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DISCRETE TRANSPARENT BOUNDARY CONDITIONS FOR THE
SCHRÖDINGER EQUATION ON CIRCULAR DOMAINS∗

ANTON ARNOLD† , MATTHIAS EHRHARDT‡ , MAIKE SCHULTE§ , AND

IVAN SOFRONOV¶

Abstract. We propose transparent boundary conditions (TBCs) for the time–dependent
Schrödinger equation on a circular computational domain. First we derive the two–dimensional
discrete TBCs in conjunction with a conservative Crank–Nicolson finite difference scheme. The pre-
sented discrete initial boundary–value problem is unconditionally stable and completely reflection–
free at the boundary. Then, since the discrete TBCs for the Schrödinger equation with a spatially
dependent potential include a convolution with respect to time with a weakly decaying kernel, we
construct approximate discrete TBCs with a kernel having the form of a finite sum of exponentials,
which can be efficiently evaluated by recursion. In numerical tests we finally illustrate the accuracy,
stability, and efficiency of the proposed method.

As a by-product we also present a new formulation of discrete TBCs for the 1D Schrödinger
equation, with convolution coefficients that have better decay properties than those from the litera-
ture.
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1. Introduction
The Schrödinger equation. Consider in the circular geometry with polar

coordinates (r,θ) the following Cauchy problem for the scaled transient Schrödinger
equation:

iψt=−1

2

[

1

r
(rψr)r+

1

r2
ψθθ

]

+V (r,θ,t)ψ, r≥0, 0<θ≤2π, t>0, (1.1a)

ψ(r,θ,0)=ψI(r,θ), r≥0, 0<θ≤2π. (1.1b)

We assume that the given θ-periodical potential V is constant outside of the compu-
tational domain [0,R]× [0,2π]:

V (r,θ,t)=VR≡ const for r≥R,

and that the sufficiently smooth θ-periodical initial data has compact support:

suppψI ⊂ [0,R)× [0,2π]. (1.2)

Discussions of strategies to soften these restrictions could be found in [22, 23, 35,
46]. The strategy from [23] to overcome the assumption on the compact support of
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Fig. 1.1. A typical single–mode optical fiber, showing the different component layers. Wave
propagation mostly takes place in the relatively thin core region.

the initial data is directly applicable to the 2D case considered here. However, the
computational effort will increase tremendously.

In addition to quantum mechanics, Equation (1.1a) has many important applica-
tions including electromagnetic wave propagation [36], modelling of quantum devices
[7], integrated optics (Fresnel equation) [45, 57], plasma physics, seismic migration
[18], and (underwater) acoustics due to the paraxial approximation of the wave equa-
tion in the frequency domain [8, 56], etc.

One quite important application of the Schrödinger equation, especially in a cir-
cular geometry, arises in the context of wave propagation in optical fibers [32, 58]. A
sketch of the structure of an optical fiber with its different layers is shown in Figure 1.1.

In modern communication networks optical fibers play a fundamental role and
there it is often necessary to connect the fibers (e.g. after a breakage or to extend
a cable run) with low loss. Optical fibers are connected by a fusion process called
thermal splicing and one has to control this procedure and simulate how small dis-
turbances in the geometry of the (usually straight) fiber core effect the transported
light in the fiber. Doing so, one can predict the caused loss at these joining positions
of the fibers.

With the proposed transparent boundary conditions in this paper one can reduce
the computational domain significantly (e.g. to the core region) and obtain a fast,
accurate, and reliable simulation using the beam propagation method [30, 58]. Here,
the time variable t corresponds to the axial variable, i.e. the propagation direction.
For an adequate treatment of the density jump in the TBC between the different
layers we refer to [8].

Analytic transparent boundary conditions (TBCs). Let us exemplify first
analytic TBCs that can be derived for the Schrödinger equation on a circular domain.
The idea is to eliminate the problem on the exterior domain r>R, and to replace it
by a Dirichlet–to–Neumann (DtN) map. First we briefly review the construction of
the analytic TBCs for the Schrödinger equation on a circular domain from [5] and
extend them to the case of a nonzero potential VR at infinity (cf. also [26, 31]). For a
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review paper about TBCs for linear and nonlinear Schrödinger equations including a
(theoretical) comparison to the widely used Perfectly Matched Layer (PML) technique
we refer the interested reader to [6] and to [59]. For a detailed numerical comparison
of PML and discrete TBCs for the Schrödinger equation we refer to [41].

We consider sufficiently smooth bounded periodical solutions to (1.1a) on the

exterior domain r>R and denote by ψ̂= ψ̂(r,θ,s) the Laplace transform of ψ with
respect to time. The transformation of (1.1a) reads:

1

r
(rψ̂r)r+

1

r2
ψ̂θθ+2i(s+ iVR)ψ̂=0, r≥R, 0<θ≤2π, (1.3)

where we used the assumption (1.2). We use a Fourier series with respect to the angle
θ:

ψ̂(r,θ,s)=
∑

m∈Z

ψ̂(m)(r,s)eimθ, r≥R. (1.4)

Then, for each mode m∈Z, the Fourier coefficient ψ̂(m)(r,s) satisfies the ordinary
differential equation

1

r
(rψ̂(m)

r )r+
(

2is−2VR−m2

r2

)

ψ̂(m)=0, r≥R. (1.5)

This is the Bessel equation for functions of order m. Hence, its solution vanishing as

r→∞ is the m-th order Hankel function of the first kind H
(1)
m :

ψ̂(m)(r,s)=αm(s)H(1)
m (
√

2is−2VR r), r≥R, (1.6)

where αm(s) is an arbitrary multiplier. The radial derivative of ψ̂(m) is computed as

∂

∂r
ψ̂(m)(r,s)=αm(s)

√

2is−2VRH
(1)′

m (
√

2is−2VR r)

=
√

2is−2VR
H

(1)′

m (
√
2is−2VR r)

H
(1)
m (

√
2is−2VRR)

ψ̂(m)(R,s),

(1.7)

where we have determined the value of the coefficient αm(s) from (1.6) by setting
r=R. Finally, the TBCs are obtained by computing the series (1.4), using the inverse
Laplace transform and setting r=R:

∂ψ

∂r
(R,θ,t)

=
1

2πi

∑

m∈Z

γ+i∞
∫

γ−i∞

√

2is−2VR
H

(1)′

m (
√
2is−2VRR)

H
(1)
m (

√
2is−2VRR)

ψ̂(m)(R,s)estdseimθ, (1.8)

where Γ=(γ− i∞,γ+ i∞) is a vertical contour in the complex plane chosen such that
all singularities of the integrand are to the left of it.

The TBCs (1.8) are non–local both in time and in space. A strategy to derive a
spatially localized version of (1.8) by an asymptotic expansion of the Hankel functions
and their derivatives with respect to s can be found in [5].

Because of the nonlocality of the TBCs (1.8), their immediate numerical imple-

mentation requires one to store the boundary data ψ̂(m)(R,.) of all the past history
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and for all modes m∈Z. Moreover, the discretization of the TBCs (1.8), even in one
space dimension, is not trivial at all and has attracted lots of attention. For the many
proposed discretization strategies of the TBCs (1.8) in 1D (as well as semi–discrete
approaches), we refer the reader to [1, 4, 9, 11, 13, 15, 21, 37, 38, 43, 44, 45, 46, 47, 60]
and references therein. A numerically efficient treatment of the 2D TBCs (1.8) was
recently proposed by Jiang and Greengard in [31].

We remark that inadequate discretizations of the TBCs may introduce strong
numerical reflections at the boundary or render the discrete initial boundary value
problem only conditionally stable; see [22] for a detailed discussion.

Remark 1.1 (Generalizations of the Schrödinger Equation (1.1a)). The case of
a time-dependent exterior potential V =VR(t) can easily be included by the gauge
transformation

ϕ=exp

(

i

∫ t

0

VR(t)ds

)

ψ,

(cf. [4] or Remark 5 in [6], e.g.) to reduce this case to zero exterior potential. Moreover,
some classes of nonlinear Schrödinger equations can be handled by the simple potential
strategy of Szeftel [53, 54], i.e. by freezing the potential and updating this nonlinear
term at every time step (and recomputing all coefficients!). This approach of Szeftel
was transferred to discrete TBCs in [61]. Let us note that a family of absorbing
boundary conditions for the 3D case was recently introduced in [27].

