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REMARK ON RANDOM ATTRACTOR FOR A TWO

DIMENSIONAL INCOMPRESSIBLE NON-NEWTONIAN FLUID

WITH MULTIPLICATIVE NOISE∗
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Abstract. In this paper, we study the asymptotic behavior of two-dimensional stochastic non-
Newtonian fluids with multiplicative noise. In particular, we prove the existence of random attractors
in H under the condition 2<p<3.
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1. Introduction

Let D⊂R2 be a bounded smooth open domain, and consider the following two-
dimensional stochastic incompressible non-Newtonian fluids with multiplicative noise:

du+
(

u ·∇u−∇·τ(e(u))+∇π
)

dt= g(x)dt+

m
∑

j=1

bju◦ dωj(t), x∈D, t> 0, (1.1)

u(x,0)=u0(x), x∈D, (1.2)

∇·u(x,t)=0, (1.3)

subject to the boundary conditions

u(x,t)=0,τijlκjκl=0, x∈∂D, (1.4)

where ◦ denotes the Stratonovich sense in the stochastic term, ωj(t),1≤ j≤m are
mutually independent two-sided Wiener processes, and bj ∈R,1≤ j≤m are given.
The unknown vector function u denotes the velocity of the fluids, g is the external
body force vector, the scalar function π represents the pressure, and τij(e(u)) is a
symmetric stress tensor. There are many fluid materials — for example liquid foams
and polymeric fluids such as oil in water, blood, etc. — whose viscous stress tensors
are represented by the form

τij(e(u))=2µ0(ǫ+ |e(u)|2)
p−2
2 eij(u)−2µ1∆eij(u), ǫ> 0, i,j=1,2, (1.5)

eij(u)=
1

2

( ∂ui

∂xj
+
∂uj

∂xi

)

, |e(u)|2=

2
∑

i,j=1

|eij(u)|
2,

and τijl =2µ1
∂eij
∂xl

(i,j,l=1,2), κ=(κ1,κ2) denotes the exterior unit normal to the
boundary ∂D. The first condition represents the usual no-slip condition associated
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with a viscous fluid, while the second one expresses the fact that the first moments
of the traction vanish on ∂D, and is a direct consequence of the principle of virtual
work.

Obviously, when p=2, µ1=0, and bj =0, Equation (1.1) is a deterministic equa-
tion and reduces to the Navier-Stokes equation. When µ0=µ1= bj=0 it is Euler
equation; they both are Newtonian fluids. The fluid is called shear thinning while
1<p< 2, and is shear thickening while p> 2. In this paper, we will concentrate our
attention on the case 2<p< 3.

Before describing our work, we first recall some results about the deterministic
non-Newtonian fluids. Many papers have been devoted to questions of existence,
uniqueness and regularity of the solution and the existence of an attractor and mani-
fold for deterministic non-Newtonian fluids (see [1, 2, 3, 13, 14, 15]). In fact, the deter-
ministic system model usually neglects the impact of many small perturbations, and
stochastic equation can better conform to physical phenomena. Thus many authors
contributed their efforts to this stochastic field of research, and displayed interesting
structures and phenomena in physics.

For important equations, such as the stochastic KdV equation, Navier-Stokes
equation, Burgers equation, Schrödinger equation etc., there has been much work and
interesting results related to existence, uniqueness, and attractors; for these topics
and the progresses in these fields, see [4, 5, 6, 8, 9]. There is also a series of papers
which investigates stochastic non-Newtonian fluids. Some important results have
been obtained, such as [11, 12], and so on. Especially, Zhao et al. [16] proved the
existence of a global random attractor for two-dimensional stochastic non-Newtonian
fluids with multiplicative noise in the case of 1<p< 2. Along this line, we want to
know whether a similar result is also true for the shear thickening case p> 2. This is
the main subject that we will develop in this work. In this paper, we prove that there
exist global random attractors for two-dimensional stochastic non-Newtonian fluids
with multiplicative noise in the case of 2<p< 3.

