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ON COLLISION-AVOIDING INITIAL CONFIGURATIONS TO

CUCKER-SMALE TYPE FLOCKING MODELS∗

SHIN MI AHN† , HEESUN CHOI‡ , SEUNG-YEAL HA§ , AND HO LEE¶

Abstract. We present a class of initial-configurations for the Cucker-Smale flocking type models
leading no finite-time collisions between particles. For this class of initial-configurations, the global
existence of smooth solutions to the Cucker-Smale model with singular communication weights is
established. This also generalizes the earlier flocking estimates for the Cucker-Smale type models
with regular communication weights.
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1. Introduction

Flocking phenomena [3, 11, 12, 13, 14, 32, 33, 34] such as flocking of birds, school-
ing of fishes, and swarming of bacteria are often observed in complex biological sys-
tems, and are some of the collective self-organizing phenomena in biological, me-
chanical, and social groups of self-propelled particles. Recently several mathematical
models for such self-organized phenomena have received lots of attention due to their
engineering applications such as sensor networks, and formation control of robot and
unmanned aerial vehicles [26, 28, 30]. Our interest in this paper lies on the flocking
model introduced by Cucker and Smale [10]. They proposed a simple continuous-
time dynamical system (called C-S model) with regular and algebraically decaying
communication weight depending on the Euclidean distance between agents and pro-
vide rigorous asymptotic flocking estimates exhibiting a kind of phase-transition like
phenomena between local flocking and global flocking depending on the decay rate of
communication weight (e.g. long range and short range). Cucker-Smale’s flocking es-
timates were refined and generalized to the kinetic and fluid models in recent literature
[1, 2, 4, 5, 6, 7, 8, 9, 15, 16, 17, 18, 19, 20, 21, 22, 24, 25, 27, 31]. In application of the
C-S model for the UAV and robot system, there are several difficulties. Among them,
collision avoidance and existence of too many spatial equilibria can be mentioned.
For collision avoidance in the C-S model, Cucker and Dong recently introduced a
modified C-S model by adding a term which prevent collisions [7], and for the second
issue Park-Kim-Ha also introduced a C-S model with inter-particle bonding forces
[29]. When the communication weight is adopted as a singular type, say 1

rα
, α>0,

the forcing terms become singular in the original C-S model and its variants [7, 29].
Hence control of pair-wise collisions is necessary for the well-posedness of the models.
Then natural questions which arise are (1) what is the effect of singularity of com-
munication weights?, (2) can it prevent collisions? or (3) even for singular weights, if
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collisions can happen, then can we identify admissible initial configurations to prevent
collision in finite-time? etc.

The main purpose of this paper is to characterize an admissible class of initial
configurations preventing finite-time collisions. For the simple two-particle C-S sys-
tem, the non-integrable singularity of communication weights can prevent a finite-time
collision for the configurations once the two particles are initially apart (Proposition
4.1).

The rest of this paper is divided into five sections after the introduction. In
Section 2, we introduce a C-S type flocking model with non-integrable singular com-
munication weights and inter-particle bonding forces and discuss a framework for
collision avoidance. In Section 3, we present ℓ∞-flocking estimates for the original
C-S model with regular communication weights, which improves the results in [5, 22].
In Section 4, we introduce an admissible class of initial-configurations for the collision
avoidance for the C-S model with singular communication weights. For many-body
particle systems, we present a sufficient condition for collision avoidance by providing
the uniform positive lower bound for the minimal distance between particles thanks
to the explicit exponential time-decay of the relative velocities. In Section 5, we
establish that the maximal inter-particle distance can be controlled by the minimal
inter-particle distance by devising a new Lyapunov functional. This estimate is rem-
iniscent of “Harnack type estimate for positive harmonic functions” in the elliptic
PDE theory. Thanks to a new a priori estimate, we can show that pair-wise colli-
sion induces a one-point collapse of the particle system, which is impossible for the
C-S model with inter-particle bonding force when the total energy satisfies a bound
condition. Finally Section 6 summarizes the main results of this paper. Notations:

Throughout the paper, we use the superscript to denote the component of a vector,
for example x := (x1, · · · ,xd)∈R

d. For vectors x,v∈R
d, their Euclidean norm and the

inner product are defined as follows:

||x|| :=
(

d
∑

i=1

(xi)2

)

1

2

, 〈x,v〉 :=
d
∑

i=1

xivi,

where xi and vi are the i-th components of x and v respectively.

2. Preliminaries

In this section, we present two Cucker-Smale (C-S) type flocking models with sin-
gular communication weights and bonding forces and discuss structural assumptions
on ψ.

