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EVOLUTION OF PARTICLE SEPARATION IN SLOWLY

DECORRELATING VELOCITY FIELDS∗

TOMASZ KOMOROWSKI† , ALEXEI NOVIKOV‡ , AND LENYA RYZHIK§

Abstract. We consider the evolution of the separation distance between two particles advected
by a random velocity field with slowly decaying temporal and spatial correlations in the weak coupling
regime. It has been shown in [5] that the motion of a single particle converges to a fractional Brownian
motion on a time scale δ−γ with some γ <2, which is shorter than the classical diffusive time scale
δ−2 (see [9]). In the present paper we prove that unlike the single particle position, the two-particle
separation behaves diffusively, and evolves on the classical time scale δ−2, even when the random
flow is slowly decorrelating in time and space. The results of this paper illustrate that the flows
under consideration display both diffusive and superdiffusive transport on different time scales for
various physical quantities.
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1. Introduction

Motion of a particle in a random velocity field. We consider the motion
of a particle advected by a weakly random velocity field V (t,x):

Ẋ(t)= δV (t,X(t)), X(0)=x∈R
d. (1.1)

Here δ≪1 is a small parameter measuring the strength of the flow. This problem has
been intensively studied; see the comprehensive review [12] for extensive references.
The basic result is that under appropriate mixing and time-stationarity assumptions
on the field V (t,x), the rescaled process xδ(t)=X(t/δ2) converges as δ→0 to a dif-
fusion process with the diffusion matrix given by the Kubo-Taylor formula

Dpq =

∫ ∞

0

E [Vp(t,0)Vq(0,0)+Vq(t,0)Vp(0,0)]dt, p,q=1, . . . ,d. (1.2)

Here E denotes the expectation with respect to the realizations of the field.
This result, obviously, can hold only if the temporal correlations of V (t,x) decay

sufficiently fast so that the entries of the matrix [Dpq] is finite. The situation is quite
different when they are infinite. One particular example of such velocity field was
considered in [5] when V (t,x) is an Ornstein-Uhlenbeck process given by

V (t,x) :=

∫
eik·xV̂ (t,dk), (1.3)

with V̂ (t,dk) a stationary, stochastic measure-valued process defined by

V̂ (t,dk)=
√
2

∫ t

−∞

e−|k|2β(t−s)|k|βB̂(ds,dk). (1.4)
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ul. Śniadeckich 8, 00-956 Warsaw, Poland (komorow@hektor.umcs.lublin.pl).

‡Department of Mathematics, Pennsylvania State University, State College PA 16802, USA
(anovikov@math.psu.edu).

§Department of Mathematics, Stanford University, Stanford, CA 94305, USA (ryzhik@math.
stanford.edu).

767



768 EVOLUTION OF SEPARATION DISTANCE

Here B̂(dt,dk) is an R
d-valued, space-time noise, that is, a Gaussian, distribution

valued process satisfying B̂∗(dt,dk)= B̂(dt,−dk) and

E

[
B̂i(dt,dk)B̂∗

j (dt
′,dk′)

]
= R̂ij(k)δ(t− t′)δ(k−k′)dtdt′dkdk′,

with β≥0 and the spatial power spectrum given by

R̂(k)=
a(|k|)

|k|2α+d−2

(
I− k⊗k

|k|2
)
. (1.5)

The function a(·) is non-negative, bounded, measurable, supported in [0,K0] for
some K0>0, and continuous at 0 with a(0)>0. In order to ensure that the spectrum
is integrable at k=0 so that V (t,x) is a vector valued, stationary random field, we
assume that α<1. Informally, V̂ (t,dk) is a stationary solution of the stochastic
differential equation

dV̂i(t,dk)=−|k|2β V̂i(t,dk)dt+
√
2|k|βB̂i(dt,dk), i=1, . . . ,d. (1.6)

The covariance matrix of V (t,x) is

Rij(t,x)=E[Vi(t,x)Vj(0,0)]=

∫
eik·xe−|k|2β |t|R̂ij(k)dk, i,j=1, . . . ,d. (1.7)

It is straightforward to verify that the diffusion matrix given by the Kubo-Taylor
formula (1.2) is finite if and only if α+β<1. It has been shown in [4] that then
in fact the process xδ(t)=X(t/δ2) converges in law to a Brownian motion with the
diffusivity matrix given by (1.2).

On the other hand, it has been shown in [5] that in the opposite regime α+β>1
(when β>0, α<1) the result is as follows. Because of the slow decay of the temporal
correlations of the velocity field, the processX(t) becomes non-trivial on a shorter time
scale t∼O(δ−2γ) with γ=β/(α+2β−1)<1. Hence, one should consider the process
xδ(t)=X(t/δ2γ), which, in the limit δ→0, converges to a superdiffusive fractional
Brownian motion BH(t), with the Hurst exponent

H=
1

2
+

α+β−1

2β
∈ (1/2,1).

Similar (but less sharp) results have been obtained in [10, 11] for a particle in a
Gaussian time-independent velocity field with a large mean and slowly decaying cor-
relations.

Behavior of the two-particle separation. One may also consider the evolu-
tion of the separation between a pair of particles advected by such a random flow: let
X(t,x) and X(t,x+z) be two trajectories of (1.1) starting at the points x and x+z,
respectively, and set zδ(t)=X(t/δ2,x+z)−X(t/δ2,x). The processes xδ(t) and zδ(t)
satisfy the system

ẋδ(t)=
1

δ
V

(
t

δ2
,xδ(t)

)
, xδ(0)=0, (1.8)

żδ(t)=
1

δ
W

(
t

δ2
,xδ(t),zδ(t)

)
, zδ(0)= z,
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where

W (t,x,z) :=V (t,x+z)−V (t,x) .

When the velocity field V (t,x) is as above (see (1.3)-(1.7)), the random field W (t,x,z)
is given by

W (t,x,z)=
√
2

∫ t

−∞

∫
e−|k|2β(t−s)eik·x(eik·z−1)|k|βB̂(ds,dk). (1.9)

The two-particle separation was also considered in [9]. It was shown that for
rapidly decorrelating (in time and space) fields the process zδ(t) converges weakly, as
δ→0, to a diffusion process with the diffusion matrix

cpq(z) :=

∫ ∞

0

[Rpq(t,0)+Rqp(t,0)−Rpq(t,z)−Rqp(t,z)]dt. (1.10)

When the two-point correlation function has the form (1.5)-(1.7), this matrix takes
the form

cpq(z)=

∫
1−cos(k ·z)

|k|2β R̂pq(k)dk, z∈R
d, p,q=1, . . . ,d. (1.11)

A direct calculation shows that |cpq(z)|<+∞ for 1<α+β<2, which is a larger range
of the parameters α and β than that for which the “one-particle” diffusion matrix Dpq

given by (1.2) remains finite. In particular, in the range 1<α+β<2 the matrix Dpq

is infinite while cpq is finite. In agreement with this calculation, it was observed in
[5] that, even when α+β>1, the process Z(t) behaves trivially on the “fractional
diffusion” time scale t∼O(δ−2γ): Z(t/δ2γ)≈ z. That is, all individual particles start-
ing at positions separated by distance z∼O(1) perform perfectly correlated fractional
Brownian motions on this time scale, and thus move together as a group.