Difference equations. We consider a Crank–Nicolson finite difference scheme,
which is one of the commonly used discretization methods for the Schrödinger equa-
tion. Let us introduce a polar and temporal grid:

r−1<r0<r1< · · ·<rJ <..., r−1=−r0; rJ−1/2=R,

rj+1/2=(rj+1+rj)/2,∆rj+1/2= rj+1−rj ,∆rj= rj+1/2−rj−1/2,

θk=k∆θ, k=0,1, . . . ,K, ∆θ=2π/K;

tn=n∆t, n=0,1, . . .

We denote

ψ
(n)
j,k =ψ(rj ,θk,tn), ψ

(n+1/2)
j,k =

(

ψ
(n+1)
j,k +ψ

(n)
j,k

)

/2,

and V
(n+1/2)
j,k =V (rj ,θk,tn+1/2). Then the Crank–Nicolson scheme reads:

− 2i

∆t
(ψ

(n+1)
j,k −ψ(n)

j,k )

=
1

rj

1

∆rj

[

rj+1/2(ψ
(n+1/2)
j+1,k −ψ(n+1/2)

j,k )

∆rj+1/2
−
rj−1/2(ψ

(n+1/2)
j,k −ψ(n+1/2)

j−1,k )

∆rj−1/2

]

+
1

r2j

ψ
(n+1/2)
j,k+1 −2ψ

(n+1/2)
j,k +ψ

(n+1/2)
j,k−1

∆θ2
−2V

(n+1/2)
j,k ψ

(n+1/2)
j,k ,

j=0,1, ...; k=0,1, ...,K−1; n=0,1, ... (1.9)

and the obvious periodic boundary conditions ψ
(n)
j,0 =ψ

(n)
j,K , ψ

(n)
j,−1=ψ

(n)
j,K−1.

Remark 1.2 (Treatment of singularity at the origin). We use a radial offset

grid here such that the coefficient of ψ
(n+1/2)
−1,k is zero.
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The paper is organized as follows. In §2 we prove the discrete mass conservation
property of the Crank–Nicolson scheme and derive discrete TBCs directly for the
chosen numerical scheme using the Z–transform method. In contrast to the 1D and
the rectangular 2D cases, the convolution coefficients of the discrete TBCs have to be
obtained numerically here. Using their large-radius-limit (i.e. the planar problem) as
a starting point, they are computed by a recursion from “infinity” back to the finite
radius R. Next we prove the stability of the recurrence formulas used to obtain the
convolution coefficients of the new discrete TBCs for a spatially dependent potential.

In §3 we discuss the approximation of the convolution coefficients by a discrete
sum of exponentials and present an efficient recursion for evaluating these approximate
discrete TBCs. Finally, the numerical examples of §4 illustrate the accuracy, stability,
and efficiency of the proposed method.

In the Appendix we briefly revisit discrete TBCs for the 1D Schrödinger equation.
We present a new formulation that leads to convolutions coefficients with better decay
properties than those from the literature [7, 22].

2. The discrete TBCs
First we generate transparent discrete boundary conditions using exact solutions

to the difference scheme (1.9) in the exterior domain r≥R.
Reduction to 1D–Problem. In order to reduce the problem to the simpler

1D case, the discrete Fourier method is used in the θ–direction. Due to the periodic
boundary conditions in the angular direction we have

ψ
(n)
j,0 =ψ

(n)
j,K , j∈N0, n≥0, (2.1)

and hence, use the discrete Fourier transform of ψ
(n)
j,k in the θ–direction:

ψ
(m,n)
j :=

1

K

K−1
∑

k=0

ψ
(n)
j,k exp

(

2πikm

K

)

, m=0, . . . ,K−1. (2.2)

The scheme (1.9) in the exterior domain j≥J−1 then transforms into:

− 2i

∆t
(ψ

(m,n+1)
j −ψ(m,n)

j )

=
1

rj

1

∆rj

[

rj+1/2(ψ
(m,n+1/2)
j+1 −ψ(m,n+1/2)

j )

∆rj+1/2

−
rj−1/2(ψ

(m,n+1/2)
j −ψ(m,n+1/2)

j−1 )

∆rj−1/2

]

−2V
(m)
j ψ

(m,n+1/2)
j ,

V
(m)
j :=VR+

2sin2
(

πm
K

)

r2j∆θ
2

, 0≤m≤K−1, n≥0. (2.3)

The modes ψ(m), m=0, . . . ,K−1 are independent of each other in the exterior
domain r≥R since the potential V is constant there. Therefore we can continue our
analysis for each azimuth mode separately.

Thus, by omitting in the sequel the superscriptm in the notation, we will consider
in the exterior domain j≥J−1 the following discrete 1D–Schrödinger equation:

−i2∆rj∆rj+1/2

∆t
(ψ

(n+1)
j −ψ(n)

j )
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=
1

rj

[

rj+1/2(ψ
(n+1/2)
j+1 −ψ(n+1/2)

j )

−rj−1/2

∆rj+1/2

∆rj−1/2
(ψ

(n+1/2)
j −ψ(n+1/2)

j−1 )

]

−2∆rj∆rj+1/2Vjψ
(n+1/2)
j , (2.4)

with the spatially dependent potential Vj=VR+2sin2(πmK )/(r2j∆θ
2).

Mass conservation property. There are two important advantages of the
second order (in ∆r and ∆t) scheme (2.4): it is unconditionally stable, and it preserves
the discrete L2–norm in time:

Lemma 2.1. For the scheme (2.4) (considered on j∈N0), it holds that

‖ψ(n)‖22 :=
∑

j∈N0

∆rj |ψ(n)
j |2rj (2.5)

is a conserved quantity in time.

Proof. This conservation property can be seen by a discrete energy estimate.

First we multiply (2.4) by ψ̄
(n)
j rj :

− 2i

∆t

(

ψ
(n+1)
j ψ̄

(n)
j −|ψ(n)

j |2
)

rj

= ψ̄
(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

−2Vjψ
(n+1/2)
j ψ̄

(n)
j rj , j=0,1, . . . , (2.6a)

2i

∆t

(

|ψ(n+1)
j |2− ψ̄(n)

j ψ
(n+1)
j

)

rj

=ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

−2Vjψ̄
(n+1/2)
j ψ

(n+1)
j rj , j=0,1, . . . , (2.6b)

with the abbreviation of the centered difference quotient

D0 =D0
∆rj
2

, i.e. D0ψnj =
ψnj+1/2−ψnj−1/2

∆rj
.

Next we subtract (2.6a) from (2.6b)

2i

∆t

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj

=ψ
(n+1)
j D0

(

rjD
0ψ̄

(n+1/2)
j

)

− ψ̄(n)
j D0

(

rjD
0ψ

(n+1/2)
j

)

−Vj
(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj , j=0,1, . . . ,

multiply by ∆rj , sum from j=0 to ∞, and apply summation by parts:

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj∆rj

=−
∑

j∈N0+
1
2

(

D0ψ̄
(n+1/2)
j

)(

D0ψ
(n+1)
j

)

rj∆rj−
(

D0ψ̄
(n+1/2)

− 1
2

)

ψ
(n+1)
0 r− 1

2
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+
∑

j∈N0+
1
2

(

D0ψ
(n+1/2)
j

)(

D0ψ̄
(n)
j

)

rj∆rj+
(

D0ψ
(n+1/2)

− 1
2

)

ψ̄
(n)
0 r− 1

2

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj∆rj . (2.7)

Now, the boundary terms in (2.7) vanish since r− 1
2
=0, and hence

2i

∆t

∞
∑

j=0

(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj∆rj=−1

2

∑

j∈N0+
1
2

(

|D0ψ̄
(n+1)
j |2−D0ψ̄

(n)
j |2

)

rj∆rj

−
∞
∑

j=0

Vj
(

|ψ(n+1)
j |2−|ψ(n)

j |2
)

rj∆rj . (2.8)

Finally, taking imaginary parts one obtains the desired result.

Discrete TBCs for a single azimuth mode. Discrete transparent boundary
conditions for the 1D Schrödinger equation with constant coefficients of the difference
scheme in the exterior domain were introduced by Arnold [7] (cf. the Appendix for
an improved variant, which is the bases of our presentation below). Here we derive
discrete TBCs for the scheme (2.4) with spatially varying coefficients. Analogous to
the continuous case of §1, the idea is to eliminate the exterior problem j >J and to
replace it by a discrete DtN map.

