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ON PERTURBATION OF THE KIRCHHOFF OPERATOR -
ANALYSIS AND NUMERICAL SIMULATION∗

M.A. RINCON† , M.C.C. VIEIRA‡ , T.N. RABELLO§ , AND L.A. MEDEIROS¶

Abstract. We consider a new model for vertical vibrations of an elastic string fixed at the ends.
When the tension on the string is not constant, Kirchhoff obtained the model

∂2u

∂t2
−(a(x)+b(x)|∇u|2)

∂2u

∂x2
=0,

with the nonlinear perturbations b(x)|∇u|2, which represents the additional tension due to the length
change of the string. The Kirchhoff model is extensively investigated in the literature.

In the present paper, for strings with variable density and cross section, we obtain a model which
is a perturbation of the Kirchhoff equation by an additional term:

−c(x,t)|∇u|2
∂u

∂x
.

We prove that for every T >0 a mixed problem for this new model is well-posed in the interval
0≤ t<T, with a restriction on the initial data ϕ0 and ϕ1 that depends on T. We apply the Galerkin
method, multiplier techniques and compactness results to obtain the existence and uniqueness of
solutions. For the numerical solution, we employ the finite element method and also introduce an
implicit time discretization. Some numerical examples are presented to validate the numerical method
and numerical experiments are presented to compare with the Kirchhoff model and to investigate
the effects of coefficients in the string vibration.
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1. Introduction
The investigations on a mathematical model for small vertical vibrations of an

elastic stretched string is an old problem. A significant contribution for this problem
was given by Jean d’Alembert [8] in 1761, where the works of Euler and D. Bernoulli
are mentioned. He strongly restricted the strings, and his model is

∂2u

∂t2
− τ0
m

∂2u

∂x2
=0, (1.1)

where u=u(x,t) represents the displacement, at time t, of the string in the rest
position [α0,β0]. By τ0 and m are represented, respectively, the constant tension τ0
in the string and its mass m.

In 1883 G. Kirchhoff [9] deduced a model for the same physical problem of small
vertical vibration of elastic strings when it is supposed the tension varies with the
time t, and τ0 represented the tension of the string in the rest position [α0,β0]. The
model proposed by Kirchhoff is

∂2u

∂t2
−
(τ0
m

+
k

2mγ0

∫ β0

α0

(∂u
∂x

)2

dx
) ∂2u
∂x2

=0. (1.2)
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752 ON PERTUBATION OF THE KIRCHHOFF OPERATOR

Observe that γ0=β0−α0 is the length of the string in the rest position, i.e. [α0,β0],
k=σE with E the Young’s modulus of the material of the string, and σ is the area
of the cross section of the string, which is assumed to be constant.

Observe also that the hypothesis of variable tension τ permits one to obtain (1.2)
as a perturbation of the d’Alembert model (1.1). In fact, (1.2) is a perturbation of
(1.1) by the term

c(t)=
σE

2mγ0

∫ β0

α0

(∂u
∂x

)2

dx, (1.3)

which is generated because τ is variable. When the tension τ is constant this term is
zero and (1.2) reduces to (1.1). The mathematical investigations of the boundary value
problem for Kirchhoff model can be seen in Bernstein [1], Hazoya and Yamada [6],
Lions [12], Medeiros, Ĺımaco and Menezes [14], Pohozaev [16], [17] and the references
therein. In the references there are more studies; in particular see Medeiros, Ĺımaco
and Menezes[14].

There is a modification of the Kirchhoff’s model (1.2) when the ends of the string
are moving, that is, for each t>0 we have [α(t),β(t)], with 0<α(t)≤α0<β0≤β(t),
for all t>0. Thus the perturbation of (1.2), in this case, is the following:

∂2u

∂t2
−
(τ0
m

+
k

m

γ(t)−γ0
γ0

+
k

2mγ(t)

∫ β(t)

α(t)

(∂u
∂x

)2

dx
) ∂2u
∂x2

=0, (1.4)

where γ(t)=β(t)−α(t), α0=α(0), β0=β(0), and k=σE constant. For the math-
ematical analysis of (1.4), see Part Two of Medeiros, Ĺımaco and Menezes[13], part
two.

To obtain (1.2) we return to the hypothesis and suppose that the mass density of
the string varies with x for α0<x<β0 , and represent the density by ρ=ρ(x). Note
that ρ is the mass per unit of length. We also suppose that the cross section of the
string varies with x in α0<x<β0 , and with t≥0, that is σ=σ(x,t). We work with
regular functions ρ and σ.

