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SUPPRESSION OF CHAOS AT SLOW VARIABLES BY RAPIDLY
MIXING FAST DYNAMICS THROUGH LINEAR

ENERGY-PRESERVING COUPLING∗

RAFAIL V. ABRAMOV†

Abstract. Chaotic multiscale dynamical systems are common in many areas of science, one
example being the interaction of the low-frequency dynamics in the atmosphere with the fast tur-
bulent weather dynamics. One of the key questions about chaotic multiscale systems is how the
fast dynamics affects chaos at the slow variables and, therefore, impacts uncertainty and predictabil-
ity of the slow dynamics. Here we demonstrate that the linear slow-fast coupling with the total
energy conservation property promotes the suppression of chaos at the slow variables through the
rapid mixing at the fast variables, both theoretically and through numerical simulations. A suitable
mathematical framework is developed, connecting the slow dynamics on the tangent subspaces to
the infinite-time linear response of the mean state to a constant external forcing at the fast variables.
Additionally, it is shown that the uncoupled dynamics for the slow variables may remain chaotic
while the complete multiscale system loses chaos and becomes completely predictable at the slow
variables through increasing chaos and turbulence at the fast variables. This result contradicts the
common sense intuition where, naturally, one would think that coupling a slow weakly chaotic system
with another much faster and much stronger mixing system would result in general increase of chaos
at the slow variables.
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1. Introduction
Dynamical systems where the evolution of variables is separated between two or

more different time scales are common in atmospheric/ocean science, physics, chem-
istry, molecular dynamics, and many other areas. The structure of these systems is
typically characterized by the existence of a special subset of slow variables which
evolve on a much longer time scale than the rest of the variables. In particular, one
can think of the low-frequency variability models in atmospheric science, where the
slow variables, usually the large scale empirical orthogonal functions describing the
large-scale slowly-varying patterns in the atmosphere (such as the Arctic or North At-
lantic oscillations, for example), are coupled with small-scale fast processes which are
often very chaotic, turbulent, and unpredictable (with respect to the slow time scale).
The inclusion of the fast processes often made the direct numerical computation of
the dynamics on the slow time scale prohibitively expensive in real-world applica-
tions, which led to the development of multiscale computational methods [12, 14].
These methods make use of the averaging formalism [24,31,32] to allow for the large
time discretization steps for the computation of the slow part of the dynamics. Ad-
ditionally, often the dynamics on the fast time scales are not resolved, which requires
suitable, often stochastic, parameterizations for the fast dynamics which are derived
from the observed statistics of the fast variables (see, for example, [21–23] and refer-
ences therein).

One of the key questions about the behavior of multiscale dynamics, which does
not seem to be extensively addressed in the literature, is the effect of the rapidly mixing

∗Received: May 16, 2011; accepted (in revised version): August 13, 2011. Communicated by
David Cai.

†Department of Mathematics, Statistics and Computer Science, University of Illinois at Chicago,
851 S. Morgan St., Chicago, IL 60607, USA (abramov@math.uic.edu).

595



596 SUPPRESSION OF CHAOS AT SLOW VARIABLES

turbulent fast dynamics on the chaotic properties of the slow variables. Formally, the
chaotic behavior of the whole multiscale system is determined by its largest Lyapunov
characteristic exponent, which often develops at fast, strongly chaotic and rapidly
mixing variables. However, the largest Lyapunov exponent of the whole system does
not in practice characterize chaos at the slow variables, as it is often observed that
the behavior of the slow variables can be projected far beyond the Lyapunov time
scale of the fast variables. In fact, the averaging formalism in [24, 31, 32] is based on
the convergence of the slow dynamics to a limit system which does not have any fast
variables, and the convergence occurs for finitely large time intervals despite the fact
that the the fast dynamics become “infinitely fast” in this limit, and the corresponding
Lyapunov time scale becomes infinitely short.

Here we study the chaotic behavior of slow variables by applying the averaging
formalism to the dynamics on the tangent subspaces of the slow variables in a two-
scale dynamical system. We demonstrate, both analytically and through numerical
simulations, that if the linear coupling between the slow and fast variables preserves
the total energy of the system, then the averaged dynamics systematically suppresses
chaos at the slow variables. It is also speculated that the decreased ratio of the
autocorrelation time scale to the advection time scale at the fast, turbulent, and
rapidly mixing variables could cause this effect. Remarkably, it is observed that the
full coupled system can become completely predictable and non-chaotic at the slow
variables, while the uncoupled dynamics for the slow variables alone remain chaotic.
The theory is also systematically extended onto the explicitly time-dependent and
stochastically forced two-scale dynamics.

