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LOCOMOTION, WRINKLING, AND BUDDING OF A

MULTICOMPONENT VESICLE IN VISCOUS FLUIDS∗

SHUWANG LI† , JOHN LOWENGRUB‡ , AND AXEL VOIGT§

Abstract. Recent experimental results on giant unilamellar vesicles (GUVs) show that mixed
multiple lipid components on the surface of a membrane may decompose into coexisting phases with
distinct compositions, with concomitant changes in the surface morphology. The driving forces for the
evolution involves bending, line tension along the phase boundaries, inhomogeneous surface energy,
and fluid forces. Here we are interested in exploring the emergent morphologies when the flow is
present, and in particular when the surface tensions of the coexisting phases are different, which has
not been considered previously. In this paper, we present a model capable of describing the nonlinear
coupling among flow, membrane morphology, and the evolution of the surface phases. Using an energy
variation approach, we derive a generalized surface tension and construct a constitutive equation
connecting the surface tension and the phase variables. To investigate the nonlinear dynamics,
we develop a numerical method that combines the immersed interface method to solve the flow
equations, the level-set method to capture the interface motion, a non-stiff Eulerian algorithm to
solve the phase field equations on the evolving surface, and a penalty term that enforces global
inextensibility. Our numerical results suggest that the nonhomogeneous surface tension, together
with the flow, introduces nontrivial vesicle dynamics including locomotion, wrinkling, and budding.

Key words. Multicomponent vesicle, ordered and disordered lipid phases, line tension, inex-
tensibility, Stokes flow.

AMS subject classifications. 35R35, 35R37, 76D45, 92B05.

1. Introduction

Membranes are composed of bilayer lipid molecules with a hydrophilic heads and
two hydrophobic hydrocarbon chains. In an aqueous environment, membranes form
vesicles — encapsulating bag-like shapes to reduce the energy of the hydrophobic
edges. As the principal components of living organisms, membranes contain a mix-
ture of materials including lipids, proteins, and cholesterols that may decompose into
coexisting domains of different phases [1, 2, 3]. To facilitate their biological func-
tions such as solute and chemical transport [4], membranes interact with their fluid
surroundings in surprising ways and exhibit rich shape transition behaviors [5, 6].
At the continuum level, the mathematical description of morphological changes due
to these coupled physical phenomena poses a highly challenging nonlinear moving
boundary problem. In this paper, we develop a thermodynamically consistent model
for investigating the effects of flow and a generalized surface tension on membrane
morphologies.

Studies of the membrane morphologies arise from trying to understand the under-
lying biophysics. From a mathematical point of view, however, studies of the mem-
brane morphologies have led to many interesting and fundamental problems such as
minimization of energy functionals of the membrane system. Julicher and Lipowsky
developed a theory on the equilibrium shapes of two-component vesicles without the
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presence of flow [7]. Using Lagrange multipliers to enforce constraints of surface area
(i.e. no free lipid molecules in aqueous solution) and volume (i.e. no osmotic pressure
building up inside the vesicle), they obtained the Euler-Lagrange equations for the
equilibrium shape and investigated the competition between the bending force and
the line tension along the phase boundaries. Their results show that vesicles contain-
ing an intramembrane domain may form a bud (i.e. growth of a small vesicle from a
larger one) provided the domain size is large enough. This theoretical study was later
successfully used by Baumgart et al. to compare with their experimental results on
giant unilamellar vesicles (GUV) [5].

The morphology of an evolving membrane is the result of the nonlinear interac-
tions among bending, line tension, inhomogeneous surface energy, fluid forces, and
phase transitions on the membrane surface. A number of models and associated nu-
merical algorithms have been developed for investigating the effects of these physical
processes on membrane morphologies; see the reviews [8, 2, 1, 9, 10], and the references
therein.

Bending elasticity has been studied extensively in vesicle dynamics because of
membrane’s highly flexible bi-layer thin structures. In the absence of fluid flow,
Taniguchi developed a dynamical approach that couples interface dynamics with a
surface phase-field equation [11]. This model suggests that the local coupling of
the curvature and the composition of the membrane and the line tension at domain
boundaries strongly influence the formation of protrusions (buds) on the membrane,
which may undergo fission at a later stage, i.e. separation of a bud from its mother
membrane. Wang and Du formulated a phase field model for multicomponent vesicles
with free edges and simulated exotic patterns observed in experiments [12]. Boundary
integral methods have also been successfully used to simulate the vesicle dynamics in
a viscous fluid [13, 14, 15, 16], such as tank-treading and tumbling [16].

In addition, vesicle wrinkling has been observed in experiments of elastic capsules
in an applied shear flow by Walter et al. [17]. Finken and Seifert [18] performed a
mathematical analysis and derived analytical results both for the threshold value of
the shear rate and for the critical wavelength of the wrinkling. Kantsler et al. also
found that vesicle wrinkling may occur in time–dependent elongation flow [19, 6].
It has been suggested that the winkling phenomena are related to the dynamical
instability induced by negative surface tension of the membrane [20].

Further, it has been demonstrated in experiments that surface tension can also
lead to nontrivial shapes by external means [21]. Bar-Ziv et al. [22] reported that when
optical tweezers are used to perturb a biomembrane for a few minutes, the membrane
shape stops fluctuating and becomes very tense, indicating the significance of surface
tension; the surface tension can be as large as 10−3erg/cm2 or greater; see also [23].
Moreover, this strong surface tension is involved in the opening of a hole inside the
membrane and results in the expulsion of a bud-like vesicle from inside of the mother
vesicle [22]. Without the stimulation of laser tweezers, surface tension, though small,
is found to be on the order of σ≈10−6erg/cm2 by mechanical manipulations [23].
The surface tension considered in these experiments is an effective tension that arises
due to inextensibility. That is, the interface cannot stretch globally or locally. The
concept of effective tension was developed by Seifert for fluctuating vesicles in [24], in
which he demonstrated that the area constraint works like an effective tension whose
value is calculated by a Lagrange multiplier used to determine the mean shape. So
the surface tension only represents the area constraint in a conjugated sense.