We use the Z–transform of the sequence {ψ(n)
j }, n∈N0 (with j considered fixed)

which is defined as the Laurent series (see [20])

Z{ψ(n)
j }= ψ̂j(z) :=

∞
∑

n=0

ψ
(n)
j z−n, z∈C, |z|>Rψ̂j

, (2.9)

and Rψ̂j
denotes the convergence radius of the series. Now the transformed exterior

scheme (2.4) reads

−iρj
z−1

z+1
ψ̂j(z)

=
1

rj

[

rj+1/2

(

ψ̂j+1(z)− ψ̂j(z)
)

−rj−1/2

∆rj+1/2

∆rj−1/2

(

ψ̂j(z)− ψ̂j−1(z)
)

]

−2∆rj∆rj+1/2Vjψ̂j(z), j≥J−1, (2.10)

with the mesh ratio ρj=4∆rj∆rj+1/2/∆t and the spatially dependent potential Vj=

VR+2sin2(πmK )/(r2j∆θ
2). Note that we used here the following assumption on ψ0:

ψ0
j =0, j≥J−2. (2.11)

Thus we obtain a homogeneous second order difference equation with varying coeffi-
cients of the form

ajψ̂j+1(z)+bj(z)ψ̂j(z)+cjψ̂j−1(z)=0, j≥J−1, (2.12)

where

aj=
rj+1/2

rj
, (2.13a)
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bj(z)=− 1

rj

[

rj+1/2+rj−1/2

∆rj+1/2

∆rj−1/2

]

+iρj
z−1

z+1
−2∆rj∆rj+1/2Vj , (2.13b)

cj=
rj−1/2

rj

∆rj+1/2

∆rj−1/2
. (2.13c)

Remark 2.2 (Uniform offset grid). In the special case of a uniform radial offset
grid rj=(j+ 1

2 )∆r, j≥J−1, we obtain

aj=
j+1

j+ 1
2

, cj=
j

j+ 1
2

, (2.14a)

bj(z)=−2+ iρ
z−1

z+1
−2∆r2VR−4

sin2
(

πm
K

)

(j+1/2)2∆θ2
. (2.14b)

But such a uniform grid is not a requirement for the rest of this section.

For the formulation of the Z–transformed discrete TBCs at j=J we regard the
ratio ℓ̂j(z) of the decaying (as j→∞) fundamental solution to (2.10) at two adjacent
points:

ℓ̂j(z)=
ψ̂j(z)

ψ̂j−1(z)
, j≥J, (2.15)

and get from (2.12) the following Riccati difference equation (cf. §1.6 in [33]) with
variable coefficients:

ℓ̂j(z)
(

aj ℓ̂j+1(z)+bj(z)
)

+cj=0, j≥J. (2.16)

Suppose (for the moment) that the coefficients ℓ̂j(z) are known. Setting j=J+1
we get from (2.15)

ℓ̂J+1(z)=
ψ̂J+1(z)

ψ̂J(z)
. (2.17)

Calculating the inverse Z–transformation we obtain the discrete convolution

ψ
(n)
J+1= ℓ

(n)
J+1 ∗ψ

(n)
J . (2.18)

Hence, our discrete TBC reads explicitly

ψ
(n)
J+1−ℓ

(0)
J+1ψ

(n)
J =

n−1
∑

p=1

ℓ
(n−p)
J+1 ψ

(p)
J , (2.19)

when using the assumption (1.2)

ψ
(0)
j =0, j≥J. (2.20)

Asymptotic behavior of the convolution coefficients. We shall now dis-

cuss the behavior of the coefficients ℓ
(n)
J+1 for n→∞, which will allow us to find an

alternative, numerically more suitable formulation of the discrete TBC (2.19). First
we remark that this discrete TBC is structurally different from those introduced in
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the literature [7, 8, 22, 49]. There, the discrete convolution is always placed at the
outer of the two boundary grid points. But in (2.18) it is implemented at the inner
boundary point j=J . This small modification yields a very different behavior of the
convolution coefficients ℓ(n): Here, the coefficients ℓ(n) decay like O(n−3/2) (cf. the
Appendix for details). But they are oscillatory in [7, 8, 22, 49]. Hence, it is necessary

there to instead use a linear combination of ℓ
(n)
j and ℓ

(n−1)
j , which is much “smoother”

(considered as functions of n).
While the asymptotic behavior of ℓ(n) (for n large) was determined from explicit

formulas in [22, 49], this is unfeasible here. It can, however, be deduced from the

singularities of ℓ̂j(z), z∈C. First we consider (2.12) in the limiting case of a large
radial index j. Here and in the sequel we make the assumption of an asymptotically
equidistant grid (i.e. ∆rj→∆r). (2.12) then reads

ψ̂j+1(z)+

(

−2+ iρ
z−1

z+1
−2∆r2VR

)

ψ̂j(z)+ ψ̂j−1(z)=0, (2.21)

with ρ=4∆r2/∆t. This finite difference equation with constant coefficients has so-

lutions of power law form ψ̂j(z)= c
(

ℓ̂∞(z)
)j

. Using this ansatz in (2.21) yields the

decaying solution as j→∞ (i.e. |ℓ̂∞(z)|<1) with

ℓ̂∞(z)=1− iρ

2

z−1

z+1
+∆r2VR

− 1

z+1

√

[

(z+1)(1+∆r2VR)−
iρ

2
(z−1)

]2

−(z+1)2. (2.22)

Note that this formula coincides with the 1D case and the planar 2D case (cf. the
Appendix or [22, 10]). This is no surprise since the curvature of large circles tends to
zero for R→∞.

In (2.22) the branch of the square root has to be chosen such that |ℓ̂∞(z)|≤1 holds

for z≥1 which selects the decaying solution ψ̂j(z). ℓ̂∞ has no pole at z=−1, but two
branch points on the complex unit circle, due to the quadratic polynomial under the
square root. For the special case VR=0 that we shall illustrate numerically, they are
located at z1=1, z2=(ρ−4i)/(ρ+4i). These branch points manifest themselves as

kinks of Im ℓ̂∞(z), for z on the unit circle.

Next we discuss the singularities of ℓ̂j(z) for j finite. Subsequent ℓ̂j(z)’s are
related by the recursion (2.16). But since bj(z) is real on the unit circle (as well as

aj , cj), the kinks of Im ℓ̂j(z) are still located at z1=1, z2=(ρ−4i)/(ρ+4i) for all j
and for all modes m.

Now we turn to a discussion of the asymptotic behavior of ℓ
(n)
J for n→∞. Since

ℓ
(n)
J are just the Fourier coefficients of the 2π–periodic function ℓ̂J(e

iϕ) (cf. (2.9)),

its asymptotic behavior is determined by the singularities of ℓ̂J(z) on the unit circle.
Hence, the two square root singularities, mentioned above, imply

ℓ
(n)
J ∼ (c1z

n
1 +c2z

n
2 )n

−3/2. (2.23)

To compensate the oscillations with the higher frequency (determined by zn2 ) we define
the following summed convolution coefficients :

s(0) := ℓ
(0)
J+1,

s(n) := ℓ
(n)
J+1−z2 ℓ

(n−1)
J+1 , n≥1.

(2.24)
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This strategy is different from [22, 10, 49] since the asymptotic behavior of the co-
efficients ℓ(n) is very different in both cases. These new coefficients s(n) are now

less oscillatory than the ℓ
(n)
J+1. Hence, they are a better starting point for computing

approximate convolution coefficients (see §3 below). The discrete TBC for a single
azimuth mode now reads

ψ
(n)
J+1−s(0)ψ

(n)
J =

n−1
∑

p=1

s(n−p)ψ
(p)
J +z2ψ

(n−1)
J+1 . (2.25)

Calculation of convolution coefficients. In order to find a solution to (2.16)

we use the method of series. Let us consider the Laurent series for ℓ̂j(z):

ℓ̂j(z)= ℓ
(0)
j +ℓ

(1)
j z−1+ · · ·+ℓ(n)j z−n+ . . . , |z|≥1. (2.26)

We define the auxiliary functions

αj(z) :=
bj(z)

aj
,

αj := lim
z→∞

αj(z),

βj :=
cj
aj
.

(2.27)

Then (2.16) reads

ℓ̂j(z)
(

ℓ̂j+1(z)+αj(z)
)

+βj=0, j≥J. (2.28)

Substituting (2.26) for (2.28) we get

(

ℓ
(0)
j +ℓ

(1)
j z−1+ · · ·+ℓ(n)j z−n+ . . .