With the above hypotheses and by the same arguments used to obtain (1.2),
that is, by the linear Hooke’s law and Newton second law (cf. Medeiros, Ĺımaco
and Menezes [14]), we obtain the model for small vertical vibrations of elastic strings
which we call the perturbation of the Kirchhoff operator:

∂2u

∂t2
−
(
a(x)+b(x,t)

∫ β0

α0

(∂u
∂x

)2

dx
) ∂2u
∂x2

−
(
c(x,t)

∫ β0

α0

(∂u
∂x

)2)∂u
∂x

+d(x,t)
∂u

∂t
=0,

(1.5)
where

a(x)=
τ0

γ0ρ(x)
, b(x,t)=

Eσ(x,t)

γ20ρ(x)
, and c(x,t)=E

∂σ

∂x
(x,t). (1.6)

In the present analysis, we add an artificial viscosity
(
d(x,t)

∂u

∂t

)
. Moreover, we

shall assume that the mass density depends also on time, so that ρ=ρ(x,t). Thus the

function a(x,t)=
τ0

γ0ρ(x,t)
and the model is given by



M. A. RINCON, M. C. C. VIEIRA, T. N. RABELLO, AND L. A. MEDEIROS 753

∂2u

∂t2
−
(
a(x,t)+b(x,t)

∫ β0

α0

(∂u
∂x

)2

dx
) ∂2u
∂x2

−
(
c(x,t)

∫ β0

α0

(∂u
∂x

)2

dx
) ∂u
∂x

+d(x,t)
∂u

∂t
=0. (1.7)

In this work, we are interested in studying the existence and uniqueness of the so-
lutions of the model (1.7) of the transverse vibration of nonlinear strings and also the
numerical solutions of the partial differential equations. The finite element method
associated with finite difference schemes in time are developed to solve the equations
numerically. Numerical simulations are presented for comparison of solutions of trans-
verse vibration calculated from two string models with constant and variable mass
density ρ and cross section σ. The numerical results show their influences on the
frequency and amplitude of vibrations of the string.

2. Notations and hypotheses
We will follow the standard notation used by Lions in [10] and [11]. Let Ω=

(α0,β0), α0>0, be a bounded interval of the real line R.
Let the space V =H1

0 (Ω)∩H2(Ω) be equipped with the scalar product and norm
given by

(u,v)V =

∫ β0

α0

∂2u

∂x2
∂2v

∂x2
dx; |u|2V =

∫ β0

α0

∣∣∣∂
2u

∂x2

∣∣∣
2

R

dx, ∀u∈V.

The scalar product and norm in L2(Ω) are represented by

(u,v)=

∫ β0

α0

u(x)v(x)dx; |u|2=
∫ β0

α0

|u(x)|2
R
dx, ∀u,v∈L2(Ω).

Note that |u| is the norm in L2(Ω) and |u(x)|R is the absolute value of the real number
u(x).

For T >0, we consider the cylinder Q=(α0,β0)×(0,T ) of the Cartesian plane
R

2. By L∞(Q) we represent the Banach space of bounded measurable functions on
Q with real values, equipped with the norm

‖u‖∞=sup ess
(x,t)∈Q

|u(x,t)|R

The functions a,b,c and d are defined in Q with values in the positive real numbers
R

+ satisfying the following conditions:

H1) c∈C1(Q) with c(β0,t)≥0, c(α0,t)≤0 for all t≥0. (Q is the closure of Q
and C1(Q) the space of continuous differentiable functions u : Q→R );

H2) a,
∂a

∂t
, b,

∂b

∂t
, d,

∂d

∂x
∈ L∞(Q);

H3) b(x,t)>0, a(x,t)≥a0>0 in Q.

The nonlinearity in the model (1.7) is of the type

||u(t)||2=
∫ β0

α0

∣∣∣∂u
∂x

(x,t)
∣∣∣
2

R

dx.
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We consider a more general non linearity of the type M(||u(t)||2), with M =M(λ),
λ≥0, such that:

H4) M is continuously differentiable with M ′ in L∞(0,K) for all K>0 and
0≤M(λ)≤λ, M ′(λ)≥0 in (0,+∞).

3. Problem formulation
Motivated by the perturbed Kirchhoff model (1.7), we formulate the following

initial boundary value problem: given ϕ0 and ϕ1 find a function u : Q→R which
solves the initial boundary value problem





u′′(x,t)−
(
a(x,t)+b(x,t)M(‖u(t)‖2)

)∂2u
∂x2

(x,t)

−c(x,t)M(‖u(t)‖2)∂u
∂x

(x,t)+ d(x,t)u′(x,t)=0 in Q,

u(α0,t)=u(β0,t)=0 for all t≥0,

u(x,0)=ϕ0 (x) , u′ (x,0)=ϕ1(x) in (α0,β0).

(3.1)

We represent (∂u/∂t) by u′, (∂2u/∂t2) by u′′. All derivatives are in the sense of
distributions.