Surface tension considered in this paper is coupled with the phase decomposition
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of the nonhomogeneous mixture (e.g. cholesterol and lipids) on the membrane surface.
Experimental results show that an unstable mixture may decompose into phases with
distinct compositions. For example, recent results of giant unilamellar vesicles (GUVs)
reveal that membranes initially containing ternary mixtures of lipid components and
cholesterol may separate into binary ordered/disordered liquid phases (i.e. coexistence
of distinct fluid bilayer domains on the membrane surface) [25, 5, 26]. Therefore, from
the point view of surface phases, it is reasonable to expect that the surface energy may
depend on the local composition, and thus may play a role in the vesicle dynamics
via the coupling with surrounding flow around the vesicle. We note that in order
to explore this possibility, one needs to derive a generalized surface tension and a
constitutive equation connecting the surface tension and phase compositions.

In this paper, using a simplified version of the Helfrich model for fluid-like vesicle
membranes [27], we develop a thermodynamically consistent model of a multicompo-
nent membrane. To isolate the effects of surface tension on the membrane morphologi-
cal transitions, we neglect the bending forces and spontaneous curvature. We assume
the energy of the system, which serves as the driving force for dynamical changes,
comes from two sources: surface energy of the vesicle that depends on the concentra-
tion of the surface components (e.g. phase-field variables); and chemical energy of the
surface phases that is taken to be of Ginzburg-Landau form. Using an energy variation
approach, we derive the thermodynamically consistent constitutive equations for: (1)
the generalized surface tension forces imparted to the flow as a boundary condition at
the membrane surface; (2) the diffusion flux imparted to the mass conservation equa-
tions of Cahn-Hilliard type on the evolving membrane surface. These two constitutive
relations guarantee that the free energy of the system is non-increasing or equivalently
for isothermal systems that the entropy is non-decreasing. The surface phases evolve
according to a high-order, advection-reaction-diffusion equation of Cahn-Hilliard type
on the moving surface. A penalty formulation is used to enforce global inextensibil-
ity as in [28]. This simplified model is capable of describing the nonlinear coupling
among the flow, vesicle morphology and the evolution of the surface phases. It serves
as preparatory for a more complete study of multicomponent vesicles.

Recently, Sohn et al. [16] considered multicomponent vesicle dynamics with in-
homogeneous bending stiffnesses in 2D. Local inextensiblity was enforced using a La-
grange multiplier, which induces a tension along the interface. The boundary integral
approach that was used in this work naturally extends to axisymmetric geometries
but is hard to extend to full 3D vesicles. Moreover, Sohn et al. did not observe
wrinkling instabilities.

The simplified model investigated here provides a framework that can be more
easily extended to simulate 3D vesicle morphologies. However, there are hurdles that
must be overcome to achieve this goal, including the development of accurate dis-
cretization techniques for the bending forces and adaptive mesh refinement techniques
to improve efficiency and accuracy. Both of these techniques are needed to accurately
simulate the dynamics of vesicles, with inhomogeneous bending forces, immersed in a
fluid. This is currently under development and here we focus on a proof-of-principle
approach that accounts for inhomogeneous surface energies, inextensibility, and fluid
flow, and demonstrates the potential of this modeling approach to simulate the loco-
motion, wrinkling, and budding of multicomponent vesicles.

To solve the highly nonlinear coupled system, we develop an efficient nonlinear
numerical method based on the work developed in [29]. The method combines the
immersed interface method to solve the flow equations with generalized Laplace-Young
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jump conditions for the jump in normal stress of the fluid across the membrane, the
level-set method to capture and evolve the interface and a non-stiff Eulerian algorithm
to update the mass concentration on the membrane surface [29]. While there has
been recent progress on modeling local inextensibility conditions for implicitly defined
interfaces (e.g., [30, 31]), the problem is still not solved and work is on-going to
complete the local inextensibility description. Consequently, here we use a penalty
approach to enforce this constraint.

Our numerical results on the dynamics of two-dimensional vesicles reveal that
nonhomogeneous surface tension, coupled with the surrounding viscous fluid, intro-
duces vesicle locomotion and budding. When the arclength constraint is not present,
an initially perturbed circular vesicle will evolve back to a circular shape with well-
separated phases. Because of the unbalanced surface tension between two phases,
vesicles move towards the direction in which surface tension is small. When the ar-
clength constraint is enforced, in addition to self-locomotion, a perturbed circular
vesicle exhibits various morphologies during evolution. Examples include the forma-
tion of wrinkles for vesicles with limited excess arclength and buds for vesicles with
larger excess arclength.

The paper is organized as follows. In Section 2, we derive and nondimensionalize
the governing equations. In Section 3, we describe the numerical algorithms. In
Section 4, we present preliminary numerical results. In Section 5, we give concluding
remarks and discuss potential future work.

2. Formulation

2.1. Governing equations.

2.1.1. Flow field. Consider a vesicle containing one viscous fluid inside and
surrounded by another viscous fluid outside. Let Σ denote the interface separating the
fluids. We assume that both fluids are highly viscous and satisfy the Stokes equations,

∇·Ti=0 and ∇·ui=0 in Ωi, (2.1)

where Ti=−piI+ηi(∇ui+∇uT
i ) is the viscous stress tensor, pi is the pressure, and

i=1,2 denotes the interior vesicle and exterior matrix fluid regions respectively.
The velocity is continuous across the interface Σ,

[u]Σ≡ (u|Σ,2−u|Σ,1)=0, (2.2)

and the stress has a jump across the interface given by Laplace-Young jump condition

[Tn]Σ=σκn−∇sσ, (2.3)

where σ is the surface tension whose constitutive relation will be derived below in
Equation(2.21), n is the outward normal vector to Σ(t) pointing into the matrix fluid,
κ=∇·n is the curvature of Σ (positive for convex interface), and ∇s is the surface
gradient. At the far-field, we supply a flow

u=u∞ on ∂Ω, (2.4)

where Ω=Ω1∪Ω2. Finally, the interface Σ(t)={xΣ(t)} moves with the fluid with
velocity

dxΣ

dt
=u. (2.5)
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2.1.2. Material field. For simplicity, we focus our study on two surface
phases (e.g. lipid components). Let f(s,t) denote the mass concentration of one
surface phase; the concentration of the other phase is f̄(s,t)−f(s,t), where f̄ is the
total concentration of the surface phases and s parameterizes the interface Σ. Here,
f̄(s,t) and f(s,t) are functions of time and space. We assume that no reactions occur
and that the phases are distributed only on the interface. Therefore, the total mass
is conserved and mass of both surface phases are conserved. Consequently, f(s,t)
satisfies

Mf (t)=

∫

Σ(t)

f(s,t) dΣ=Mf (0), (2.6)

where we have implicitly assumed, for simplicity, that the surface density of each
phase is equal to one. Accordingly, the surface concentration f(s,t) evolves via a
convection-reaction-diffusion equation. In Eulerian coordinates, it reads

ft+u ·∇f−n ·∇u ·nf =∇s ·Js, (2.7)

where Js is the surface flux whose constitutive relation will be derived below in Equa-
tion (2.20), and the expression

−n ·∇u ·n=∇s ·us+κu ·n, (2.8)

where us is the tangential velocity on Σ. For an incompressible velocity field, the
left hand side of Equation (2.8) describes the local rate of change of the interface
area. Correspondingly, this term in Equation (2.7) describes the change in f due to
interface stretching [32, 33, 29].

