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MULTI-VALUED SOLUTIONS TO HESSIAN QUOTIENT
EQUATIONS∗

LIMEI DAI†

Abstract. In this paper, we first use the Perron method to prove the existence of bounded multi-
valued viscosity solutions to Hessian quotient equations. Then we get the existence of multi-valued
solutions with asymptotic behavior at infinity and infinitely valued solutions to Hessian quotient
equations.
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1. Introduction
In this paper, we study the multi-valued solutions of Hessian quotient equation

Sl,m(D2u)=
Sl(D

2u)

Sm(D2u)
=f(x), (1.1)

where 0≤m<l≤n, D2u denotes the Hessian of the function u, and Sj(D
2u) is defined

to be the jth elementary symmetric function of the eigenvalues λ=(λ1,λ2, . . . ,λn) of
D2u, i.e.,

Sj(D
2u)=σj(λ(D

2u))=
∑

1≤i1<···<ij≤n

λi1 · · ·λij ,j=1,2, . . . ,n.

When m=0, we denote S0(D
2u)≡1.

Equation (1.1) represents an important class of fully nonlinear elliptic equations
which is closely related to a geometric problem. Some well-known equations can be
regarded as its special cases. Whenm=0, it is the l-Hessian equation. In particular, it
is the Poisson equation if l=1, while it is the Monge-Ampère equation if l=n. When
l=n=3, m=1, i.e., detD2u=∆u, Equation (1.1) arises from special Lagrangian
geometry [16]. Therefore Equation (1.1) has drawn much attention; see [2, 7, 24, 25].

From the theory of analytic functions, we know that the typical two dimensional
examples of multi-valued harmonic functions are

u1(z) = Re(z
1
k ), z∈C\{0},

u2(z) = Arg(z), z∈C\{0},

and

u3(z)=Re(
√

(z−1)(z+1)), z∈C\{±1}.

By the 1970s, Almgren [1] had realized that a minimal variety near a multiplicity-
k disc could be well approximated by the graph of a multi-valued function minimizing
a suitable analog of the ordinary Dirichlet integral. Many facts about harmonic
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functions are also true for these Dirichlet minimizing multi-valued functions. Evans
[11], [12], [13], Levi [23] and Caffarelli [3], [4] studied the multi-valued harmonic
functions. Evans [12] proved that the conductor potential of a surface with minimal
capacity was a double-valued harmonic function. In [4], Caffarelli proved the Hölder
continuity of the multi-valued harmonic functions.

At the beginning of this century, the multi-valued solutions of the Eikonal equa-
tion were considered in [20], [15], and [18], respectively. Later, Jin et al provided a
level set method for the computation of multi-valued geometric solutions to general
quasilinear PDEs and multi-valued physical observables to the semiclassical limit of
the Schrödinger equations; see [21] and [22].

In 2006, Caffarelli and Li investigated the multi-valued solutions of Monge-
Ampère equation in [5], where they first introduced the geometric situation of the
multi-valued solutions and then obtained the existence, boundedness, regularity, and
the asymptotic behavior at infinity of the multi-valued viscosity solutions. The multi-
valued solutions for the Dirichlet problem of the Monge-Ampère equation on exterior
planar domains were discussed by Ferrer, Mart́ınez, and Milán in [14] using complex
variable methods. Recently, the multi-valued solutions to Hessian equations have been
studied in [10] and [9].

The geometric situation of the multi-valued functions was given in [5]. Let
n≥2, D⊂R

n be a bounded domain with smooth boundary ∂D, and let Σ⊂D be
homeomorphic in R

n to an n−1 dimensional closed disc, i.e., there exists a homeo-
morphism ψ :Rn→R

n such that ψ(Σ) is an n−1 dimensional closed disc. Let Γ=∂Σ,
the boundary of Σ. Thus Γ is homeomorphic to an n−2 dimensional sphere for n≥3.

Let Z be the set of integers and

M =(D\Γ)×Z

denote a covering of D\Γ with the following standard parameterization: fixing an
x∗∈D\Γ, connect x∗ by a smooth curve in D\Γ to a point x in D\Γ. If the curve
goes through Σ i≥0 times in the positive direction (fixing such a direction), then we
arrive at (x,i) in M . If the curve goes through Σ i≥0 times in the negative direction,
then we arrive at (x,−i) in M .

For k=2,3, . . . , we introduce an equivalence relation ”∼k” on M as follows: (x,i)
and (y,p) in M are ”∼k” equivalent if x=y and i−p is an integer multiple of k. We
let

Mk :=M/∼k

denote the k−sheet cover of D\Γ, and let

∂′Mk :=
k⋃

i=1

(∂D×{i}).