Crauel, Debussche, and Flandoli (see [4, 5]) present a general theory to study
the random attractors by defining an attracting set as a set that attracts any orbit
starting from −∞. Given a probability space, the random attractors are compact
invariant sets which depend on chance and move with time. The main general result
on random attractors relies heavily on the existence of a random compact attracting
set. In this paper, we will apply the theory to prove the existence of random attractors
for two-dimensional stochastic non-Newtonian fluids in the case of 2<p< 3. Firstly,
we make use of the Stratonovich transform to change the stochastic equation to a
deterministic equation with random parameter; Secondly, we obtain the existence of
bounded absorbing sets by some estimates of solution in space H ; Thirdly, we use the
compact embedding of Sobolev space to obtain the existence of a compact random
set.
Remark 1.1. The differences between our paper and the article [16] are listed as
follows:

(1) From the view point of physics, the fluid is shear thickening in the case of
p> 2.

(2) After making the Stratonovich transform, larger values of p will make it more
difficult to obtain some norm estimates of v. In order to obtain the existence of a
compact absorbing set, especially, we restrict to p∈ (2,3). By using detailed

estimates, we not only overcome the difficulty which is produced by the increase of

p, but also get rid of the unnatural condition µ1C1−2µ0ǫ
−α
2 > 0(α=2−p) in [16].



C.-X. GUO AND B.-L. GUO 823

(3) The proof method of the existence of compact absorbing set is different. By
the Hölder inequality, Gagliardo-Nirenberg inequality, ǫ−Young inequality, and the
restricted condition 2<p< 3, we deal with the difficulty which is produced by the
increase of p. For more detailed process, one can refer to Lemma 3.3.

Remark 1.2. The key difficulty and main achievement in our paper are listed as
follows:

(1) The determination of the upper bound for p. In order to satisfy the Hölder
inequality in (3.21), we need to assume the condition γ(p−3)>−2. At the same
time, in order to satisfy the ǫ−Young inequality in (3.27), we need the condition
γ(p−3)+3< 2, namely, −2<γ(p−3)<−1. Thus the value of γ restricts the upper
bound of p to 3. For more detailed process, one can refer to Lemma 3.3 (3.18)-(3.28).

(2) Furthermore, 3 is the optimal upper bound for p.

Remark 1.3. The appearance of operator ∇·(∆e) makes the non-Newtonian fluids
have a higher regularity than the Navier-Stokes equation. Many authors have obtained
the H2-regularity of attractors for the deterministic system (see [3, 14]). Therefore,
the proof of the existence of H2-regularity of random attractors for non-Newtonian
fluid with multiplicative noise will be our further work.

The paper is organized as follows. In Section 2, we recall some definitions and
already known results concerning random attractors; In Section 3, we develop all the
results needed to prove the existence of random attractors in space H with 2<p<
3 , g∈H .

2. Preliminaries

For the convenience of the following contents, we introduce some functional spaces
and some notations.

Lq(D) - the Lebesgue space with norm || · ||Lq , || · ||L2 = || · || .
Hσ(D) - the Sobolev space {u∈L2(D), Dku∈L2(D), k≤σ}, || · ||Hσ = || · ||σ.
C (I,X) - the space of continuous functions from the interval I to X .
Define a space of smooth functions

V = {u∈C∞
0 (D) :∇·u=0},

H=the closure of V in L2(D) with norm || · ||, and let (·, ·) denote the inner product
in H .

H1
0 (D)= the closure of V in H1(D) with norm || · ||1.

V = the closure of V in H2(D) with norm || · ||2. V
′ is the dual space of V .

By a simple computation, we can conclude the results ∇·e(u)= 1
2∆u, and ∇·

(∆e(u))= 1
2∆

2u. Thus, 2µ1∇·(∆e(u))=µ1∆
2u.