To conserve the total mass, we have

Mtot(t)=

∫

Σ(t)

f̄(s,t) dΣ=Mtot(0). (2.9)

The local version of the total mass conservation equation reads

f̄t+u ·∇f̄−n ·∇u ·nf̄ =0. (2.10)

2.2. Constitutive relations. To solve the flow and phase fields, we need to
specify constitutive relations for the surface tension σ and the diffusion flux Js. This
is done by an energy variation approach so that the resulting system is consistent
with the second law of thermodynamics and couples the surface phase separation
with the fluid mechanics. To satisfy the second law of thermodynamics, it is sufficient
to obtain a non-increasing free energy functional since this is equivalent to a non-
decreasing entropy (e.g., the Helmholtz free energy H= e−TS where e is the internal
energy, T is the temperature, and S is the entropy; e.g. see [34]). We consider the
free energy of the system

E=Es+Ef +Ep, with (2.11)

Es=

∫

Σ(t)

γ(f̄ ,f) dΣ, (2.12)

Ef =

∫

Σ(t)

(

g(f̄ ,f)+
ǫ2

2
|∇sf |2

)

dΣ, (2.13)
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and Ep=
λ

2

(

∫

Σ(t)

dΣ−
∫

Σ(0)

dΣ

)2

, (2.14)

where Es is the surface energy, Ef is a generalized chemical free energy associated
with the surface phases, and Ep is a penalty term to impose the area constraint.
In Equation (2.12), the function γ(f̄ ,f) is the surface energy density of the surface
phase components. In Equation (2.13), the function g(f̄ ,f) is the chemical free energy
(e.g. double-well potential for a two-phase system) and ǫ is a parameter (taken to
be constant for simplicity) that measures the excess energy due to surface gradients.
Under appropriate scaling conditions, Ef represents the line-energy separating the
surface domains. In Equation (2.14), we enforce the area constraint in a global sense,

i.e. we want the total surface area at time t,

∫

Σ(t)

dΣ=

∫

Σ(0)

dΣ=A(0) where A(0)

is the desired area, and any deviation in the area A(t) from the desired area A(0)
is associated with high energy configurations and is not favored by the system. The
parameter λ is used to measure the contribution of the penalty term in total energy. In
a recent boundary integral formulation [16], we enforce a local surface area constraint
using a Lagrange multiplier method.

Next, we take the time derivative of Equation (2.11). That is, we vary both the in-
terface Σ(t) and the concentration function f(t,s) simultaneously and independently.
A calculation in Eulerian coordinates yields

Ės=

∫

Σ(t)

(

∂γ

∂f̄
˙̄f+

∂γ

∂f
ḟ−γn ·∇u ·n

)

dΣ, (2.15)

where ḟ =∂f/∂t+u ·∇f and ˙̄f is defined analogously. Note that in defining ḟ , we
have implicitly assumed that f is extended off the interface such that ∇f ·n=0 in a

small neighborhood of Σ; thus ∇f =∇sf (likewise for ˙̄f if f̄ is space dependent). A
similar calculation shows that

Ėf =

∫

Σ(t)

(

˙̄f
∂g

∂f̄
+ ḟ

(

∂g

∂f
−ǫ2∆sf

)

−ǫ2∇sf ·∇u ·∇sf

)

dΣ

+

∫

Σ(t)

(

g(f)+
ǫ2

2
|∇sf |2

)

(I−nn) :∇u dΣ, (2.16)

and

Ėp=λ

∫

Σ(t)

(I−nn) :∇u dΣ

(

∫

Σ(t)

dΣ−
∫

Σ(0)

dΣ

)

, (2.17)

where ∆s=∇s ·∇s is the Laplace-Beltrami operator (surface Laplacian) and the no-
tation a :b=

∑

ij aijbij denotes the tensor product. In deriving equations (2.16) and
(2.17), we have used integration by parts and the incompressibility of the velocity
field u.

For simplicity, we focus on the two-dimensional case in the remainder of this
paper, so surface area reduces to the arclength of the membrane, L(t) at time t; the 3D
problem will be considered in a future work. In 2D, ∇sf ·∇u ·∇sf = |∇sf |2(I−nn) :
∇u. In 3D, this becomes ∇sf∇sf :∇u.



S. LI, J. LOWENGRUB, AND A. VOIGT 651

Putting this together with equations (2.7), (2.10), (2.15), (2.16), and (2.17), and
integrating by parts, we get

Ė=

∫

Σ(t)

(∇s ·Js)µ dΣ+

∫

Σ(t)

u ·(−∇sσ+κσn) dΣ, (2.18)

where µ is the chemical potential defined by

µ=
∂g

∂f
−ǫ2∆sf+

∂γ

∂f
. (2.19)

The constitutive relation for the surface flux thus can be defined by

Js=ν∇sµ, (2.20)

where ν is the mobility. Note that Equation (2.20) takes the form of a generalized
Fick’s law. In the second integral of Equation (2.18), the constitutive relation for a
generalized surface tension σ is defined as

σ(f)=g(f̄ ,f)−f
∂g

∂f
− f̄

∂g

∂f̄
− ǫ2

2
|∇sf |2+ǫ2f∆sf

+τ(f̄ ,f)+λ(L(t)−L(0)), (2.21)

where τ is the surface tension of the surface phase components in the absence of phase
separation,

τ(f̄ ,f)=γ(f̄ ,f)−f
∂γ

∂f
− f̄

∂γ

∂f̄
. (2.22)

In constructing the constitutive relations for Js and σ, we assume chemical and viscous
dissipations are not coupled.