A natural question addressed in the present paper is to find the time scale on
which the particle separation has a non-trivial limit. It turns out that in the range
1<α+β<2 the two particle separation (unlike the one-particle position) becomes
non-trivial on the “diffusion” time scale t∼O(δ−2), that is, much larger than the
time scale t∼O(δ−2γ), when one particle position has a non-trivial limit. Our main
result can be formulated as follows.

Theorem 1.1. Let Qδ be the law of {zδ(t), t≥0} on C[0,+∞). Suppose that α+β>1
and α+2β<2. Then, the family of measures {Qδ, δ >0} converges weakly, as δ→0+,

to the law of a diffusion with the generator given by

Lf(z)=
d∑

p,q=1

cpq(z)∂
2
p,qf(z) (1.12)

for any function f(z) that is twice continuously differentiable.

We should mention that we do not try to identify the behavior of the individual
particles on the time scale O(δ−2) but rather only of the particle separation. Theo-
rem 1.1 shows that slowly decaying temporal and spatial correlations of the random
flow bring about multiple temporal scales: while the one-particle quantities evolve on
the shorter “anomalous” time scale O(δ−2γ), for some γ∈ (0,1), the two particle sepa-
ration evolves on a longer “classical diffusive” time scale. Similar temporal separation
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was observed in one-dimensional wave propagation [13, 6] and wave propagation in
higher dimensions [2, 7]. We believe that this very interesting phenomenon is an im-
portant characteristic feature of media with long range correlations in a large class of
problems.

A Gaussian field with the covariance matrix given by (1.7) is statistically isotropic,
in the sense that for any matrix g∈SO(d) the laws of the fields {V (t,gx),(t,x)∈R

1+d}
and {gV (t,x),(t,x)∈R

1+d} are identical. This hypothesis simplifies our computations
but does not seem to be crucial for the validity of our result. Namely, we conjecture
that, at the cost of some additional complication of calculations one should be able
to prove that if the covariance matrix of the field is given by

R(t,x)=

∫

R

eik·xe−r(k)tR̂(k)dk,

where trR̂(k)∼|k|−(2α+d−2) and r(k)∼|k|2β for |k|≪1, and α,β are as in the state-
ment of Theorem 1.1, then the conclusion of the theorem is still correct. Note also that
the presence of the factor I−k⊗k/|k|2 in formula (1.5) ensures that the realizations
of the random field are almost surely divergence free. The role of incompressibility in
our result does not seem to be crucial either. If it does not hold the limiting diffusion
would pick up a drift term, which vanishes in our situation; see condition (3.39) below.
However, it should be noted that incompressibility has played a role in establishing
the limit for the single particle motion in [5].

2. Proof of Theorem 1.1

The cut-off process. The idea of the proof is quite similar to that in [9]: one

introduces a regularized process z
(M)
δ (t) that “does not behave wildly” for a finite

value of the cut-off parameter M . One first establishes convergence for the regularized
process, and then uses the “uniformly nice in M” properties of the limit to establish
the convergence of the original, unregularized process zδ(t).

More precisely, given M>1, we consider a cut-off function φM belonging to
C∞

0 (Rd) — the space of infinitely smooth, compactly supported functions — such
that φM (z)=1 when |z|≤M−1, and φM (z)=0 when |z|≥M . Let W (M)(t,z,x) :=

W (t,z,x)φM (z) and let (xδ(t),z
(M)
δ (t)) be the solution of

ẋδ(t)=
1

δ
V

(
t

δ2
,xδ(t)

)
, (2.1)

ż
(M)
δ (t)=

1

δ
W (M)

(
t

δ2
,xδ(t),z

(M)
δ (t)

)
,

xδ(0)=0, z
(M)
δ (0)= z0.

The regularization ensures that |z(M)
δ (t)|≤M for all t≥0. The first step in the proof

of Theorem 1.1 is to establish tightness for the regularized processes z
(M)
δ (t).

Theorem 2.1. Suppose that M>1 is fixed. Then the family of laws of {z(M)
δ (t), t≥0}

is tight on C[0,+∞) as δ→0+.

With this result in hand, by an argument in step (vi) of the proof of Theorem 3
of [9], tightness of the laws Qδ of the process zδ(t) follows from the tightness of the

laws Qδ,M of z
(M)
δ (t).
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Next, we identify the possible limits Q∗
M of the laws Qδ,M of the processes z

(M)
δ ,

as δ→0+. For any path π∈C[0,+∞) and t≥0, let Πt(π) :=π(t). Denote by Mt the
natural filtration corresponding to the canonical process {Πt, t≥0}, and by Cm

b (Rd)
the space of functions possessingm continuous and bounded derivatives. We introduce
also the regularized coefficients

c(M)
pq (z) :=φ2

M (z)cpq(z), (2.2)

with cpq(z) given by (1.11), and the drift

b(M)
p (z) :=

1

2

d∑

q=1

∂zq [φ
2
M (z)]cpq(z). (2.3)

The drift b(M) appears only because of the regularization that violates the incom-
pressibility constraint in the z-component.

Theorem 2.2. Suppose that 1<α+β and α+2β<2. Then, for any f ∈C2
b (R

d),
M>1, and Ψs that is bounded and Ms-measurable, we have

∫ {[
f(Πt)−f(Πs)−

∫ t

s

LMf(Πρ)dρ

]
Ψs

}
Q∗

M (dπ)=0, (2.4)

where

LMf(z)=

d∑

p,q=1

c(M)
pq (z)∂2

p,qf(z)+

d∑

p=1

b(M)
p (z)∂pf(z). (2.5)

Thanks to C2 smoothness of the coefficients of the operator LM we conclude that
for each M>1 there exists a unique limiting measure Q∗

M ; see [15], Corollary 8.1.7.
Hence QM,δ ⇒Q∗

M as δ→0+.