Definition: We call a solution of the problem (3.1) a function u : Q→R in the
classes:





u∈L∞(0,T ;H1
0 (Ω)∩H2(Ω)),

u′∈L∞(0,T ;H1
0 (Ω)),

u′′∈L∞(0,T ;L2(Ω)),

satisfying the initial conditions in (3.1) and the integral identity

∫ T

0

(u′′(t),v)dt−
∫ T

0

(a(t)+b(t)M(‖u(t)‖2)∂
2u

∂x2
(t),v)dt

−
∫ T

0

(c(t)M(||u(t)||2)∂u
∂x

(t),v)dt+

∫ T

0

(d(t)u′(t),v)dt=0, ∀v∈L2(0,T ;L2(Ω)).

For formulating the main result in this paper, we need to define the following
constants: γ0=β0−α0,

C1=max
{
ess sup

(x,t)∈Q

{
|a|, |a′|, |b|, |b′|, |c|, |c′|,

∣∣∣ ∂c
∂x

∣∣∣, |d|,
∣∣∣∂d
∂x

∣∣∣
}}

,

and

k0=C1

(
2+

1

a0
+γ0

)
, k1=

C1√
a0

( 1√
a0

+2+
2γ0
π

+
2γ0√
a0

)
, k2=

2C1γ0

π
√
a30

(1+γ0),

k3=C1

(
1+

(γ0
π

)2

+2
(γ0
π

)2

γ0

)
, k4=

γ20
a0π2

, k5=k4(1+k3)exp(2k0T ),

k6=‖M ′(λ)‖L∞(0,k5), δ=min
{
1,

k0 exp(−2k0T )

(a0k4+k2k6)(1+k3)

}
.
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3.1. Existence. The main result in this paper is the following:

Theorem 3.1. Let T >0. If ϕ0∈H1
0 (Ω)∩H2(Ω) and ϕ1∈H1

0 (Ω) satisfy the restric-
tion

∣∣∂
2ϕ0

∂x2
∣∣2+

∥∥ϕ1

∥∥2<δ, (3.2)

then there exists a unique solution of (3.1).

Proof. The proof will be done by the method of successive approximations.
It is known that

wm(x)=

√
2

γ0
sin

(mπ
γ0

(x−α0)
)
, λm=

(mπ
γ0

)2

are the eigenfunctions and the eigenvalues, respectively, of the operator (∂2/∂x2) in
H1

0 (Ω). The eigenfunctions are completely orthonormal in L2(Ω) and orthogonal in
H1

0 (Ω)∩H2(Ω); cf. Brezis [3].
Represent by Vm=[w1,w2, . . . ,wm] the subspace of V =H1

0 (Ω)∩H2(Ω). We define
u0(t)=0 for all t∈ [0,T ] and the function um : [0,Tm]→Vm to be the solution of the
following system of linear ordinary differential equations:





(
u′′m(t),w

)
−
((
a(t)+b(t)M(‖um−1(t)‖2)

)∂2um
∂x2

(t),w
)

−
(
c(t)M(‖um−1(t)‖2)

∂um
∂x

(t),w
)
+
(
d(t)u′m(t),w

)
=0, ∀w∈Vm,

um(0)=uom→ϕ0 in V,

u′m(0)=u1m→ϕ1 in H1
0 (Ω).

(3.3)

It is opportune to observe that the linear system of ordinary differential equations
(3.3) has a solution um∈C2

(
(0,Tm),Vm

)
given by

um(x,t)=
m∑

i=1

gi(t)wi(x), (3.4)

where we are denoting gi(t)=gim(t). To prove that the approximate solutions (um),
obtained above, converge to the solution of (3.1), we need to obtain estimates on
∣∣∂

2um
∂x2

(t)
∣∣,
∥∥u′m(t)

∥∥, and
∣∣u′′m(t)

∣∣.

Estimate 1: Taking w=
∂2u′m
∂x2

(t)∈Vm in (3.3), we get

1

2

d

dt

∥∥u′m(t)
∥∥2+

((
a(t)+b(t)M(‖um−1(t)‖2)

)∂2um
∂x2

(t),
∂2u′m
∂x2

(t)
)

+
(
c(t)M

(
‖um−1(t)‖2

)∂um
∂x

(t),
∂2u′m
∂x2

(t)
)
−
(
d(t)u′m(t),

∂2u′m
∂x2

(t)
)
=0.

(3.5)

Note that we have the following relations:

((
a(t)+b(t)M(‖um−1(t)‖2)

)∂2um
∂x2

(t),
∂2u′m
∂x2

(t)
)
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=
1

2

d

dt

∫ β0

α0

(
a(x,t)+b(x,t)M(‖um−1(t)‖2)

)∣∣∣∂
2um
∂x2

(x,t)
∣∣∣
2

R

dx

−1

2

∫ β0

α0

(
a′(x,t)+b′(x,t)M(‖um−1(t)‖2)

)(∂2um
∂x2

(x,t)
)2

dx

−
∫ β0

α0

(
b(x,t)M ′(‖um−1(t)‖2)

)(
u′m−1(t),um−1(t)

)(∂2um
∂x2

(x,t)
)2

dx. (3.6)