The manuscript is organized as follows. In Section 2 we start with a numeri-
cal experiment with an appropriately rescaled two-scale Lorenz model [2, 11, 14, 18],
which demonstrates that, for only slightly affected one-point statistics such as the
mean state and variance, the chaos at the slow variables is suppressed by the in-
creasing turbulent mixing at the fast variables through the forcing parameter. In
Sections 3–5 we develop a mathematical framework for the slow averaged dynamics
on the tangent subspaces. For the linear energy-preserving deterministic coupling,
it is shown that chaos at the slow variables is suppressed wherever the infinite-time
linear response of the mean state of the fast dynamics to a constant external forcing
is positive definite. It is shown that the positive-definiteness of the linear response
is governed by the statistical linear stability of the fast dynamics under sufficiently
small external perturbations, which, in turn, seems to be implemented by the low
ratio of the autocorrelation time to the advection time scale at the fast variables. In
Section 6 we go back to the Lorenz model and confirm the theoretical predictions by
computing the approximate infinite-time linear response through the quasi-Gaussian
fluctuation-dissipation theorem and observing how its increasing positive-definiteness
correlates with suppression of chaos at the slow variables. In Section 7 we show that
it is possible for the uncoupled slow dynamics to remain chaotic while the complete
system with slow-fast dynamics and linear energy-preserving coupling loses chaos and
becomes predictable at the slow scales by accelerating the turbulent mixing at the fast
variables. In Section 8 we generalize the developed framework to include the time-
dependent and noisy dynamics, where the linear energy-preserving coupling may also
depend on the slow time. Section 9 gives a brief exposition of what happens when
the energy-preserving coupling is nonlinear in both the slow and fast variables, and
has the explicit fast time dependence. In Section 10 we show that the developed
framework is also applicable to the multiscale dynamics without the explicit scaling
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parameter ε. Section 11 summarizes the results of this work, as well as outlines the
future directions of research.

2. A remarkable behavior of the two-scale Lorenz model
Here we consider a two-scale system of autonomous ordinary differential equations

of the form

dx

dt
=F (x,y),

dy

dt
=

1

ε
G(x,y), (2.1)

where x=x(t)∈R
Nx are the slow variables, y=y(t)∈R

Ny are the fast variables, F
and G are Nx and Ny vector-valued functions of x and y, respectively, and ε≪1 is
a time-scale separation parameter.

For the two-scale system in (2.1), one can write the averaged dynamics for x alone
as ε→0 using the formalism from [2, 24, 31, 32]. The averaging formalism produces
the averaged system for x in the form

dx

dt
= 〈F 〉(x), 〈F 〉(x)=

∫

Ax

F (x,z)dµx(z), (2.2)

where µx is the invariant probability measure on the attractor Ax of the limiting fast
dynamics given by

dz

ds
=G(x,z), (2.3)

where z=z(s), while x is a fixed constant parameter for (2.3) and, consequently,
µx. Here we tacitly assume the ergodicity of µx, as well as that (2.2), constitutes an
approximation to (2.1) for the finite times in the limit as ε→0 (for details, see [24,31,
32] and references therein). For the above formalism to work, the right-hand side of the
averaged system in (2.2) must not be O(ε); otherwise, higher-order homogenization
techniques are needed [31].

We choose the two-scale forced damped Lorenz model [1, 2, 11, 14, 18] for the
computational study of the dynamical properties of a two-scale slow-fast process with
generic features of atmospheric dynamics, such as the presence of linearly unstable
waves, strong nonlinearity, forcing, dissipation, chaos, and mixing. The two-scale
forced damped Lorenz model is given by

ẋi=xi−1(xi+1−xi−2)−xi+Fx−
λy

J

J
∑

j=1

yi,j , (2.4a)

ẏi,j =
1

ε
[yi,j+1(yi,j−1−yi,j+2)−yi,j+Fy+λxxi] , (2.4b)

where 1≤ i≤Nx, 1≤ j≤J . The following notations are adopted above:

• x is the set of the slow variables of size Nx. The following periodic boundary
conditions hold for x: xi+Nx

=xi;

• y is the set of the fast variables of size Ny =NxJ where J is a positive
integer. The following boundary conditions hold for y: yi+Nx,j =yi,j and
yi,j+J =yi+1,j ;

• Fx and Fy are the constant forcing parameters;



598 SUPPRESSION OF CHAOS AT SLOW VARIABLES

• λx and λy are the coupling parameters;

• ε is the time scale separation parameter.

Originally in [11,14,18] there was no constant forcing Fy term in the equation for
y-variables in (2.4), however, in its absence the behavior of the y-variables is strongly
dissipative [1,2]. Here, as in [2], we add a constant forcing Fy in the right-hand side of
the second equation in (2.4) to induce the strongly chaotic behavior of the y-variables
with large positive Lyapunov exponents. It is demonstrated in [14] that the averaging
formalism for (2.4) is valid.

In the Lorenz model (2.4), Fx and Fy regulate the chaos and mixing of the x and
y variables, respectively [1–6,20]. However, the mean state and mean energy are also
affected by the changes in forcing, which affects the mean and energy trends in cou-
pling for the fixed coupling parameters. To adjust the effect of coupling independently
of forcing, here we perform the rescaling of the Lorenz model as in [20]. Consider the
uncoupled Lorenz model

d

dt
xi=xi−1(xi+1−xi−2)−xi+F (2.5)

with the same periodic boundary conditions as above [19]. Observe that the long term
statistical mean state x̄ and the standard deviation β in (2.5) are the same for all xi

due to the translational invariance. Now, we rescale x and t as

xi= x̄+βqi, t=
τ

β
, (2.6)

where the new variables q have zero mean state and unit standard deviation. In the
rescaled variables, the Lorenz model becomes

d

dτ
qi= qi−1(qi+1−qi−2)+

1

β
[x̄(qi+1−qi−2)−qi]+

F − x̄

β2
, (2.7)

where x̄ and β are, of course, the functions of F . In addition to setting the mean
state and variance of qi to zero and one, respectively, due to the time rescaling the
autocorrelation functions of z acquire identical time scaling for any F (for details,
see [20]).