Theorem 1.1 as a consequence of Theorems 2.1 and 2.2. To obtain the
weak convergence of Qδ as δ→0+, we consider the stopping time

τM (π) := inf[t≥0 : |π(t)|≥M−1] for a given π∈C[0,+∞),

with the usual convention τM =+∞ if the infimum is taken over an empty set. Observe
that Qδ coincides with Qδ,M when restricted to MτM — the σ-algebra consisting of
those sets A that A∩ [τM ≤ t]∈Mt for all t≥0. Hence, also Q∗

M and Q∗
M ′ coincide on

that σ-algebra when M ≤M ′. The family {Q∗
M ,M ≥1} is tight as M→+∞. Indeed,

it suffices only to show that for any T,ε>0 there exists M0 such that

Q∗
M (τM0

≤T )<ε, ∀M ≥M0. (2.6)

This follows from elementary properties of diffusions; see e.g. (2.1), p. 88 of [15].
As an immediate consequence of Theorem 2.2 we conclude that any Q∗ that is a

limiting measure of {Q∗
M ,M ≥1}, as M→+∞, must satisfy the martingale problem

∫ {[
f(Πt)−f(Πs)−

∫ t

s

Lf(Π̺)d̺

]
Ψs

}
Q∗(dπ)=0 (2.7)

for any f ∈C2
b (R

d) and Ψs that is bounded and Ms-measurable. Here operator L is
given by (1.12). Thus Q∗

M ⇒Q∗, as M→+∞, and Theorem 1.1 follows.
Therefore, the demonstration of Theorem 1.1 is reduced to the proof of Theo-

rems 2.1 and 2.2.
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A martingale estimate. Both Theorems 2.1 and 2.2 are consequences of the
following estimate. We denote by ‖f‖R,m the Cm-norm of the function f over the
ball centered at 0 of radius R>0 and by Ft, t≥0 the natural filtration corresponding
to {V (t, ·), t≥0}.

Theorem 2.3. Under the assumptions of Theorem 2.2 for any M>1 there exist

constants C,ǫ>0 and γ∈ (1,2) such that

∣∣∣∣E
{[

f(z
(M)
δ (u)−Y )−f(z

(M)
δ (t)−Y )−

∫ u

t

LMf(z
(M)
δ (s)−Y )ds

]
Ψ

}∣∣∣∣
≤C‖Ψ‖L2‖f‖4M,3δ

ǫ(u− t), ∀δ∈ (0,1], (2.8)

where t≥ δγ , u− t≥ δγ, f ∈C3(Rd) are arbitrary, LM is given by (2.5), and Ψ,Y are

Ft/δ2-measurable random variables with ‖Y ‖L∞ ≤2M .

Proofs of Theorems 2.1 and 2.2. Theorem 2.2 is a direct consequence of
Theorem 2.3 and the tightness claim made in Theorem 2.1. We turn to the proof of

Theorem 2.1. Let Zδ(t) := z
(M)
δ (ti+1) for t∈ [ti,ti+1), with ∆ti= δγ , and γ as in the

statement of Theorem 2.3. We show in Corollary 3.7 below that for each ρ>0 and
T >0, we have

lim
δ→0+

Qδ,M

(
sup

t∈[0,T ]

|Zδ(t)−z
(M)
δ (t)|≥ρ

)
=0.

Therefore, tightness of Qδ,M follows if we show tightness of the laws of {Zδ(t), t≥0}
over D[0,+∞), as δ→0+.

Suppose that u− t≥ δγ and Ψ is a random variable that is Ft/δ2 -measurable.
Then, we have

∣∣E
{
|Zδ(u)−Zδ(t)|2iΨ

}∣∣=
∣∣∣E
{
|z(M)

δ (tl)−z
(M)
δ (tk)|2iΨ

}∣∣∣ , (2.9)

for some l≥k≥1 such that 0<tl−u<δγ , 0<tk− t<δγ . We use Theorem 2.3, with

f(x)= |x|2i, i=1, . . . ,4 and Y = z
(M)
δ (tk). According to this result, there exist con-

stants C,C ′>0, possibly depending on M , but independent of the random variable
and δ>0, such that the right hand side of (2.9) is less than or equal to

C(tl− tk)
(
EΨ2

)1/2≤C ′(u− t)
(
EΨ2

)1/2
, i=1, . . . ,4 (2.10)

for all Ψ that are Ft/δ2 measurable.
Using this estimate with Ψ≡1, we get

∣∣E
{
|Zδ(u)−Zδ(t)|2i

}∣∣≤C(u− t), i=1, . . . ,4. (2.11)

Next, let Ψ := |Zδ(t)−Zδ(s)|4 for t>s. As Ψ= |z(M)
δ (tk)−Zδ(s)|4, it is Ftk/δ2 -

measurable. When t−s>δγ we can apply again Theorem 2.3 and obtain, using
(2.11),

∣∣E
{
|Zδ(u)−Zδ(t)|4|Zδ(t)−Zδ(s)|4

}∣∣=
∣∣∣E
{
|z(M)

δ (tl)−z
(M)
δ (tk)|4Ψ

}∣∣∣

≤C(u− t)
{
E|Zδ(t)−Zδ(s)|8

}1/2≤C(u− t)(t−s)1/2≤C(u−s)3/2. (2.12)
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If on the other hand 0<t−s<δγ , then from Theorem 2.1 and Corollary 3.4 below
we get for some 1<γ′<γ

∣∣E
{
|Zδ(u)−Zδ(t)|4|Zδ(t)−Zδ(s)|4

}∣∣≤C(u− t)
{
E|Zδ(t)−Zδ(s)|8

}1/2
(2.13)

≤C(u− t)δ4(γ
′−1)≤C(u−s)1+4(γ′−1)/γ .

Finally, we consider the situation when 0<u− t<δγ . Then only the case t−s>δγ

requires our attention, since otherwise |Zδ(u)−Zδ(t)|4|Zδ(t)−Zδ(s)|4=0. For a given
ǫ1>0 we can write

E
{
|Zδ(u)−Zδ(t)|4|Zδ(t)−Zδ(s)|4

}
≤Cδ4(γ

′−1)
{
E|Zδ(t)−Zδ(s)|4(1+ǫ1)

}1/(1+ǫ1)

.

(2.14)
We use Theorem 2.3, this time with f(x)= |x|4(1+ǫ1), Y =Zδ(s), and Ψ≡1. Then,
the right hand side of (2.14) can be estimated by

C ′δ4(γ
′−1)(t−s)1/(1+ǫ1)≤C ′(u−s)4(γ

′−1)/γ+1/(1+ǫ1).

We choose ǫ1>0 so that 4(γ′−1)/γ+1/(1+ǫ1)>1. The above considerations imply
tightness of the laws of {Zδ(t), t≥0} in D[0,+∞), by virtue of Theorem 15.6 of [3].
This concludes the proof of Theorem 2.1. The rest of the paper contains the proof of
Theorem 2.3.

3. Proof of Theorem 2.3

3.1. Preliminaries on Gaussian random fields. We quote here an estimate
of the supremum of the norm of a centered Gaussian field that will be of particular use
for us in the sequel. We recall that for a centered, not necessarily stationary, Gaussian
d-dimensional vector field G(t,x;ω), (t,x)∈R

1+d, a d-ball centered at (t0,x0) and of
radius ̺ is defined as a ball with the corresponding center and radius with respect to
the pseudometric

d(t1,x1;t2,x2)=
[
E|G(t1,x1)−G(t2,x2)|2

]1/2
.