If there is no energy added into the system (i.e. u∞=0), we substitute the
constitutive relations equations (2.20), (2.21) and the stress jump condition (2.3) into
Equation (2.18), perform integration by parts using the divergence theorem, and get
that the total energy of the system is decreasing in time,

Ė=−
∫

Σ(t)

ν|∇sµ|2 dΣ− 1

2

∫

Ω1

η1(∇u1+∇uT
1 ) : (∇u1+∇uT

1 ) dx

− 1

2

∫

Ω2

η2(∇u2+∇uT
2 ) : (∇u2+∇uT

2 ) dx. (2.23)

Thus, the constitutive assumptions in equations (2.20) and (2.21) are consistent with
the second law of thermodynamics.

2.3. Nondimensionalization. Let the vesicle radius, a, be the length scale,
a/Ū be the time scale, where Ū is a characteristic velocity, p̄=η2Ū/a be the charac-
teristic stress, and σ̄ be a characteristic surface tension. Denoting the nondimensional
quantities, i.e. x̃=x/a, T̃i=Ti/p̄, ũi=ui/Ū , σ̃=σ/σ̄ etc., we obtain the nondimen-
sional Stokes equations after dropping the tilde notation,

∇·Ti=0, ∇·ui=0, for i=1,2, (2.24)

where stress tensor Ti=−piI+λi

(

∇ui+∇uT
i

)

and the viscosity ratio λ2=1 and
λ1=η1/η2.
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The velocity is continuous across Σ (e.g. Equation (2.2) is satisfied for ui) and
the Laplace-Young condition (2.3) becomes

[Tn]Σ=
1

Ca
(σκn−∇sσ) , (2.25)

where Ca=η2Ū/σ̄ is the Capillary number. Letting µ̄ be the characteristic chemical
energy scale, we obtain from Equation (2.21) the nondimensional surface tension

σ=
1

M

(

g(f̄ ,f)−f
∂g

∂f
− f̄

∂g

∂f̄
− C2

2
|∇sf |2+C2f∆sf

)

+τ(f̄ ,f)+Λ(L(t)−L(0)), (2.26)

where f is already nondimensional, g is the nondimensional chemical free energy ob-
tained by scaling the dimensional form by µ̄, and τ is the nondimensional surface
tension obtained by scaling the dimensional form by σ̄, C= ǫ/(a

√
µ̄) is the Cahn num-

ber, Λ=λa/σ̄, and M= σ̄/µ̄, which works like the Mach number [35] and measures
the relative strengths of the surface tension and chemical forces. Accordingly, the
nondimensional chemical potential is given by

µ=
∂g

∂f
−C2∆sf+M∂γ

∂f
. (2.27)

The nondimensional version of the surface mass transport equations (2.7) and (2.9)
are

ft+u ·∇f−n ·∇u ·nf = 1

Pe
∇s (ν∇sµ) , (2.28)

f̄t+u ·∇f̄−n ·∇u ·nf̄ =0, (2.29)

where the Peclet number Pe= ν̄µ̄/(aŪ).

3. Numerical methods

We use the immersed interface method (IIM) to solve the 2D Stokes equations
for the fluid velocity field u. We then use u to update the position of the interface
Σ(t) by a level-set method. Once the interface is identified, we use a non-stiff Eule-
rian algorithm to solve the phase field equations for the concentration f(t,s) on the
interface; see Figure 3.1 for a schematic diagram of the algorithm. The algorithm
presented below is an extension of the approach developed in [29] for interfacial flows
with surfactants. For completeness, we outline the main ideas here. In this paper,
we consider the case of viscosity matched fluids λ1=λ2=1. The IIM can also be
extended to solve the case with mismatched viscosity by using an augmented variable
approach [36].

3.1. The evolution of the mass concentration. For a given initial shape,
we first solve the material field and compute the generalized surface tension in Equa-
tion (2.26), which will be imparted to the boundary condition for the flow equation.
The mass concentration f is evolved in three steps. First, f and the chemical po-
tential µ are extended off the interface Σ into a small tube around Σ. Second, the
surface mass transport Equation (2.28) is solved in the tube using an efficient non-
stiff method. Third, the total mass conservation Equation (2.29) is solved using a
semi-implicit method. For simplicity, we assume that the mobility ν=1.
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Fig. 3.1. A schematic diagram of the combined numerical method.

3.1.1. Extension of the mass concentration off the interface. Following
[37], f is extended off Σ by solving the following Hamilton-Jacobian equation:

{

fτ +S(φ)n ·∇f =0,

f(x,0)=f0(x),
(3.1)

where as before S(x) is the sign function of x defined below in Equation (3.20) and τ
is a pseudo-time that measures the magnitude of the radius of the tube into which f is
extended. Similarly, the chemical potential µ is extended off Σ analogously. Equation
(3.1) is solved using the third order WENO and Runge-Kutta spatial and temporal
discretizations, respectively.

3.1.2. A nonstiff method for the surface mass transport equation.

The surface mass transport equation (2.28) is a nonlinear, fourth-order differential
equation. Explicit methods suffer severe time step restrictions for stability (time
step p∼h4, where h is the spatial resolution). Here, we use a non-stiff semi-implicit
numerical method to remove the stiffness, i.e. we integrate the highest order terms
implicitly in time.

We first decompose the Laplace-Beltrami operator as in [38]:

∆sµ=∆µ− ∂2µ

∂n2
−κ

∂µ

∂n
, (3.2)

where ∆=∂2/∂x2+∂2/∂y2 is the usual Laplacian. We then decompose the Helmholtz
free energy [39]

∂g

∂f
= āf+

(

∂g

∂f
− āf

)

, (3.3)

where ā is a nonnegative constant (ā is typically taken to be max

∣

∣

∣

∣

∂2g

∂f2

∣

∣

∣

∣

). We then

rewrite Equation (2.28) into a system of two second order differential equations with
f and µ as unknowns,

ft−
1

Pe
∆µ=F (x,t), (3.4)

µ− āf+C2∆f =G(x,t), (3.5)
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where the right hand side is

F (x,t)=−u ·∇f+n ·∇u ·nf− 1

Pe

(

∂2µ

∂n2
+κ

∂µ

∂n

)

, (3.6)

G(x,t)=
∂g

∂f
− āf+

∂γ

∂f
+C2

(

∂2f

∂n2
+κ

∂f

∂n

)

. (3.7)

In practice, the left hand sides of equations (3.4)-(3.5) are discretized implicitly, and
the right hand sides are discretized explicitly. In equations (3.4) and (3.5), we use a
semi-implicit backward Euler discretization in time to approximate ft. The advection
term u ·∇f is discretized using a third order WENO algorithm, and the other differ-
ential terms are discretized using centered differences in space. The resulting linear
system is solved in a band around the interface by using an iterative Gauss-Seidel
method for f and µ simultaneously. Using an error tolerance of 10−6, less than 50
iterations per time step are required. Because the number of updated points scales
like N , where N is the number of grid points in a one direction, this algorithm is
still inexpensive. However, other more efficient solution methods (e.g. multigrid) are
under development.