For n=2, we can understand the covering space Mk more clearly from the above
example u3. In this example, Γ={1,−1} and Σ is the interval (−1,1). Each time the
point z goes around −1 or 1, it crosses the interval (−1,1) one time.

Since two different points which stand at different copies can be connected through
a smooth curve in Mk by the above standard parameterization, we can make the
following definition:

Definition 1.1. We say a function u(x,i)∈Cp(Mk), p≥0 for any (x,i)∈Mk, if
u(x,i),Dxu(x,i), · · · ,Dp

xu(x,i) are continuous along any smooth curve in Mk.
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To our best knowledge, there isn’t any result of the multi-valued solutions to
Hessian quotient equations. In this paper, we study the multi-valued solutions of
Hessian quotient equation with the Dirichlet boundary condition

Sl,m(D2u)=f(x,i), (x,i)∈Mk, (1.2)

u=ϕi(x), (x,i)∈∂′Mk, (1.3)

where f and ϕ1, . . . ,ϕk satisfy the following conditions:
(H1) f ∈C0(Mk), and 0≤f ≤ b for some positive constant b.
(H2) ϕ1, . . . ,ϕk ∈C0(D).
We shall extend some results for the Laplace equation and the Monge-Ampère

equation to the Hessian quotient equation.
To work in the realm of elliptic equations, we have to restrict the class of functions

and domains. Let

Γl={λ∈R
n|σj(λ)>0,j=1,2, . . . ,l}.

Γl is symmetric, that is, any permutation of λ is in Γl if λ∈Γl. When l=1, Γl

is the half space {λ∈R
n|λ1+λ2+ · · ·+λn>0}. When l=n, Γl is the positive cone

Γ+={λ∈R
n|λi>0,i=1, . . . ,n}. Following [7], we give two definitions.

Definition 1.2. A function u∈C2(Mk) is called l−convex if λ(x,i)∈Γl in Mk,
where λ(x,i)=λ(D2u(x,i))=(λ1,λ2, . . . ,λn) are the eigenvalues of the Hessian matrix
D2u(x,i).

If λ(x,i)∈Γl, (1.2) is degenerate elliptic for u at (x,i). And S
1

l−m

l,m (λ(r)) is concave

for r with λ(r)∈Γl; see [7].

Definition 1.3. A domain D is called uniformly (l−1)−convex, if for any x∈∂D,
κ(x)=(κ1, . . . ,κn−1)∈Γl−1, where κi,i=1, . . . ,n−1, denote the principal curvatures of
x∈∂D.

From now on we shall always assume
(H3) D is uniformly (l−1)−convex.
To state our results we require a few suitable notions.

Definition 1.4. A function u∈C0(Mk) is called a viscosity subsolution of (1.2) if
for any (y,i)∈Mk, ξ∈C2(Mk) satisfying

u(x,i)≤ ξ(x,i), (x,i)∈Mk and u(y,i)= ξ(y,i),

we have

Sl,m(D2ξ(y,i))≥f(y,i).

A function u∈C0(Mk) is called a viscosity supersolution of (1.2) if for any (y,i)∈
Mk, any l−convex function ξ∈C2(Mk) satisfying

u(x,i)≥ ξ(x,i),(x,i)∈Mk and u(y,i)= ξ(y,i),

we have

Sl,m(D2ξ(y,i))≤f(y,i).
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A function u∈C0(Mk) is called a viscosity solution of (1.2) if u is both a viscosity
subsolution and a viscosity supersolution of (1.2).

A function u∈C0(Mk∪∂′Mk) is called a viscosity subsolution (supersolution, so-
lution) of (1.2), (1.3), if u is a viscosity subsolution (supersolution, solution) of (1.2)
and satisfies u(x,i)≤ (≥,=)ϕi(x) on ∂

′Mk for i=1,2, . . . ,k.

Definition 1.5. A function u∈C0(Mk) is called l−convex if in the viscosity sense
Sj(D

2u(x,i))≥0 in Mk, j=1,2, . . . ,l.

u∈C0(Mk) is 1− convex if and only if u is C0 subharmonic; u is n− convex if
and only if u is convex.

Our main results in this paper are as follows. Firstly using the Perron method,
we obtain an existence theorem.

Theorem 1.6. Suppose (H1), (H2), and (H3) hold and ϕ1, . . . ,ϕk are l−convex, then
the Dirichlet problem (1.2), (1.3) has at least one bounded l−convex viscosity solution
u∈ C0(Mk∪∂′Mk).