2.1. The C-S model with a singular weight. In this part, we consider the
C-S model equipped with singular communication weights. Consider an interacting
particle system consisting of N -identical point particles with unit mass in R

d, and
let (xi(t),vi(t))∈R

2d be the phase-space position of the i-th agent. Then the C-S
dynamical system reads as follows:

dxi

dt
=vi, t>0, i=1, · · · ,N,

dvi

dt
=
K0

N

N
∑

j 6=i

j=1

ψ(rij)(vj−vi),
(2.1)
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subject to initial data

(xi,vi)(0)=(xi0,vi0), (2.2)

where rij := ||xi−xj || andK0 is the positive coupling strength. The function ψ=ψ(r)
denotes the communication weight between particles whose relative distance is exactly
r. Note that when the function ψ is bounded and locally Lipschitz, the standard
Cauchy-Lipschitz theory guarantees the existence of global smooth solution to the
system (2.1)-(2.2). However, when the weight function is not locally bounded, the
existence of global solutions is not clear. For example, for ψ(r)= 1

rα
, α>0, when

r→0, i.e., two particles are approaching each other, the value of the weight function
becomes infinity, hence the standard global existence theory breaks down, so there
is no global smooth solution after the collision time. Therefore, for singular weights
we need to choose suitable initial configurations which do not collide in finite time to
guarantee the global existence of smooth solutions.

2.2. The C-S model with a bonding force. In this part, we briefly
discuss the particle model introduced in [29], which is called a C-S flocking model
with inter-particle bonding forces. In this model, we have incorporated new additional
interaction terms confining particles. The model reads as follows:

dxi

dt
=vi, t>0, i=1, · · · ,N,

dvi

dt
=
K0

N

N
∑

j 6=i

j=1

ψ(rij)(vj−vi)+
K1

N

N
∑

j 6=i

j=1

1

2r2ij
〈vi−vj ,xi−xj〉(xj−xi)

+
K2

N

N
∑

j 6=i

j=1

1

2rij
(rij−2R)(xj−xi), (2.3)

where Ki,i=0,1,2 are positive constants measuring the coupling strength. Here R is
a control parameter to make particles stay away from each other. It is easy to see
that for a two-particle system, 2R is exactly asymptotic inter-particle distance. Note
that the new terms

K1

N

N
∑

j 6=i

j=1

1

2r2ij
〈vi−vj ,xi−xj〉(xj−xi)+

K2

N

N
∑

j 6=i

j=1

1

2rij
(rij−2R)(xj−xi)

were devised to control spatial configurations for the particle system (formation con-
trol) in [29]. These terms force particles to remain about 2R units apart in the low
dimensional case. Of course, this may not be true when the number of particles is
large. Nevertheless, these terms are expected to control the distances between par-
ticles, so that the particles do not collide with each other. In [29], the possibility of
finite-collision avoidance was not ruled out, although total collapse can be avoided for
some class of initial data. This issue will be treated in Section 5.

Definition 2.1. [22] A multi-agent system P :={(xi,vi)}Ni=1 has an asymptotic flock-
ing if and only if the system P satisfies the following two conditions:

(i) (Velocity alignment) The velocity diameter of the set {vk}Nk=1 goes to zero as
time goes to infinity:

lim
t→∞

||vj(t)−vi(t)||=0.
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(ii) (Forming a group) The spatial diameter of the set {xk}Nk=1 is uniformly
bounded in time t:

sup
0≤t<∞

||xi(t)−xj(t)||<∞.

Before we close this section, we present an example to exhibit the possibility of
finite-time collisions in the Cucker-Smale model.

Example (Occurrence of finite-time collisions). Consider a simple two-particle
system with a communication weight ψ≡1:

dx1

dt
=v1,

dv1

dt
=
K

2
(v2−v1),

dx2

dt
=v2,

dv2

dt
=
K

2
(v1−v2).

(2.4)

We set

x :=x1−x2, v :=v1−v2.

Then we have

dx

dt
=v,

dv

dt
=−Kv.

Suppose the initial data satisfies

x0>0, v0<0, K <
|v0|
|x0|

. (2.5)

Then by direct calculation, we have an explicit solution:

v(t)= e−Ktv0, x(t)=x0+
v0

K
(1−e−Kt).

Note that

0=x0+
v0

K
(1−e−Kt) ⇐⇒ t=

1

K
ln
( |v0|
|v0|−K|x0|

)

.

Hence for initial data satisfying (2.5), we have a finite-time collision at t∗=
1
K
ln
(

|v0|
|v0|−K|x0|

)

<∞.

3. A generalized flocking estimate for the C-S model

In this section, we present a generalized flocking estimate for the C-S model with
a regular communication weight. Since the total momentum for the C-S model (2.1)
is conserved along the flow, we may assume

N
∑

i=1

xi(t)=0,

N
∑

i=1

vi(t)=0, t≥0. (3.1)

If necessary, we consider the fluctuations xi−xc and vi−vc satisfying the above
constraints instead of working with xi,vi. In [22], a Lyapunov functional approach
has been introduced in the ℓ2-framework for regular weights. Hence the estimates
do not hold for N =∞, because in this limit the admissible initial configurations
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become trivial. However this difficulty was resolved for the ℓ∞-framework in [5] for
the Cucker-Smale communication weight:

ψcs(r) :=(1+r2)−
β
2 , β≥0.