Suppose that R⊂R
1+d. For a given ǫ>0 we let N(ǫ) be the minimal number of

d-balls with radius ǫ>0 needed to cover R. Let also

Σ(G) := sup
(t,x)∈R

trQ(t,x;t,x),

where Q is the covariance matrix of G:

Qij(t,x,s,y)=E(Gi(t,x)Gj(s,y)), i,j=1, . . . ,d.

We will use the following Borell-Fernique-Talagrand type of estimates of the tail prob-
abilities for Gaussian fields, see, for instance, Theorem 5.4, p. 121 of [1].

Theorem 3.1. Suppose that

N(ǫ)≤C1 exp{C1ǫ
−2/(1+C2)}, ǫ∈ (0,1] (3.1)

for some positive constants where C1,C2>0. Then there exist constants C,Λ>0 de-

pending only on C1,C2 such that

P

(
sup

(t,x)∈R

|G(t,x;ω)|≥λ

)
≤C exp

{
− λ2

8Σ(G)

}
(3.2)
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for all λ≥Λ.

The aforementioned result is stated in [1] for all λ>0, but in order to guarantee
that the constants appearing in estimate (3.2) depend only on parameters C1,C2 we
need to assume that λ is sufficiently large; see the proof of this theorem on p. 121
in [1]. As a simple corollary of the above result we obtain.

Corollary 3.2. Suppose that V (t,x) is a stationary field given by (1.3). Then, for

any fixed ρ>0 there exists a constant C>0 and a constant Λ>0 such that

P

[
∃(t,x) : |V (t,x)|≥Λ(log1/2+ρ(|t|+ |x|+1)+n)

]
≤Ce−n2/C , (3.3)

for all n≥1.
Proof. Consider a field

G(t,x) :=V (t,x)
[
log1/2+ρ(|t|+ |x|+1)+n

]−1

.

Choose an arbitrary ǫ>0. The region D := [|x|+ |t|≥ exp
{
ǫ−2/(1+2ρ)

}
] can be cov-

ered by finitely many d-balls of radius ǫ. Since the covariance matrix R(t,x) is
Lipschitz continuous, the metric d(·; ·) is Hölder continuous with respect to the Eu-
clidean distance, with exponent 1/2. Hence, the complement of D can be covered by
C exp

{
2(d+1)ǫ−2/(1+2ρ)

}
d-balls of radius ǫ. Note also that Σ(G)≤Cn−2. Hence,

from Theorem 3.1 we conclude that there exists Λ>0 so that

P

(
sup
x∈Rd

|G(x;ω)|≥Λ

)
≤C exp

{
− Λ2

8Σ(G)

}
≤C1 exp

{
−C2n

2
}

and (3.3) holds.

Corollary 3.3. For any m>1 there exists constants γ1,γ2>0 such that

E

[
sup

|t|+|x|≤δ−2

|V (t,x)|m
]
≤γ1(logδ

−1)mγ2 , (3.4)

for all δ∈ (0,1/2).
Proof. Observe that for λ>2[log(1+δ−1)]1/2+ρ, the inequality |V (t,x)|≥2Λλ

implies

|V (t,x)|≥Λ
{
[log(1+ |t|+ |x|)]1/2+ρ+λ

}
.

Thus, by virtue of Corollary 3.2, we obtain

P

[
sup

|t|+|x|≤δ−2

|V (t,x)|≥2Λλ

]
≤C1e

−C2λ
2

,

and, as a result, for any m>1 we can write

E

[
sup

|t|+|x|≤δ−2

|V (t,x)|m
]
≤C[log(1+δ−1)](1/2+ρ)m, (3.5)

which in turn implies (3.4).
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As an immediate consequence of Corollary 3.3 we get

Corollary 3.4. Suppose that α<1. Then, for any M>0 and m≥1 there exist

constants C,ρ>0 such that

{
E

[
sup

s∈[0,T ]

sup
|z|≤M,|x|≤δ−2

∣∣∣W
( s

δ2
,z,x

)∣∣∣
m
]}1/m

≤C[log(1+δ−1)](1/2+ρ).

In our next result we bound the moments of the supremum of a d-dimensional
Gaussian field G(x)=(G1(x), . . . ,Gd(x)), x∈R

N over a given region using the bounds
on its covariance. Suppose that the field is a.s. differentiable and

Σ(G) := sup
x∈RN

[
E|G(x)|2+E|∇xG(x)|2

]
.

For a given k∈Z
N denote 2k := [x∈R

N : sup1≤j≤N |xj−kj |≤1]. Define also
M(R) as the minimal number of boxes 2k needed to cover a given region R. As-
sume furthermore that Rδ, δ∈ (0,1] are (non-random) regions such that there exist
C0,d0>0 such that

M(Rδ)≤C0δ
−d0 , δ∈ (0,1]. (3.6)

Proposition 3.5. Under the above assumptions for any m≥1 and µ>0 there exists

a constant C>0, depending only on d,N,C0,d0,m,µ such that

E

{
sup
x∈Rδ

|G(x)|m
}
≤CΣm/2(G)δ−µ, ∀δ∈ (0,1]. (3.7)

Proof. Suppose that p>d. It follows from the Sobolev embedding theorem that
there exists a deterministic constant depending only on N and d such that

sup
x∈2k

|G(x) |≤C

{∫

2k

(|G(x)|p+ |∇xG(x)|p)dx
}1/p

, ∀k∈Z
N .

This, in particular, implies (using Gaussianity of the field) that for any given integer
n≥1 we have

E

[
sup
x∈2k

|G(x) |nm
]
≤CnΣ

mn/2(G) (3.8)

for some constant Cn, depending on n. Observe that

sup
x∈Rδ

|G(x)|m≤
{∑

sup
x∈2k

|G(x) |nm
}1/n

,

where the summation extends over the smallest set of k-s for which Rδ ⊂
⋃

k2k.
Jensen inequality implies that

E

{
sup
x∈Rδ

|G(x)|m
}
≤
{∑

E

[
sup
x∈2k

|G(x) |nm
]}1/n

.

Using (3.6) and (3.8) we obtain

E

{
sup
x∈Rδ

|G(x)|m
}
≤C

{
δ−2d0Σmn/2(G)

}1/n

=Cδ−2d0/nΣm/2(G)≤Cδ−µΣm/2(G),

upon a choice of a sufficiently large n.
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3.2. A priori bounds on trajectories.