Secondly, we prove the existence of multi-valued solutions with asymptotic be-
havior at infinity under some further hypothesis on Γ. Suppose that Ω is a bounded
open strictly convex subset with C∞ boundary ∂Ω. Let Σ, diffeomorphic to an
(n−1)−disc, be the intersection of Ω and a hyperplane in R

n, and let Γ be the
boundary of ∂Σ. Then Σ divides Ω into two open parts, denoted by Ω+ and Ω−. Let
M =(Rn\Γ)×Z, Mk=M/∼k be the covering spaces of Rn\Γ as in Section 1. Fixing
an x∗∈Ω−, we use the convention that going through Σ from Ω− to Ω+ denotes the
positive direction through Σ.

Theorem 1.7. Let l−m≥3. Then for any ci∈R, there exists an l−convex viscosity
solution u∈C0(Mk) of

Sl,m(D2u)=1, (x,i)∈Mk (1.4)

satisfying

limsup
|x|→∞

(
|x|l−m−2

∣∣∣u(x,i)−
(c∗
2
|x|2+ci

)∣∣∣
)
<∞, (1.5)

where c∗=
(
Cm

n /C
l
n

) 1
l−m ,Cl

n=n!/(l!(n− l)!).
Finally, we discuss the infinitely valued viscosity solutions of the Dirichlet problem

with a special form. We get an existence theorem for Hessian quotient equations with
exponentially growing right hand side.

LetM =(D\Γ)×Z, where Γ is as above — a part of the boundary ∂Ω of a strictly
convex domain Ω — and let

∂′M =

∞⋃

i=−∞
(∂D×{i}), i∈Z.

Suppose that F ∈C∞(M) satisfies, for any x∈D\Γ,

F (x,i)=F (x,i−1)+1.

Theorem 1.8. There exists a constant β such that for any l−convex function ϕ∈
C0(D) satisfying

ϕ>β, x∈∂D, (1.6)
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the Dirichlet problem

Sl,m(D2u)= eF , (x,i)∈M, (1.7)

u(x,i)= e
i

l−mϕ(x), (x,i)∈∂′M (1.8)

has an l−convex viscosity solution u∈C0(M ∪∂′M), which satisfies

u(x,i)= e
1

l−mu(x,i−1), x∈D\Γ, (1.9)

for i∈Z.

This paper is arranged as follows: In Section 2, we derive some useful lemmas
for single-valued solutions to Hessian quotient equations. In Section 3, we prove
the existence of bounded multi-valued solutions. The multi-valued solutions with
asymptotic behavior at infinity are discussed in Section 4. Finally, in Section 5 we
obtain the existence of infinitely valued solutions.

2. Preliminaries
In this section, we prove some results about the single-valued solutions to Hessian

quotient equations which will be used later.

Lemma 2.1. ([10]) Assume that u∈C2(D) and v∈C0(D) are l−convex. Then, in
the viscosity sense,

S
1
j

j (D
2u+D2v)≥S

1
j

j (D
2u)+S

1
j

j (D
2v), x∈D

for j=1,2, . . . ,l.

Lemma 2.2. Assume that u∈C2(D) and v∈C0(D) are l−convex. Then, in the
viscosity sense,

S
1

l−m

l,m (D2u+D2v)≥S
1

l−m

l,m (D2u)+S
1

l−m

l,m (D2v), x∈D. (2.1)

Proof. For any y∈D, ξ∈C2(D) satisfying

v(y)= ξ(y),v(x)≤ ξ(x),x∈D,

we have λ(D2ξ(y))∈Γl by virtue of the l− convexity of v. Because S
1

l−m

l,m (λ(r)) is

concave for r when λ(r)∈Γl, at y we have

S
1

l−m

l,m

(
D2u+D2ξ

2

)
≥ 1

2
S

1
l−m

l,m (D2u)+
1

2
S

1
l−m

l,m (D2ξ).

Therefore at y,

S
1

l−m

l,m (D2u+D2ξ)≥S
1

l−m

l,m (D2u)+S
1

l−m

l,m (D2ξ).

Hence (2.1) follows.

Lemma 2.3. ([8]) Let B be a ball in R
n and f ∈C0(B) be nonnegative. Suppose that

u∈C0(B) satisfies, in the viscosity sense, Sl,m(D2u)≥f in B. Then the Dirichlet
problem

Sl,m(D2u)=f, x∈B,
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u=u, x∈∂B

has a unique l−convex viscosity solution u∈C0(B).