(
c(t)M(‖um−1(t)‖2)

∂um
∂x

(t),
∂2u′m
∂x2

(t)
)

=
1

2

d

dt

{(
c(β0,t)

(∂um
∂x

(β0,t)
)2

−c(α0,t)
(∂um
∂x

(α0,t)
)2)

M(‖um−1(t)‖2)
}

−
(1
2
c′(β0,t)

(∂um
∂x

(β0,t)
)2

− 1

2
c′(α0,t)

(∂um
∂x

(α0,t)
)2)

M(‖um−1(t)‖2)

+c(α0,t)
(∂um
∂x

(α0,t)
)2

M ′(‖um−1(t)‖2)
(
u′m−1(t),um−1(t)

)

−c(β0,t)
(∂um
∂x

(β0,t)
)2

M ′(‖um−1(t)‖2)
(
u′m−1(t),um−1(t)

)

−M(‖um−1(t)‖2)
∫ β0

α0

( ∂c
∂x

(x,t)
∂um
∂x

(x,t)+c(x,t)
∂2um
∂x2

(x,t)
)∂u′m
∂x

(x,t)dx.(3.7)

(3.8)

(
d(t)u′m(t),

∂2u′m
∂x2

(t)
)

=−
∫ β0

α0

(
d(x,t)

(∂u′m
∂x

(x,t)
)2

+
∂d

∂x
(x,t)u′m(x,t)

∂u′m
∂x

(x,t)
)
dx. (3.9)

Substituting (3.6)-(3.9) in (3.3) we obtain

1

2

d

dt
zm(t)=

1

2

∫ β0

α0

(
a′(x,t)+b′(x,t)M(‖um−1(t)‖2)

)(∂2um
∂x2

(x,t)

)2

dx

+

∫ β0

α0

(
b(x,t)M ′(‖um−1(t)‖2)

)(
u′m−1(t),um−1(t)

)(∂2um
∂x2

(x,t)
)2

dx

+
(1
2
c′(β0,t)

(∂um
∂x

(β0,t)
)2

−c′(α0,t)
(∂um
∂x

(α0,t)
)2)

M(‖um−1(t)‖2)

+c(β0,t)
(∂um
∂x

(β0,t)
)2

M ′(‖um−1(t)‖2)
(
u′m−1(t),um−1(t)

)

−c(α0,t)
(∂um
∂x

(α0,t)
)2

M ′(‖um−1(t)‖2)
(
u′m−1(t),um−1(t)

)

+M(‖um−1(t)‖2)
∫ β0

α0

( ∂c
∂x

(x,t)
∂um
∂x

(x,t)+c(x,t)
∂2um
∂x2

(x,t)
)∂u′m
∂x

−
∫ β0

α0

(
d(x,t)

(∂u′m
∂x

(x,t)
)2

+
∂d

∂x
(x,t)u′m(x,t)

∂u′m
∂x

(x,t)
)
dx, (3.10)

where
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zm(t)=‖u′m(t)‖2+
∫ β0

α0

(
a(x,t)+b(x,t)M(‖um−1(t)‖2)

)(∂2um
∂x2

(x,t)
)2

dx

+
(
c(β0,t)

(∂um
∂x

(β0,t)
)2

−c(α0,t)
(∂um
∂x

(α0,t)
)2)

M(‖um−1(t)‖2).
(3.11)

We have

∣∣∣
∫ β0

α0

d(x,t)
(∂u′m
∂x

(x,t)
)2

dx
∣∣∣
R

≤ ess sup
(x,t)∈Q

|d(x,t)
∣∣
R
‖u′m(t)

∥∥2, (3.12)

∫ β0

α0

a(x,t)
(∂2um
∂x2

(x,t)
)2

dx≥a0
∣∣∣∂

2um
∂x2

(t)
∣∣∣
2

, (3.13)

∣∣∣
∫ β0

α0

∂d

∂x
(x,t)u′m(t)

∂u′m
∂x

(x,t)dx
∣∣∣≤ ess sup

(x,t)∈Q

∣∣∣∂d
∂x

(x,t)
∣∣∣
R

γ0
π

∥∥u′m(t)
∥∥2, (3.14)

‖um(t)‖2≤
(γ0
π

)2∣∣∣∂
2um
∂x2

(t)
∣∣∣
2

≤
( γ0
π
√
a0

)2

zm(t)≤
( γ0
π
√
a0

)2

α̂m, (3.15)

where

α̂m= sup
0<t<T

zm(t).