In the sequel, we combine the Lyapunov functional approach in [22] together with
the ℓ∞-approach in [5] to obtain a generalized flocking estimate for general class of
communication weights. Throughout this section, we assume that the communication
weight ψ is positive, bounded, non-increasing, and Lipschitz continuous:

ψ(r1)≥ψ(r2), r1≤ r2, 0<ψ(r)≤ψ∞, r>0. (3.2)

3.1. Lyapunov type functionals in the ℓ∞-framework. In this part, we
define a Lyapunov functional in the ℓ∞-framework. The first step, as in [22], is to
derive a system of two differential inequalities. For this, we set a mixed norm as
follows:

||x||∞ := max
1≤i≤N

||xi||, ||v||∞ := max
1≤i≤N

||vi||,

where x and v are vectors in R
Nd:

x := (x1, · · · ,xN ), v := (v1, · · · ,vN )∈R
Nd.

Note that the maximal indices are varying depending on t, ||x||∞ and ||v||∞ are
piecewise smooth functions, and by the analyticity of xi and vi, the non-differential
points of ||x||∞ and ||v||∞ are at most countable and discrete. In the following lemma,
we will show that the two scalar functionals ||x||∞ and ||v||∞ satisfy a system of two
differential inequalities as long as (xi,vi) is a solution of the system (2.1).

Lemma 3.1. Suppose (3.1) and (3.2) hold, and let {(xi,vi)}Ni=1 be the global smooth
solution to the system (2.1). Then ||x||∞ and ||v||∞ satisfy

∣

∣

∣

d||x||∞
dt

∣

∣

∣≤||v||∞,
d||v||∞
dt

≤−K0ψ(2||x||∞)||v||∞, a.e. t∈ [0,∞). (3.3)

Proof.
(i) We set {ti} to be the set of times satisfying

0= t0<t1< · · ·<tn< · · · , ||x||∞ is differentiable in (ti−1,ti), i=1, . . . .

In the time-interval (ti−1,ti), we choose k∈{1, . . . ,N} to satisfy

||x(t)||∞= ||xk(t)||, t∈ (ti−1,ti).

Then we use the Cauchy-Schwartz inequality to obtain

∣

∣

∣
2||xk||

d||xk||
dt

∣

∣

∣
=
∣

∣

∣

d||xk||2
dt

∣

∣

∣
=2
∣

∣

∣

〈

xk,
dxk

dt

〉

∣

∣

∣

=2|〈xk,vk〉|≤2||xk||||vk||, t∈ (ti−1,ti).

This yields

∣

∣

∣

d||xk||
dt

∣

∣

∣≤||vk||≤ ||v||∞, t∈ (ti−1,ti).
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Hence we obtain the desired inequality.

(ii) For the second inequality, we use a similar argument to (i) and an energy estimate.
We set {si} to be the set of times satisfying

0=s0<s1< · · ·<sn< · · · , ||v||∞ is differentiable in (si−1,si), i=1, . . . .

In the time-interval (si−1,si), we choose k∈{1, · · · ,N} to satisfy

||v(t)||∞= ||vk(t)||, t∈ (si−1,si).

Then it follows from the momentum equation in (2.1) that

d

dt
||vk(t)||2

=2

〈

vk(t),
dvk(t)

dt

〉

=−2K0

N

N
∑

j=1

ψ(||xj(t)−xk(t)||)〈vk(t)−vj(t),vk(t)〉

≤−2K0ψ(2||x(t)||∞)||v(t)||2∞,

where we used (3.1) and the choice of vk to see

ψ(||xj−xk||)≥ψ(2||x||∞),

〈vk(t)−vj(t),vk(t)〉≥0, and

N
∑

j=1

〈vk(t)−vj(t),vk(t)〉=N ||vk(t)||2−
〈(

N
∑

j=1

vj(t)
)

,vk(t)
〉

=N ||vk(t)||2

=N ||v(t)||2∞.

This implies the desired differential inequality.

Remark 3.1. Note that we only used the non-increasing property of ψ. Hence
Lemma 3.1 can be applied in any situation as long as we have the solution in the
time-interval [0,T ).

Following [22], we define two Lyapunov type functionals E±(||x||∞, ||v||∞):

E±(||x(t)||∞, ||v(t)||∞) := ||v(t)||∞±K0

2
Ψ(2||x(t)||∞),

where Ψ(·) is an anti-derivative of ψ.

Lemma 3.2. Suppose (3.1) and (3.2) hold, and let {(xi,vi)}Ni=1 be the global smooth
solution to the system (2.1). Then for t∈ (0,∞), we have

(i) E±(||x(t)||∞, ||v(t)||∞)≤E±(||x0||∞, ||v0||∞).

(ii) ||v(t)||∞+
K0

2

∣

∣

∣

∣

∣

∫ 2||x(t)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

≤||v0||∞.
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Proof.

(i) We use Lemma 3.1 to get the following estimates:

d

dt
E±(||x(t)||∞, ||v(t)||∞)

=
d

dt

(

||v(t)||∞±K0

2
Ψ(2||x(t)||∞)

)

=
d||v(t)||∞

dt
±K0ψ(2||x(t)||∞)

d||x(t)||∞
dt

≤K0ψ(2||x||∞)

(

−||v||∞± d||x||∞
dt

)

≤0.

We integrate the above inequality to get the desired result.

(ii) It follows from the first inequality that

||v(t)||∞−||v0||∞≤±K0

2

(

Ψ(2||x(t)||∞)−Ψ(2||x0||∞)
)

.