)

×
(

(

ℓ
(0)
j+1+ℓ

(1)
j+1z

−1+ · · ·+ℓ(n)j+1z
−n+ . . .

)

+αj(z)
)

+βj=0. (2.29)

We shall now discuss the computation of the coefficients ℓ
(n)
j for individual indices n:

Coefficient ℓ
(0)
j . Taking |z|→∞ we have the following recurrence equation for

ℓ
(0)
j :

ℓ
(0)
j

(

ℓ
(0)
j+1+αj

)

+βj=0. (2.30)

We shall solve this equation by “iteration from infinity”, i.e. starting from a (large)

index J∞, putting an initial value ℓ
(0)
J∞

:= ℓ
(0)
∞ , and running the recursion from J∞ to

J+1:

ℓ
(0)
j =

−βj
ℓ
(0)
j+1+αj

, j=J∞−1,J∞−2, . . . ,J+1. (2.31)

Note that a very large index J∞ corresponds to a very large radius rJ∞ . Therefore
we can use the coefficient ℓ(0) from the 1D case (cf. (A.4), or the 2D plane case) as

the starting value ℓ
(0)
∞ . It is obtained from (2.22) as ℓ

(0)
∞ = ℓ̂∞(z=∞).

Theorem 2.3 (Stability of the recurrence relation). Let |αj |≥2 j+1/2
j+1 , βj≤ j

j+1 ,

and |ℓ(0)J∞ |<βJ∞ . Then:
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a) |ℓ(0)j |<βj≤ j
j+1 <1; and

b) the recurrence formula (2.31) is stable with respect to small perturbations.

Proof. Part (a) is proved by induction. Suppose |ℓ(0)j+1|<βj+1≤ j
j+1 . Hence

|ℓ(0)j+1+αj |≥ |αj |−|ℓ(0)j+1|>2
j+1/2

j+1
− j

j+1
=1.

Therefore

|ℓ(0)j |= βj

|ℓ(0)j+1+αj |
<βj . (2.32)

To prove (b) and establish the stability we suppose that we have a perturbation

ℓ
(0)
j+1+δj+1 instead of ℓ

(0)
j+1 with |δj+1|<1. Let us consider the evolution of δj by

comparing (2.31) with

ℓ
(0)
j +δj=

−βj
ℓ
(0)
j+1+δj+1+αj

, j=J∞−1,J∞−2, . . . ,J+1.

Evidently we obtain:

δj=
−βj

ℓ
(0)
j+1+δj+1+αj

− −βj
ℓ
(0)
j+1+αj

= δj+1

−ℓ(0)j
ℓ
(0)
j+1+δj+1+αj

= δj+1

−ℓ(0)j
−βj/ℓ(0)j +δj+1

.

Therefore we get

|δj |= |δj+1|
|ℓ(0)j |

|βj/ℓ(0)j −δj+1|

≤ |δj+1|
|ℓ(0)j |2

βj−|ℓ(0)j ||δj+1|
< |δj+1|

|ℓ(0)j |2
βj

1

1−|δj+1|
,

and hence

|δj |
|δj+1|

∼
|ℓ(0)j |2
βj

<βj<1, (2.33)

for |δj+1|≪1. Thus the recursion (2.31) is stable with respect to small perturbations

(e.g. for truncation errors or for an “incorrect” initial guess ℓ
(0)
J∞

:= ℓ
(0)
∞ ).

Remark 2.4. The assumptions |αj |≥2 j+1/2
j+1 and βj≤ j

j+1 in the previous theorem

are valid for the definitions (2.14) (i.e. for a uniform offset grid) and VR≥0. Moreover

|ℓJ∞ |<βJ∞ holds true for J∞ large enough, since βj
j→∞−→ 1 for an asymptotically

equidistant grid.

Remark 2.5. The estimate (2.33) explains the fast convergence of the recursion (2.31)

to the correct value ℓ
(0)
J in spite of taking an “incorrect” initial guess ℓ

(0)
J∞

:= ℓ
(0)
∞ ; see
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the numerical examples below. Indeed, due to (2.33) we can hope for an exponential

decay of |δj | with the factor |ℓ(0)j |2/βj∼|ℓ(0)j |. For instance, the value |ℓ(0)j | is estimated
from the case of the “frozen” coefficients at J∞:

|ℓ(0)j |∼ |ℓ(0)∞ |<1,

where ℓ
(0)
∞ = ℓ̂∞(z=∞) from (2.22).

Coefficient ℓ
(1)
j . Now we consider the calculation of ℓ

(1)
j . We have from (2.27),

(2.13):

αj(z) :=αj−γj(z−1−z−2+z−3− . . .), (2.34)

with γj :=αj− ᾱj . From (2.29) and (2.34) we can write

(

ℓ
(0)
j +ℓ

(1)
j z−1+O(z−2)

)

×
(

(

ℓ
(0)
j+1+ℓ

(1)
j+1z

−1+O(z−2)
)

+
(

αj−γjz−1+O(z−2)
)

)

+βj=0. (2.35)

Annihilating leading order terms by using (2.30) we collect terms of order z−1:

ℓ
(0)
j ℓ

(1)
j+1−ℓ

(0)
j γj+ℓ

(1)
j ℓ

(0)
j+1+ℓ

(1)
j αj=0. (2.36)

Therefore the recursion is defined by

ℓ
(1)
j =−

ℓ
(0)
j ℓ

(1)
j+1−ℓ

(0)
j γj

ℓ
(0)
j+1+αj

, j=J∞−1,J∞−2, . . . ,J+1, (2.37)

with an initial value ℓ
(1)
J∞

:= ℓ
(1)
∞ .

Coefficient ℓ
(n)
j . The case of ℓ

(n)
j with n≥2 is considered similarly by truncating

terms of O(z−n−1) in (2.35). We get the following recursion formula:

ℓ
(n)
j =−

n−1
∑

k=0

ℓ
(k)
j

[

ℓ
(n−k)
j+1 +γj(−1)n−k

]

ℓ
(0)
j+1+αj

, j=J∞−1,J∞−2, . . . ,J+1, (2.38)

with an initial value ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane case: ℓ

(n)
J∞

≡ ℓ(n)∞ .
Notice that (2.37) is a particular case of (2.38) for n=1.

Theorem 2.6. Under the conditions of Theorem 2.3 the recurrence formula (2.38)
is stable with respect to small perturbations.

Proof. Let us write (2.38) as an iteration with respect to the index n:

ℓ
(n)
j =

ℓ
(0)
j

ℓ
(0)
j+1+αj

ℓ
(n)
j+1+F

(

{ℓ(n1<n)
j },{ℓ(n1<n)

j+1 }
)

, (2.39)

j=J∞−1,J∞−2, . . . ,J+1, where the function F contains the remaining terms with

indexes n1<n. Suppose that the coefficients {ℓ(n1)
j }, n1=0,1, . . . ,n−1, j=J∞−

1,J∞−2, . . . ,J+1 are exact (or known with good accuracy). Then the stability of
(2.38) is determined by the magnitude of the multiplier

ℓ
(0)
j

ℓ
(0)
j+1+αj

.
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We have from (2.32):

|ℓ(0)j |
|ℓ(0)j+1+αj |

<
βj

|ℓ(0)j+1+αj |
<βj≤

j

j+1
<1.

Remark 2.7. The proof of Theorem 2.6 is made by induction with respect to n=
1,2, . . . under the assumption that the previous coefficients for n1<n are (almost)

correct. In practice, while calculating the coefficients ℓ
(n)
j we must fix some value

J∞ and take an “incorrect” initial value ℓ
(n)
J∞

:= ℓ
(n)
∞ . This could give a numerical

instability. However, ℓ
(0)
j converges sufficiently fast to its correct value and reaches

a very good approximation after, say, J0 steps of the recursion (2.31). Hence, we

can start the recursion for ℓ
(1)
j a little bit “later”, i.e. with the delayed initial index

j=J∞−J0. Similarly for ℓ
(2)
j , the initial index can be chosen as j=J∞−2J0, etc. In

our numerical tests practical values for J0 satisfy 0≤J0≤5.