Let us define

β̂m=
( γ0
π
√
a0

)2
α̂m, θm= sup

0<λ<β̂m

M(λ), and ηm= sup
0<λ<β̂m

|M ′(λ)|. (3.16)

Substituting (3.11)-(3.15) in (3.10), and by using (3.16) and the hypotheses (H1),
(H2), (H3), we obtain

z′m(t)≤2C1(1+γ0)
∥∥u′m(t)

∥∥2+2C1θm−1

∣∣∣∂
2um
∂x2

(t)
∣∣∣
∥∥u′m(t)

∥∥

+C1

(
1+θm−1+2ηm−1‖um−1(t)

∥∥ ∥∥u′m−1(t)
∥∥
)∣∣∣∂

2um
∂x2

(t)
∣∣∣
2

+2C1γ0θm−1

∣∣∣∂
2um
∂x2

(t)
∣∣∣
2(∥∥u′m(t)

∥∥+1
)

+2C1ηm−1γ0θm−1

∣∣∂
2um
∂x2

(t)
∣∣ ∥∥u′m−1(t)

∥∥ ∥∥um−1(t)
∥∥. (3.17)

Using the definition of zm, α̂m, and (3.16) in (3.17) we have

z′m(t)≤ (k0+k1θm−1+k2α̂m−1ηm−1)zm(t). (3.18)

Integrating (3.18), we obtain

zm(t)≤ zm(0)exp(k0+k1θm−1+k2α̂m−1ηm−1)t, ∀t∈ (0,Tm) .
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But, we can prove that

zm(0) ≤
∥∥ϕ1

∥∥2+C1

(
1+

(γ0
π

)2
+2

(γ0
π

)2
γ0

)∣∣∣∂
2ϕ0

∂x2
(t)

∣∣∣
2

≤ (1+k3)δ, (3.19)

so we have

zm(t)≤ (1+k3)δexp(k0+k1θm−1+k2α̂m−1ηm−1)t, ∀t∈ (0,Tm) .

We prove by induction that

zm(t)≤ (1+k3)δexp(2k0T )= c0, ∀t∈ (0,Tm) , ∀m∈N. (3.20)

Thus, for m=1, we have

z1(t)≤ (1+k3)δexp(k0T )≤ (1+k3)δexp(2k0T ) , for all t∈ (0,Tm) , (3.21)

since u0(t)=0, and therefore z0(t)=0⇒α0=0, β0=0, θ0=0, η0=0 by (3.19).
Then, we suppose that

zm(t)≤ (1+k3)δexp(2k0T ) , for all t∈ (0,Tm) .

Since that, 0≤M(λ)≤λ, we have, by definition of θm and β̂m, that θm≤ β̂m and

ηm= sup
0≤λ≤β̂m

|M ′ (λ)|≤k6.

So, we obtain

zm+1(t)≤ (1+k3)δexp(k0T )exp(k1θm+k2α̂mk6)t, ∀t∈ (0,Tm) .

Using the hypothesis of induction the definition of α̂m and the considerations above,
we have

zm+1(t)≤ (1+k3)δexp(k0T )exp(k1k4+k2k6)c0t, ∀t∈ (0,Tm) .

So, by definition of δ and c0, we obtain

(k1k4+k2k6)c0≤k0⇒zm+1(t)≤ (1+k3)δexp(2k0T ) , ∀t∈ (0,Tm) ,

which proves (3.20). Therefore by the definition of zm we can extend the solution to
(0,T ) and

‖u′m(t)‖2+
∣∣∣∂

2um
∂x2

(t)
∣∣∣
2

≤ c0
min{1,a0}

, ∀t∈ (0,T ). (3.22)

Estimate 2: We prove that u′′m(t) is bounded in L2(Ω). Let w=u′′m(t)∈Vm be
in the approximate Equation (3.3). We obtain

|u′′m(t)|2

≤
∫ β0

α0

(
a(x,t)+b(x,t)M(‖um−1(t)‖2)

)∣∣∣∂
2um
∂x2

(x,t)u′′m(x,t)
∣∣∣
R

dx

+

∫ β0

α0

(
|c(x,t)M(‖um−1(t)‖2)

∂um
∂x

(x,t)u′′m(x,t)|R+ |d(x,t)u′m(x,t)u′′m(x,t)|R
)
dx
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≤
(∣∣∣(a(t)+b(t)M(‖um−1(t)‖2))

∂2um
∂x2

∣∣∣+
∣∣∣c(t)M(‖um−1(t)‖2)

∂um
∂x

∣∣∣
)
|u′′m(t)|

+|d(t)u′m(t)| |u′′m(t)|.
From the above inequality and the hypothesis (H4), we obtain

|u′′m(t)|≤C1

((
1+

c0
min{1,a0}

)∣∣∣∂
2um
∂x2

(t)
∣∣∣+ c0

min{1,a0}
‖um(t)‖+ |u′m(t)|

)
.

By Estimate 1 and Poincaré’s inequality, it follows that

∣∣u′′m(t)
∣∣≤2C1

( c0
min{1,a0}

)1/2 (
1+

c0
min{1,a0}

)
, ∀m∈N and t∈ [0,T ]. (3.23)

From the estimates (3.22) and (3.23) there exists a subsequence
(
umj

)
of (um) such

that:




umj
→u, weak-star in L∞(0,T ;H1

0 (Ω)∩H2(Ω)),

u′mj
→u′, weak-star in L∞(0,T ;H1

0 (Ω)),

u′′mj
→u′′, weak in L∞(0,T ;L2(Ω)).