For notational simplicity, C is a generic constant, and may assume various values
from line to line throughout this paper.

We introduce the linear operator A as follows: consider the positive definite V -
elliptic symmetric bilinear form a(·, ·) :V ×V →R given by

a(u,υ)=

∫

D

∆u∆υdx, (u, υ∈V ).

As a consequence of the Lax-Milgram lemma, we obtain an isometry A∈L (V,V ′),

<Au,υ>V ′×V =a(u,υ)=<f,υ>V ′×V , ∀υ∈V,
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where V ′ is the dual space of V , and the domain of A is

D(A)= {u∈V :a(u,υ)= (f,υ), f ∈H⊂V ′, ∀υ∈V }.

In fact A=P∆2, where P is the projection from L2(D) to H.
Define the trilinear form b on H1

0 (D)×H1
0 (D)×H1

0 (D) given by

b(u,υ,ψ)=

∫

D

ui
∂υj

∂xi
ψjdx, u,υ,ψ∈H1

0 (D).

Next, define a bilinear map B on H1
0 (D)×H1

0 (D) by

(B(u,u),ψ)= b(u,u,ψ), u,ψ∈H1
0 (D).

Define the map N(u) on H1
0 (D) as follows

(N(u),ψ)=

∫

D

γ(u)eij(u)eij(ψ)dx, u,ψ∈H1
0 (D),

where γ(u)= (ǫ+ |e(u)|2)
p−2
2 .

Following these preparation, Equations (1.1)-(1.4) can be translated into the fol-
lowing abstract problems in H :

du+[µ1Au+2µ0N(u)+B(u,u)]dt= gdt+

m
∑

j=1

bju◦ dωj(t), x∈D, t>s, (2.1)

u(x,s)=us(x), s∈R, x∈D, (2.2)

where we assume that us∈H, g∈H.
We next recall some definitions and results concerning the random attractors,

which can be found in [4, 5]. Let (X,d) be a complete separable metric space and
(Ω,F ,P) be a complete probability space. We will consider a family of mappings
S(t,s;ω) :X→X, −∞<s≤ t<∞, parameterized by ω∈Ω.

Definition 2.1. Given t∈R and ω∈Ω, K(t,ω)⊂X is an attracting set if for all
bounded sets B⊂X,

d(S(t,s;ω)B,K(t,ω))→0, s→−∞,

where d(A,B) is the semidistance defined by

d(A,B)= sup
x∈A

inf
y∈B

d(x,y).

Definition 2.2. A family A(ω), ω∈Ω of closed subsets of X is measurable, if for
all x∈X, the mapping ω 7→d(x,A(ω)) is measurable.

Definition 2.3. Let {θt :Ω→Ω, t∈R} be a family of measure preserving trans-
formations of (Ω,F ,P) such that θ0= idΩ and θt+s= θt ◦θs for all t,s∈R. Here we
assume θt is ergodic under P. Especially, for all s< t∈R, and x∈X,

S(t,s;ω)x=S(t−s,0;θsω)x, P−a.e.

Definition 2.4. Define the random omega limit set of a bounded set B⊂X at time
t as

A(B,t,ω)=
⋂

T<t

⋃

s<T

S(t,s;ω)B.
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Definition 2.5. Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system, and A(t,ω)
a stochastic set satisfying the following conditions:

(1) It is the minimal closed set such that for t∈R, B⊂X,

d(S(t,s;ω)B,A(t,ω))→0, s→−∞,

which implies A(t,ω) attracts B (B is a deterministic set).

(2) A(t,ω) is the largest compact measurable set which is invariant in sense that

S(t,s;ω)A(θsω)=A(θtω), s≤ t.

Then A(t,ω) is said to be the random attractor.