Here, we similarly rescale the two-scale Lorenz model from (2.4):

ẋi=xi−1(xi+1−xi−2)+
1

βx
(x̄(xi+1−xi−2)−xi)+

Fx− x̄

β2
x

− λy

J

J
∑

j=1

yi,j , (2.8a)

ẏi,j =
1

ε

[

yi,j+1(yi,j−1−yi,j+2)+
1

βy
(ȳ(yi,j−1−yi,j+2)−yi,j)+

Fy− ȳ

β2
y

+λxxi

]

,

(2.8b)
where x̄, ȳ, βx, and βy are the long term means and variances of the corresponding
uncoupled system in (2.5) with either Fx or Fy set as a constant forcing. Additionally,
we write the fast limiting dynamics for (2.8) as

żi,j = zi,j+1(zi,j−1−zi,j+2)+
1

βy
(z̄(zi,j−1−zi,j+2)−zi,j)+

Fy− z̄

β2
y

+λxxi, (2.9)

where x is given as an external parameter, as in (2.3). The rescaling of the model
implies that the average mean states of x and y are close to zero, and in this case the
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Nx=10, Ny =40, Fx=6, λx=λy =0.25, ε=0.01
Fy x-mean x-var y-mean y-var

6 9.64 ·10−3 0.9451 −2.38 ·10−3 1.066
8 2.817 ·10−2 0.9514 −1.466 ·10−2 1.098
12 2.05 ·10−2 0.9336 −2.719 ·10−2 1.139
16 −1.353 ·10−2 0.9006 −4.028 ·10−2 1.153
24 −6.972 ·10−2 0.8434 −6.075 ·10−2 1.167

Table 2.1. The mean states and variances of the x and y variables for the rescaled Lorenz
model in (2.8) with the following parameters: Nx=10, Ny =40, Fx=6, Fy =6,8,12,16 and 24,
λx=λy =0.25, ε=0.01.

slow averaged system simply becomes the rescaled Lorenz model in (2.7), where the
right-hand side is O(1). Therefore, the homogenization techniques from [31] are not
needed, just like for the unrescaled Lorenz model in [14].

Below, we show the computed statistics of the rescaled Lorenz model (2.8)
with the following parameters: Nx=10, Ny =40, Fx=6, Fy =6,8,12,16 and 24,
λx=λy =0.25, ε=0.01 (the time scale separation between x and y is 100 times).
The slow forcing parameter Fx=6 is chosen so that the slow dynamics are not too
chaotic, mimicking the behavior of low-frequency variability in the atmosphere (it is
known from the previous work [1–6,20] that for F =6 the dynamics of the uncoupled
model in (2.5) are weakly chaotic). The coupling parameters λx and λy are set to
0.25 so that they are neither too small, nor too large, to ensure the rich interaction
between the slow and fast variables without linearizing the rescaled Lorenz system
too much. The time-scale separation parameter ε=0.01 is also chosen so that it is
neither too large, nor too small (the time scale separation by two orders of magnitude
is consistent, for instance, with the difference between annual and diurnal cycles in the
atmosphere). Here and everywhere else, the simple 2nd order Runge-Kutta scheme
is used to integrate the model in (2.8) forward in time with the discrete time step
∆t=10−5 and the time averaging window of 10000 time units.

In the rescaled Lorenz model (2.8), it turns out that the values of Fx and Fy do not
significantly affect the mean state and mean energy for both the slow variables x and
fast variables y. To show this, in Table 2.1 we display the mean states and variances
of both x and y for the rescaled Lorenz model in (2.8). Observe that, despite different
forcing regimes, the means and variances for both x and y are almost unchanged —
the mean states being near zero while the variances being near one as designed by
the rescaling for the uncoupled model in (2.7). Here note that while the rescaling
was carried out for the corresponding uncoupled model (where it sets the mean state
to zero and variance to one precisely), using the same rescaling parameters in the
coupled model (2.8) still sets its means and variances near prescribed values zero and
one, respectively (although not precisely).

However, the different values of the fast forcing Fy introduce some changes in
the statistics (such as the probability density functions and the time autocorrelation
functions) of both the slow variables x of (2.8), and the fast limiting variables z of
(2.9). To show this, in Figure 2.1 we demonstrate the probability density functions
and the time autocorrelation functions of both x and z (where the free parameter
x is set to its mean value). Observe that in Figure 2.1 different values of the fast
forcing Fy do not significantly affect the probability density functions for both x
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Fig. 2.1. Probability density functions and time autocorrelation functions for x of (2.8) and
z of (2.9) (with free parameter x set to its mean value) with the following parameters: Nx=10,
Ny =40, Fx=6, Fy =6,8,12,16 and 24, λx=λy =0.25, ε=0.01.

and z — they are quite similar with some variations. Perhaps, the most noticeable
qualitative change can be observed in the time autocorrelation functions for both x

and z — for smaller values of Fy the time autocorrelation functions of x oscillate with
somewhat smaller amplitude (which indicates somewhat stronger mixing), while the
time autocorrelation functions of z display visibly longer decay, which indicates weaker
mixing. Having observed the statistics, we turn our attention to the chaotic behavior
of the slow variables x for the same range of parameters. As the slow variables x

are coupled to the fast variables y, the straightforward computation of the largest
Lyapunov exponent will characterize the chaos at the fast variables y and, therefore,
a different method should be used to quantify chaos at the slow variables. Here we
are going to observe the average divergence behavior in time between the short-time
(half of the time unit) running averages 〈x〉(t) of the slow time series x(t), which
are initially generated very closely to each other. Namely, we perform the following
computation:

• We start with a generic initial condition (x0,y0), and propagate it for 1000
time units to let it settle on the chaotic attractor of the rescaled Lorenz model
in (2.8);

• A perturbed (x,y)-state is generated by a small random deviation (of order
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Fig. 2.2. Average divergence between perturbed and unperturbed running averages of the slow
variables for the rescaled Lorenz model in (2.8) with the following parameters: Nx=10, Ny =40,
Fx=6, Fy =6,8,12,16 and 24, λx=λy =0.25, ε=0.01.