Hence we have

||v(t)||∞−||v0||∞≤−K0

2

∣

∣

∣Ψ(2||x(t)||∞)−Ψ(2||x0||∞)
∣

∣

∣

=−K0

2

∣

∣

∣

∣

∣

∫ 2||x(t)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

,

and this completes the proof of the lemma.

As a direct application of Lemma 3.2, the asymptotic flocking estimates are ob-
tained in the following theorem.

Theorem 3.3. Suppose (3.1) and (3.2) hold, and let {(xi,vi)}Ni=1 be the global smooth
solution to the system (2.1) with an initial configuration {(xi0,vi0)}Ni=1 satisfying

||x0||∞>0, ||v0||∞<
K0

2
min

{

∫ 2||x0||∞

0

ψ(s)ds,

∫ ∞

2||x0||∞

ψ(s)ds
}

.

Then we have

0<xm≤||x(t)||∞≤xM <∞, ||v(t)||∞≤||v0||∞e−K0ψ(2xM )t, t≥0.

Proof.

(i) Suppose that there exists t∗∈ (0,∞) such that

||x(t∗)||∞<xm,

and consider the second result of Lemma 3.2:

K0

2

∣

∣

∣

∣

∣

∫ 2||x(t)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

≤||v0||∞, t≥0.
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Since ψ is positive and non-increasing,

∫ 2||x0||∞

δ

ψ(s)ds is non-increasing on δ>0.

Therefore we can choose xm such that

||v0||∞=
K0

2

∫ 2||x0||∞

2xm

ψ(s)ds<
K0

2

∫ 2||x0||∞

2||x(t∗)||∞

ψ(s)ds.

Hence, we have a contradiction, and we conclude that for any t≥0,

xm≤||x(t)||∞.

(ii) We next show that

||x(t)||∞≤xM , t≥0.

Suppose not, i.e., there exists t∗∈ (0,∞) such that

||x(t∗)||∞>xM . (3.4)

On the other hand, it follows from Lemma 3.2 (ii) that

K0

2

∣

∣

∣

∣

∣

∫ 2||x(t)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

≤||v0||∞.

In particular, for t= t∗, we have

K0

2

∣

∣

∣

∣

∣

∫ 2||x(t∗)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

≤||v0||∞. (3.5)

However, with a similar argument to (i), we can choose xM such that

||v0||∞=
K0

2

∫ 2xM

2||x0||∞

ψ(s)ds<
K0

2

∣

∣

∣

∣

∣

∫ 2||x(t∗)||∞

2||x0||∞

ψ(s)ds

∣

∣

∣

∣

∣

. (3.6)

We combine (3.5) and (3.6) to derive the contradiction

||v0||∞< ||v0||∞.

(iii) We use the second inequality in (3.3), the first inequality, and the non-increasing
property of ψ to find the Gronwall-type inequality

d||v||∞
dt

≤−K0ψ(2||x||∞)||v||∞≤−K0ψ(2xM )||v||∞.

This yields the desired result.

Remark 3.2.

1. A Lyapunov functional approach in the ℓ2-framework has been done in [22],
however the results there depend on the number of particles N . Hence in the mean-
field limit (N→∞), the admissible class of initial data in [22] becomes trivial.

2. We remark that there is no finite-time collapse of particles in position. Suppose
that all the particles collapse onto a one-point configuration at time t∗, i.e., xi(t∗)=x∗

for all i=1, · · · ,N . On the other hand, it follows from (3.1) that

0=

N
∑

i=1

xi(t∗)=Nx∗.
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Therefore we know that x∗=0 and it implies that

||x(t∗)||∞=0.

However, the Theorem 3.3 shows that it is not possible since

0<xm≤||x(t∗)||∞.

Therefore there is no finite-time collapse to a one-point configuration.

4. A global existence theory for the C-S model with singular weights

In this section, we study the global existence of the C-S model with singular
communication as below.

Let ψ : [0,∞)→ [0,∞] be a continuous function satisfying

• (A1) ψ is non-increasing and decays to zero as r→∞:

(ψ(r2)−ψ(r1))(r2−r1)≤0, r1,r2>0,

ψ(r)>0, r≥0, lim
r→∞

ψ(r)=0.
(4.1)

• (A2) ψ is singular at r=0:

∫ δ

0

ψ(s)ds=∞, for any δ>0. (4.2)

Note that the long-ranged weight ψ(r)= r−α, α≥1 satisfies the above assumptions,
and it follows from (A2) that we have

lim
r→0+

ψ(r)=∞.

Therefore when the particles collide, the force becomes infinity, and the standard
existence theory is not applicable for this case. Hence we cannot have a global smooth
solution to the system (2.1) in the presence of collisions. Therefore in order to obtain
the global smooth solutions, we need to restrict our admissible initial data. In the
sequel, we will try to find initial configurations which prevent collisions in finite-time
so that we can have a global existence of smooth solutions for this kind of initial data.