3.1.3. A semi-implicit method for the total mass transport equation.

The total mass transport Equation (2.29) is solved using a semi-implicit method [40].
We first rewrite Equation (2.29) as

f̄t=−β∆2f̄+β∆2f̄−S(f̄), (3.8)

where S(f̄)=u ·∇f̄−n ·∇u ·nf̄ , and β is a constant to be determined. We discretize
Equation (3.8) in time (first order accurate) as,

f̄n+1= f̄n−∆tβ∆2f̄n+1+[∆tβ∆2f̄n−S(f̄n)], (3.9)

where ∆t is the time step. The above discretized equation can be re-written as

f̄n+1= f̄n+(I+∆tβ∆2)−1[−∆tS(f̄n)]. (3.10)

The operator (I+∆tβ∆2)−1 is smooth and able to suppress the unstable high wave
number modes. The bi-Laplacian in Equation (3.9) is discretized using a second
order accurate (in space) 13 point stencil centered-difference scheme. We found that
β=0.05 results in a stable scheme for the time steps used in our calculations.

3.2. The IIM for the Stokes equations. Once the generalized surface
tension σ is calculated, we incorporate it into the boundary conditions for Stokes
flow equations. We use an immersed interface method to solve the fluid field [41, 42].
The IIM was developed for solving interface problems with discontinuities across the
interface. It is a second order accurate sharp interface method that takes into account
the jump conditions directly into the difference stencil [41, 42].

In solving the fluid field, equations (2.24) and (2.25) are decomposed into three
Poisson equations — one for the pressure and the other two for the velocity compo-
nents u=(ux,uy). At time tk, the equation for the pressure pk=p(x,tk) is obtained
by taking the divergence of Equation (2.24). Because the viscosities of the fluids are
matched, the pressure p(x,tk) is a harmonic function,

∇2pk=0, (3.11)



S. LI, J. LOWENGRUB, AND A. VOIGT 655

with jump boundary conditions on the interface Σ(tk):

[pk]Σ(tk)=−
(

1

Ca
σκ

)k

,

[

∂p

∂n

]

Σ(tk)

=

(

1

Ca
∇2

sσ

)k

, (3.12)

and Neumann boundary conditions on ∂Ω:

(

∂p

∂n

)k

=

{

2
(

∇2u ·n
)k−1−

(

∇2u ·n
)k−2

, k≥2,
(

∇2u ·n
)k−1

, k=1.
(3.13)

Once the pressure is determined, the velocity uk is obtained by solving the Poisson
system (recall λ=1):

∇2uk=∇pk, (3.14)

together with the jump boundary conditions on Σ(tk) [42]:

[uk]Σ(tk)=0,

[

∂uk

∂n

]

Σ(tk)

=

(

1

Ca
∇sσ

)k

, (3.15)

and the far-field Dirichlet boundary condition

uk=uk
∞ on ∂Ω. (3.16)

The Poisson equations for the pressure and velocity are discretized as follows.
First, the grid points are divided into two groups. All grid points that are adjacent
to the interface are classified as irregular grid points, while the remaining points are
regular. At the regular grid points, a standard centered difference scheme is used to
discretize the Poisson equations. At the irregular grid points, the standard center
difference scheme is modified by adding a correction term to account for the jumps.
The correction term, which modifies only the right hand side of the equation, can
be derived from the two jump conditions, a Taylor series expansion of the solution
in local coordinates, and the method of undetermined coefficients to yield a second
order accurate discretization [41, 29]. Note that, since pk is discontinuous across the
interface, we can use the standard central finite difference scheme to approximate
∇pk at the regular grid points. For irregular grid points, however, depending on the
relative position of the points (xi,yi), (xi+1,yj), and (xi−1,yj), the approximation of
pkx (for example) is quite different from the regular grid point; see [29] for details.

The resulting scheme has local truncation error O(h2) at regular grid points
(where h is the spatial grid size), and O(h) at irregular grid points. Since the whole
set of irregular grid points is of co-dimension one, global second order accuracy can
be achieved [42, 41]. The resulting discrete systems are solved by using the FFT.

3.3. Interface capturing using the level-set function. The level-set
method, first introduced by Osher and Sethian [43], has been highly successful in
describing interface dynamics in many applications including multiphase flows; see
the recent reviews [44, 45]. Once the velocity field uk is calculated from solving
the Stokes equations, the level-set method is implemented to capture the interface
position. Since the interface moves with the fluid, we take

∂φ

∂t
+u ·∇φ=0. (3.17)
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The interface Σ(tk) is represented by the zero set of the level-set function φk=φ(x,tk),
i.e. Σ(tk)={x :φ(x,tk)=0}. Assume that {x :φ(x,t)<0}=Ω1, so that the outward
normal and curvature are

nk=
∇φk

|∇φk| , κk=∇·
( ∇φk

|∇φk|

)

. (3.18)

The level-set function is re-initialized after each time step to be a signed distance
function locally near the interface [46]. This is performed by solving the following
Hamilton-Jacobian equation to steady state:

{

φτ +S(φ0)(|∇φ|−1)=0,

φ(x,0)=φ0(x),
(3.19)

where φ0 is the level set function before the re-initialization, τ is the pseudo-time,
and S(x) is the sign function of x defined as

S(x)=











−1, if x<0,

0, if x=0,

1, if x>0.

(3.20)

In practice, the re-initialization is performed at every time step.
In the above equations, the standard third order upwind WENO method [47] is

used for the spatial discretization and the standard third order TVD Runge-Kutta
method [48] is used for time stepping. A smoothed approximation of the sign function
(3.20) is used,

S̃(φ)=
φ

√

φ2+h2
, (3.21)

where as before h is the spatial grid size.