ε) from the computed trajectory. Then, the original trajectory x(t) and the
perturbed state x′(t) are integrated forward in time in parallel. The time
evolution of the divergence ‖〈x′〉(t)−〈x〉(t)‖ between the original and the
perturbed trajectory is recorded;

• The latter operation is repeated 500 times with different snapshots of the
same long-term trajectory, spaced by 20 time units, and averaged. The result
is the time evolution of the divergence in 〈x〉(t) between the original and
perturbed trajectory, averaged over the attractor (averaging window of 10000
time units) of the rescaled Lorenz model in (2.8).

The short time-averaging window of half of the time unit for the running average
〈x〉(t) ensures that the slow variables x(t) do not change much during this window,
while the fast time series y(t) mix completely during the same short time averaging
window (see the time scales of the time autocorrelation functions of x and y in Figure
2.1 for comparison). The results of this simulation for the same set of parameters are
shown in Figure 2.2. Remarkably, the chaos in the slow x-variables is consistently
suppressed as the fast forcing Fy increases, as the unperturbed and perturbed slow
running averages 〈x〉(t) diverge from each other slower and slower in time. It cannot
be caused by the changing statistical mean or variance of the slow or fast variables
creating average counteracting forcing at the slow variables, as Table 2.1 clearly indi-
cates that the mean states and variances of both the slow and fast variables do not
change by a significant amount for different Fy. This chaos suppression effect at the
slow variables appears to become somewhat stronger as the time-scale separation is
increased: in Figure 2.3 we show the same average divergence as in Figure 2.2, but
with the time-scale separation parameter ε set to 0.005 and 0.001, respectively.

In what follows we set out to explain the observed effect of the chaos suppression
at the slow variables by increasing the turbulent mixing at the fast variables, without
affecting the mean forcing or variability. As the effect pertains when ε is decreased,
one would expect the averaging formalism [24, 31, 32] in the limit as ε→0 to provide
an approximate way to study the effect from the dynamical system perspective, which
we systematically develop below.
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Fig. 2.3. Average divergence between perturbed and unperturbed running averages of the slow
variables for the rescaled Lorenz model in (2.8) with the following parameters: Nx=10, Ny =40,
Fx=6, Fy =6,8,12,16 and 24, λx=λy =0.25, ε=0.005 and ε=0.001.

3. A two-scale slow-fast system and its tangent linear model for the
averaged slow variables

To explain the observations for the two-scale rescaled Lorenz model in the previ-
ous section, here we study the behavior of the tangent linear model of the averaged
dynamics in (2.2). Below, we do not attempt to rigorously prove stated claims, and in-
stead make reasonable assumptions about the system under consideration and justify
the claims under the assumptions made.

We start by deriving the tangent linear model for (2.2). Here, the necessary
assumption is that the flow (or, as it is also called, the solution operator) x(t)=
X(x,t), generated by (2.2), is differentiable with respect to its initial condition x. In
other words, we assume that the averaged tangent map

TXt
x
=

∂

∂x
X(x,t) (3.1)

for (2.2) exists and is given by the equation

∂

∂t
TXt

x
=

∂〈F 〉
∂x

(x)TXt
x
. (3.2)

The partial derivative in (3.2) is given, formally, as

∂〈F 〉
∂x

(x)=

∫

Ax

∂F

∂x
(x,z)dµx(z)+

∫

Ax

F (x,z)dµ′
x
(z). (3.3)

Above we assume that the invariant measure µx depends smoothly on x, that is, for
any µx-measurable f(z) we have

∫

Ax

f(z)dµx+δx(z)−
∫

Ax

f(z)dµx(z)

=

(
∫

Ax

f(z)dµ′
x
(z)

)

δx+o(‖δx‖), (3.4)
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where µ′
x
denotes the derivative of µx with respect to x. The differentiability property

above requires structural stability of µx under changes in x. It is known that uniformly
hyperbolic diffeomorphisms on the whole R

Ny (Anosov) or just the nonwandering set
of RNy (Axiom A) are structurally stable [13, 26–28,33].

Using the linear response theory [1–3,5–7,20,25,28], the second term in (3.4) can
be computed as the infinite-time linear response operator of (2.3) for a perturbation
of the external parameter x. The calculations are given in the Appendix A, and the
result is

∫

Ax

F (x,z)dµ′
x
(z)=

∫ ∞

0

∫

Ax

∂F

∂y
(x,φs

x
z)T s

x,z

∂G

∂x
(x,z)dµx(z)ds, (3.5)

where φt
x
is the flow, generated by (2.3). For convenience, we denote the left-hand

side of the above formula as H(x). Thus, for the averaged tangent dynamics in (3.2)
we obtain

∂

∂t
TXt

x
=

(〈

∂F

∂x

〉

(x)+H(x)

)

TXt
x
, (3.6a)

〈

∂F

∂x

〉

(x)=

∫

Ax

∂

∂x
F (x,z)dµx(z), (3.6b)

H(x)=

∫ ∞

0

(
∫

Ax

∂F

∂y
(x,φs

x
z)T s

x,z

∂G

∂x
(x,z)dµx(z)