(3.24)

By using the same arguments as in Rabello et al. [18] there exists a subsequence
of (umj

), still denoted by (umj
), such that

M(‖umj−1(t)‖2)→M(‖u(t)‖2), uniformly on [0,T ].

Therefore by considering the subsequence (umj
) in the approximate Equation (3.3)

and by passing to the limit j→+∞, it follows that u is solution of Theorem 3.1 in
the sense of Definition 3.1.

3.2. Uniqueness. The arguments used to prove the uniqueness can be found
in [18], but in this work, for completeness, we only an idea of them. Indeed, let u1
and u2 solutions of the problem (3.1) in the sense defined in Theorem (3.1). Consider
w=u1−u2, so w(0)=w′(0)=0 and ∀v∈L2(0,T ;L2(α0,β0)). Then w is a solution of

∫ T

0

∫ β0

α0

{
w′′(x,t)−

(
a(x,t)+b(x,t)M(‖u1(t)‖2)

)
∆w(x,t)

−c(x,t)M(‖u1(t)‖2)∇w(x,t)+d(x,t)w′(x,t)

−b(x,t)
(
M(‖u1(t)‖2)−(M(‖u2(t)‖2)

)
∆w(x,t)

−c(x,t)
(
M(‖u1(t)‖2)−(M(‖u2(t)‖2)

)
∆w(x,t)

}
v(x,t) dx dt=0.

Taking v=w′(x,t) in (3.3), we consider the function

ψ(t)=
1

2
|w′(t)|2+ 1

2

∫ β0

α0

(
a(x,t)+b(x,t)M(‖u1(t)‖2)

)(∂w
∂x

)2

dx.

By the same arguments employed in [18], we obtain

ψ−1(t)≤Cψ(t), ∀t∈ [0,T ],

where C is positive constant. It follows that ψ(t)=0, ∀t∈ [0,T ]. Since by definition
‖w(t)‖2≤C1ψ(t), ∀t∈ [0,T ], we have w(t)=0.
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4. Approximate solution

In this section we apply the Galerkin method to determine an approximate solu-
tion. To obtain the numerical approximate solutions we use both the finite element
method and the finite difference method. Moreover, some numerical experiments are
presented for analysis of the model.

4.1. Variational formulation. To obtain the approximate numerical solu-
tion, we assume that the ends are fixed, i.e., α0=0, γ0=β0−α0=1. Moreover the
operatorM , defined in the hypothesis (H4), is taken as the identity operator I. Under
these conditions the problem (3.1) can be rewritten in the following way:

u′′−
(
a(x,t)+b(x,t)‖u(t)‖2

)∂2u
∂x2

−
(
c(x,t)‖u(t)‖2

)∂u
∂x

+d(x,t)u′=0, (4.1)

where the coefficients are defined by (1.7).

Then the variational formulation in Vm is given by

∫ 1

0

u′′m(t)wdx+

∫ 1

0

∂um
∂x

∂

∂x
(M1(x,t)w)dx

−
∫ 1

0
M2(x,t)

∂um

∂x wdx+

∫ 1

0

M3(x,t)u
′
mwdx =0,

(4.2)

where

M1(x,t)=a(x,t)+b(x,t)‖um(t)‖2, M2(x,t)= c(x,t)‖um(t)‖2, and

M3(x,t)=d(x,t).
(4.3)

Substituting (3.4) into Equation (4.2) and taking w=wj(x)∈Vm, we obtain

m∑

i=1

g′′i (t)

∫ 1

0

wi(x)wj(x)dx+

m∑

i=1

gi(t)

∫ 1

0

∂wi(x)

∂x

∂

∂x
(M1(x,t)wj(x))dx

−
m∑

i=1

gi(t)

∫ 1

0

M2(x,t)
∂wi(x)

∂x
wj(x)dx+

m∑

i=1

g′i(t)

∫ 1

0

M3(x,t)wi(x)wj(x)=0.

(4.4)

We define

Aij =

∫ 1

0

wi(x)wj(x) dx, Bij(t)=

∫ 1

0

∂wi(x)

∂x

∂

∂x

(
M1(x,t)wj(x)

)
dx

Cij(t)=

∫ 1

0

M2(x,t)
∂wi(x)

∂x
wj(x)dx, Dij(t)=

∫ 1

0

M3(x,t)wi(x)wj(x)dx.