Sample calculations of the coefficients ℓ
(n)
j . We demonstrate the efficiency

of the proposed algorithm for the following example. For the radius we consider
R=1 and we discretize the circular domain [0,R]× [0,2π] with the uniform step sizes
∆r=1/200 and ∆θ=2π/200. For the time step size we take ∆t=0.0003 and calculate

the convolution coefficients ℓ
(n)
j with (2.38) for the free Schrödinger equation (i.e.

V =0) for n=0, . . . ,60. In a first set of calculations we run the algorithm with the
choice J∞=550 (which corresponds to r=3.75) and a retarding shift J0=5. Here
we just discuss the results for the mode m=1, but all other modes behave similarly.

In Figure 2.1 we show the absolute values of the last seven coefficients ℓ
(54)
j , . . . ,ℓ

(60)
j

as a function of r∈ [R,3.75]. We observe a good convergence of the coefficients while
approaching the artificial boundary R=1 from the exterior domain. An error estimate

is provided by a second calculation, where we compute convolution coefficients ℓ̃
(n)
j

with J∞=1100 and the same discretization parameters as before. The difference

|ℓ(n)j − ℓ̃(n)j | is plotted for n=54, . . . ,60 in Figure 2.2. With values of the orderO(10−14)
near the artificial boundary this error is about the rounding error of Matlab. The
influence of the retarding shift parameter J0 can be seen by comparing Figure 2.1
with Figure 2.3. In the third run we determine the convolution coefficients (still
with the same discretization parameters and J∞=550) but with J0=3. The absolute
values of these convolution coefficients are presented in Figure 2.3. The oscillations

in ℓ
(n)
j due to the instability near J∞ in this plot are more obvious than in the

coefficients computed with J0=5 shown in Figure 2.1. But also for the choice J0=3
the coefficients converge well while approaching r=R.

2D discrete TBC. In the Fourier transformed space, i.e. in terms of separate
azimuthal modes, the discrete TBCs read (this is Equation (2.25) with recovered mode
index m):

ψ
(m,n)
J+1 −s(0)m ψ

(m,n)
J =

n−1
∑

p=1

s(n−p)m ψ
(m,p)
J +z2ψ

(m,n−1)
J+1 , (2.40)

where m=0, . . . ,K−1, n≥1. Note that (2.3) implies the following symmetry in the

convolution coefficients: s
(n)
m =s

(n)
K−m. In order to obtain the discrete TBC in the
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Fig. 2.1. Absolute values of last seven coefficients ℓ
(n)
j , n=54,... ,60, J∞=550,J0=5;m=1.
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n=54
n=55
n=56
n=57
n=58
n=59
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Fig. 2.2. Absolute values of difference |ℓ
(n)
j − ℓ̃

(n)
j | of last seven coefficients calculated with

J∞=550 and J∞=1100;m=1.

physical space let us introduce the diagonal K×K matrices

s(p)=diag{s(p)m }, m=0, . . . ,K−1; p=0, 1, 2, . . . .

We shall also use the matrices F and F−1 of, respectively, the direct and inverse
Fourier transform in the θ–direction acting in accordance with (2.2):

ψ̂
(n)
j =Fψ̃

(n)
j ,

with the vectors

ψ̂
(n)
j ={ψ(m,n)

j }K−1
m=0, ψ̃

(n)
j ={ψ(n)

j,k }K−1
k=0 .
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Fig. 2.3. Absolute values of last seven coefficients, J∞=550,J0=3;m=1.

Then, multiplying (2.40) by F−1 we get the following 2D discrete TBC :

ψ̃
(n)
J+1−F−1s(0)Fψ̃

(n)
J =F−1

n−1
∑

p=1

s(n−p)Fψ̃
(p)
J +z2ψ̃

(n−1)
J+1 . (2.41)

Here, we choose to formulate the discrete TBC (2.41) at the boundary of the compu-
tational interval and one grid point in the exterior domain. In accordance with (2.20)

we have assumed that the initial condition satisfies ψ
(0)
j,k =0, j≥J ; k=0, . . . ,K−1.

Using the formula (2.41) for calculations permits us to avoid any boundary re-
flections and it renders the fully discrete scheme unconditionally stable (just like the
underlying Crank–Nicolson scheme). Note that we need to evaluate for each mode
m just one convolution of (2.41) at each time step (at the endpoint of the interval
[0,tn]). Since the other points of this convolution are not needed, using an FFT is
not practical.

Remark 2.8 (Computational effort for 2D discrete TBC). The computational
costs of 2D discrete TBCs for constant potentials consist of two parts: First, the
computation of the convolution coefficients via the recursion from infinity (2.31),
(2.37), (2.38) has to be performed only once for each potential and it amounts to
O((J∞−J)KN2) for the exact DTBCs and O((J∞−J)KL2)+O(KLN) with the
approximation (3.1). Secondly, the evaluation of the TBC (2.41) during the solution
of the Schrödinger equation incurs costs of O(KN2)+O(NK logK) without approxi-
mation and O(KLN)+O(NK logK) with the sum-of-exponentials approximation, cf.
§3.

3. Approximation by sums of exponentials
An ad-hoc implementation of the discrete convolution

n−1
∑

p=1

s(n−p)ψ
(p)
J
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in (2.25) with convolution coefficients s(n) from (2.24) has still one disadvantage. The
boundary conditions are non–local both in time and space and therefore computations
are too expensive. As a remedy, to get rid of the time non–locality, we proposed
already in [10] the sum of exponentials ansatz, i.e. to approximate the convolution
coefficients (2.24) by a finite sum (say L terms) of exponentials that decay with
respect to time. This approach allows for a fast (approximate) evaluation of the
discrete convolution (2.25) since the convolution can now be evaluated with a simple
recurrence formula for L auxiliary terms and the numerical effort per time step now
stays constant.

Let us note that similar tricks have been proposed in [24] for the heat equation,
in [50] for the continuous TBC of the 3D wave equation, in [31] for the TBC of the
2D Schrödinger equation, and developed in [2, 19, 25, 51, 52] for various hyperbolic
problems.

In the sequel we will briefly review this ansatz [10]. In order to derive a fast
numerical method to calculate the discrete convolutions in (2.40), we approximate
the coefficients s(n) by the following ansatz (sum of exponentials):

s(n)≈ s̃(n) :=











s(n), n=0,1, . . . ,ν−1,
L
∑

l=1

bl q
−n
l , n=ν,ν+1, . . . ,

(3.1)

where L,ν ∈N are a fixed numbers. Evidently, the approximation properties of s̃(n)

depend on L, ν, and the corresponding set {bl,ql}. Thus, the choice of an (in some
sense) optimal approximation of this type is a difficult nonlinear problem. Below we
propose a deterministic method of finding {bl,ql} for fixed L and ν.

Remark 3.1. The “split” definition of {s̃(n)} in (3.1) is motivated by the fact that
the implementation of the discrete TBCs (2.40) involves a convolution sum with p
ranging only from 1 to p=n−1. Since the first coefficient s(0) does not appear in this
convolution, it makes no sense to include it in our sum of exponential approximation,
which aims at simplifying the evaluation of the convolution. Hence, one may choose

ν=1 in (3.1). The “special form” of ℓ
(0)
∞ and ℓ

(1)
∞ given in [10] suggests even to exclude

s(1) from this approximation and to choose ν=2 in (3.1). We use this choice in our
numerical implementation in the example in §4.

Also, there is an additional motivation for choosing ν=2: With the choice ν=0
(or ν=1) we typically obtain (for each mode) two (or, resp., one) coefficient pairs
(bl,ql) of big magnitude. These “outlier” values reflect the different nature of the first
two coefficients. Including them into our discrete sum of exponentials would then
yield less accurate approximation results.

Let us fix L and consider the formal power series

g(x) :=s(ν)+s(ν+1)x+s(ν+2)x2+ . . . , |x|≤1. (3.2)

If the [L−1|L] Padé approximation

g̃(x) :=
PL−1(x)

QL(x)

of (3.2) exists, then its Taylor series

g̃(x)= s̃(ν)+ s̃(ν+1)x+ s̃(ν+2)x2+ . . .
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satisfies the conditions

s̃(n)=s(n), n=ν,ν+1, . . . ,2L+ν−1, (3.3)

due to the definition of the Padé approximation rule.