)

ds. (3.6c)

Under the ergodicity assumption, one can replace the measure averages with the time
averages:

〈

∂F

∂x

〉

(x)= lim
r→∞

1

r

∫ r

0

∂

∂x
F (x,z(τ))dτ, (3.7a)

H(x)=

∫ ∞

0

(

lim
r→∞

1

r

∫ r

0

∂F

∂y
(x,z(τ+s))T s

x,z(τ)

∂G

∂x
(x,z(τ))dτ

)

ds. (3.7b)

4. Deterministic linear coupling with total energy conservation
It is often the case that the deterministic parts of the coupling in F (x,y) and

G(x,y) between the slow variables x and the fast variables y allow for total energy
conservation, as long as in the absence of a random noise the uncoupled dynamics
preserve the energy separately for x and y. As an example, one can look at the
model of mean flow — small scale interactions via topographic stress in [16], where
the total energy conservation in the coupling between the zonal mean flow and small
scale fluctuations is a key requirement, and topography can be viewed as a small
parameter. Here we assume that the slow and fast variables are coupled through a
deterministic coupling with the total energy conservation property. More precisely,
we let the functions F (x,y) and G(x,y) take the form

F (x,y)=f(x)+f ′(x,y), G(x,y)=g(y)+g′(x,y), (4.1)

and assume that that there exists a symmetric positive definite quadratic form

E=Ex+εEy, Ex=
1

2
xTSxx, Ey =

1

2
yTSyy, (4.2)
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where Sx and Sy are constant symmetric positive definite matrices, which is preserved
by f ′(x,y) and g′(x,y) for any x and y:

xTSxf
′(x,y)+yTSyg

′(x,y)=0. (4.3)

For (4.3) to hold, it is sufficient to have f ′(x,y) and g′(x,y) in the form

f ′(x,y)=S−1/2
x L(x,y)S1/2

y y, (4.4a)

g′(x,y)=−S−1/2
y LT (x,y)S1/2

x x, (4.4b)

for an arbitrary Nx×Ny matrix-valued function L(x,y). Additionally, if f ′(x,y) and
g′(x,y) are analytic on R

Nx ×R
Ny , the relations in (4.4) are also necessary: indeed,

in this case f ′(x,y) and g′(x,y) can be represented as

f ′(x,y)=f ′(x,0)+f ′
1(x,y)y, g′(x,y)=g′(0,y)+g′

1(x,y)x, (4.5)

where f ′
1(x,y)y and g′

1(x,y)x represent the Taylor expansion terms above zero order
in y and x, respectively. As a result, (4.3) becomes

xT
[

Sxf
′
1(x,y)+g′

1(x,y)
TSy

]

y=−xTSxf
′(x,0)−yTSyg

′(0,y), (4.6)

where setting either x=0 or y=0 turns the left-hand side to zero, which means
that f ′(x,0)=g′(0,y)=0 for any x and y, and that f ′(x,y)=f ′

1(x,y)y, g
′(x,y)=

g′
1(x,y)x. This results in

Sxf
′
1(x,y)=−g′

1(x,y)
TSy. (4.7)

Let L(x,y) and L∗(x,y) be given, respectively, by

L(x,y)=S1/2
x f ′

1(x,y)S
−1/2
y , L∗(x,y)=S1/2

y g′
1(x,y)S

−1/2
x , (4.8)

so that L∗(x,y)=−L(x,y)T for any x and y. Therefore, we end up with

f ′
1(x,y)=S−1/2

x L(x,y)S1/2
y , g′

1(x,y)=−S−1/2
y LT (x,y)S1/2

x (4.9)

for some Nx×Ny matrix-valued function L(x,y), and (4.4) follows directly.
In this work we study the simplest case of the energy-preserving coupling with

L(x,y)=L, where L is a constant matrix and does not depend on the variables x

and y, so that the coupling is linear with respect to y (for the slow variables) and x

(for the fast variables). With (4.4), (2.1) becomes

dx

dt
=f(x)+S−1/2

x LS1/2
y y, (4.10a)

dy

dt
=

1

ε

[

g(y)−S−1/2
y LTS1/2

x x
]

, (4.10b)

with the limiting fast dynamics for constant x given by

dz

dt
=g(z)−S−1/2

y LTS1/2
x x. (4.11)
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With the above changes, the integral of the time autocorrelation function in (3.6c)
can be written as

H(x)=−S−1/2
x LS1/2

y

(
∫ ∞

0

∫

Ax

T s
x,zdµx(z)ds

)

S−1/2
y LTS1/2

x . (4.12)

The dynamics for the averaged slow tangent map from (3.6) is now written as

∂

∂t
TXt

x
=

(

∂

∂x
f(x(t))+H(x(t))

)

TXt
x
. (4.13)

Observe that if the slow system in (4.10a) is completely decoupled from the fast
variables (for example, L=0), then the linear tangent model above loses the term
H(x), and otherwise remain the same. We study the effect of H(x) on the dynamics
of (4.13) below. Observe that H(x) can be written in the form

H(x)=−S−1/2
x LS1/2

y C(x)S−1/2
y LTS1/2

x , (4.14a)

C(x)=

∫ ∞

0

C(x,s)ds, (4.14b)

C(x,s)=

∫

Ax

T s
x,zdµx(z)= lim

r→∞

1

r

∫ r

0

T s
x,z(τ)dτ (4.14c)