3.4. Enforcing area and surface mass conservation. One of the draw-
backs of the level-set method is that area of the enclosed vesicle is not exactly con-
served by the flow. In addition, the mass of f is not exactly conserved by our algorithm
either. Typically, small errors are incurred at every time step, and after long times
these errors may accumulate and lead to inaccurate results. Interestingly, we find that
the most significant source of mass error arises from the fact that the the discrete ve-
locity field obtained from the IIM is not essentially divergence free [29]. Therefore,
to enforce area conservation, a small correction is added to the normal velocity of
moving interface at every time step. This is an approach frequently used in boundary
integral simulations (e.g. see [49]). Let ũh be the discrete velocity obtained from the
IIM. We determine a small correction α to ensure that the net mass flux across the
interface is zero:

∫

Σ

(ũh+αn) ·n ds=0.

This yields the explicit expression

α=−
∫

Σ
ũh ·nds
∫

Σ
ds

=−
∫

ũh ·nδΣ(φ)dx
∫

δΣ(φ)dx
. (3.22)
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The modified velocity is then used to advect the level set function and the surface
mass concentration f . The modification above ensures that the total mass flux across
the interface is zero and is found to result in dramatically reduced mass loss overall
[29].

The above modified velocity also improves the conservation of f , however there
is still significant loss of total surface mass over long-times due to numerical diffusion.
The simplest way to enforce this correction is to multiply the mass concentration f
by a constant factor to ensure that total surface mass is conserved. Let f̃h be the
solution of the discrete surface mass concentration equation and let f0, φ0, and Σ0

be the initial mass concentration, level-set function, and interface respectively. Then,
we choose β such that

∫

Σ

βf̃h dΣ=

∫

Σ0

f0 dΣ0, (3.23)

which yields

β=

∫

Σ0
f0 dΣ0

∫

Σ
f̃h dΣ

=

∫

Ω
f0δΣ0

dx
∫

Ω
f̃hδΣdx

. (3.24)

The mass concentration is then reset to be fh=βf̃h. We refer the reader to [38]
for numerical approximations of the delta function in the above integrals, noting that
δΣ= δ(φ)|∇φ|.

Finally, we note that other, more sophisticated area and surface mass concentra-
tion corrections can be derived that take into account the interface curvature and mass
concentration gradients, etc. Nevertheless, we found it sufficient to use the simpler
corrections described above.

4. Numerical results

In this section, we present 2D simulations illustrating the effect of flow, surface
tension, and phase decomposition on the dynamics of a vesicle in viscous fluids. We
focus our study on physical aspects of the problem. The detailed convergence studies
of a similar algorithm for a viscous drop with surfactant are presented in [29]. We first
study the case without the arclength constraint, i.e. when the interface is allowed to
relax freely. We then consider the effects of the arclength constraint in the following
sections. Note that in these calculations, we do not apply an external flow. The flow
field is generated by the deformation and motion of the vesicle.

Unless otherwise noted, the computational domain is Ω=[−1,1]× [−1,1]. A uni-
form Cartesian grid is used with hx=hy =h=0.01 for all simulations. The time
step is set to be ∆t=h/10. The Peclet number is Pe=1. We take the chemi-

cal free energy to be g(f̄ ,f)=

(

f

f̄

)2(

1− f

f̄

)2

/4 which is a modified double-well

potential. That is, the states f =0 and f = f̄ are energetically preferred by the
chemical energy. We take the surface energy density in Equation (2.12) to be
γ(f,f̄)=exp(−xf/f̄), where x measures the reduction in surface tension by the phase
f = f̄ . Here we let x=0.2, so the surface tension τ of the two phases are not matched,
and τ(0)=1>τ(f̄)=exp(−0.2)=0.8187 by Equation (2.22). We take the Capillary
number Ca=1.0, the Cahn number C=0.02, and the Mach number M=1. The pa-
rameter ā used in Equation (3.5) is set to be ā=0.25. The initial concentration field
on the interface is a small perturbation of the unstable state 0.5. In particular, we
take f(x,y,0)=0.5+0.01(sinxcosy+sin(4x)cos(3y)), so the initial phase distribution
is symmetric about the x-axis. At t=0, f̄(s,0)=1.
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4.1. Relaxation dynamics of an ellipse without arclength constraint.

The initial vesicle shape is taken to be an ellipse located at the origin, x2+2y2=
0.25. Without the arclength constraint, it is expected that the interface will relax
freely back to a circle (with minimum surface energy). Note that the initial ellipse
has a small aspect ratio, i.e. the ratio between the long axis and the short axis is
a/b=

√
2. The arclength at t=0 is Lellipse≈2.7. The arclength for a circle with the

same area is Lellipse≈2.642. So there is only a small amount of excess arclength,
∆L=Lellipse−Lcircle≈0.058.
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Fig. 4.1. The x-coordinate of the centroid of the moving vesicle. The initial shape is an ellipse
with x2+2y2=0.5. Distribution of mass concentration f along the interface, morphologies of the
vesicle, and the streamlines of the velocity field for x=0.2, Ca=1.0, Pe=1.0, C=0.02, and M=1.0
are marked at different times.

In Figure (4.1)[a], we plot the x-coordinate of the vesicle centroid and an evolution
sequence indicated by capital letters at the indicated times. At early times, the vesicle
oscillates around the origin. At later times, the vesicle moves to the left at a constant
velocity, see the straight line after t=27, until late times when the vesicle interacts
with the wall.

In Figure(4.1)[b]–[i], we show the detailed distribution of the mass concentration
f along the interface, morphologies of the vesicle, and streamlines of the velocity
field during the dynamics. We plot the concentration f along the interface using
different colors. The color scale ranges from f =0 (blue) to f = f̄ (red). We set the
background color to be 0.3 in order to provide a contrast. At t=0, the interface at
the high curvature tip region retracts rapidly to the center while the low curvature
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[b] [c]

[d] [e]

[f] [g]

[h] [i]

Fig. 4.1. Distribution of mass concentration f along the interface, morphologies of the vesicle,
and the streamlines of the velocity field at times t=0 [b], 0.2 [c], 1.6 [d], 16.2 [e], 18.8 [f ], 35.2 [g],
47.0 [h], 60.0 [I].
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Fig. 4.2. Convergence of the surface phase concentration, the total mass f̄ .

region expands from the center. Similar to a Taylor four-roll mill [50], the relaxation
dynamics produces four vortex-like rotational flows around the tips shown in Figure
4.1[b], in which the streamlines point inward to the center along the horizontal axis
(y=0) and point outward along the vertical axis x=0. Here x and y refer to global
Cartesian coordinates axis centered at the origin.