Lemma 2.4. ([8]) Let D be an open set in R
n and f ∈C0(Rn) be nonnegative. Assume

that l−convex functions v∈C0(D),u∈C0(Rn) satisfy respectively

Sl,m(D2v)≥f(x), x∈D,
Sl,m(D2u)≥f(x), x∈R

n.

Moreover, suppose

u≤v, x∈D,
u=v, x∈∂D.

Set

w(x)=

{
v(x), x∈D,
u(x), x∈R

n\D.

Then w∈C0(Rn) is an l−convex function and satisfies, in the viscosity sense,

Sl,m(D2w)≥f(x), x∈R
n.

Lemma 2.5. Let D′⊂⊂D be an open set and ϕ∈C0(D) be l−convex. Assume that
V is a locally bounded function in D and that C is a positive constant. Then there
exists an l−convex function u∈C0(D) satisfying

Sl,m(D2u) ≥ C, x∈D,
u = ϕ(x), x∈∂D,
u ≤ V (x), x∈D′.

Proof. Let ρ∈C3(D) ([25]) be an l−convex solution of the Dirichlet problem

Sl,m(D2ρ)=1, x∈D,
ρ=0, x∈∂D.

By the strong maximum principle, ρ≤−ρ0 onD′ for some positive constant ρ0. Define

u(x)=ϕ(x)+µρ(x), x∈D,

where µ is a positive constant to be determined. Then u=ϕ on ∂D and in D′,

u=ϕ+µρ≤ sup
D′

ϕ−µρ0≤ inf
D′

V ≤V, if µ is large.

By Lemma 2.1, in the viscosity sense,

Sj(D
2u)≥Sj(D

2(µρ))=µjSj(D
2ρ)≥0, x∈D,j=1,2, . . . ,l.

Hence u∈C0(D) is l−convex. From Lemma 2.2, by choosing µ large enough, we have,
in the viscosity sense,

Sl,m(D2u) ≥Sl,m(D2(µρ))
=µl−mSl,m(D2ρ)
=µl−m≥C, x∈D.
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The proof of Lemma 2.5 is completed.

The following Lemma is a slight modification of Lemma 5.1 in [6], so we omit the
proof here.

Lemma 2.6. Let Ω be a bounded strictly convex domain in R
n, ∂Ω∈C2, ϕ∈C2(Ω).

Then there exists a constant c0 depending only on n, ϕ, and Ω such that for any
ξ∈∂Ω, there exists x(ξ)∈R

n satisfying

|x(ξ)|≤ c0, wξ<ϕ, x∈Ω\{ξ},

where

wξ(x) :=ϕ(ξ)+
c∗
2
(|x−x(ξ)|2−|ξ−x(ξ)|2), x∈R

n,

where c∗=
(
Cm

n /C
l
n

) 1
l−m .

3. Existence of bounded solutions
In this section, we prove Theorem 1.6. We first introduce a comparison principle

in Mk; see [5].

Lemma 3.1. Let u,υ∈C0(Mk)∩L∞(Mk) satisfy, in the viscosity sense, ∆u≥0≥∆υ
in Mk and

liminf
dist((x,i),∂′Mk)→0

(u(x,i)−υ(x,i))≤0.

Then u≤υ in Mk.

Proof. [Proof of Theorem 1.6.] We divide the proof into three steps.

Step 1. We construct a viscosity subsolution of (1.2).
Let d=diamD, and h∈C0(Mk)∩L∞(Mk)([5]) satisfy

∆h = 0, (x,i)∈Mk,
h = ϕi(x), (x,i)∈∂′Mk.

Fix x0∈D, let P (x)=A|x−x0|2−B, where A,B are constants to be determined.
Choose A=A(n,l,m,b) and then B=B(n,l,m,b,d, inf

Mk

h) sufficiently large such that

Sl,m(D2P )=
Cl

n

Cm
n

(2A)l−m≥ b, x∈D,

P (x)≤Ad2−B< inf
Mk

h, x∈D. (3.1)

From Lemma 2.5, for i=1,2, . . . ,k, there exist l− convex functions ui∈C0(D)
satisfying

Sl,m(D2ui)≥ b, x∈D,
ui=ϕi(x), x∈∂D,
ui≤P (x), x∈D′,

where D′ is an open set satisfying Σ⊂⊂D′⊂⊂D.
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Define

u(x,i)=max{ui(x),P (x)}, x∈D.