(the last equality is obtained under the ergodicity assumption), where C(x) is the
infinite time linear response operator of the mean state of (4.11) to a constant external

forcing, with given parameter x (for details, see Appendix B). Replacing x̂=S1/2
x x

and ŷ=S1/2
y y, which are canonical variables for the energy in (4.2) (that is, the

quadratic form in (4.2) is diagonal in the new variables x̂ and ŷ), in the new variables
we obtain

Ĥ(x)=−LĈ(x)LT . (4.15)

Here,

Ĥ(x)=S1/2
x H(x)S−1/2

x (4.16)

is the term H(x) in the canonical energy coordinates, while Ĉ(x) is the infinite-time
mean state linear response operator for (4.11) in the canonical energy coordinates x̂
and ŷ:

Ĉ(x)=S1/2
y C(x)S−1/2

y , (4.17)

since for ẑ=S1/2
y z we have

T̂
s

x,ẑ =S1/2
y T s

x,zS
−1/2
y . (4.18)

5. Suppression of chaos at slow variables by the linear energy-
preserving coupling for the rapidly decorrelating fast dynamics

Without loss of generality, we further assume that x and y are already the canon-
ical energy variables x̂ and ŷ, as if the dynamical system in (4.10) was formulated in
the canonical energy variables from the beginning, such that Sx and Sy in (4.2) are
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multiples of an identity matrix. With this assumption, the term H(x) from (4.12) is
written as

H(x)=−LC(x)LT , (5.1)

where C(x) is given by (4.14b) and (4.14c), and computed from the fast limiting
dynamical system given by

dz

dt
=g(z)−LTx, (5.2)

with given parameter x.
At this point, observe that if H is negative definite, then it has a damping effect

on the growth of TXt
x
in (4.13) (more generally, in the non-canonical variables H

reduces the slow energy Ex, promoting the Lyapunov stability). However, from (5.1)
we see that H can only be negative definite whenever C is positive definite. Indeed,
let vTHv<0 for any nonzero v. Then, denoting w=LTv, we obtain wT

Cw>0.
Below we establish the physical conditions which promote the positive-definiteness of
C(x).

First, observe that C(x) is the infinite-time linear response operator for (5.2)
perturbed by a small constant forcing. In particular, if (5.2) is an Ornstein-Uhlenbeck
process [30] of the form

dz=
(

h−Γz−LTx
)

ds+σdW s, (5.3)

with Γ being a positive-definite matrix to (almost) ensure boundedness of the solution,
then we obtain explicitly

C(x,s)=C(s)= e−sΓ, (5.4a)

C(x)=C=

∫ ∞

0

C(s)ds=Γ−1, (5.4b)

vTHv=−vTLΓ−1LTv<0, (5.4c)

which means that the term H automatically contributes towards the reduction of
chaos at the slow variables whenever the fast dynamics are modeled by an Ornstein-
Uhlenbeck process. In general, since

〈δz〉=C ·δf , (5.5)

where δf is a small constant perturbation, and 〈δz〉 is the infinite-time linear response
of the mean state 〈z〉 of (5.2), the positive-definiteness of C means that

〈δz〉 ·δf >0 for all sufficiently small δf , (5.6)

that is, the response of the mean state never develops against the perturbation. It is
not difficult to show that the following identity holds whenever δf vanishes:

d

dt
〈δz〉=−δf , (5.7)
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that is, the time derivative of 〈δz〉 at the moment the small constant perturbation
δf vanishes equals this perturbation with the opposite sign. Therefore, the positive-
definiteness of C is equivalent to the following mean stability property of (5.2):

d

dt
‖〈δz〉‖<0, (5.8)

that is, any sufficiently small infinite-time perturbation of the mean state 〈δz〉 de-
creases in time at the moment when the external perturbation δf is removed. At
present, it is not precisely clear to the author how to ascertain this property for gen-
eral nonlinear g in (5.2), however, one might expect such properties to be common
in strongly chaotic and mixing turbulent dynamics, as their statistical properties are
often modeled by an appropriate Ornstein-Uhlenbeck process (see [21–23] and ref-
erences therein), and, as shown above, the Ornstein-Uhlenbeck process satisfies this
property automatically. For general nonlinear dynamics, the mean stability property
must be associated with the situation where the typical Poincaré recurrence time of
nonlinear motion around the mean state in (5.2) (which can be viewed as an advective
time scale) is not much shorter than the turbulent mixing autocorrelation time. The
reason is that, since T 0

z
=I (the identity matrix) for any z, then there always exists

a∗ such that

Ca(x)=

∫ a∗

0

C(x,s)ds is positive definite for all a, 0<a<a∗. (5.9)

The positive-definiteness of Ca(x) for larger a can be violated by the domination of
the rotation part in C(x,s) for larger s, which evolves on the advective time scale of
(5.2). However, this effect can be prevented by a rapid decay of ‖C(x,s)‖ for large
s, which is governed by the turbulent mixing autocorrelation time. Thus, in general,
one can expect the positive-definiteness of C(x) in the situations where the turbulent
mixing autocorrelation time scale is not much longer than the advective time scale.

