.2. The numerical solution of Example 4.1. Left is for N =20, M =10, and
right is for N =40, M =10.

Coarse grid Fine grid L∞ error L2 error
N=10 M=10 2.285e-3 · · · 3.196e-4 · · ·
N=20 M=10 5.179e-4 2.100 7.259e-5 2.098
N=40 M=10 1.264e-4 2.023 1.653e-5 2.095
N=80 M=10 3.547e-5 1.888 4.152e-6 1.995
N=160 M=10 9.089e-6 1.975 1.033e-6 2.004
N=320 M=10 2.284e-6 1.994 2.553e-7 2.012
N=640 M=10 5.438e-7 2.049 6.077e-8 2.049

Table 4.1. Numerical results of the method scheme I for Example 4.1.
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Figure 4.1.3. The comparison between the numerical schemes I and II. The solid line
is for the numerical scheme I and the dashed line is for the numerical scheme II. N =40,
M =10.
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Figure 4.1.4. The derivative of the numerical solution uǫ(x) for Example 4.1.
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Figure 4.2.1. The coefficient aǫ(x) of Example 4.2.
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Figure 4.2.2. The numerical solutions of Example 4.2. Left is for N =20, M =10, and
right is for N =40, M =10.
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Figure 4.2.3. The derivative of the solution uǫ(x) for Example 4.2.
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Figure 4.3.1. The coefficient aǫ(x) of Example 4.3.
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Figure 4.3.2. The numerical solution of Example 4.3. N =10, M =10.
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Figure 4.4.1. The coefficient aǫ(x) of Example 4.4.
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Figure 4.4.1. The numerical solution of Example 4.4. N =20, M =10.
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Figure 4.5.1. The coefficient aǫ(x,y) of Example 4.5 in the domain [0,0.1]× [0,0.1].
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Figure 4.5.2. Surface plot of a typical local basis function.
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Figure 4.5.3. The numerical solution of Example 4.5 (surface plot).
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Figure 4.5.4. The numerical solution of Example 4.5 (contour plot).

0 0.2 0.4 0.6 0.8 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

y

u
ε (

0
.5

,y
)

0 0.2 0.4 0.6 0.8 1
−0.025

−0.02

−0.015

−0.01

−0.005

0

y

u
ε (

0
.7

,y
)

Figure 4.5.5. The numerical solutions for Example 4.5 (slice plot).

The numerical results of Example 4.1 are shown in Figure 4.1.2 –Figure 4.1.4
and Table 4.1. In Figure 4.1.2, we plot the numerical solutions obtained by the
numerical scheme one on different mesh grids. Figure 4.1.2 shows that our method
can approximate the ‘exact’ solution on very coarse mesh. Here the ‘exact’ solution
is obtained on the fine mesh with h=1/25600. In Figure 4.1.3, we compare the
performance of the numerical scheme I and numerical scheme II. In Figure 4.1.4, we
plot the derivative of function uǫ

h(x). One can see that the solution of the Example
4.1 itself is oscillatory in the level of O(ǫ), but its derivative function oscillates in the
level of O(1). In Table 4.1, we show the numerical errors and convergence rate of the
numerical scheme I, which indicates that our method has second order convergence
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Figure 4.6.1. The coefficient aǫ(x,y) of Example 4.6 in the domain [0,0.1]× [0,0.1].
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Figure 4.6.2. The numerical solution of Example 4.6 (surface plot).

in the L∞ and L2 norms.

Example 4.2. Consider the one dimensional multiscale elliptic problem (4.1)
with

aǫ(x)=
1

2+x+sin( sinx
ǫ

cos(x))
, bǫ(x)=0, f ǫ(x)=−cos(x),

where ǫ=0.01. In this example, the coefficient aǫ(x) is not periodic and there is no
clear scale separation; see Figure 4.2.1. The numerical results of Example 4.2 are
shown in Figure 4.2.2, Figure 4.2.3, and Table 4.2. In Figure 4.2.2, we show the
numerical solutions obtained by the numerical scheme I on different mesh grids. In
Figure 4.2.3, we plot the derivative of function uǫ

h(x). In Table 4.2, we show the
numerical errors and convergence rate of the numerical scheme I, which indicates that
our method has second order convergence in L∞ and L2 norms. Here the ‘exact’
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Coarse grid Fine grid L∞ error L2 error
N=10 M=10 1.393e-3 · · · 1.927e-4 · · ·
N=20 M=10 3.188e-4 2.090 4.180e-5 2.147
N=40 M=10 8.630e-5 1.922 1.037e-5 2.007
N=80 M=10 2.144e-5 2.006 2.575e-6 2.006
N=160 M=10 5.816e-6 1.919 6.411e-7 2.004
N=320 M=10 1.436e-6 2.012 1.583e-7 2.012
N=640 M=10 3.419e-7 2.049 3.769e-8 2.049

Table 4.2. Numerical results of the method scheme I for Example 4.2.