Proposition 3.6. Suppose that (xδ(t),zδ(t)) are given by (1.8). Then for any fixed

T >0 there exist constants C1,C2>0 such that

P

[
sup

t∈[0,T ]

(|xδ(t)|+ |zδ(t)|)≥ δ−2

]
≤C1e

−C2/δ
2

, δ∈ (0,1]. (3.9)

Proof. We prove that

P

[
sup

t∈[0,T ]

|xδ(t)|≥Cδ−2

]
≤C1e

−C2/δ
2

. (3.10)

An analogous estimate then holds for xδ(t)+zδ(t), hence the estimate for zδ(t) would
follow. Using (3.3) with n= δ−1, we conclude that

|xδ(t)|≤Cδ−1

(∫ t

0

log1/2+ρ(Tδ−2+ |xδ(s)|)ds+δ−1

)
, ∀t∈ [0,T ] (3.11)

outside an event A(δ) such that P(A(δ))≤C1e
−C2/δ

2

. But then (still, outside the
event A(δ))

log1/2+ρ(T/δ2+ |xδ(s)|)≤C3(|xδ(t)|+1)+
C3

δ
,

so

|xδ(t)|≤
C4

δ

(∫ t

0

|xδ(s)|ds+δ−1

)
, (3.12)

which in turn implies that, by Gronwall’s inequality,

|xδ(t)|≤C5e
C4(t+1)δ−1

. (3.13)

Using (3.13) in (3.11) we obtain

|xδ(t)|≤C6δ
−1

(∫ t

0

δ−1/2−ρds+δ−1

)
. (3.14)

We use (3.11) with (3.14) to obtain

|xδ(t)|≤C7

(
δ−1

∫ t

0

log−1/2−ρ δ−1ds+δ−1

)
≤C8δ

−2 (3.15)

outside A(δ). Thus we obtain (3.10). Finally, (3.9) follows once we adjust the
constants C1 and C2 in the right-hand side of (3.9) appropriately.

Let T ≥0 be fixed, and define the event

Aδ,T :=

[
sup

s∈[0,T ]

|xδ(s)|≥ δ−2

]
.

Proposition 3.6 says, in particular, that

P[Aδ,T ]≤C1e
−C2δ

−2

, ∀δ∈ (0,1], (3.16)
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with the constants C1 and C2 that may depend on T .
We also conclude the following.

Corollary 3.7. For each γ >1 and T,M,ρ>0 fixed we have

lim
δ→0+

P

(
sup

s,t∈[0,T ],|s−t|≤δγ
|z(M)

δ (t)−z
(M)
δ (s)|≥ρ

)
=0. (3.17)

Proof. The probability under the limit can be estimated by

P(Aδ,T )+P

(
sup

s∈[0,T ]

sup
|z|≤M,|x|≤δ−2

∣∣∣W
( s

δ2
,z,x

)∣∣∣≥ δ1−γρ

)
,

and the conclusion follows from (3.16), Corollary 3.4, and an application of the Cheby-
shev inequality.

3.3. The proof of the martingale estimate. We now turn to the proof of
the martingale estimate (2.8). We divide the interval [t,u] into subintervals [ti,ti+1],
where ti := t+ i∆t and ∆t := δγ , with 1<γ<2. The last interval [tK−1,tK ] could be
of size less than or equal to δγ . To abbreviate the notation we shall also assume that
Y =0, as its presence does not influence the argument. We write then

E

{[
f(z

(M)
δ (u))−f(z

(M)
δ (t))

]
Ψ
}
=
∑

i

E

{[
f(z

(M)
δ (ti+1))−f(z

(M)
δ (ti))

]
Ψ
}

=
∑

i

E

{[
f(z

(M)
δ (ti+1))−f(z

(M)
δ (ti))

]
Ψ,Aδ,ti−1

}

+
∑

i

E

{[
f(z

(M)
δ (ti+1))−f(z

(M)
δ (ti))

]
Ψ,Ac

δ,ti−1

}
. (3.18)

The summation extends from i=0 up to K−1. Observe also that since t≥ δγ we
have t−1≥0.

Denote the terms on the utmost right hand side of (3.18) by K1 and K2. It is
easy to observe, using (3.16), that

|K1|≤C‖Ψ‖L2‖f‖4M,0δ
ǫ+γ ≤C‖Ψ‖L2‖f‖4M,0δ

ǫ(u− t),

for some C,ǫ>0, as u− t>δγ . In the rest of this proof we shall estimate K2. Note
that

f(z
(M)
δ (ti+1))−f(z

(M)
δ (ti))=

1

δ

d∑

p=1

∫ ti+1

ti

∂pf(z
(M)
δ (s))W (M)

p

( s

δ2
,z

(M)
δ (s),xδ(s)

)
ds

=
1

δ

d∑

p=1

∫ ti+1

ti

∂pf(z
(M)
δ (ti−1))W

(M)
p

( s

δ2
,z

(M)
δ (ti−1),xδ(ti−1)

)
ds

+
1

δ

d∑

p=1

∫ ti+1

ti

{∫ s

ti−1

d

dρ

[
∂pf(z

(M)
δ (ρ))W (M)

p

( s

δ2
,z

(M)
δ (ρ),xδ(ρ)

)]
dρ

}
ds. (3.19)

We substitute this expression into (3.18) and denote the respective terms that arise
from K2 by J1 and J2. The reason that the decomposition (3.19) is helpful is that
there is a “relatively large” time gap between the time ti−1, and all times s∈ [ti,ti+1].
This will allow us to use the mixing in time properties of the field W (t,z,x) (which
are slightly better than those of V (t,x)) to establish “near independence” of what
happens at time s and what happened before time ti−1.
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The estimate of J1. We can write

J1=
∑

i

J
(i)
1 ,

with

J
(i)
1 =

1

δ
E

{[
d∑

p=1

∫ ti+1

ti

∂pf(z
(M)
δ (ti−1))W

(M)
p

( s

δ2
,z

(M)
δ (ti−1),xδ(ti−1)

)
ds

]
Ψ,Ac

δ,ti−1

}

=
1

δ

d∑

p=1

∫ ti+1

ti

E

{
∂pf(zδ(ti−1))ΨW

(M)

p

(
s

δ2
,
ti−1

δ2
,zδ(ti−1),xδ(ti−1)

)
,Ac

δ,ti−1

}
ds.

Here we have denoted

W
(M)

(s,τ,z,x) :=E

{
W (M) (s,z,x)

∣∣∣Fτ

}
=φM (z)W (s,τ,z,x) (3.20)

for any s≥ τ , where

W (s,τ,z,x) :=E{W (s,z,x)|Fτ}. (3.21)

Rewriting the formula forW (s,τ,z,x) using the spectral decomposition (1.3) and (1.4)
we get

W (s,τ,z,x)=E





∫

Rd

eik·x
(
eik·z−1

)
V̂ (s,dk)

∣∣∣Fτ



 (3.22)

=
√
2

τ∫

−∞

∫

Rd

e−|k|2β(s−ρ)|k|βeik·x(eik·z−1)B̂(dρ,dk).