6. Revisiting the rescaled Lorenz model
Here, after developing the theory for the suppression of chaos at the slow variables

by the rapidly mixing fast dynamics, we return back to the rescaled Lorenz model in
(2.8). At this point, we can observe that the rescaled Lorenz model in (2.8) conforms
to the requirements of the theory developed above, with the following properties:

• The x and y variables in the rescaled Lorenz model are already the canonical
energy variables (up to constant positive factors). Indeed, set all constant and
linear terms in the rescaled Lorenz model in (2.8) to zero. Then, it is easy to
see that the nonlinear parts in x and y separately preserve the energies

Ex=
λx

2

∑

i

x2
i , Ey =

λy

2J

Nx
∑

i=1

J
∑

j=1

y2ij , (6.1)

while the full rescaled Lorenz model without forcing and dissipation preserves
the total energy of the form

E=
λx

2

Nx
∑

i=1

x2
i +

ελy

2J

Nx
∑

i=1

J
∑

j=1

y2ij =Ex+εEy, (6.2)

Note that x and y in the rescaled Lorenz model are already the canonical
energy variables, as the quadratic form above is diagonal.
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• The deterministic linear energy-preserving coupling is given by

(Ly)i=−
J
∑

j=1

yij , (LTx)ij =−xi, (6.3)

and H(x) is given by

H(x)=−λxλy

J
LC(x)LT . (6.4)

• The rescaled Lorenz model can be written as

dx

dt
=f(x)+

λy

J
Ly, (6.5)

dy

dt
=

1

ε

[

g(y)−λxL
Tx

]

, (6.6)

with f(x) and g(y) given by

fi(x)=xi−1(xi+1−xi−2)+
1

βx
(x̄(xi+1−xi−2)−xi)+

Fx− x̄

β2
x

, (6.7a)

gij(y)=yi,j+1(yi,j−1−yi,j+2)+
1

βy
(ȳ(yi,j−1−yi,j+2)−yi,j)+

Fy− ȳ

β2
y

, (6.7b)

respectively.
• The slow tangent model dynamics for the rescaled Lorenz model can be writ-
ten as

d

dt
TXt

x
=

[

∂f

∂x
(x(t))+H(x(t))

]

TXt
x
. (6.8)

Overall, it turns out that in the slow-time tangent linear model for the rescaled Lorenz
system in (2.8), the additional term H(x) suppresses chaos at the slow variables if
the infinite-time linear response operator C(x) of the limiting fast dynamics, given
by (4.14b) and (4.14c), is positive definite. It is, of course, not practically feasible
to compute C(x,s) directly for all x and s. Here, however, we will use a suitable
approximation for C(x,s) in the form of the quasi-Gaussian linear response operator
[1–3,5–8,20]. Namely, we approximate the average above by the average with respect
to the Gaussian distribution pG

x
(z) with the same mean state and covariance matrix

as µx [5–7]:

C(x,s)≈CG(x,s)=

∫

R
Ny

T s
x,zp

G
x
(z)dz, (6.9a)

pG
x
(z)=exp

(

−1

2
(z− z̄(x))TΣ−1(x)(z− z̄(x))

)

, (6.9b)

where z̄(x) and Σ(x) are the mean state and covariance matrix, respectively, of the
fast limiting dynamics in (5.2) for fixed x. Then, via integration by parts, one can
rewrite (6.9a) as

CG(x,s)=

[
∫

R
Ny

z(s)(z− z̄(x))T pG
x
(z)dz

]

Σ−1(x), (6.10)
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Nx=20, Ny =80, Fx=6, λx=λy =0.35, ε=0.01
Fy x-mean x-var y-mean y-var

6 6.216 ·10−3 0.8878 −9.982 ·10−3 1.119
8 2.34 ·10−2 0.8728 −2.791 ·10−2 1.19
12 −0.1363 0.6927 −5.553 ·10−2 1.168
16 −0.1444 0.6703 −8.669 ·10−2 1.199

Table 6.1. The mean states and variances of the x and y variables for the rescaled Lorenz model
in (2.8) with the following parameters: Nx=20, Ny =80, Fx=6, Fy =6,8,12 and 16, λx=λy =0.35,
ε=0.01.

which after going back to the time averages becomes the time autocorrelation function
of the form

CG(x,s)=

[

lim
r→∞

1

r

∫ r

0

z(τ+s)(z(τ)− z̄(x))T dτ

]

Σ−1(x), (6.11)

which, after denoting z(t)= z̄(x)+z′(t), can be written in the form

CG(x,s)=

[

lim
r→∞

1

r

∫ r

0

z′(τ+s)z′T (τ)dτ

]

Σ−1(x). (6.12)

Even after the above simplification, it is still not practically feasible to compute
C(x,s) at many points x, as needed in (4.13). Here, however, we only need to
observe C(x,s) and C(x) for diagnostic purposes, to relate to the trends in Figures
2.2 and 2.3. Thus, we compute CG(x) at the single point x= x̄, which is the long-
term mean state of the slow variables in (2.8). Since the motion of the slow variables
occurs in the vicinity of their mean state, the computed CG(x̄) should generally
reflect the trends happening around that point. In Figure 6.1 we show the computed
operators CG(x̄), together with the smallest eigenvalues of the symmetric parts of
those operators (as skew-symmetric parts do not contribute to positive-definiteness).
Obviously, the effect of chaos suppression in (6.8) is stronger with increasing smallest
eigenvalue of C(x) in (6.4), for which CG(x̄) is a rough estimate. Indeed, observe that
the smallest eigenvalue of the response systematically increases with increased Fy (in
fact, for Fy =6 the operator is not even positive definite). Of course, these results are
no more than crude estimates of the actual trends, as in reality the response operators
must be computed for each x and using the exact formulas in (4.14b) and (4.14c),
rather than the one-point estimate under Gaussian assumption. Yet, as one can see,
even these crude approximations help to connect the trends in Figure 6.1 with the
surprising behavior displayed in Figures 2.2 and 2.3 in Section 2.