Coarse grid Fine grid L∞ error L2 error
N=10 M=10 6.639e-11 · · · 1.381e-11 · · ·
N=20 M=10 6.639e-11 · · · 1.366e-11 · · ·
N=40 M=10 6.660e-11 · · · 1.362e-11 · · ·
N=80 M=10 6.655e-11 · · · 1.360e-11 · · ·

Table 4.3. Numerical results of the method scheme II for the Example 4.3.

solution is still obtained on the fine mesh with h=1/25600. From these results, we
see that our method has good performance for the multiscale elliptic problem with
nonperiodic coefficient:

Example 4.3. Consider the one dimensional multiscale elliptic problem (4.1)
with

aǫ(x)=

{

10, xi−1<x< xi−1+xi

2 ,

2, xi−1+xi

2 <x<xi, i=0, · · · ,5,

bǫ(x)=0, f ǫ(x)=1,

where xi= i/5, i=0, · · · ,5. This example is introduced in the paper [4]. In this example
the coefficient aǫ(x) is discontinuous; see Figure 4.3.1. Let D= {x̄i= i/10 | i=1, · · · ,9}
denote the discontinuous point set. We use the numerical scheme II to solve this
problem. It should be pointed out that we partition the domain [0,1] in such a way
that the interface set contains the discontinuous point set D as a subset.

The numerical results of Example 4.3 are shown in Figure 4.3.2 and Table 4.3.
From these results, we see that our method can achieve machine accuracy for Example
4.3 on the condition that all the discontinuous points are contained in the interface
points of the numerical scheme II.

Example 4.4. Consider the one dimensional multiscale elliptic problem (4.1)
with

aǫ(x)=

{

16+cos(x/ǫ), 0<x< 0.5,
2+cos(x/ǫ), 0.5<x< 1,

bǫ(x)=0, f ǫ(x)=1,
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Coarse grid Fine grid L∞ error L2 error
N=10 M=10 2.844e-3 · · · 4.871e-4 · · ·
N=20 M=10 2.110e-4 3.671 3.005e-5 4.026
N=40 M=10 6.136e-5 1.854 8.392e-6 1.892
N=80 M=10 1.206e-5 2.255 2.261e-6 1.926
N=160 M=10 1.826e-6 2.569 2.792e-7 2.845
N=320 M=10 4.549e-7 2.003 6.938e-8 2.006
N=640 M=10 1.084e-7 2.048 1.653e-8 2.048

Table 4.4. Numerical results of the method scheme II for the Example 4.4.

Coarse grid Fine grid L∞ error L2 error
N=5 M=40 1.911e-2 · · · 3.210e-4 · · ·
N=10 M=40 6.843e-3 1.671 8.985e-5 1.890
N=20 M=40 2.945e-3 1.524 3.974e-5 1.503
N=40 M=40 8.355e-4 1.877 1.006e-5 1.987

Table 4.5. Numerical results of the Fourier approximation for the Example 4.5.

Coarse grid Fine grid L∞ error L2 error
N=5 M=40 1.899e-2 · · · 3.211e-4 · · ·
N=10 M=40 6.685e-3 1.685 8.969e-5 1.892
N=20 M=40 2.858e-3 1.529 3.899e-5 1.516
N=40 M=40 7.050e-4 2.013 9.340e-6 2.043

Table 4.6. Numerical results of the Lagrange interpolation approximation for the Example 4.5.

where ǫ=0.01. In this case, the coefficient aǫ(x) is discontinuous and oscillatory; see
Figure 4.4.1. We use the numerical scheme II to solve this problem. We partition
the domain [0,1] in such a way that the interface point set contains the discontinuous
point x=0.5.

The numerical results of Example 4.4 are shown in Figure 4.4.2 and Table 4.4.
We can see that our method can approximate the ‘exact’ solution on very coarse mesh
and have second order convergence in L∞ and L2 norms. Here the ‘exact’ solution is
obtained on the fine mesh with h=1/25600.

4.2. Examples of two dimensional problems. We now consider the two
dimensional elliptic multiscale problem on the domain Ω= [0,1]× [0,1] given by

{

−∇·(Aǫ(x)∇uǫ(x))+bǫ(x)uǫ(x)= f ǫ(x), x=(x,y)∈Ω,
uǫ(x)=0, x=(x,y)∈∂Ω.

(4.2)

where the operator Aǫ(x)=aǫ(x,y)I2×2 is a diagonal matrix function with 0<α≤
aǫ(x,y)<β, the coefficient bǫ(x)= bǫ(x,y)≥ 0, and the force term f ǫ(x)= f ǫ(x,y).

Example 4.5. Consider the two dimensional multiscale elliptic problem (4.2)
with

aǫ(x,y)=
2+P sin(2πx

ǫ
)

2+P sin(2πy
ǫ
)
+

2+sin(2πy
ǫ
)

2+P sin(2πx
ǫ
)
,

bǫ(x,y)=0, f ǫ(x,y)=−1,
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Coarse grid Fine grid L∞ error L2 error
N=5 M=40 2.658e-1 · · · 3.989e-3 · · ·
N=10 M=40 1.183e-1 1.168 1.671e-3 1.255
N=20 M=40 2.290e-2 2.369 3.187e-4 2.391
N=40 M=40 1.025e-2 1.159 1.475e-4 1.112

Table 4.7. Numerical results of the Fourier approximation for the Example 4.6.