Then

u(x,i)=P (x), x∈D′,

and from [19], u∈C0(Mk∪∂′Mk) is an l−convex viscosity subsolution of (1.2). By
(3.1), P ≤h=ϕi=ui on ∂D, so that u(x,i)=ϕi(x) on ∂D.

Step 2. We define the Perron solution of (1.2).
Let S denote the set of l−convex viscosity subsolutions v∈C0(Mk∪∂′Mk) of

(1.2), (1.3) which satisfy

limsup
x→x

max
1≤i≤k

(v(x,i)−h(x,i))≤0, x∈Γ. (3.2)

Clearly u∈S, so S 6=∅. Define

u(x,i)=sup{v(x,i)|v∈S}, (x,i)∈Mk.

Then from [17], u∈C0(Mk∪∂′Mk), and from [19], u is an l−convex viscosity subso-
lution of (1.2). Because u≤u in Mk and u=ϕi on ∂D for i=1,2, . . . ,k, we have

u(x,i)=ϕi(x), (x,i)∈∂′Mk.

Step 3. We prove that u is a viscosity solution of (1.2).
We only need to prove that u is a viscosity supersolution of (1.2). For any (y,i)∈

Mk, choose an l−convex function ξ∈C2(Mk) satisfying

u(y,i)= ξ(y,i), u(x,i)≥ ξ(x,i), (x,i)∈Mk,

and choose a ball B=Br(y) such that B⊂D\Γ. The lifting of B intoMk is the union
of k disjoint balls denoted as {B(t)}kt=1. In each ball B(t), by Lemma 2.3,

Sl,m(D2ũ) =f(x,i), (x,i)∈B(t),
ũ =u(x,i), (x,i)∈∂B(t)

has an l−convex viscosity solution ũ∈C0(B(t)). From the comparison principle,

u≤ ũ, (x,i)∈B(t). (3.3)

Define w in Mk as

w(x,i)=

{
ũ(x,i), (x,i)∈B(t),
u(x,i), (x,i)∈Mk\{B(t)}kt=1.

Because

w(x,i)=u(x,i)=ϕi(x), x∈∂D,

by Lemma 2.4 and (3.3) we know that w is an l−convex viscosity subsolution of (1.2),
(1.3).
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If w satisfies (3.2), then w∈S. In fact, in the viscosity sense,

∆w≥0=∆h, (x,i)∈Mk,

and

w=ϕi=h, (x,i)∈∂′Mk.

By Lemma 3.1,

w≤h, (x,i)∈Mk,

so that w satisfies (3.2).
By the definition of u, u≥w in Mk, so that ũ≤u in B(t). Considering (3.3), we

obtain

ũ=u,(x,i)∈B(t).

It follows that, in the viscosity sense, u satisfies

Sl,m(D2u)≤f, (x,i)∈Mk.

This completes the proof of Theorem 1.6.

Notation 3.2. We note that the multi-valued function and the expression of multiple
functions are different. For example, u=

√
z is a multi-valued function, and u=

√
z2

are the single-valued analytic functions u=+z and u=−z.
4. Multi-valued solutions with asymptotic behavior
Proof. [Proof of Theorem 1.7.] We divide the proof into three steps.

Step 1. We construct a viscosity subsolution of (1.4).
Let Ω be a strictly convex domain in R

n with C∞ boundary. Assume that Φ∈
C3(Ω) is an l−convex function satisfying

Sl,m(D2Φ) = C0, x∈Ω,
Φ = 0, x∈∂Ω,

where C0 is a constant satisfying C0>1. By the comparison principle, Φ≤0 in Ω. By
Lemma 2.6, for each ξ∈∂Ω there exists x(ξ)∈R

n such that

wξ(x)<Φ(x), x∈Ω\{ξ},

where

wξ(x) :=
c∗
2
(|x−x(ξ)|2−|ξ−x(ξ)|2), x∈R

n,

and sup
ξ∈∂Ω

|x(ξ)|<∞. Therefore

wξ(ξ)=0,wξ(x)≤Φ(x)≤0, x∈Ω.

Sl,m(D2wξ(x))=1, x∈R
n.



726 MULTI-VALUED SOLUTIONS TO HESSIAN QUOTIENT EQUATIONS

Thus

w(x) := sup
ξ∈∂Ω

wξ(x)

satisfies

w(x)≤Φ(x), x∈Ω. (4.1)

From [19], we know that w satisfies

Sl,m(D2w)≥1, x∈R
n.

Define

V (x)=

{
Φ(x), x∈Ω,
w(x), x∈R

n\Ω.