Theorem 3.2 ([10]). Let QL(x) have L simple roots ql with |ql|>1, l=1, . . . ,L.
Then

s̃(n)=

L
∑

l=1

bl q
−n
l , n=ν,ν+1, . . . , (3.4)

where

bl :=−PL−1(ql)

Q′
L(ql)

ql 6=0, l=1, . . . ,L. (3.5)

Remark 3.3. We remark that the assumption in Theorem 3.2 on the roots of QL(x)
to be simple is not essential. For multiple roots one only has to reformulate The-
orem 3.2. All our practical calculations confirm that this assumption holds for any
desired L, although we cannot prove this.

Evidently, the approximation to the convolution coefficients s(n) by the repre-
sentation (3.1) using a [L−1|L] Padé approximant to (3.2) behaves as follows: the
first 2L coefficients are reproduced exactly; see (3.3). However, the asymptotics of
s(n) and s̃(n) (as n→∞) differ strongly — algebraic versus exponential decay. The

difference ‖s(n)m − s̃(n)m ‖ℓ2n,m
decreases strongly with respect to L; cf. Table 4.1 in §4.2.

Note, however, that only the value of L effectively chosen in the algorithm counts
here (cf. §4.2 for details).

Fast evaluation of the discrete convolution. Let us consider the approxi-
mation (3.1) of the discrete convolution kernel appearing in the discrete TBC (2.40).
With these “exponential” coefficients the approximated convolution

C̃
(n−1)
J :=

n−1
∑

p=1

s̃(n−p)ψ
(p)
J+1, s̃(n)=

L
∑

l=1

bl q
−n
l , |ql|>1, (3.6)

of the discrete function ψ
(p)
J+1, p=1,2, . . . with the coefficients s̃(n) can be calculated

by recurrence formulas, and this will reduce the numerical effort significantly.
A straightforward calculation (cf. [10]) yields:

C̃
(n−1)
J =

L
∑

l=1

C̃
(n−1)
J,l , n≥2, (3.7)

where

C̃
(0)
l ≡0,

C̃
(n−1)
J,l = q−1

l C̃
(n−2)
J,l +bl q

−1
l ψ

(n−2)
J+1 , (3.8)

n=2,3, . . . , l=1, . . . ,L. Finally we summarize the approach by the following algorithm.
For each azimuth mode m=0, ...,K−1:
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1. Calculate ℓ
(n)
J+1,n=0, . . . ,N−1, with formulas (2.38) with a boundary value

ℓ
(n)
J∞

:= ℓ
(n)
∞ that can be taken from the 1D plane case ℓ

(n)
∞ ≡ ℓ(n) from [10], and

use (2.24) to find s(n).

2. Calculate s̃(n) via the Padé–algorithm.

3. The corresponding coefficients bl, ql are used for the efficient calculation of
the discrete convolutions.

Remark 3.4. The sum-of-exponentials approximation of the discrete TBCs reduces
the numerical effort drastically. The effort for the evaluation of the convolution sum
∑n−1
p=1 s

(n−p)
m ψ

(m,p)
J is of order O(Kn2). With the proposed approximation of the

discrete TBCs this can be reduced to linear effort O(KLn), where L denotes the
number of terms in the sum-of-exponentials (3.4). For using the exact discrete TBCs

the convolution coefficients s
(n)
m (cf. (2.24)) have to be calculated once in a set–up

before the time-stepping for all modes m and all time levels p=0, . . . ,n. As a further
advantage of the approximated discrete TBCs, the coefficients (2.24) only need to be
calculated for p=0, . . . ,2L+ν−1 (cf. (3.3)).

4. Numerical results
In this section we present some numerical examples concerning the exact discrete

TBCs and the approximated discrete TBCs. For further examples we refer the reader
to [48].

4.1. Exact discrete TBCs. Here we shall illustrate that our algorithm
can compute the convolution coefficients of the TBC with almost machine accuracy.
Hence, the (numerically computed) TBC in the circular case is essentially as accurate
as in the rectangular case [10], where the TBCs are obtained analytically.

We recall the Example 2 from [26], i.e. we consider (1.1) with the vanishing
potential V ≡0 and the angle-dependent initial data

ψI(r,θ)=
e
2ikxrcosθ+2ikyrsinθ−

(rcosθ)2

2αx
−

(rsinθ)2

2αy

√
αxαy

. (4.1)

Then the exact solution to (1.1a) for t>0 is given by the Gaussian beam

ψ(r,θ,t)=
e
2ikx(rcosθ−kxt)+2iky(rsinθ−kyt)−

(rcosθ−2kxt)2

2(αx+it)
−

(rsinθ−2kyt)2

2(αy+it)

√
αx+ it

√

αy+ it
. (4.2)

We set the initial standard deviations αx=αy=0.04, let kx=1, ky=−1 and calculate
a solution ψ1 to (1.9) with an equidistant discretization on the circular domain Ω1=
[0,R]× [0,2π] with R=1 and J+2 grid points in the r-direction and K in the θ-
direction for the time interval 0<t≤T =0.5. In order to satisfy the assumption that
the initial data is compactly supported in Ω1 (cf. §2) we use a small numerical cut-off
close to R, ψI(r,θ)=0 for r≥R−∆r for all angles θ, i.e. in discrete notation ψ0

j,k=0
for j≥J, k=0, . . . ,K−1. We remark that this assumption of compactly supported
initial data is not essential; strategies to overcome this restriction can be found in
[22]. Since we use an offset grid, discrete TBCs are implemented as described before
(cf. (2.40)–(2.41)) at r=R−∆r/2, using the grid points R and R−∆r. A reference
solution ψ2 is calculated on the domain Ω2=[0,2R]× [0,2π] with discrete TBCs at
r=2R−∆r/2. To determine the error due to the PDE–scheme (1.9) we compare the
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numerical solution ψ2 with the exact one ψ on Ω1: The relative L2-error

LΩ1
(ψ2,ψ,tn)=

(

∑

(rj ,θk)∈Ω1

rj |ψ2(rj ,θk,tn)−ψ(rj ,θk,tn)|2
)

1
2

max
0≤tn≤T







(

∑

(rj ,θk)∈Ω1

rj |ψ(rj ,θk,tn)|2
)

1
2







, (4.3)

is based on the norm defined in (2.5). This test includes also the error due to the
cut-off of the initial function. The effects of the boundary should be negligible here,
because the “main wave” of ψ2 does not cross the boundary at r=2R during the
considered time interval.

In order to distinguish between the error due to the difference scheme and the
error due to the discrete TBCs, we compare the numerical solution ψ1 with the nu-
merical reference solution ψ2 and calculate the relative error LΩ1

(ψ2,ψ1,tn) due to
the boundary condition.

Discretization and results. The solutions ψ1 and ψ2 are calculated for three
parameter sets. First we let J =K=64, i.e. ∆r=1/64, ∆θ=2π/64, and ∆t=
1/64, then ∆r=∆t=1/128, ∆θ=2π/128, and finally ∆r=∆t=1/256, ∆θ=2π/256.
These discretization parameters are taken from [26]. The relative error of the initial
function due to the cut–off is about O(10−6),O(10−7),O(10−7), respectively. We
present in Figure 4.1 the absolute value of the initial function (4.1) and of the evolu-
tion of the numerical solution ψ1 on the computational domain Ω1 until t=0.5 for the
last set of discretization parameters and the potential V =0. The Gaussian beam has
an initial momentum specified by kx=1, ky=−1. As expected, the beam leaves the
computational domain without any non-physical reflections at the artificial boundary.
The observable broadening of the beam (as t grows) is due to dispersive effects, which
are equally present in the exact solution (4.2). Figure 4.2(a) shows the relative error
LΩ1

(ψ2,ψ,tn) of the numerical solution ψ2 with respect to the exact solution restricted
on Ω1 for the three sets of parameters: The scheme is second order in ∆r,∆θ,∆t.

The relative error LΩ1
(ψ1,ψ2,tn) due to the boundary condition is presented in

Figure 4.2(b) also for all parameter sets. With values aroundO(10−13) it is close to the
rounding error of Matlab. So the error of our discrete TBC is negligible compared to
the error of the finite difference scheme in the interior. In [26], however, the truncated
TBCs introduce an additional error, which seems to be larger than the discretization
error (cf. Fig. 10 in [26]).

We remark that the (small) error in Figure 4.2(b) consists of two contributions:
The error of the discrete convolutions in the TBC which may slightly increase with
a finer t-discretization – amounting to longer discrete convolutions. The second con-
tribution stems from the iterative solver for the system of linear equations (cf. also
Figure 4.3). Note that the spatial degrees of freedom increases by a factor four be-
tween each parameter set. Accordingly, the condition number of the system matrices
for the three sets of parameters are about 5 ·104, 4 ·105, 3 ·106, respectively.