Coarse grid Fine grid L∞ error L2 error
N=5 M=40 2.654e-1 · · · 3.978e-3 · · ·
N=10 M=40 1.132e-1 1.229 1.683e-3 1.241
N=20 M=40 2.196e-2 2.366 3.163e-4 2.411
N=40 M=40 9.810e-2 1.163 1.421e-4 1.154

Table 4.8. Numerical results of the Lagrange interpolation approximation for the Example 4.6.

where ǫ=0.01 and P =1.8. This example is a model problem from the paper [8]. In
this example, the coefficient aǫ(x,y) is periodic in ǫ in each direction and has clear
scale separation. In Figure 4.5.1, we only give the surface plot and contour plot of
the coefficient aǫ(x,y) on a small domain [0,0.1]× [0,0.1] for demonstration.
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Figure 4.6.3. The numerical solution of Example 4.6 (contour plot)

The numerical results of Example 4.5 are shown in Figures 4.5.2–4.5.6 and Table
4.5-4.6. Figure 4.5.2 shows the surface plot of P ǫ

1 (x), a typical local basis function on
the local cell (with N=10 and M=80), which is obtained by the Fourier approximation
on the boundary. We point out that in (3.9) the basis function P ǫ

1 (x) is defined on a
circular domain. However, considering the overlap of the adjacent circular domains,
we only need to save the basis function in the square domain surrounded by the sides
x1x2, x2x3, x3x4, and x4x1. From Figure 4.5.2 one can find that the local basis
function contains the fine scale structure of the multiscale elliptic problem.

In Figure 4.5.3, we show the numerical solution obtained by the Fourier approx-
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Figure 4.6.4. The numerical solutions for Example 4.6 (slice plot)

imation on the boundary (with N =80 and M =40). Figure 4.5.4 gives the corre-
sponding contour plot. Figure 4.5.5 plots the slice solution of uǫ(x,y) at x=0.5 and
x=0.7. From these results, we can see that our method can capture the detailed
information of the multiscale solution on a coarse mesh grid. From Table 4.5 and
4.6, we find the multiscale tailored finite point methods (MsTFPM) based on Fourier
approximation and Lagrange interpolation approximation on the boundary have the
same convergence performance in both the L∞ and L2 norms. Here the reference
solution is obtained on a fine mesh with N = 80 and M = 40.

Example 4.6. Consider the two dimensional multiscale elliptic problem (4.2)
with

aǫ(x,y)=
1

(2+P sin(2πx
ǫ
))(2+P sin(2πy

ǫ
))
,

bǫ(x,y)=0, f ǫ(x,y)=−1,

where ǫ=0.01 and P =1.99. In this example, the coefficient aǫ(x,y) is periodic in ǫ in

each direction with high contrast (defined by maxaǫ(x,y)
minaǫ(x,y) ). In the Figure 4.6.1, we only

give the surface plot and contour plot of the coefficient aǫ(x,y) on a small domain
[0,0.1]× [0,0.1] for demonstration.

The numerical results of Example 4.6 are shown in Figure 4.6.2–4.6.4 and Table
4.7-4.8. In Figure 4.6.2, we show the numerical solutions obtained by the Fourier
approximation on the boundary (with N =80 and M =40). Figure 4.6.3 gives the
corresponding contour plot. Figure 4.6.4 plots the slice solution of uǫ(x,y) at x=0.5
and x=0.6. From these results, we see that our method can capture the detailed
information of the multiscale solution on a coarse mesh grid. In Tables 4.7 and 4.8,
we find the multiscale tailored finite point methods (MsTFPM) based on the Fourier
approximation and Lagrange interpolation approximation on the boundary have the
same convergence performance in both the L∞ and L2 norms. Here the reference
solution is obtained on fine mesh with N = 80 and M = 40.
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5. Conclusion

We have successfully developed a multiscale tailored finite point method
(MsTFPM) for solving the multiscale elliptic problems with rough or highly oscillatory
coefficients both in one- and two-dimensions. Our method has been tailored to some
particular properties of the multiscale problem, so that it can capture the information
of the multiscale solutions on coarse meshes without resolving the fine scale struc-
ture. For the one-dimensional problems, we proposed two different types of numerical
schemes and proved the stability of the schemes. For the two-dimensional problems,
we introduced a boundary approximation technique to impose boundary conditions
for the local cell problems. We give two types of numerical schemes based on the
Fourier approximation and Lagrange interpolation approximation on the boundaries.
Our numerical experiments give convincing evidence that the multiscale tailored fi-
nite point method is capable of capturing the large scale solution without resolving
the small scale details. An extension of the convergence analysis of the multiscale
tailored finite point method for the two-dimensional problems will be our further
consideration.
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