Then V ∈C0(Rn). By (4.1) and Lemma 2.4, V is an l−convex function satisfying, in
the viscosity sense,

Sl,m(D2V )≥1, x∈R
n.

Fix some R1>0 such that Ω⊂⊂BR1
. Let

R2 :=2R1
√
c∗.

For a>1, define

wa(x) := inf
BR1

V +

∫ |√c∗x|

2R2

(sl−m+a)
1

l−m ds, x∈R
n.

A direct calculation gives

Dijwa=(|y|l−m+a)
1

l−m
−1

[(
|y|l−m−1+

a

|y|

)
c∗δij−

ac∗yiyj
|y|3

]
, |y|>0,

where y=
√
c∗x. By rotating the coordinates we may set y=(R,0, . . . ,0)′, therefore

D2wa= c∗(R
l−m+a)

1
l−m

−1diag
(
Rl−m−1,

(
Rl−m−1+

a

R

)
, . . . ,

(
Rl−m−1+

a

R

))
,

where R= |y|. Consequently λ(D2wa)∈Γl for |x|>0, and

Sl,m(D2wa)

=
Sl(D

2wa)

Sm(D2wa)

=
cl∗(R

l−m+a)
l

l−m
−l{Cl

n−1(R
l−m−1+ a

R
)l+Rl−m−1Cl−1

n−1(R
l−m−1+ a

R
)l−1}

cm∗ (Rl−m+a)
m

l−m
−m{Cm

n−1(R
l−m−1+ a

R
)m+Rl−m−1Cm−1

n−1 (Rl−m−1+ a
R
)m−1}

=(Rl−m+a)cl−m
∗ Rm−l C

l
nR

l−m+aCl
n−1

Cm
n R

l−m+aCm
n−1

≥ (Rl−m+a)cl−m
∗ Rm−l Cl

nR
l−m

Cm
n R

l−m+aCm
n
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= cl−m
∗

Cl
n

Cm
n

=1, |x|>0.

Moreover

wa(x)≤V (x), |x|≤R1. (4.2)

Fix some R3>3R2 satisfying R3
√
c∗>3R2. We choose a1>1 such that for a≥a1,

wa(x)> inf
BR1

V +

∫ 3R2

2R2

(sl−m+a)
1

l−m ds≥V (x), |x|=R3.

Then by (4.2), R3≥R1. According to the definition of wa,

wa(x) = inf
BR1

V +

∫ |√c∗x|

2R2

s

((
1+

a

sl−m

) 1
l−m −1

)
ds+

∫ |√c∗x|

2R2

sds

= inf
BR1

V +

∫ |√c∗x|

2R2

s

((
1+

a

sl−m

) 1
l−m −1

)
ds+

c∗
2
|x|2−2R2

2

=
c∗
2
|x|2+ci+ inf

BR1

V +

∫ ∞

2R2

s

((
1+

a

sl−m

) 1
l−m −1

)
ds−ci

−2R2
2−

∫ ∞

|√c∗x|
s

((
1+

a

sl−m

) 1
l−m −1

)
ds, x∈R

n.

Let

µ(i,a)= inf
BR1

V +

∫ ∞

2R2

s

((
1+

a

sl−m

) 1
l−m −1

)
ds−ci−2R2

2.

Then µ(i,a) is continuous and monotonic increasing for a and when a→∞, µ(i,a)→
∞, 1≤ i≤k. Moreover,

wa(x)=
c∗
2
|x|2+ci+µ(i,a)−O(|x|2−l+m), when |x|→∞. (4.3)

Define, for a≥a1 and 1≤ i≤k,

ui,a(x)=

{
max{V (x),wa(x)}−µ(i,a), |x|≤R3,
wa(x)−µ(i,a), |x|≥R3.

Then by (4.3), for 1≤ i≤k,

ui,a(x)=
c∗
2
|x|2+ci−O(|x|2−l+m), when |x|→∞.

Choose a2≥a1 sufficiently large such that when a≥a2,

V (x)−µ(i,a) = V (x)− inf
BR1

V −
∫ ∞

2R2

s

((
1+

a

sl−m

) 1
l−m −1

)
ds+ci+2R2

2

≤ ci≤
c∗
2
|x|2+ci, |x|≤R3.

Therefore

ui,a(x)≤
c∗
2
|x|2+ci, a≥a2, x∈R

n.
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By Lemma 2.4, ui,a∈C0(Rn) is l−convex and satisfies, in the viscosity sense,

Sl,m(D2ui,a)≥1, x∈R
n.