(4.5)

Substituting the matrices in (4.5), we obtain the following nonlinear ordinary
differential system:

{
Ag′′(t)+D(t)g′(t)+

(
B(t)−C(t)

)
g(t)=0,

g(0)=g0, g′(0)=g1.
(4.6)
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4.2. Finite difference method. For the nonlinear ordinary differential sys-
tem (4.6) with the matrices, the method of characteristics (dependent on the variables
x and t) to obtain the solution is not always possible in continuous time. So, we will
apply a numerical method to determine the approximate solution for the system (4.6),
using the approximate implicit Newmark method (see, for instance, [5, 7, 4]).

Let gn=g(tn) be the approximate solution of the exact solution g(t) of (4.6),
where we denote the discrete time in the interval [0,T ] by tn=n∆t, n=0,1· · ·N , and
the values of W at the discrete time tn by Wn. We denote by gn∗=θgn+1+(1−
2θ)gn+θgn−1, n=0,1· · ·N , the weighted average, where, for reasons of numerical
stability, θ belongs to the interval [0.25;1]. Setting t= tn, for the first and second
derivative we take the difference operator in the following form

δgn=
gn+1−gn−1

2∆t
, δ2gn=

gn+1−2gn+gn−1

∆t2
. (4.7)

For this approximation the discrete error can be shown to be of order O(∆t2).
For the system (4.6) at the discrete mesh points tn=n∆t, using the weighted

average and (4.7), we obtain the following discrete system:

A
(gn+1−2gn+gn−1

∆t2

)
+(Bn−Cn)gn∗+Dn

(gn+1−gn−1

2∆t

)
=0, (4.8)

where we recall that the matrices are time dependent and Bn=B(tn), Cn=
C(tn), D

n=D(tn). Multiplying by (∆t)2 on both sides, we obtain the iterative
method

Jngn+1=Hngn−Kngn−1, n=0,1, · · ·N, (4.9)

where J, H and K are matrices known at time tn=n∆t and defined by

Jn=A+θ(∆t)2(Bn−Cn)+
∆t

2
gn, Hn=2A−(1−2θ)(∆t)2(Bn−Cn),

Kn=A+θ(∆t)2(Bn−Cn)−∆t

2
gn.

(4.10)

If the matrices, Jn=Jn
ij , Hn=Hn

ij and Kn=Kn
ij , which are dependent on x

and t, are known, then the iterative method (4.9) can be easily implemented. Indeed,
taking t=0 into (4.9) yields, for each n=0,

(
J0+K0

)
g1=H0g0+2∆tK0g1, (4.11)

where, from initial conditions, g0=g0 and g1=g
′
0 are known. Solving the linear

system, we get the vector g1=(g11 ,g
1
2 , · · · ,g1m). Then for n=1,2· · · , using the iterative

method (4.9) we obtain the values of gn=(gn1 ,g
n
2 , · · · ,gnm) for each n by solving the

linear system, provided that the matrix is not singular.

4.3. Finite element method. To calculate the matrices of the linear system
(4.9), we need to introduce the basis function ϕi∈Vm. In the finite element method,
the basis functions are piecewise polynomials of some degree in Ω which vanish on
∂Ω. More specifically, in this work, the basis functions of Vm are defined by the
piecewise linear polynomial subspace defined in the following way: first, we divide the
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domain Ω=(0,L)=(0,1) into local domains Ωi=(xi,xi+1). Then Ω=int
(
∪m
i=1 Ω̄i

)

and Ωi∩Ωj =∅, if i 6= j.

wi(x)=





x−xi−1

h
, ∀x∈ [xi−1,xi],

xi+1−x
h

, ∀x∈ [xi,xi+1],

0, ∀x /∈ [xi−1,xi+1],

(4.12)

where we are considering the uniform mesh h=hi=xi+1−xi , i=1,2, . . . ,m in the
discretization into m-parts, with 0=x1<x2< · · ·<xm+1=1. Note that if |i−j|>
2 then (wi,wj)=0 and (∂wi/∂x,∂wj/∂x)=0. Hence all the matrices of system are
tridiagonal.

5. Numerical simulation
Some numerical experiments are presented in order to illustrate some features of

the model (1.7) for small vibrations of elastic strings, where the density ρ=ρ(x,t) and
the cross section σ=σ(x,t) depend on the variables x and t. These numerical exper-
iments are compared with the usual Kirchhoff model for small vibrations of elastic
homogeneous strings. As far as we know, there is still no error estimate (continuous
or discrete time) for the problem (4.1).

u(0.5,t)

La2
La1
Kir

t

543210

0.15

0.1

0.05

0

-0.05

-0.1

-0.15

Fig. 5.1. The time evolution of the string’s position u(0.5,t) for the models La1, Kir, and La2.

5.1. Example 1. In particular, set ρ(x,t)=1/(x+ t+1), σ(x,t)=x+ t, the
Young’s modulus E=1, and τ0=γ0=1. Then from (1.6) we have a(x,t)=x+ t+1,
b(x,t)=(x+ t)(x+ t+1), and c(x,t)=1. The artificial viscosity coefficient d(x,t) is
taken as d(x,t)=0 (without viscosity) and d(x,t)=0.5 in this first example to show
the influence of penalization.