4.1. A two-particle system. In this part, we consider two-particles on a
line. All the positions and velocities in the two-particle system are assumed to be on
the same line, i.e., xi,vi∈R, i=1,2. The system (2.1) for a two-particle system reads
as follows:

dx1

dt
=v1,

dv1

dt
=
K0

2
ψ(r12)(v2−v1),

dx2

dt
=v2,

dv2

dt
=
K0

2
ψ(r21)(v1−v2),

(4.3)

subject to initial data

(xi(0),vi(0))=(xi0,vi0). (4.4)

To reduce the number of equations, we set

x :=x1−x2 and v :=v1−v2.
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Then x and v satisfy the following system of ODEs:

dx

dt
=v,

dv

dt
=−K0ψ(|x|)v, (4.5)

and this also implies

dv=−K0ψ(|x|)dx. (4.6)

We integrate the above Equation (4.6) to find

v(t)+K0

∫ x(t)

x0

ψ(r)dr=v0, t>0. (4.7)

For given x0 6=0, we set the maximal life-span T (x0) of the initial datum x0 as follows:

T (x0) :=sup{τ ∈R : ∃ solution (x(t),v(t)) to the system (4.5) in time-interval [0,τ)}.

Note that as long as there is no collision, the solution can be defined. Hence T (x0)<∞
means that the solution x(t) becomes zero at time t=T (x0), i.e.,

lim
t→T (x0)−

x(t)=0.

Proposition 4.1. (No finite-time collisions). Suppose the communication weight ψ
satisfies the assumptions (A1) and (A2) in Section 2.3. Then for any x0 6=0, we have

T (x0)=∞,

i.e., there exists a global solution (x(t),v(t)) to the system (4.5).

Proof. Let x0 6=0. Without loss of generality, we assume

x0>0.

Then the proof follows from (4.7) and the estimate

sup
t>0

|v(t)|≤ |v0|. (4.8)

For the proof of (4.8), we multiply the second equation of (4.5) by 2v to find

d|v|2
dt

=−2K0ψ(|x|)|v|2≤0.

This yields the desired estimate (4.8). We now return to the proof. Suppose that the
maximal life-span of x0 is finite, say

T (x0)<∞.

Then we let tրT (x0) in the relation (4.7) and use x(T (x0))=0 to get the contradic-
tion:

∞=
∣

∣

∣K0

∫ x(T (x0))

x0

ψ(r)dr
∣

∣

∣=
∣

∣

∣K0

∫ x0

0

ψ(r)dr
∣

∣

∣= |v0−v(T (x0))|≤2|v0|<∞.
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Therefore we have

T (x0)=∞.

Corollary 4.2. Let (x(t),v(t)) be a global smooth solution to the system (4.5) with
initial data (x0,v0) satisfying

|x0|>0, |v0|<K0

∫ ∞

|x0|

ψ(s)ds,

then the asymptotic flocking occurs. More precisely, there exist positive constant xM >

0 such that

sup
t≥0

|x(t)|≤xM , |v(t)|≤ |v0|e−K0ψ(xM )t, t≥0,

where xM is uniquely defined by the following implicit relation:

|v0|=K0

∫ xM

|x0|

ψ(s)ds.

Proof. The proof is exactly the same as Theorem 3.1.

Remark 4.1. When the asymptotic flocking occurs, it follows from (4.7) that the
asymptotic spatial difference x∞=limt→∞x(t) is implicitly determined by the follow-
ing relation:

K0

∫ x∞

x0

ψ(s) ds=v0.

We next consider the N -particle system with N ≥3.

4.2. A many-body particle system. In this part, we present a set of initial
configurations leading to no finite-time collisions. Hence the global solutions can be
launched from this initial data regardless of singularity of communication weights.
For a given N -particle configuration {(xi,vi)}Ni=1, we set

Xij := ||xi−xj ||, Vij := ||vi−vj ||.

Lemma 4.3. Suppose the assumptions (A1)−(A2) hold, and for a given T ∈ (0,∞],
let {(xi,vi)}Ni=1 be the solution to the (2.1) in the time-interval [0,T ) with an initial
configuration {(xi0,vi0)}Ni=1. Then we have

dXij(t)

dt
≤2||v0||∞e−K0ψ(2xM )t, a.e. t∈ [0,T ),

where xM is defined implicitly by the following relation:

||v0||∞=
K0

2

∫ 2xM

2||x0||∞

ψ(s)ds.

Proof. By direct calculation, we have
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dX2
ij

dt
=2〈xi−xj ,vi−vj〉≤2||xi−xj ||||vi−vj ||=2XijVij .

This implies

dXij

dt
≤Vij . (4.9)

On the other hand, note that Lemma 3.1 can be applied for any local smooth solution,
i.e., we have

d||v||∞
dt

≤−K0ψ(2||x||∞)||v||∞≤−K0ψ(2xM )||v||∞,

where we have used the fact ||x(t)||∞≤xM and the non-increasing property of ψ.
Then Gronwall’s lemma yields

||v||∞≤||v0||∞e−K0ψ(2xM )t. (4.10)

We finally combine (4.9) and (4.10) to get

dXij

dt
≤Vij≤||vi||+ ||vj ||≤2||v||∞≤2||v0||∞e−K0ψ(2xM )t.