It is easy to see that there exists a continuous function a(i)(a), 2≤ i≤k, satisfying

lim
a→∞

a(i)(a)=∞,

and, for 2≤ i≤k,

µ(i,a(i)(a))=µ(1,a).

So there exists a3≥a2 such that when a≥a3, a(i)(a)>a2, 2≤ i≤k. Let a(1)(a)=a,
and define

ua(x,i)=ui,a(i)(a)(x), (x,i)∈Mk.

Then by the definition of ui,a, when a≥a3, ua∈C0(Mk) is an l−convex function
satisfying

ua(x,i) =
c∗
2
|x|2+ci−O(|x|2−l+m), when |x|→∞,

ua(x,i) ≤
c∗
2
|x|2+ci, x∈R

n,1≤ i≤k,

and, in the viscosity sense,

Sl,m(D2ua)≥1, (x,i)∈Mk.

Step 2. We define the Perron solution of (1.4).
For a≥a3, let Sa denote the set of l−convex functions v∈C0(Mk) which satisfy

Sl,m(D2v) ≥ 1, (x,i)∈Mk,

v(x,i) ≤ c∗
2
|x|2+ci, x∈R

n,1≤ i≤k.

Clearly, ua∈Sa. Hence Sa 6=∅. Define

ua(x,i) :=sup{v(x,i)|v∈Sa}, (x,i)∈Mk.

Step 3. We prove that ua is a viscosity solution of (1.4).
By the definition of ua, ua is a viscosity subsolution of (1.4) and satisfies

ua(x,i)≤
c∗
2
|x|2+ci, x∈R

n.

We only need to prove that ua is a viscosity supersolution of (1.4) satisfying (1.5).
For any x0∈R

n\Γ, fix ε>0 such that B=Bε(x0)⊂R
n\Γ. Then the lifting of B

into Mk is the union of k disjoint balls denoted as {B(t)}kt=1. For any (x,i)∈B(t), by
Lemma 2.3, the Dirichlet problem

Sl,m(D2ũ) = 1, (x,i)∈B(t),
ũ = ua, (x,i)∈∂B(t)
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has an l−convex viscosity solution ũ∈C0(B(t)). From the comparison principle,

ua≤ ũ, (x,i)∈B(t).

Define

ψ(x,i)=

{
ũ(x,i), (x,i)∈B(t),
ua(x,i), (x,i)∈Mk\{B(t)}kt=1.

By Lemma 2.4,

Sl,m(D2ψ(x,i))≥1, x∈R
n.

Because

Sl,m(D2ũ) = 1 = Sl,m(D2g), (x,i)∈B(t),
ũ = ua ≤ g, (x,i)∈∂B(t),

where g(x,i)= c∗
2 |x|2+ci, from the comparison principle,

ũ≤g, (x,i)∈B(t).

Hence ψ∈Sa.
By the definition of ua, ua≥ψ in Mk. Consequently ũ≤ua in B(t). As a result,

ũ=ua, (x,i)∈B(t).

Because x0 is arbitrary, we know that ua is an l−convex viscosity solution of (1.4).
Furthermore, by the definition of ua,

ua≤ua≤g, (x,i)∈Mk,

so ua satisfies (1.5). Theorem 1.7 is proved.

5. Infinitely valued solutions
Proof. [Proof of Theorem 1.8.] We divide the proof into three steps.

Step 1. We construct a viscosity subsolution of (1.7).
Let

c := sup
|i|≤2,x∈Ω

eF (x,i)<∞.

Assume that Ω⊂⊂D is a strictly convex domain with C∞ boundary and ṽ∈C3(Ω)
is an l−convex function satisfying

Sl,m(D2ṽ) = c+1, x∈Ω,
ṽ = 0, x∈∂Ω.

Then from the comparison principle, ṽ≤0 on Ω. For each ξ∈∂Ω, by Lemma 2.6 there
exists x(ξ)∈R

n such that

wξ(x)<c
− 1

l−m ṽ(x), x∈Ω\{ξ},

where

wξ(x)=
c∗
2
(|x−x(ξ)|2−|ξ−x(ξ)|2),



730 MULTI-VALUED SOLUTIONS TO HESSIAN QUOTIENT EQUATIONS

and supξ∈∂Ω |x(ξ)|<∞. Then

wξ(ξ)=0, c
1

l−mwξ(x)≤ ṽ(x)≤0, x∈Ω,

Sl,m(D2c
1

l−mwξ(x))=
Cl

n(c
1

l−m c∗)l

Cm
n (c

1
l−m c∗)m

= c, x∈D.