Our next test concerns the long–time behavior of the relative error due to the
discrete TBCs. Therefore we calculate the numerical solutions ψ1, ψ2 of (1.9) for the
initial data (4.1) with kx=ky=0, αx=αy=0.5 on the circular domains Ω1=[0,R]×
[0,2π] and, resp., Ω2=[0,2R]× [0,2π] with R=2.5 until t=4. Since kx=ky=0, the
beam does not propagate and only spreads due to dispersion. We use the three sets
of discretization parameters ∆r=R/64, ∆θ=2π/64; ∆r=R/128, ∆θ=2π/128; and
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(f) t=0.5

Fig. 4.1. Absolute value (as normal/contour plots) of the initial function ( (4.1) with cut-off)
and the calculated solution ψ1 of the scheme (1.9) on the computational domain Ω1 with ∆r=∆t=
1/256,∆θ=2π/256, αx=αy =0.04, and the wave numbers kx=1, ky =−1. V =0; a discrete TBC
is implemented at r=1−∆r/2: No reflections are visible.

∆r=R/256, ∆θ=2π/256. For all calculations we let ∆t=0.01. In Figure 4.3 we show
the relative error LΩ1

(ψ1,ψ2,tn) due to the boundary conditions (and the residual of
the solver for the linear system) for this long-time test. Observe that in this long-time
calculation the error due to the discrete TBCs grows only sublinearly and is still only
around O(10−13).



A. ARNOLD, M. EHRHARDT, M. SCHULTE, AND I. SOFRANOV 909

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
10

−5

10
−4

10
−3

10
−2

10
−1

10
0

t

relative L2−error due to the scheme

 

 
J=K=64, ∆t=1/64
J=K=128, ∆t=1/128
J=K=256, ∆t=1/256

(a) error due to the scheme
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(b) error due to the boundary condition

Fig. 4.2. (a): Relative error LΩ1
(ψ2,ψ,tn) due to the scheme and (b): relative error

LΩ1
(ψ1,ψ2,tn) due to the boundary conditions. Both errors are calculated for the time evolution of

initial function (4.1) for the three parameter sets with 64 (solid line), 128 (dashed line), and 256
grid points (dashed-dotted line).

In an additional numerical test (presented in §4.4.2 of [48]) we also applied our
discrete TBC-approach to the example of [5] (again ψI from (4.1), but with modified
parameters kx, ky, αx, αy). Since the authors of [5] only use (approximate) absorb-
ing boundary conditions, their relative error is larger than with our discrete TBC–
approach.

4.2. Approximated discrete TBCs. To illustrate the sum-of-exponential
ansatz we consider again the initial function (4.1) with the parameters αx=αy=0.04
and kx=−ky=1. We consider the initial data (4.1) with a cut-off at R−∆r, which
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Fig. 4.3. Relative error LΩ1
(ψ1,ψ2,tn) due to the boundary condition for the time evolution of

initial function (4.1) with kx=ky =0, αx=αy =0.5 for the three parameter sets with 64 (solid line),
128 (dashed line), and 256 grid points (dashed-dotted line). The time step size equals ∆t=0.01.

causes a relative error of the order O(10−6). With this initial data a solution ψ1 of
(1.9) is calculated on the circular domain Ω1=[0,R]× [0,2π] with the radius R=1.
For the discrete TBCs we use the approximation (3.6). As a numerical reference
solution we take ψ2, which is obtained with the exact discrete TBCs (2.41) on the
larger domain [0,2]× [0,2π].

Discretization and results. For the discretization parameters ∆t=0.002, ∆r=
1/64, ∆θ=2π/64 we evolve the solution up to t=0.5. In the sum-of-exponentials we
choose ν=2 in the three different calculations, L=10, 20, and 40. We obtain the
first 2L+ν−1 convolution coefficients exactly by the recursion formula (2.38) with

an initial value ℓ
(n)
J∞,m := ℓ

(n)
∞,m taken from the 1D plane case ℓ

(n)
∞,m≡ ℓ(n)m from [10] for

each mode m=0, . . . ,K−1 and sum them according to (2.24). The sets {bl,m,ql,m},
l=1, . . . ,L needed for the calculation of the approximated convolution coefficients s̃

(n)
m ,

n>2L+ν−1 for all modes m are obtained by the Padé algorithm described in §3.
We realized these calculations by a Maple code, within which we try to find L roots
ql,m of the polynomial QL(x) as it is described in Theorem 3.2 (separately for each
mode). Due to a “nearly breakdown” by ill conditioned steps in the Lanczos algorithm
(cf. [16]) it is not always possible to find L roots of QL,m fulfilling the condition
|ql,m|>1, l=1, . . . ,L for each mode m=0, . . . ,K−1. Consequently, the Maple code
automatically chooses smaller and smaller values (L−1,L−2, . . .) to guarantee that
all roots have an absolute value larger than 1. E.g., with the initial choice L=40 you
will find values for L fulfilling the above condition that vary from 18 to 32 for the
different modes. The number of summands L is hence just an initial guess for the
final number of summands in the sum-of-exponentials; cf. Table 4.1.

In Figure 4.4 we present the contour plots of the absolute value of the solution
ψ1 at time t=0.5, calculated with the approximated discrete TBCs with L=10 and
L=40 terms in the sum-of-exponentials. For L=10 there are strong non-physical
reflections (see Figure 4.4(a)), for larger values of L these reflections become invisible
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initial L 10 20 30

‖s(n)m − s̃(n)m ‖ℓ2n,m
2.75e-04 1.61e-05 1.32e-05

Lmin 5 14 14
Lmax 10 20 30

Table 4.1. L2–errors in the approximated coefficients s̃
(n)
m for different initial choices of L.

Lmin, Lmax are the effectively used smallest and largest numbers of summands with respect to the
64 modes.
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(a) L=10
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 = [0,1]x[0,2π] at time t= 0.5, ∆t = 0.002, ∆r = 1/64, ∆θ = 2π /64

(b) L=40

Fig. 4.4. Contour plots of the absolute value of the calculated solution ψ1 of (1.9) at t=0.5 with
the initial function (4.1) on the computational domain Ω1. We use approximated discrete TBCs
with the initial choices (a) L=10 and (b) L=40.

(see Figure 4.4(b)).
The relative L2-error due to the approximated discrete TBCs is shown in Fig-

ure 4.5. For different initial choices of the number of coefficients L in the sum-of-
exponentials we present the error LΩ1

(ψ1,ψ2,tn) (cf. (4.3)) there. Although the

coefficients s
(n)
m , s̃

(n)
m have different asymptotic behaviors (algebraic vs. exponential

decay) the error grows only moderately in time. In our next test we show that long
time calculations with the approximated discrete TBCs are stable. To this end we
evolve the initial data (4.1) with αx=αy=0.04 and kx=ky=0 up to t=20. We use
the discretization parameters ∆t=0.002, ∆r=1/64, ∆θ=2π/64 for different initial
choices for L, the number of summands. Due to dispersion the norm of the solution
decays in time, as it is shown in Figure 4.6.

In §4.4.3 of [48] we applied the sum-of-exponentials approximation to an addi-
tional numerical example and compared it to the example from [31] (again ψI from
(4.1), but with modified parameters kx, ky, αx, αy). In [31] the authors presented a
different sum-of-exponentials approximation for the convolution kernel of the TBC
for the 2D Schrödinger equation.

We remark that the sum-of-exponentials approach for discrete TBCs of
the 1D Schrödinger equation (including the Maple code) is presented at
http://www-amna.math.uni-wuppertal.de/~ehrhardt/dtbc.html.
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Fig. 4.5. Relative error LΩ1
(ψ1,ψ2,tn) due to the approximated discrete TBCs as a function

of tn∈ [0,0.5] for the time evolution of the initial function (4.1) for different initial choices of the
number L in the sum-of-exponentials, 10 (solid line), 20 (dashed line), and 40 grid points (dashed-
dotted line). The relative error due to the exact discrete TBCs for this problem is plotted in the
dotted line.
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Fig. 4.6. L2-norm for the long time evolution of the initial function (4.1) with αx=αy =
0.04 and kx=ky =0 again for different initial choices of the number L in the sum-of-exponentials,
10 (solid line), 20 (dashed line), and 40 grid points (dotted line). We choose the discretization
parameters ∆r=1/64, ∆θ=2π/64, ∆t=0.002.