For ∆t=h=0.01 and L=1, the numerical results of the approximate solution are
not significantly different for each θ∈ [0.25,1] and so we are setting θ=0.25 in the
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u(x,2.5)

La2
La1
Kir

x

10.90.80.70.60.50.40.30.20.10

0.08

0.06

0.04

0.02

0

-0.02

-0.04

Fig. 5.2. The position of the string at the fixed time T/2=2.5 for the models La1, Kir, and La2.

uLam
(0.4,t)uLam

(0.8,t)ukir(0.5,t)

t

u
(x
∗,
t)

109876543210

0.3

0.2

0.1

0

-0.1

-0.2

-0.3

Fig. 5.3. The evolution of the string u(x∗,t) to the fixed x∗ and t∈ [0,10.0].

Newmark method (4.8).
Consider the boundary condition u(0,t)=u(L,t)=0 and the following initial con-

ditions

u(x,0)=
1

π2
sin(πx); u′(x,0)=

1

π
cos(πx), ∀x∈Ω=(0, 1).

We represent by La1, La2, and Kir the three sets of different coefficient functions for



764 ON PERTUBATION OF THE KIRCHHOFF OPERATOR

u(x,t)

t

x

u(x,t)
0.4
0.2
0

-0.2
-0.4

10864201

0.8

0.6

0.4

0.2

0

Fig. 5.4. Approximate solution uh(x,t) for the Kir model.

u(x,t)

t

x

u(x,t)
0.4
0.2
0

-0.2
-0.4

10864201

0.8

0.6

0.4

0.2

0

Fig. 5.5. Approximate solution uh(x,t) for the Lam model.

the problem (1.7) given by

E1=





La1 : a(x,t)=x+ t+1; b(x,t)=(x+ t)(x+ t+1); c(x,t)=1, d(x,t)=0,

La2 : a(x,t)=x+ t+1; b(x,t)=(x+ t)(x+ t+1); c(x,t)=1; d(x,t)=0.5,

Kir : a(x,t)= b(x,t)=1; c(x,t)=d(x,t)=0 “Kirchhoff model”.
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Figure 5.1 represents an approximate solution uh(0.5, t) at the midpoint of x=0.5
and at varying time t∈ [0, 5.0] for each set of coefficient functions defined in E1.
Note that the motions of three graphs are oscillatory; however, the Kirchhoff model,
with initial data defined above, has a solution that is almost periodic in time, i.e.
u(x,t)≈u(x,t+p) for p≈2. On the other hand, the models La1 and La2 almost
have the same period and smooth decay. But the La2 model with artificial viscosity
d(x,t)=0.5 the oscillation damps out much faster.

Figure 5.2 represents an approximate solution uh(x, 2.5),∀x∈ [0,1], by showing
the profiles of the string for the fixed time t=2.5.

5.2. Example 2. The purpose of this example is to show the influence of the
function a(x) in the frequency and amplitude of the vibrations of an elastic string.
For this, we use a function with sudden change in the interval, assuming that the
values a(x) in the interval [0,1] varies from 1 to 5, and we compare the approximate
solution of the Kirchhoff model with the model developed in (1.5), that will here be
called the Lam model. Thus we consider the following coefficients for the equation,
whose only difference between the coefficients is the term a(x):

E1=





Kir : a(x)= b(x)=1.0; c(x)=d(x)=0.0,

Lam : a(x)=1+4x; b(x)=1.0; c(x)=d(x)=0.0.

Let the boundary condition u(0,t)=u(L,t)=0 with L=1 and the initial position
and initial velocity given by

u(x,0)=x(x−1) and u′(x,0)=0, ∀x∈ [0,1].

In this example, h=0.01 and ∆t=T/N =0.05. In Figure 5.3 we can see the
vibration of the string at time t for each fixed x, showing the dependence on position
x, where by ukir(0.5,t) we represent the approximate solution of the Kirchhoff model
and by uLam

(0.4,t) and uLam
(0.8,t) the approximate solution of the Lam model.

In Figure 5.4 and Figure 5.5 the evolution of the displacement function uh(x,t)
is plotted, showing the profiles of displacement for the Kir and Lam models. Note
that the speed of propagation is faster in the Lam model than in the Kir model, due
to the coefficient a(x)=1+4x≥1, ∀x∈ [0,1].

6. Final remarks
In this work, we have shown a different model for vertical vibrations of an elas-

tic string with fixed ends. We proved a theorem of existence and uniqueness of the
solution to the problem and we have developed a numerical method and a computer
program to obtain an approximate numerical solution. Thus, we can compare nu-
merically and graphically to emphasize the difference between the proposed model
and the model of Kirchhoff. The numerical results show the influence of coefficient
functions in vibrating strings on the frequency and amplitude. To our knowledge this
is the first time such models are treated numerically.
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