The next lemma gives an estimate of J1 using the aforementioned gap between the
time ti−1 and times s∈ [ti,ti+1], as well as the sufficient mixing properties of the field
W (t,x,z).

Lemma 3.8. Suppose that α+2β<2 and ℓ=(ℓ1, . . . ,ℓd) is a multi-index of non-

negative integers. Then, there exists ǫ>0 so that

sup
i

sup
s∈[ti,ti+1]

{
E

[
sup

|z|≤M,|x|≤δ−2

∣∣∣∣∂ℓ
zW p

(
s

δ2
,
ti−1

δ2
,z,x

)∣∣∣∣
2
]}1/2

≤Cδ1+ǫ, δ∈ (0,1].

Proof. We only consider ℓ=0. The case of other multi-indices can be treated
similarly; indeed, the main difficulty here is that the correlation function of the random
field W decays rather slowly. However, each differentiation in z improves the decay
of the correlation function in space; hence, ℓ=0 is actually the most difficult case.

Thanks to the time stationarity of the field V (t,x) it suffices only to prove that

sup
s∈[δγ−2,2δγ−2]

{
E

[
sup

|z|≤M,|x|≤δ−2

∣∣W (s,0,z,x)
∣∣2
]}1/2

≤Cδ1+ǫ. (3.23)
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Since supp a(·)⊂ [0,K0] we have, for any p=1, . . . ,d,

E

{
W

2

p (s,0,z,0)
}
≤C[φM (z)]2

0∫

−∞

∫

Rd

e−2|k|2β(s−ρ)|k|2βtrR̂(k)|eik·z−1|2dρdk (3.24)

≤C1[0,M ](|z|)
∫

|k|≤K0

e−2|k|2βs|eik·z−1|2 dk

|k|2α+d−2
≤CM2

∫ K0

0

e−2|k|2βδγ−2 dk

k2α−3
.

Making the substitution m=kδ
γ−2
2β , where 1<γ<2, we get that the last integral

equals

δ(2−α)(2−γ)/β

∫ K0δ
(γ−2)/(2β)

0

e−2m2β

dm

m2α−3
≤ δ(2−α)(2−γ)/β

∫ ∞

0

e−2m2β

dm

m2α−3
.

Assuming that (2−α)/β>2, we can select γ sufficiently close to 1 to ensure that the
right hand side can be estimated by Cδ2+2ǫ for some ǫ>0, as δ→0+. This require-
ment amounts to α+2β<2. The conclusion of the lemma is a direct consequence of
Proposition 3.5.

We have shown therefore the following.

Corollary 3.9. Under the assumptions of Theorem 2.2 there exist constants C,ǫ>0
and γ∈ (1,2) such that for u,t∈ [0,T ],

|J1|≤Cδǫ‖Ψ‖L2‖f‖4M,1(u− t), ∀δ∈ (0,1], u− t≥ δγ . (3.25)

The limit of J2. As Corollary 3.9 shows, our task is reduced to finding the limit
of the term J2. We recall, for the convenience of the reader that

J2=
∑

i

E

{[
1

δ

d∑

p=1

∫ ti+1

ti

∫ s

ti−1

d

dρ

[
∂pf(z

(M)
δ (ρ))W (M)

p

( s

δ2
,z

(M)
δ (ρ),xδ(ρ)

)]
dρds

]
Ψ,Ac

δ,ti−1

}

We introduce, for s>ρ>τ ,

W (M)
pq (s,ρ,z,x) :=W (M)

p (s,z,x)W (M)
q (ρ,z,x) , (3.26)

Ŵ (M)
pq (s,ρ,τ,z,x)=E

{
W (M)

pq (s,ρ,z,x)
∣∣∣Fτ

}
,

W
(M)

pq (s,z) :=EW (M)
pq (s,0,z,0)

W̃ (M)
pq (s,ρ,τ,z,x) :=Ŵ (M)

pq (s,ρ,τ,z,x)−W
(M)

pq (s−ρ,z).

We also introduce the corresponding notions without the cut-off φM (z), with the
superscript M dropped, and also

Ŵ (M)
pq (s,ρ,z,x)=Ŵ (M)

pq (s,ρ,ρ,z,x) .

We further Taylor-expand the term in J2 corresponding to a fixed i as

1

δ

d∑

p=1

∫ ti+1

ti

∫ s

ti−1

d

dρ

[
∂pf(z

(M)
δ (ρ))W (M)

p

( s

δ2
,z

(M)
δ (ρ),xδ(ρ)

)]
dρds
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=
1

δ2

d∑

p,q=1

∫ ti+1

ti

∫ s

ti−1

∂
2
pqf(z

(M)
δ (ρ))W (M)

pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (ρ),xδ(ρ)

)
dρds

+
1

δ2

d∑

p,q=1

∫ ti+1

ti

∫ s

ti−1

∂pf(z
(M)
δ (ρ))∂zqW

(M)
p

( s

δ2
,z

(M)
δ (ρ),xδ(ρ)

)

W
(M)
q

( ρ

δ2
,z

(M)
δ (ρ),xδ(ρ)

)
dρds

+
1

δ2

d∑

p,q=1

∫ ti+1

ti

∫ s

ti−1

∂pf(z
(M)
δ (ρ))∂xqW

(M)
p

( s

δ2
,z

(M)
δ (ρ),xδ(ρ)

)
Vq

( ρ

δ2
,xδ(ρ)

)
dρds.(3.27)

Denote the respective terms that arising from J2 by J21, J22, J23 respectively. We
will show that these terms have the following limits.

Proposition 3.10. There exists constants C,ǫ>0 such that

∣∣∣∣∣J21−
∑

i

d∑

p,q=1

∫ ti+1

ti

E

{
∂2
pqf(z

(M)
δ (ti−1))c

(M)
pq

(
z
(M)
δ (ti−1)

)
Ψ,Ac

δ,ti−1

}
ds

∣∣∣∣∣ (3.28)

≤Cδǫ(u− t)‖f‖4M,3‖Ψ‖L2 , ∀δ∈ (0,1], u− t≥ δγ .

Proposition 3.11. There exists constants C,ǫ>0 such that

∣∣∣∣∣J22−
1

2
E

[
Ψ

d∑

q=1

∫ u

t

(cpq∂zqφ
2
M )(z

(M)
δ (s))∂pf(z

(M)
δ (s))ds

]∣∣∣∣∣
≤Cδǫ(u− t)‖f‖4M,1‖Ψ‖L2 (3.29)

and

|J23|≤Cδǫ(u− t)‖f‖4M,1‖Ψ‖L2 , ∀δ∈ (0,1], u− t≥ δγ . (3.30)

This will complete the proof of Theorem 2.3 as the non-trivial terms in (3.28) and
(3.29) combine to produce the operator LM ; see formulas (2.2), (2.3), and (2.5).