5. Conclusion and future work

In this paper we extend the ideas and the fast evaluation technique of the paper
[10] to the case of a two–dimensional circular domain. We proved a discrete energy
conservation for the proposed Crank-Nicolson type finite difference scheme. After a
Z-transformation with respect to the time level we considered for each angular mode
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a variable-coefficient Riccati difference equation to derive the discrete TBC. Then we
proposed and proved a stable algorithm to compute the convolution coefficients for
each angular mode. We conclude with several numerical examples illustrating that
the new TBC yields accurate results.

Concerning possible extensions of the present work we note that the Schrödinger
equation on elliptical domains is being used for simulations of diatomic molecules
[55] and ellipsoidal quantum dots [17, 34], for example. Hence, it is an interesting
future research direction to further generalize our approach to ellipsoidal domains. In
this respect we note that, for VR<0, the Laplace transformed Schrödinger Equation
(1.3) can be regarded as a Helmholtz–type equation in polar coordinates with a complex
wave number. Such equations can be solved by Mathieu functions for elliptical shaped
boundaries; cf. [12, 14, 39, 40, 42] and the references therein.

A second challenging future work direction would be to generalize our method to
3 space dimensions. For the continuous TBC this was done in [27] and recently by
Heinen and Kull in [28, 29] by using a spherical harmonic expansion. Hence, it seems
feasible that our strategy can also be extended to the discrete TBC in 3D. However,
the inclusion of the latitudinal differential operator brings about new features (like
the singularity of the coefficients and discrete BCs at the poles) that will have to be
checked in detail.

Appendix A. New discrete TBCs for the 1D Schrödinger equation.
With a uniform spatial discretization, the Crank–Nicolson finite difference scheme for
the Schrödinger equation with constant potential V reads:

− 2i

∆t

(

ψ
(n+1)
j −ψ(n)

j

)

=
ψ
(n+ 1

2 )
j+1 −2ψ

(n+ 1
2 )

j +ψ
(n+ 1

2 )
j−1

∆x2
−2V ψ

(n+ 1
2 )

j ,

j∈Z, n∈N0.

Let the index interval j=0, . . . ,J denote the computational domain, and abbreviate
the mesh ratio by ρ :=4∆x2/∆t. Using the Z–transform method of §2 (or [7]) one
first derives the discrete TBC for the Z–transformed variable:

ψ̂J(z)= ℓ̂(z)ψ̂J−1(z), (A.1)

with ℓ̂(z) given by (2.22), if replacing there VR by V . As before, we choose the branch
of the square root such that |ℓ(z)|≤1 for z≥1. An inverse Z–transformation of (A.1)
yields (similarly to [22, §3.2]):

ψ
(n)
J = ℓ(n) ∗ψ(n)

J−1. (A.2)

or explicitly (when assuming ψ
(0)
j =0, j≥J−1)

ψ
(n)
J −ℓ(0)ψ(n)

J−1=

n−1
∑

p=1

ℓ(n−p) ∗ψ(p)
J−1. (A.3)

Here, the convolution coefficients are given by

ℓ(n)=
[

1+ i
ρ

2
+
σ

2

]

δ0n− iρ(−1)n+
i

2
4

√

(ρ2+σ2)
[

ρ2+(σ+4)2
]

e−iϕ/2·

·e−inϕ
{

λPn(µ)+Pn−1(µ)+τ
n−1
∑

k=0

(−λ)n−kPk(µ)
}

,
(A.4)
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with κ=V∆t/2, σ=ρκ, δ the Kronecker delta, Pn the Legendre polynomials, and
P−1≡0. Here we used the following abbreviations:

λ :=
ρ−4κ−ρκ2+2i(ρκ+2)
√

(1+κ2)
[

ρ2+(ρκ+4)2
]

= eiϕ, withϕ=arctan
2(ρκ+2)

ρ−4κ−ρκ2 .

Moreover

µ :=
ρ(1+κ2)+4κ

√

(1+κ2)
[

ρ2+(ρκ+4)2
]

∈ (−1,1),

τ :=
4ρ

√

(1+κ2)
[

ρ2+(ρκ+4)2
]

∈R.

Note that the convolution in (A.2) is implemented at the grid point J−1, i.e.
at the interior of the two boundary grid points J−1, J . This is in contrast to the
discrete TBC in [7], which uses a convolution on the exterior boundary grid point:

ψ
(n)
J−1= ℓ̃

(n) ∗ψ(n)
J .

There, the convolution coefficients ℓ̃(n) are defined with the opposite sign in front of
the fourth root of (A.4).

This slight reformulation of the discrete TBCs has an important practical conse-
quence: While the coefficients ℓ̃(n) are oscillatory (ℓ̃(n)≈2iρ(−1)n, cf. [22, S3.3]), the
coefficients ℓ(n) decay like n−3/2. Hence, this new formulation (A.2) does not require
us to introduce the “summed convolution coefficients” of [7, 22].

A more refined asymptotic of the coefficients ℓ(n) is given in (2.23).
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[44] A. Schädle, Non–reflecting boundary conditions for the two dimensional Schrödinger equation,
Wave Motion, 35, 181–188, 2002.

[45] F. Schmidt and P. Deuflhard, Discrete transparent boundary conditions for the numerical so-
lution of Fresnel’s equation, Comput. Math. Appl., 29, 53–76, 1995.

[46] F. Schmidt, Construction of discrete transparent boundary conditions for Schrödinger–type
equations, Surv. Math. Ind., 9, 87–100, 1999.

[47] M. Schulte, Transparente Randbedingungen für die Schrödinger Gleichung, Diploma Thesis,
Westfälische Wilhelms-Universität Münster, 2004.

[48] M. Schulte, Numerical Solution of the Schrödinger Equation on Unbounded Domains, Disser-
tation, Westfälische Wilhelms-Universität Münster, 2007.

[49] M. Schulte and A. Arnold, Discrete transparent boundary conditions for the Schrödinger equa-
tion – A compact higher order scheme, Kinetic and Related Models, 1, 101–125, 2008.

[50] I.L. Sofronov, Conditions for complete transparency on the sphere for the three–dimensional
wave equation, Russian Acad. Sci. Dokl. Math., 46, 397–401, 1993.

[51] I.L. Sofronov, Artificial boundary conditions of absolute transparency for two- and three-
dimensional external time–dependent scattering problems, Euro. J. Appl. Math., 9, 561–
588, 1998.

[52] I.L. Sofronov, Non–reflecting inflow and outflow in wind tunnel for transonic time–accurate
simulation, J. Math. Anal. Appl., 221, 92–115, 1998.

[53] J. Szeftel, Design of absorbing boundary conditions for Schrödinger equations in Rd, SIAM
J. Numer. Anal., 42, 1527–1551, 2004.

[54] J. Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations,
Comput. Methods Appl. Mech. Engrg., 195, 3760–3775, 2006.

[55] L. Tao, C.W. McCurdy, and T.N. Rescigno, Grid-based methods for diatomic quantum scat-
tering problems. III. Double photoionization of molecular hydrogen in prolate spheroidal
coordinates, Phys. Rev. A, 82, 023423, 2010.

[56] F.D. Tappert, The parabolic approximation method, in Wave Propagation and Underwater
Acoustics, Lecture Notes in Physics 70, eds. J.B. Keller and J.S. Papadakis, Springer, New
York, 224–287, 1977.

[57] C. Vassalo, Optical Waveguide Concepts, Elsevier, 1991.
[58] B. Zamzow, Simulation von Glasfaserspleißen mit der Beam–Propagation–Methode,

Fortschritt–Berichte VDI Reihe 10, Nr. 655, Düsseldorf, VDI Verlag, 2001.
[59] C. Zheng, A perfectly matched layer approach to the nonlinear Schrödinger wave equations, J.

Comput. Phys., 227, 537–556, 2007.
[60] A. Zisowsky, Discrete Transparent Boundary Conditions for Systems of Evolution Equations,

Ph.D. Thesis, Technische Universität Berlin, 2003.
[61] A. Zisowsky and M. Ehrhardt, Discrete artificial boundary conditions for nonlinear Schrödinger

equations, Math. Comput. Modell., 47, 1264–1283, 2008.