The relaxation process continues for a short time until the surface tension brings
the ellipse back to a circular shape; see Figure 4.1[d] at t=1.6. It is evident that
the mass mixture decomposes at t=0.2 in Figure 4.1[c]. At t=1.6, the first round
phase decomposition is finished and there are regions with well-separated phases f =0
(low concentration) and f = f̄ (high concentration). Note that due to the nonlinear
coupling between the shape and flow, the phase energy is reduced further by a second
round phase decomposition (from Figure 4.1[e] at t=16.2 to Figure 4.1[g] at t=26.8).
This process eliminates extra eight phase boundaries (i.e. the places where f =0
phase(blue) and f = f̄ phase(red) are met). Clearly, after the second round phase
decomposition, the vesicle has only two regions with phase f =0 on the right half and
f = f̄ on the left half.

The phase decomposition is accompanied by horizontal translation dynamics, i.e.
the vesicle moves to the left. For example, in Figure 4.1[g] at t=35.2 the directions
of the streamlines are pointing to the left along x-axis. This is because the surface
tension of phase f =0 is larger than that of the f = f̄ phase on the left, i.e. τ(0)=
1>τ(f̄)=exp(−0.2)=0.8187. So the forces along the x-axis are not balanced and
the total net force (with a direction pointing to the left) drives the vesicle to move
toward the left. This is clearly seen in Figure 4.1[h] and Figure (4.1)[i], in which the
centroid of the vesicle keep moving to the left along the negative x-axis indicating the
horizontal translation of the vesicle. Interestingly, at later times the vesicle travels at
a constant velocity; see the straight line after t=27. This behavior resembles the case
that a particle is falling in the viscous fluid by its own weight, in which a constant
velocity is reached at later time [51]. Around the phase boundaries where phase f =0
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and phase f̄ meet, rotational flow fields are produced both inside and outside the
vesicle. These vortexes are traveling with the vesicle. Recall that we do not apply
any external flow in this simulation. The locomotion of the membrane is completely
due to the coupling between the flow and imbalance of surface tension forces.

Next, we examine the numerical errors associated with these calculations. With-
out the arclength constraint, the arclength shrinks quickly at early times and set-
tles down at a value which is approximately 2.2% smaller than the initial value,
which is the excess amount of arclength considered in the initial ellipse. The
relative error in mass of surface phase f and total mass f̄ are measured using
∣

∣

∣

∣

∣

∫

Σ(t)

f(s,t)dΣ−Mf (0)

∣

∣

∣

∣

∣

/Mf (0) and

∣

∣

∣

∣

∣

∫

Σ(t)

f̄(s,t)dΣ−Mtot(0)

∣

∣

∣

∣

∣

/Mtot(0) respectively.

The maximum value of the relative errors are very small, approximately 0.025% for f
and 0.004% for f̄ , indicating that the material field is well conserved. In Figure (4.2),
we show a sample convergence study in space for the total mass conservation during
evolution. Similar convergence (not shown) is observed for computations shown in
Figure (4.3) and (4.4).

4.2. Relaxation dynamics of an ellipse with arclength constraint.

We next investigate the effect of the arclength constraint. We use the same initial
conditions as those used to compute Figure 4.1 and set the parameter λ=100 to
enforce the global arclength constraint.

In Figure 4.3[a], we plot the x-coordinate of the vesicle centroid and present an
evolution sequence describing the morphology, phase distribution, and the velocity
field by streamlines in Figure 4.3[b]–[k]. Similar to the unconstrained case, the vesicle
moves to the left because the surface tension force is not balanced and there is a net
force pointing to the left. At t=0.0 the vesicle retracts to produce a Taylor four-roll
mill structure. The surface mass mixture starts to decompose quickly and the first
round phase decomposition finishes around t=1.6; see Figure 4.3[b]–[d]. The mor-
phology, however, stays roughly elliptical, which is different from the unconstrained
case shown in Figure 4.1[d], where the shape relaxes back to a circle at t=1.6. A
second round of phase decomposition starts at t=12, as shown Figure 4.3[e], and fin-
ishes around t=16.2 after eliminating four phase boundaries, shown in Figure 4.3[f],
in which most of the low concentration phase f =0 is in the right part of the vesicle,
although a small amount remains trapped in the left region. This is very different from
the unconstrained case where all of the low concentration f =0 phase is accumulated
at the right half of the circular vesicle.

Wrinkles on the vesicle boundary start to develop in the high concentration
phases; see the red regions in Figure 4.3[f]. The wrinkles become evident in Fig-
ure 4.3[g]–[k]. This is due to the arclength constraint, and the vesicle is not allowed
to fully relax back to a circular shape. The excess arclength is manifested as wrinkles
in the high concentration phases, where the surface tension is smaller than that of the
low concentration regions.

Membrane wrinkling has been previously observed in experiments of elastic cap-
sules in an applied shear flow by Walter et al. [17]. Finken and Seifert [18] performed
a mathematical analysis and derived analytical results both for the threshold value
of the shear rate and for the critical wavelength of the wrinkling. Wrinkling has also
been observed in experiments of vesicles by Kantsler et al. [19] under time-dependent
elongation flow [19]. It has been suggested that the winkling phenomena are related
to the dynamical instability induced by negative surface tension of the membrane
[20] during the vesicle deflation. These wrinkles usually are associated with higher
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Fig. 4.3. The x-coordinate of the centroid of the moving vesicle. The initial shape is an ellipse
with x2+2y2=0.5. Distribution of mass concentration f along the interface, morphologies of the
vesicle, and the streamlines of the velocity field for x=0.2, Ca=1.0, Pe=1.0, C=0.02, and M=1.0
are marked at different times.

order modes. After a careful check of our surface tension, we indeed found that the
development of the wrinkling instability in the high concentration regions is closely
associated with negative surface tension. As an example, in Figure 4.3[l], we plot the
surface tension versus the arclength at time t=16.2, when the wrinkles are about to
develop. Corresponding morphology and phase field are shown in Figure 4.3[f]. It is
evident that the surface tension is negative at high concentration regions and there
are rapid and smooth transitions across the phase boundaries. A detailed study using
a more accurate boundary integral method is in preparation [52].