We now define a set consisting of all admissible initial configurations leading to
no finite-time collisions. For this, we define

S1 :=

{

{(xi0,vi0)}Ni=1∈R
2dN : dm(x0,v0) := min

1≤i6=j≤N
|Xij(0)|−

2||v0||∞
K0ψ(2xM )

>0

}

.

Theorem 4.4. Suppose the assumptions (A1)−(A2) holds and the initial data
{(xi0,vi0)}Ni=1 lies in the set S1. Then there exists a unique global smooth solution
{(xi,vi)}Ni=1 to the system (2.1) satisfying

inf
t≥0

min
i,j

Xij(t)≥dm(x0,v0), t≥0.

Proof. Since the initial data {(xi0,vi0)}Ni=1 is in the set S1, we have

dm(x0,v0) := min
1≤i6=j≤N

|Xij(0)|−
2||v0||∞
K0ψ(2xM )

>0.

As long as the minimal distance between particle is away from zero, i.e., there is no
finite-time collisions between particles, we will have the global existence. Hence once
we establish

inf
t≥0

min
i,j

Xij(t)≥dm(x0,v0)>0, (4.11)

we will have the global existence of a smooth solution. For the estimate of (4.11), we
use Lemma 4.3 to find

|Xij(t)−Xij(0)|≤
∣

∣

∣

∫ t

0

dXij(s)

ds
ds

∣

∣

∣
≤
∫ t

0

∣

∣

∣
Vij(s)

∣

∣

∣
ds

≤2||v0||∞
∫ t

0

e−K0ψ(2xM )s ds

=
2||v0||∞
K0ψ(2xM )

(

1−e−K0ψ(2xM )t
)

≤ 2||v0||∞
K0ψ(2xM )

.

(4.12)
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Then we obtain the desired result by the triangle inequality as follows:

|Xij(t)|≥ |Xij(0)|−|Xij(t)−Xij(0)|≥ |Xij(0)|−
2||v0||∞
K0ψ(2xM )

.

As a corollary of Theorem 4.1, we obtain the asymptotic flocking for configurations
in S.
Corollary 4.5. For the global solutions {(xi,vi)}Ni=1 constructed in Theorem 4.1,
we have asymptotic flocking: For t∈ (0,∞), we have

sup
t≥0

|Xij(t)|≤ |Xij(0)|+
2||v0||∞
K0ψ(2xM )

and lim
t→∞

Vij(t)=0, i,j∈{1, · · · ,N}.

Proof. The estimates follow from the relation (4.12) and (4.10).

5. A global existence for the C-S model with a bonding force

In this section, we present a global existence theory for the Cucker-Smale flocking
model (2.3) with a bonding force [29] for some class of initial configurations. Recall
that the Cucker-Smale flocking model with a bonding force reads as follows:

dxi

dt
=vi,

dvi

dt
=
K0

N

N
∑

j 6=i

j=1

ψ(rij)(vj−vi)+
K1

N

N
∑

j 6=i

j=1

1

2r2ij
〈vi−vj ,xi−xj〉(xj−xi)

+
K2

N

N
∑

j 6=i

j=1

1

2rij
(rij−2R)(xj−xi),

where the constants Ki,i=0,1,2 denote the coupling strengths; we refer to [29] for
the derivation of the system. Since the total momentum is conserved along the flow,
without loss of generality we set

N
∑

i=1

xi=0,

N
∑

i=1

vi=0, t≥0. (5.1)

5.1. A priori estimates. In this part, we summarize a priori estimates from
[29]. We introduce the kinetic energy Ek, the configuration energy Ec, and the total
energy E:

Ek :=
1

2

N
∑

i=1

||vi||2, Ec :=
K2

8N

N
∑

i,j=1

(rij−2R)2, E=Ek+Ec.

The flocking estimate results in [29] were obtained by the energy estimates. In the
sequel, we present the main estimates in [29] without the proofs.

Proposition 5.1. [29] Let {(xi,vi)}Ni=1 be the global solution to the system (2.3).
Then E=E(t) is non-increasing in time t:

E(t)+

∫ t

0

P (τ)dτ =E(0), t≥0,
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where P is the total energy production rate of the system:

P :=
K0

2N

N
∑

i 6=j

i,j=1

ψ(rij)||vi−vj ||2+
K1

4N

N
∑

i 6=j

i,j=1

(

drij

dt

)2

.

Using the above energy estimate gives the following two propositions.

Proposition 5.2. [29] Suppose ψ satisfies the assumptions (A1)−(A2), and let
{(xi,vi)}Ni=1 be the global smooth solutions to the system (2.3). Then the system (2.3)
exhibits asymptotic flocking estimates: For t≥0,

(i) sup
0≤t<∞

||xi(t)−xj(t)||<2R+

√

4NE(0)

K2
.

(ii) lim
t→∞

||vi(t)−vj(t)||=0, 1≤ i,j≤N.

Proposition 5.3. [29] Let {(xi,vi)}Ni=1 be the global smooth solutions to the system
(2.3) satisfying the condition

E(0)<
K2

2
R2N.

Then the particle system does not collapse to a one-point configuration at any finite-
time.

Proof. We refer to [29] for the proof.