The proof of Proposition 3.10. We have

J21=
1

δ2

d∑

p,q=1

∑

i

∫ ti+1

ti

∫ s

ti−1

E

{
∂2
pqf(z

(M)
δ (ρ))W (M)

pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (ρ),xδ(ρ)

)
Ψ,Ac

δ,ti−1

}
dsdρ.

We can further write

J21=A1+A2+A3,

where Aj =
∑

iA
(i)
j , j=1,2,3, with

A
(i)
1 :=

1

δ2

d∑

p,q=1

ti+1∫

ti

ds

s∫

ti−1

dρ

ρ∫

ti−1

dτE
{ d

dτ

{
∂
2
pqf(z

(M)
δ (τ))

×W
(M)
pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (τ),xδ(τ)

)}
Ψ,A

c
δ,ti−1

}
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A
(i)
2 :=

1

δ2

d∑

p,q=1

ti+1∫

ti

ds

s∫

ti−1

dρE
{
∂
2
pqf(z

(M)
δ (ti−1))

×W̃
(M)
pq

(
s

δ2
,
ρ

δ2
,
ti−1

δ2
,z

(M)
δ (ti−1),xδ(ti−1)

)
Ψ,A

c
δ,ti−1

}

A
(i)
3 :=

1

δ2

d∑

p,q=1

∫ ti+1

ti

ds

∫ s

ti−1

dρE
{
∂
2
pqf(z

(M)
δ (ti−1))W

(M)
pq

(s−ρ

δ2
,z

(M)
δ (ti−1)

)
Ψ,A

c
δ,ti−1

}
.

We will see that the term A1 is small since each A
(i)
1 involves three integrals over

intervals of length smaller than δγ , with γ >1. This produces a term of the order
δ3γ−2, which after summation over i will still be of the order δǫ with ǫ>0. The terms

A
(i)
2 are small because of the time-mixing properties of the filed W (t,x,z): there is

either a “large” gap between s and ρ or between ρ and ti−1 that will make A
(i)
2 small.

Finally, A3 will lead to the non-trivial contribution in (3.28).

Estimates for A
(i)
1 . We have

d

dτ

{
∂2
pqf(z

(M)
δ (τ))W (M)

pq

( s

δ2
,
ρ

δ2
,zδ(τ),xδ(τ)

)}

=
1

δ

d∑

r=1

∂3
pqrf(z

(M)
δ (τ))W (M)

pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (τ),xδ(τ)

)
W (M)

r

( τ

δ2
,z

(M)
δ (τ),xδ(τ)

)

+
1

δ

d∑

r=1

∂2
pqf(z

(M)
δ (τ))∂zrW

(M)
pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (τ),xδ(τ)

)
W (M)

r

( τ

δ2
,z

(M)
δ (τ),xδ(τ)

)

+
1

δ

d∑

r=1

∂2
pqf(z

(M)
δ (τ))∂xr

W (M)
pq

( s

δ2
,
ρ

δ2
,z

(M)
δ (τ),xδ(τ)

)
Vr

( τ

δ2
,xδ(τ)

)
.

Denote the three sums appearing on the right hand side by Cj
pq, j=1,2,3 respectively.

Lemma 3.12. There exist constants C,ǫ>0 such that

sup
i

sup
s∈[ti,ti+1]

∣∣∣∣∣E
{
Ψ

∫ s

ti−1

dρ

∫ ρ

ti−1

Cj
pqdτ,A

c
δ,ti−1

}∣∣∣∣∣≤Cδ3+ǫ‖Ψ‖L2‖f‖4M,3 (3.31)

for j=1,2,3, δ∈ (0,1].

Proof. We conduct the proof for j=1. The other cases can be done similarly.
Let

W (M)
pqr (s,ρ,τ,z,x) :=W (M)

r (τ,z,x)W (M)
pq (s,ρ,z,x) .

It suffices to show that there exist constants C,ǫ>0 such that

∣∣∣∣∣

∫ s

ti−1

dρ

∫ ρ

ti−1

dτE
{
∂3
pqrf(z

(M)
δ (τ))ΨW (M)

pqr

( s

δ2
,
ρ

δ2
,
τ

δ2
,z

(M)
δ (τ),xδ(τ)

)
,Ac

δ,ti−1

}∣∣∣∣∣
≤Cδ3+ǫ‖Ψ‖L2‖f‖4M,3 (3.32)
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with the constants independent of i,s. Using the definition of the event Aδ,ti−1
we

can estimate the left hand side of (3.32) by

C‖Ψ‖L2‖f‖4M,3δ
γ

∫ s−ti−1

0

w(s−ρ)/δ2dρ, (3.33)

where (cf. (3.22))

ws :=

{
E

[
sup

|z|≤M,|x|≤δ−2

∣∣W (s,0,z,x)
∣∣6
]}1/6

for any s≥ρ. From Proposition 3.5, with m=6, we conclude that for any µ>0 (to
be adjusted later on) we can choose an appropriate C>0 so that

w(s−ρ)/δ2 ≤Cδ−µ sup
|z|≤M

{
E

∣∣∣∣W
(
s−ρ

δ2
,0,z,0

)∣∣∣∣
2
}1/2

, ∀δ∈ (0,1].

Computing the conditional expectation appearing in the right hand side of the ex-
pression above it follows that

w(s−ρ)/δ2 ≤Cδ−µCM

{∫ K0

0

e−2k2β(s−ρ)δ−2 dk

k2α−3

}1/2

.

Making the substitution ρ′ := (s−ρ)/δ2 we can estimate expression (3.33) by

C‖Ψ‖L2‖f‖4M,3δ
2+γ−µ

∫ s/δ2

0

dρ

{∫ K0

0

e−2k2βρ dk

k2α−3

}1/2

.

Performing the change of variables k′ :=kρ1/(2β) we obtain that the expression above
equals

C‖Ψ‖L2‖f‖4M,3δ
2+γ−µ

∫ s/δ2

0

dρ

ρ(2−α)/(2β)

{∫ K0ρ
1/(2β)

0

e−2k2β

dk

k2α−3

}1/2

.

The integral with respect to ρ is not singular at 0 and has an integrable singularity at
∞, due to the assumption that α+2β<2. Since γ >1 we can choose µ<γ−1, thus
(3.31) holds.

It follows from Lemma 3.12 that

|A(i)
1 |≤Cδ1+γ+ǫ‖Ψ‖L2‖f‖4M,3,

hence, after summation over i we get the estimate

|A1|≤Cδ1+ǫ(u− t)‖Ψ‖L2‖f‖4M,3. (3.34)
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Estimates for A2. To deduce that

|A2|≤Cδǫ(u− t)‖Ψ‖L2‖f‖4M,3, (3.35)

it suffices to show the following.