During the evolution, the maximum relative error of vesicle arclength is very
small (0.041%) when compared with the unconstrained case (2.2%), indicating that
the arclength is conserved well. We have tested other λ’s and found that large values
of λ result in a better conservation of the arclength. Similar to the previous studies,
the relative error in mass of surface phase f and total mass f̄ are both very small,
approximately 0.025% for f and 0.002% for f̄ indicating, the material field is also well
conserved.

4.3. Relaxation dynamics of an elongated ellipse with arclength con-

straint. In this section, we investigate the evolution of an elongated el-
lipse, x2+8y2=0.25. Note that the ellipse has a larger aspect ratio, a/b=2

√
2.

The arclength at t=0 is about Lellipse≈2.115. The arclength for a circle with
the same area is Lellipse≈1.868, so there is a large amount of excess arclength,
∆L=Lellipse−Lcircle≈0.247. We set λ=100 and all other parameters are the same
as those used to produce Figure 4.3.

In Figure 4.4[a], we plot the x-coordinate of the vesicle centroid and show an
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Fig. 4.3. Distribution of mass concentration f along the interface, morphologies of the vesicle,
and the streamlines of the velocity field at times t=0 [b], 0.2 [c], 1.6 [d], 12.0 [e], 16.2 [f ], and 19.0
[g].

evolution sequence with time indicated in the caption. Unlike the previous two cases,
the vesicle mainly oscillates around the origin. There are also two rounds of phase
decompositions during early times; see Figure 4.4[b]-[g]. Note that after the phase
decomposition, the high concentration phase is localized in the high curvature regions
and the low concentration phase emerges in the low curvature regions. There are four
phase boundaries along the interface. The streamlines of velocity field during early
times all point inward to the center, indicating retraction of the vesicle. However,
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Fig. 4.3. Distribution of mass concentration f along the interface, morphologies of the vesicle,
and the streamlines of the velocity field at times t= 26.8 [h], 38.6 [i], 43.0 [j], and 50.0[k].

0 0.5 1 1.5 2 2.5 3
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 Arclength

 S
ur

fa
ce

 te
ns

io
n

 high  high  high

 concentration  concentration  concentration

[l]

Fig. 4.3. Negative surface tension in high concentration regions [l].
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the vesicle remains in a roughly elliptical shape. It seems the arclength constraint
successfully limits the free-relaxation of the vesicle. At later times, the vesicle shape
continues to evolve and forms two small buds around the tip regions; see Figure 4.4[h]-
[i]. The bud on the right half of the vesicle expands and grows larger at the expense
of the left one. At t=14, a neck connecting the bud and the right half of the interface
forms. Note that there are also wrinkles observed during this process (see Figure
4.4[j]), but they are not stationary and are only excited for a short amount of time.

The bud formation is also accompanied by a horizontal translation because of the
imbalance of the surface tension forces. There are also rotational flows produced at
the phase boundaries during the evolution. With arclength constraint λ=100, the
arclength is well preserved with only a 0.04% loss compared with the initial value.

Bud formation has been studied in multicomponent vesicle dynamics with bending
energy included; e.g. see [11, 28, 53, 16]. It has also been reported recently that a
time-dependent flow with a switch in the direction of the velocity gradient can also
lead to bud formation [6]. Here our flow field is far more complicated than the
elongation flow. Further, in our simulation, there is no bending force involved and
it is the nonlinear interactions among the flow, the surface phases, and the variable
surface tension forces that give rise to the bud formation.
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Fig. 4.4. The x-coordinate of the centroid of the moving vesicle. The initial shape is an ellipse
with x2+8y2=0.5. Distribution of mass concentration f along the interface, morphologies of the
vesicle, and the streamlines of the velocity field for x=0.2, Ca=1.0, Pe=1.0, C=0.02, and M=1.0
are marked at times different times.
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Fig. 4.4. Distribution of mass concentration f along the interface, morphologies of the vesicle,
and the streamlines of the velocity field at times t=0 [b], 0.2 [c], 0.4 [d], 1.8 [e], 2.8 [f ], and 5.2 [g].

5. Conclusions and future work

We have developed a thermodynamically consistent model of a multicomponent
membrane using a simplified version of the Helfrich model. To investigate the effects
of surface tension, we neglect the bending forces and spontaneous curvature. Using an
energy variation approach, we derived constitutive equations for: (1) the generalized
surface tension forces imparted to the flow as a boundary condition at the membrane
surface; (2) the diffusion flux imparted in the mass conservation equations of Cahn-
Hilliard type on the evolving membrane surface. This simplified model is capable
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Fig. 4.4. Distribution of mass concentration f along the interface, morphologies of the vesicle,
and the streamlines of the velocity field at times t=7.2 [h], 10.4 [i], 12.4 [j], 14.0 [k], 16.4 [l], and
18.0[m].

of describing the nonlinear coupling among the flow, vesicle morphology, and the
evolution of the surface phases.

To solve the highly nonlinear coupled system, a new numerical method is pre-
sented along the lines of the methods developed for interfacial flows with surfactant
[29]. This method combines the immersed interface method to solve the flow equa-
tions, and the Laplace-Young jump conditions, with the level-set method to represent
and evolve the interface and a non-stiff Eulerian algorithm to update the mass concen-
tration on the interface. Our numerical results on the dynamics of a two-dimensional
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vesicle reveal that nonhomogeneous surface tension, coupled with the surrounding vis-
cous fluid, introduces vesicle locomotion and budding. When the arclength constraint
is not present, an initially perturbed circular vesicle evolves back to a circular shape
with well-separated phases. Because of the imbalanced surface tension between two
phases, vesicles move in the direction that the surface tension is small. When the
arclength constraint is enforced, in addition to self-locomotion, a perturbed circular
vesicle exhibits various morphologies during its evolution. Examples include the for-
mation of wrinkles for vesicles with limited excess arclength and buds for vesicles with
larger excess arclength.

In the future, we plan to implement a boundary integral method to further in-
vestigate and quantify the effects of surface tension using Lagrange multipliers to
enforce the local surface area constraint. We also plan to include bending forces and
spontaneous curvature to make the model more realistic. We note that, because of
the higher nonlinear terms κss introduced by the bending energy, an adaptive grid
method has to be used to compute this term accurately, especially around the regions
with high curvatures. Theoretical studies of variable surface tension are also being
performed.
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