Theorem 2.6 (see [4]). Let S(t,s;ω)t≥s,ω∈Ω be a stochastic dynamical system
satisfying the following conditions:

(1) S(t,r;ω)S(r,s;ω)x=S(t,s;ω)x, for all s≤ r≤ t and x∈X,

(2) S(t,s;ω) is continuous in X, for all s≤ t,

(3) For all s< t and x∈X, the mapping

ω 7→S(t,s;ω)x

is measurable from (Ω,F ) to (X,B(X)),

(4) For all t, x∈X, and P-a.e. ω, the mapping

s 7→S(t,s;ω)x

is right continuous at any point.

Assume that there exists a group θt, t∈R, of measure preserving mappings such
that

S(t,s;ω)x=S(t−s,0;θsω)x , P−a.e. s< t,x∈X (2.3)

holds and for P-a.e. ω there exists a compact attracting set K(ω) at time 0 for P-a.e.
ω∈Ω. We set Λ(ω)=

⋃

B⊂XA(B,ω), where the union is taken over all the bounded
subsets of X and A(B,ω) is given by

A(B,ω)=A(B,0,ω)=
⋂

T<0

⋃

s<T

S(0,s;ω)B.

Then Λ(ω) is a random attractor.

Remark 2.7. For (2.1)-(2.2), let Ω= {ω∈C(R, l2)|ω(0)=0}, with P being the prod-
uct measure of two Wiener measures on the negative and the positive time parts of Ω.
Then (β1(t,ω),β2(t,ω), ...,βk(t,ω), ...)=ω(t). In this case, the time shift θt is defined
as

(θtω)(s)=ω(t+s)−ω(t) , s,t∈R,

so the condition (2.3) is satisfied.



826 RANDOM ATTRACTOR FOR INCOMPRESSIBLE NON-NEWTONIAN FLUID

3. Existence of random attractors in H

Next, we introduce an auxiliary Stratonovich process, which enables us to change
the stochastic equation to an evolution equation depending on a random parameter.
The process η(t)= e−

∑m
j=1 bjωj(t) satisfies the Stratonovich equation

dη(t)=−

m
∑

j=1

bjη(t)◦dωj(t). (3.1)

We set v(t)= η(t)u(t), which satisfies the following equation:

dv

dt
+µ1Av+ηB(u,u)+ηN(u)= ηg. (3.2)

v(x,s)= vs= η(s)us(x), x∈D, s∈R, (3.3)

Similarly (see [7, 13]), we can use the Galerkin method to prove that the following
results hold for P-a.e. ω∈Ω:

For g∈H, vs∈H, s<T ∈R, there exists a unique weak solution to (3.2)-(3.3) sat-
isfying v∈C (s,T ;H)

⋂

L2(s,T ;V ) with v(s)= vs.
We define the stochastic dynamical system (S(t,s;ω))t≥s,ω∈Ω by

S(t,s;ω)us=u(t,ω;s,us)= η
−1(t,ω)v(t,ω;s,η(s,ω)us).

It can be easily checked that the assumptions (1)-(4) are satisfied in Theorem 2.6. In
the following, we will prove the existence of a compact attracting set K(ω) at time
0 in H . First, we would obtain some estimates in H and H1

0 (D); Second, we use the
compactness of the embedding to prove the existence of compact random attractors.

Lemma 3.1. Let p> 2, g∈H. There exists a random radius r1(ω), such that ∀ρ> 0,
there exists s(ω)≤−1, such that for all s≤ s(ω), and for all us∈H, with ||us||≤ρ,
the solution of Equation (3.2)-(3.3) with vs= η(s)us satisfies the following inequality:

||v(−1,ω;s,η(s,ω)us)||
2≤ r21(ω), P−a.e.,

where r21(ω)= e
β(1+ ||g||2

β

∫ −1

−∞
eβση2(σ)dσ).

Proof. Taking the inner product of Equation (3.2) with v in H , and noticing
the fact that b(u,u,v)=0, we get

1

2

d

dt
||v||2+µ1||∆v||

2+2µ0η

∫

D

(ǫ+ |e(u)|2)
p−2
2 e(u)e(v)dx=(ηg,v). (3.4)

Applying the condition v= ηu, we get e(v)= ηe(u).