As we can see from the statement of the Theorem 4.1, the solutions {(xi,vi)}Ni=1

exist on the whole time interval [0,∞). The existence of solutions to the system (2.3)
follows from the well-known theory of ODEs as long as the right hand side of (2.3)
is Lipschitz continuous. We note that the Lipschitz continuity of the right hand side
of (2.3) is sufficiently guaranteed by the collision avoidance between particles, i.e.,
rij(t) 6=0 for any t≥0 and i 6= j. In order to show the collision avoidance, we need to
introduce a new quantity.

5.2. A new spatial fluctuation functional. In this part, we introduce a new
functional measuring the degree of fluctuations around the equilibria to the system
(2.3). We next present a heuristic argument for the derivation of the functional as
follows. Suppose that sufficiently strong flocking occurs asymptotically, so that

lim
t→∞

vi=0, lim
t→∞

v̇i=0, i=1, · · · ,N. (5.2)

Then it follows from (5.2) and (2.3) that

0= lim
t→∞

N
∑

j 6=i

j=1

[

(rij−2R)
xj−xi

rij

]

= lim
t→∞

[

N
∑

j 6=i

j=1

(xj−xi)−2R

N
∑

j 6=i

j=1

xj−xi

rij

]

=−N lim
t→∞

[

xi+
2R

N

N
∑

j 6=i

j=1

xj−xi

rij

]

, using

N
∑

i=1

xi=0.
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We now set

Di :=xi−
2R

N

N
∑

j 6=i

j=1

xi−xj

rij
.

Then the quantity Di measures the spatial distance from the i-th particle to the
flocking state. We now define a new functional Ep as the square of ℓ2-norm of D=
(D1, · · · ,DN ):

Ep :=

N
∑

i=1

||Di||2.

In the following lemma, we will see that as long as the initial fluctuation energy E(0)
is finite, Ep is finite, and hence is a well-defined object, then when the flocking occurs
asymptotically, Ep goes to zero as t→∞, but the configuration energy Ec does not
converge to zero. Hence in some sense, the functional Ep measures the discrepancy
from the flocking state. In the following lemma, we will see that the functional Ep is
dominated by Ec.

Lemma 5.4. Let Ep be the spatial fluctuation energy associated with the system (2.3).
Then we have

Ep(t)≤
8

NK2
E(0), t≥0.

Proof. It is sufficient to show that Ep is bounded by Ec. By direct calculation,
we have

Ep=

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi−
2R

N

∑

j 6=i

xi−xj

rij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
1

N2

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∑

j 6=i

(rij−2R)
xi−xj

rij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

≤ 1

N2

N
∑

i=1

∑

j 6=i

(rij−2R)2≤ 1

N2

N
∑

i,j=1

(rij−2R)2=
8

NK2
Ec.

We now use

Ec(t)≤E(t)≤E(0), t≥0

to get the desired result.

Remark 5.1. Note that when the flocking occurs sufficiently fast, the particle system
is in an equilibrium state. In the equilibrium configuration, the position of each
particle is determined by the relative positions with the other particles:

x
∞
i =

2R

N

N
∑

j 6=i

j=1

x
∞
i −x

∞
j

r∞ij
, x

∞
i := lim

t→∞
xi, r∞ij := ||x∞

i −x
∞
j ||.

This yields

||x∞
i ||≤ 2R(N−1)

N
<2R.
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Hence all particles are strictly confined in B(xc,2R) regardless of the asymptotic size
of the system.

We now study the structure of the functional Ep:

Ep=

N
∑

i=1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

xi−
2R

N

∑

j 6=i

xi−xj

rij

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

2

=
N
∑

i=1

||xi||2−
4R

N

N
∑

i=1

∑

j 6=i

〈

xi,
xi−xj

rij

〉

+
4R2

N2

N
∑

i=1

∑

j 6=i

∑

k 6=i

〈

xi−xj

rij
,
xi−xk

rik

〉

=

N
∑

i=1

||xi||2−
4R

N
I1+

4R2

N2
I2.

(5.3)

In the following lemma, we estimate Ii, i=1,2.

Lemma 5.5. The terms Ii, i=1,2 satisfy the following estimates.

I1=
1

2

N
∑

i=1

∑

j 6=i

rij and I2=
1

2

N
∑

i=1

∑

j 6=i

∑

k 6=i

rij

rik
.

Proof.
(i) We use the standard symmetrization trick i↔ j and ||xi−xj ||= rij to see

I1=
N
∑

i=1

∑

j 6=i

〈

xi,
xi−xj

rij

〉

=−
N
∑

i=1

∑

j 6=i

〈

xj ,
xi−xj

rij

〉

=
1

2

N
∑

i=1

∑

j 6=i

〈

xi−xj ,
xi−xj

rij

〉

=
1

2

N
∑

i=1

∑

j 6=i

rij ,

(ii) Similar to the case (i), we have

N
∑

i=1

∑

j 6=i

∑

k 6=i

〈

xi−xj

rij
,
xi−xk

rik

〉

=
1

2

N
∑

i=1

∑

j 6=i

∑

k 6=i

rij

rik
.