Let

w(x) := sup
ξ∈∂Ω

(c
1

l−mwξ(x)), x∈D.

Then, in the viscosity sense,

Sl,m(D2w)≥ c, x∈D.
Define

Ṽ (x)=

{
ṽ(x), x∈Ω,
w(x), x∈D\Ω.

Thus we extend ṽ to an l−convex function Ṽ ∈C0(D) satisfying

Ṽ = ṽ, x∈Ω,

and, in the viscosity sense,

Sl,m(D2Ṽ )≥ c, x∈D.
Let

β :=max
∂D

Ṽ .

Then for the above β and for any l−convex function ϕ∈C0(D) satisfying (1.6), from
Lemma 2.5, there exists an l−convex function η′∈C0(D) satisfying

Sl,m(D2η′)≥ c, x∈D,
η′=ϕ, x∈∂D,
η′<Ṽ , x∈Ω.

Set

η(x) :=max{η′(x),Ṽ (x)}, x∈D.

Then η∈C0(D) is an l−convex function satisfying, in the viscosity sense,

Sl,m(D2η)≥ c, x∈D,
and

η=ϕ, x∈∂D,
η= Ṽ , in an open neighborhood of Ω.

In particular,

η= ṽ, x∈Ω,
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η<0, x∈Ω.

Define, for i∈Z,

u(x,i)=

{
e

i−1
l−m η(x), x∈Ω+,

e
i

l−m η(x), x∈D\(Γ∪Ω+).

Then u∈C0(M ∪∂′M) satisfies

Sl,m(D2u)≥ eF , (x,i)∈M,

and

u(x,i) = e
1

l−mu(x,i−1), x∈D\Γ,
u(x,i) = e

i
l−mϕ(x), x∈∂D.

Step 2. We define the Perron solution of (1.7).
Let S denote the set of l−convex functions v∈C0(M ∪∂′M) which satisfy

v(x,i) = e
1

l−m v(x,i−1), x∈D\Γ,
v(x,i) = e

i
l−mϕ(x), x∈∂D,

and satisfy in the viscosity sense

Sl,m(D2v)≥ eF , (x,i)∈M.

Then u∈S and S 6=∅. Define, in D,

u(x,i)=sup{v(x,i)|v∈S}.

Then u(x,i)= e
i

l−mϕ(x) on ∂D. From [19], we know that u is an l−convex viscosity
subsolution of (1.7).

Step 3. We prove that u is an l−convex viscosity solution of (1.7).
We only need to prove that u is a viscosity supersolution of (1.7). For any x0∈

D\Γ, fix ε>0 such that B=Bε(x0)⊂D\Γ. The lifting of B into M is the union
of infinite disjoint balls denoted as {B(t)}∞t=−∞. In each B(t), by Lemma 2.3, the
Dirichlet problem

Sl,m(D2ũ) = eF , (x,i)∈B(t),
ũ = u, (x,i)∈∂B(t)

has an l−convex viscosity solution ũ∈C0(B(t)). By the comparison principle,

u≤ ũ, (x,i)∈B(t). (5.1)

Define

w(x,i)=

{
ũ(x,i), (x,i)∈B(t),
u(x,i), (x,i)∈M\{B(t)}∞t=−∞.

By Lemma 2.4, w satisfies, in the viscosity sense,

Sl,m(D2w)≥ eF , (x,i)∈M.
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In order to prove w∈S, we only need to prove

w(x,i)= e
1

l−mw(x,i−1), x∈D\Γ, (5.2)

w(x,i)= e
i

l−mϕ(x), x∈∂D. (5.3)

From the fact u(x,i)= e
i

l−mϕ(x), x∈∂D, it can be seen that (5.3) holds. On the
other hand, set

ζ(x,i) := e
1

l−m ũ(x,i−1), x∈B.

We can easily verify that ζ satisfies, in the viscosity sense,

Sl,m(D2ζ(x,i))= eF , x∈B,

and

ζ(x,i)= e
1

l−m ũ(x,i−1)= e
1

l−mu(x,i−1)=u(x,i)= ũ(x,i), x∈∂B.

From the comparison principle,

ũ(x,i)= ζ(x,i)= e
1

l−m ũ(x,i−1), x∈B.

Thus (5.2) is verified.
By the definition of u,

w≤u, (x,i)∈M.

Hence

ũ≤u, (x,i)∈B(t).

By (5.1),

ũ=u, (x,i)∈B(t).

Because x0 is arbitrary, we know u∈C0(M ∪∂′M) is a viscosity solution of (1.5). The
proof Theorem 1.8 is completed.
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