Let I=2µ0η
∫

D
(ǫ+ |e(u)|2)

p−2
2 e(u)e(v)dx,

I=2µ0

∫

D

(ǫ+ |e(u)|2)
p−2
2 e(v)e(v)dx. (3.5)

Owing to p> 2, thus

I≥ 2µ0ǫ
p−2
2 ||e(v)||2, (3.6)

and
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I≥ 2µ0

∫

D

|e(u)|p−2|e(v)|2dx

=2µ0η
2||e(u)||pLp . (3.7)

We drop the term involving µ1 in (3.4) and use (3.6) to obtain

1

2

d

dt
||v||2+2µ0ǫ

p−2
2 ||e(v)||2≤ η||g|| ||v||. (3.8)

Because of Korn’s inequality,

k1(D)||v||21≤||e(v)||2≤k2(D)||v||21

and ||v||21≥C||v||
2. Furthermore,

1

2

d

dt
||v||2+β||v||2≤

||ηg||2

2β
+
β||v||2

2
, (3.9)

where β=2µ0Cǫ
p−2
2 k1(D).

By Gronwall’s lemma on the interval [s,−1], we can deduce

||v(−1)||2≤ e−β(−1−s)||η(s)u(s)||2+

∫ −1

s

e−β(−1−σ) ||g||
2

β
η2(σ)dσ

≤ eβ(eβsη2(s)||us||
2+

||g||2

β

∫ −1

−∞

eβση2(σ)dσ). (3.10)

By a standard argument,

lim
t→−∞

1

t

m
∑

j=1

bjωj(t)=0, P−a.s.

It follows that s 7→ eβsη2(s) is pathwise integrable over (−∞,0], and

lim
s→−∞

eβsη2(s)=0 P−a.s.

Let r21(ω)= e
β(1+ ||g||2

β

∫ −1

−∞eβση2(σ)dσ). Given ρ> 0, there exists s(ω) such that

eβsη2(s)ρ2≤ 1, for all s≤ s(ω). It follows that

||v(−1,ω;s,η(s,ω)us)||
2≤ r21(ω).

Lemma 3.2. Let p> 2, g∈H. There exist random radii r2(ω) and r3(ω), such
that ∀ρ> 0, there exists s(ω)≤−1, such that for all s≤ s(ω), and for all us∈H, with
||us||≤ρ, the solution of Equation (3.2)-(3.3) with vs= η(s)us satisfies the following
inequalities:

||v(t,ω;s,η(s,ω)us)||
2≤ r22(ω), t∈ [−1,0], P−a.e.,

∫ 0

−1

||∆v||2dt≤ r23(ω), P−a.e.,
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where

r22(ω)= r
2
1(ω)+

||g||2

β

∫ 0

−1

η2(s)ds,

r23(ω)=
r21(ω)

2µ1
+
r2(ω)||g||

µ1

∫ 0

−1

η(t)dt.

Proof. From Lemma 3.1, and using Gronwall’s lemma again with t∈ [−1,0],
then

||v(t)||2≤ e−β(t+1)||v(−1)||2+
||g||2

β

∫ t

−1

e−β(t−s)η2(s)ds

≤ e−β(t+1)r21(ω)+
||g||2

β

∫ t

−1

e−β(t−s)η2(s)ds

≤ r21(ω)+
||g||2

β

∫ 0

−1

η2(s)ds

=: r22(ω). (3.11)

We use (3.7) in (3.4) and get the following inequality:

1

2

d

dt
||v||2+µ1||∆v||

2+2µ0η
2||e(u)||pLp ≤ η||g|| ||v||. (3.12)

It follows that

d

dt
||v||2+2µ1||∆v||

2+4µ0η
2||e(u)||pLp ≤ 2η||g|| ||v||. (3.13)