5.3. Existence of global smooth solutions. We now discuss the collision
avoidance between particles. In [29], the authors found a condition on initial data
which prevents the particles from collapsing to a one-point configuration. Note that
the fact that the system does not collapse to a one-point configuration does not imply
that the particles in the system do not collide with each other. However, under the
same condition on initial energy as in Proposition 5.3, we show that there are no
collisions between particles. We now introduce a set of initial configurations leading
to global existence:

S2 :={(x,v)∈R
2dN : E(x,v)<

K2

2
R2N, min

i6=j
||xi−xj ||>0}.
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Proposition 5.6. Suppose the main assumptions (A1)−(A2) on ψ in Section
2.3 hold and the initial configuration lies in the set S2. For some T ∈ (0,∞], let
{(xi,vi)}Ni=1 be the smooth solution to the system (2.3) in the time interval [0,T ).
Then the maximal and minimal inter-particle distances are comparable in the sense
that

max
j 6=i

rij(t)≤
√
2N3(N+

√
2−1)min

k 6=i
rik(t), i=1, · · · ,N, t∈ [0,T ),

where rij= ||xi−xj ||.
Proof. We use (5.3) and Lemma 5.5 to obtain

Ep≥−2R

N

N
∑

i=1

∑

j 6=i

rij+
2R2

N2

N
∑

i=1

∑

j 6=i

∑

k 6=i

rij

rik
.

We now apply the boundedness of Ep in Lemma 5.4 to the left hand side and Propo-
sition 5.2 to the first term of the right hand side. Then we have

8

NK2
E(0)+2R(N−1)



2R+

√

4NE(0)

K2



≥ 2R2

N2

N
∑

i=1

∑

j 6=i

∑

k 6=i

rij

rik
.

We finally apply the condition on the initial energy E(0), which is the same as the
one in Proposition 5.3, to the left hand side to obtain

4R2+2R(N−1)
(

2R+
√
2R2N2

)

≥ 2R2

N2

N
∑

i=1

∑

j 6=i

∑

k 6=i

rij

rik
.

Since each of the rij in the right hand side is positive, we obtain for any i,j,k with
i 6= j and i 6=k,

rij

rik
≤ N2

2R2

[

4R2+2R(N−1)
(

2R+
√
2R2N2

)]

=N2
(

2+(N−1)
(

2+
√
2N
))

=N3
(√

2N+2−
√
2
)

,

or equivalently for any i,j,k with i 6= j and i 6=k,

rij≤
√
2N3

(

N+
√
2−1

)

rik.

We take the maximum on j and minimum on k to obtain

max
j 6=i

rij≤
√
2N3

(

N+
√
2−1

)

min
k 6=i

rik, i=1, · · · ,N. (5.4)

We now ready to prove global existence for some class of initial configurations.

Theorem 5.7. Suppose the main assumptions (A1)−(A2) on ψ in Section 2.3 hold
and the initial configuration {(xi0,vi0)}Ni=1 lies in the set S2. Then there exists a
global smooth solution {(xi,vi)}Ni=1 to the system (2.3).
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Proof. Let {(xi0,vi0)}Ni=1∈S2, and let T∗ be the maximal-time when the local
solution can be constructed in the time-interval [0,T∗). If we can show T∗=∞, then
we are done. Suppose T∗<∞. That means that there exist i 6= j∈{1, · · · ,N} such
that

xi(T∗−)=xj(T∗−).

Then it follows from Proposition 5.6 that

xi(T∗−)=xj(T∗−), ∀ i,j∈{1, · · · ,N},

i.e., all particles collapse to one-point at time t=T∗, which gives the contradiction to
Proposition 5.3. Therefore we have T∗=∞.

6. Conclusion

We presented a global existence and asymptotic flocking estimates for the Cucker-
Smale type models with singular communication weights and inter-particle bonding
forces. We discussed three issues in this paper. First we presented a ℓ∞-Lyapunov
functional approach for some general class of regular communication weights com-
bining the ℓ2-Lyapunov functional approach and Carrillo et al’s ℓ∞ approach for the
special Cucker-Smale communication weights. Our result is independent of the num-
ber of particles, hence it can be lifted to the kinetic regime via the mean-field limit.
Secondly, we presented a global existence theory for the Cucker-Smale flocking model
with singular communication weights. The forcing term becomes singular when two
particles collide. We explicitly identified initial configurations that do not lead to
pairwise collisions in a finite-time. So for this class of initial configurations, we have
the global existence of smooth solutions even for the singular forcing terms. Thirdly,
we presented a global existence of smooth solutions to the Cucker-Smale model with
inter-particle bonding forces. In [29], a priori asymptotic flocking estimates were
given without any specific decay rates, and exclusion of pairwise collisions between
particles was not treated, hence for some initial configurations, the finite-time col-
lisions can occur. However we showed that when the initial energy is bounded by
some predetermined upper bound and initially all particles are away from each other,
the finite-time pairwise collisions are not possible. Hence those initial configurations
launch the global smooth solutions. In previous literature, there were recent stud-
ies to prevent collisions for the Cucker-Smale model by adding some extra collision
avoidance mechanisms. The main message of this paper is that the singular com-
munication weights and some well-chosen initial configurations do not undergo the
finite-time pairwise collisions for the original Cucker-Smale flocking model without
any extra collision avoidance mechanisms.
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