Lemma 3.13. There exist C,ǫ>0 such that

sup
i

sup
s∈[ti,ti+1]

∣∣∣∣∣E
{∫ s

ti−1

W̃ (M)
pq

(
s

δ2
,
ρ

δ2
,
ti−1

δ2
,z

(M)
δ (ti−1),xδ(ti−1)

)
dρ

× ∂2
pqf(z

(M)
δ (ti−1))Ψ,Ac

δ,ti−1

}∣∣∣∣≤C‖Ψ‖L2‖f‖4M,2δ
2+ǫ. (3.36)

Proof. Making the substitution ρ′ :=ρ/δ2, and dropping the primes, we obtain
that the expression under the supremum equals

δ2

∣∣∣∣∣E
{
∂2
pqf(z

(M)
δ (ti−1))Ψ

∫ s/δ2

ti−1/δ2
W̃ (M)

pq

( s

δ2
,ρ,

ti−1

δ2
,z

(M)
δ (ti−1),xδ(ti−1)

)
dρ,Ac

δ,ti−1

}∣∣∣∣∣ .

Using elementary rules of computing the conditional expectation of Gaussians we get

W̃pq (s,ρ,0,z,0)=2

∫ 0

−∞

∫ 0

−∞

exp
{
−|k1|2β(s−u1)−|k2|2β(ρ−u2)

}
(|k1||k2|)β

×(eik1·z−1)(eik2·z−1)B̃pq(du1,dk1;du2,dk2)

where

B̃pq(du1,dk1;du2,dk2)

:= B̂p(du1,dk1)B̂q(du2,dk2)−R̂pq(k1)δ(u1−u2)δ(k1+k2)du1du2dk1dk2.

A simple calculation shows that

∫ s

0

W̃pq (s,ρ,0,z,0)dρ

=2

∫ 0

−∞

∫ 0

−∞

∫ ∫
exp

{
−|k1|2β(s−u1)

}( |k1|
|k2|

)β

×
[
exp

{
|k2|2βu2

}
−exp

{
−|k2|2β(s−u2)

}]

×(eik1·z−1)(eik2·z−1)B̃pq(du1,dk1;du2,dk2)

=2Z1(s,z)Z2(s,z)−2Z̄(s,z),

where

Z1(s,z)=

∫ 0

−∞

∫
exp

{
−|k1|2β(s−u1)

}
|k1|β(eik1·z−1)B̂p(du1,dk1),

Z2(s,z)=

∫ 0

−∞

∫ [
1−exp

{
−|k2|2βs

}] e|k2|
2βu2(eik2·z−1)

|k2|β
B̂q(du2,dk2),
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and

Z̄(s,z) :=

∫
1−e−|k|2βs

2|k|β e−|k|2βs|eik·z−1|2R̂pq(k)dk.

It suffices only to prove that there exist C1,ǫ1>0 such that

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

EZ2
1 (s,z)≤C1δ

ǫ1 , (3.37)

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

|Z̄(s,z)|≤C1δ
ǫ1 ,

and

sup
s∈[δγ−2,2δγ−2]

sup
|z|≤M

EZ2
2 (s,z)≤C1. (3.38)

Using (1.5), we conclude that

|Z̄(s,z)|≤CM2

∫ K0

0

(1−e−k2βδγ−2

)e−k2βδγ−2 dk

k2α+2β−3

for some constant C>0. Performing the change of variables k′ :=kδ(γ−2)/(2β), we
obtain

|Z̄(s,z)|≤CM2δ(2−γ)(2−α−β)/β

∫ +∞

0

(1−e−k2β

)e−k2β dk

k2α+2β−3
.

On the other hand, we have

EZ2
1 (s,z)≤CM2

∫ K0

0

e−k2β
1 δγ−2

k2α−3
1

dk1≤Cδǫ1

for some ǫ1>0, since α<1. Analogous computations for Z2(s,z) yield

EZ2
2 (s,z)≤CM2

∫ K0

0

[1−e−k2β
2 δγ−2

]2

k2α+4β−3
2

dk2≤C.

This finishes the proof of Lemma 3.13.

The limit of A3. From the definition of A3 we get directly that

∣∣∣∣∣A3−
∑

i

d∑

p,q=1

∫ ti+1

ti

E

{
∂2
pqf(z

(M)
δ (ti−1))c

(M)
pq

(
z
(M)
δ (ti−1)

)
Ψ,Ac

δ,ti−1

}
ds

∣∣∣∣∣

≤C(u− t)‖f‖4M,2‖Ψ‖2 sup
|z|≤M

∫ +∞

δγ−2

dρ

∫

Rd

e−|k|2βρtr R̂(k)[1−cos(k ·z)]2dk

≤CM2(u− t)‖f‖4M,2‖Ψ‖2
∫ K0

0

e−k2βδγ−2

dk

k2α+2β−3

≤Cδ(2−γ)(2−α−β)/β‖f‖4M,2‖Ψ‖2(u− t)

∫ +∞

0

e−k2β

dk

k2α+2β−3
≤Cδǫ‖f‖4M,2‖Ψ‖2(u− t)

for some ǫ>0, provided that α+β<2. This completes the proof of Proposition 3.10.



T. KOMOROWSKI, A. NOVIKOV, AND L. RYZHIK 785

Estimates of J22 and J23: sketch of the proof of Proposition 3.11. The
estimates of J22, J23 go precisely along the lines of the estimates for J21. The term

W
(M)
pq (s,ρ,z,x) appearing there should be replaced by

U (M)
pq (s,ρ,z,x)=∂zqW

(M)
p (s,z,x)W (M)

q (ρ,z,x),

or by

R(M)
pq (s,ρ,z,x)=∂xq

W (M)
p (s,z,x)W (M)

q (ρ,z,x),

in the case of J22 or J23, respectively. The estimates are somewhat easier to come
by this time because the differentiation operators correspond to multiplication of the
spectrum by the k variable, which lowers the degree of singularity of the denominator.
The resulting bounds therefore improve.

The divergence free condition on the field V (t,x) implies

d∑

q=1

ER(M)
pq (s,ρ,z,x)=0. (3.39)

Note also that

d∑

q=1

EU (M)
pq (s,ρ,z,x)

=
d∑

q=1

[
φM (z)∂zqφM (z)W pq(s−ρ,z)+φ2

M (z)∂zqW pq(s−ρ,z)
]

=
1

2

d∑

q=1

∂zqφ
2
M (z)W pq(s−ρ,z).

The last equality follows from the fact that due to the divergence free condition for
the field we have

d∑

q=1

∂zqW pq(s,z)=0.

Using the above facts we conclude that (3.29) and (3.30) hold.
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