Integrating the above inequality with t from −1 to 0, then

||v(0)||2+2µ1

∫ 0

−1

||∆v||2dt+4µ0

∫ 0

−1

η2(t)||e(u)||pLpdt

≤||v(−1)||2+2

∫ 0

−1

η(t)||g|| ||v||dt. (3.14)

We drop the first term and the third term in (3.14) to get

∫ 0

−1

||∆v||2dt≤
r21(ω)

2µ1
+

1

µ1

∫ 0

−1

η(t)||g||r2(ω)dt

=
r21(ω)

2µ1
+
r2(ω)||g||

µ1

∫ 0

−1

η(t)dt

=: r23(ω). (3.15)

Thus,

||u(t,ω;s,us)||
2= ||η−1(t,ω)v(t,ω;s,η(s,ω)us)||

2

≤ sup
−1≤t≤0

1

η2(t,ω)
||v(t,ω;s,η(s,ω)us)||

2
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≤ r22(ω) sup
−1≤t≤0

1

η2(t,ω)
, (3.16)

and from above results, r22(ω)sup−1≤t≤0
1

η2(t,ω) is bounded. This lemma implies the

existence of bounded absorbing set.

Lemma 3.3. Let 2<p< 3, g∈H. There exists a random radius r4(ω), such that
∀ρ> 0, there exists s(ω)≤−1, such that for all s≤ s(ω), and for all us∈H, with
||us||≤ρ, the solution of Equation (3.2)-(3.3) with vs= η(s)us satisfies the inequality

||v(0,ω;s,η(s,ω)us)||
2
1≤ r

2
4(ω), P−a.e.

Proof. Taking the inner product of Equation (3.2) with −∆v in H , we obtain

1

2

d

dt
||∇v||2+µ1||v||

2
3−b(u,u,∆v)

+2µ0η

∫

D

(ǫ+ |e(u)|2)
p−2
2 e(u)e(−∆v)dx=(ηg,−∆v). (3.17)

Letting J= |2µ0η
∫

D
(ǫ+ |e(u)|2)

p−2
2 e(u)e(−∆v)dx| and 2<p< 3, then

J ≤ 2µ0ǫ
p−2
2

∣

∣

∣

∫

D

ηe(u)e(−∆v)dx
∣

∣

∣
+2µ0

∣

∣

∣

∫

D

η|e(u)|p−2e(u)e(−∆v)dx
∣

∣

∣
. (3.18)

Next, we estimate this termwise. We have

J1=2µ0ǫ
p−2
2

∣

∣

∣

∫

D

ηe(u)e(−∆v)dx
∣

∣

∣

=2µ0ǫ
p−2
2

∣

∣

∣

∫

D

e(v)e(−∆v)dx
∣

∣

∣

=2µ0ǫ
p−2
2

∣

∣

∣

∫

D

∂eij(v)

∂xk

∂eij(v)

∂xk
dx

∣

∣

∣

≤ 2µ0ǫ
p−2
2 k2(D)||v||22. (3.19)

On the other hand,

J2=2µ0

∣

∣

∣

∫

D

η|e(u)|p−2e(u)e(−∆v)dx
∣

∣

∣

=2µ0η
2
∣

∣

∣

∫

D

|e(u)|p−2e(u)e(−∆u)dx
∣

∣

∣

=2µ0η
2
∣

∣

∣

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx+(p−2)

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx

∣

∣

∣

=2µ0η
2(p−1)

∣

∣

∣

∫

D

|e(u)|p−2 ∂eij(u)

∂xk

∂eij(u)

∂xk
dx

∣

∣

∣
. (3.20)

Furthermore, using Hölder’s inequality, we get

J2≤ 2µ0Cη
2(p−1)||D2u||2Lγ ||∇u||

p−2

Lq(p−2) , (3.21)

where 2
γ
+ 1

q
=1, γ∈ (2,+∞), and q∈ (1,+∞).
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We can take proper q or γ, such that q(p−2)> 1, that is, γ(p−3)>−2, and apply
the following Gagliardo-Nirenberg inequality:

||∇u||Lq(p−2) ≤C||u||
1

q(p−2) ||D2u||
q(p−2)−1
q(p−2) ,

||D2(u)||Lγ ≤C||∇u||
1
γ ||D3u||

γ−1
γ ,

so that

||∇u||p−2

Lq(p−2) ≤C||u||
1
q ||D2u||

q(p−2)−1
q , (3.22)

||D2u||2Lγ ≤C||∇u||
2
γ ||D3u||

2(γ−1)
γ . (3.23)

Obviously,

||∇u||≤C||u||
1
2 ||D2u||

1
2 . (3.24)

From (3.22)-(3.24), we can obtain

||D2u||2Lγ ||∇u||
p−2

Lq(p−2) ≤C||u||
1
q
+ 1

γ ||D2u||p−2− 1
q
+ 1

γ ||D3u||
2(γ−1)

γ

≤Cη−
2(γ−1)

γ (t)||u||1−
1
γ ||u||

p−3+ 3
γ

2 ||v||
2(γ−1)

γ

3 , (3.25)

where we have used the fact that 2
γ
+ 1

q
=1, and v= ηu.

J2≤ 2µ0Cη
2
γ (t)(p−1)||u||1−

1
γ ||u||

p−3+ 3
γ

2 ||v||
2(γ−1)

γ

3

≤
µ1

2
||v||23+C(µ0,µ1,p)η

2(t)||u||γ−1||u||
γ(p−3)+3
2 , (3.26)

where we have used the ǫ−Young inequality, and C(µ0,µ1,p) denotes a constant which
depends on µ0,µ1,p.

Noticing the assumed condition 2<p< 3, and the restricted condition γ(p−3)>
−2 in (3.22), we can take γ such that −2<γ(p−3)<−1 holds, that is, we can find γ
to make (3.22) hold and satisfy γ(p−3)+3< 2 at the same time. Thus by ǫ−Young
inequality,

J2≤
µ1

2
||v||23+

γ(p−3)+3

2
||u||22+θη

4
γ(3−p)−1 ||u||

2(γ−1)
γ(3−p)−1 , (3.27)

where θ= γ(3−p)−1
2 C(µ0,µ1,p). 3 is the optimal upper bound for p. If p0 is a constant

greater than 3, the result can not be obtained.
Combining these estimates, we can conclude that

J ≤2µ0ǫ
p−2
2 k2(D)||v||22+

µ1

2
||v||23

+
γ(p−3)+3

2
||u||22+θη

4
γ(3−p)−1 ||u||

2(γ−1)
γ(3−p)−1 . (3.28)

Next we estimate the term |ηb(u,u,−∆v)|:

|ηb(u,u,−∆v)|≤Cη||u||L4||∇u||L4 ||∆v||

≤Cη||u||
1
2 ||∇u||

1
2 ||∇u||

1
2 ||D2u||

1
2 ||∆v||

≤C||u||
1
2 ||∇v|| ||u||

1
2
2 ||∆v||
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≤||∇v||2||∆v||2+
C2

4
||u|| ||u||2

≤||∇v||2||∆v||2+
C4

64
||u||2+ ||u||22, (3.29)

where we have used the Hölder inequality, the ǫ−Young inequality, and the Gagliardo-
Nirenberg inequality

||u||L4 ≤||u||
1
2 ||∇u||

1
2 .

Finally, it is easy to obtain

|(gη,−∆v)|≤
||gη||2

4
+ ||∆v||2.

Combining all the estimates, we obtain

1

2

d

dt
||∇v||2+

µ1

2
||v||23≤(2µ0ǫ

p−2
2 k2(D)+1)||v||22

+
(γ(p−3)+3

2η2
+

1

η2

)

||v||22

+
C4

64
||u||2+θη

4
γ(3−p)−1 ||u||

2(γ−1)
γ(3−p)−1

+
||gη||2

4
+ ||∇v||2|| ||∆v||2, (3.30)

and

d

dt
||∇v||2+µ1||v||

2
3≤2(2µ0ǫ

p−2
2 k2(D)+1)||v||22+

r(p−3)+5

η2
||v||22

+
C4

32
||u||2+2θη

4
γ(3−p)−1 ||u||

2(γ−1)
γ(3−p)−1

+
||gη||2

2
+2||∇v||2|| ||∆v||2. (3.31)

Applying Gronwall’s lemma on [s,0]⊂ [−1,0],

||v(0)||21≤exp
(

∫ 0

s

2||v||22dτ
)[

||v(s)||21+

∫ 0

s

2(2µ0ǫ
p−2
2 k2(D)+1)||v||22dσ

+

∫ 0

s

γ(p−3)+5

η2
||v||22dσ+

∫ 0

s

C4

32
||u||2dσ+

∫ 0

s

2θη
4

γ(3−p)−1 ||u||
2(γ−1)

γ(3−p)−1 dσ

+

∫ 0

s

||gη||2

2
dσ

]

. (3.32)

Integrating with respect to s over [−1,0], we obtain

||v(0)||21≤exp
(

∫ 0

−1

2||v||22dτ
)[

∫ 0

−1

||v(s)||21ds+

∫ 0

−1

2(2µ0ǫ
p−2
2 k2(D)+1)||v||22dσ

+

∫ 0

−1

γ(p−3)+5

η2
||v||22dσ+

∫ 0

−1

C4

32
||u||2dσ+

∫ 0

−1

2θη
4

γ(3−p)−1 ||u||
2(γ−1)

γ(3−p)−1 dσ

+

∫ 0

−1

||gη||2

2
dσ

]

. (3.33)
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From Lemma 3.2,
∫ 0

−1 ||v||
2
2dt≤ r

2
3(ω), ||v(t)||

2≤ r22(ω), t∈ [−1,0], then

∫ 0

−1

γ(p−3)+5

η2
||v||22dσ≤ (γ(p−3)+5) sup

−1≤t≤0

1

η2(t)
r23(ω), (3.34)

and this term is bounded. Similarly,

∫ 0

−1

2θη
4

γ(3−p)−1 ||u||
2(γ−1)

γ(3−p)−1 dσ=

∫ 0

−1

2θη
2(γ+1)

γ(3−p)−1 ||v||
2(γ−1)

γ(3−p)−1 dσ

≤ 2θ sup
−1≤t≤0

η
2(γ+1)

γ(3−p)−1 (t)r
2(γ−1)

γ(3−p)−1

2 (ω), (3.35)

∫ 0

−1

||gη||2

2
dσ=

||g||2

2

∫ 0

−1

η2(σ)dσ, (3.36)

∫ 0

−1

C4

32
||u||2dσ=

∫ 0

−1

C4

32

1

η2(σ)
||v(σ)||2dσ

≤
C4

32
sup

−1≤t≤0

1

η2(t)
r22(ω), (3.37)

and these terms are bounded. Obviously, the other terms in (3.33) also are bounded.
Thus there exists r4(ω), such that ||v(0)||21≤ r

2
4(ω), and ||u(0)||21≤ r

2
4(ω).

Theorem 3.4. Let 2<p< 3, g∈H. There exist random attractors for the stochastic
non-Newtonian with multiplicative noise (2.1)−(2.2) in H.

Proof. Let K(ω) be the ball in H1
0 (D) of radius r4(ω). We have proved that for

any B bounded in H , there exists s(ω) such that for s≤ s(ω),

S(0,s;ω)B⊂K(ω)P−a.e.

This clearly implies that K(ω) is an attracting set at time t=0. Since it is compact
in H , Theorem 2.6 applies.
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