7. Complete suppression of chaos at slow variables while the uncoupled
slow dynamics remain chaotic

One of the key questions in atmosphere/ocean science is whether the uncoupled
system, consisting of slow variables only, is more or less chaotic than its original
version, coupled with the fast, often unresolved or underresolved variables. Indeed,
often scientists work with uncoupled models consisting of slow variables only, where
coupling terms were replaced with the estimates of the long-term averages of the
corresponding fast variables (for example, the T21 barotropic model with the realistic
Earth topography [7,15,29]), and study dynamical properties of the slow variables in
the uncoupled models. The common sense in this case suggests that if the uncoupled
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C(x), Nx=10, Ny=40, Fx=6, Fy=6, λx=0.25, λy=0.25, ε=0.01
Smallest eigenvalue is -0.03324
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Fig. 6.1. Quasi-Gaussian approximations of averaged infinite-time linear response operators
CG(x̄) for the rescaled Lorenz model in (2.8) with the following parameters: Nx=10, Ny =40,
Fx=6, Fy =6,8,12,16 and 24, λx=λy =0.25, ε=0.01.

slow model is chaotic, then, naturally, its original version coupled with fast rapidly
mixing dynamics should be even more chaotic.

Remarkably, the common sense logic in this situation is deceiving. In fact, it
turns out to be possible even to reach the transition from the chaotic to stable slow
dynamics by increasing the turbulent mixing at the fast variables, while the uncoupled
slow dynamics remain chaotic. This generally follows from the fact that in (4.13) the
term H is absent from the uncoupled dynamics, and only the Jacobian of f remains.
SinceH acts as a dissipation in (4.13) for positive-definite infinite-time linear response
of the fast variables, it is quite natural that in its absence the uncoupled dynamics is
more chaotic than the fully coupled dynamics at the slow variables.

Here we demonstrate such an example for the rescaled Lorenz model in (2.8) with
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Fig. 6.2. Average divergence between perturbed and unperturbed running averages of the slow
variables for the rescaled Lorenz model in (2.8) with the following parameters: Nx=20, Ny =80,
Fx=6, Fy =6,8,12 and 16, λx=λy =0.35, ε=0.01, as well as for the uncoupled rescaled Lorenz
model with N =20 and F =6.
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Fig. 6.3. Probability density functions and time autocorrelation functions for x of (2.8) and
z of (2.9) (with free parameter x set to its mean value) with the following parameters: Nx=20,
Ny =80, Fx=6, Fy =6,8,12 and 16, λx=λy =0.35, ε=0.01.
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parameters Nx=20, Ny =80, Fx=6, λx=λy =0.35, ε=0.01, and compare it with the
uncoupled rescaled Lorenz model in (2.7) with N =20 and F =6. In Figure 6.2 we
show the average divergence of a perturbed trajectory from an unperturbed one for
this set of parameters. Observe that while the slow dynamics for Fy =6,8 and for
uncoupled dynamics with F =6 are clearly chaotic, for Fy =12 and greater values the
abrupt transition occurs, where the difference between the perturbed and unperturbed
x time series does not grow much beyond 10%. The statistics for the same set of
parameters are shown in Figure 6.3 and Table 6.1. Here, clearly the correlations
and probability densities for the slow variables differ significantly for the chaotic and
stable regimes, with the statistics for the uncoupled Lorenz model with F =6 being
almost identical to those for the chaotic regimes with Fy =6,8. However, the chaos
at slow variables is suppressed purely by the dynamical mechanism uncovered in this
work; indeed, the mean state and variance of both the slow and fast variables do
not change substantially enough to suppress chaos by creating a counteracting mean
forcing term at the slow dynamics to suppress Fx (see Table 6.1 for confirmation),
while the time autocorrelation functions for the fast variables in Figure 6.3 with x

set to the mean state decay faster for larger values of Fy, indicating stronger mixing.
The key observation here is that the behavior of the uncoupled model with only slow
variables in the same regime is deceiving – it is clearly chaotic, while the full two-scale
model loses chaos at the slow variables in more turbulent regimes of the fast dynamics.

8. Generalization onto the two-scale setting with stochastic noise and
explicit time dependence

For the simplicity of the presentation, the theory above was developed for a sim-
plified setting in (2.1), which matched the structure of the two-scale rescaled Lorenz
model. However, the real-world chaotic multiscale models often include the stochas-
tic noise terms. Additionally, the explicit dependence on the range of different time
scales is quite common in practice. As an example, one can look at the annual and
diurnal time scales of the external solar forcing at a given physical location on the
surface of the Earth. These time scales differ by two orders of magnitude. Below we
develop the framework for a more general setting, which includes both the stochastic
noise and explicit dependence on time.

Here, we modify the dynamical system in (2.1) by including the explicit time
dependence on both the slow time scale t and the fast time scale t/ε. Additionally,
we include the noise terms at both the slow and fast variables. The dynamical system
in (2.1) becomes a system of the Itô stochastic differential equations of the form

dx=F (x,y,t,t/ε)dt+κ(x,t,t/ε)dV t, (8.1a)

dy=
1

ε
G(x,y,t,t/ε)dt+

1√
ε
σ(y,t,t/ε)dW t. (8.1b)

Above, the terms V t and W t are Kx- and Ky-dimensional Wiener processes, re-
spectively, for some positive integers Kx and Ky, while κ(x,t,t/ε) and σ(y,t,t/ε)
are Nx×Kx and Ny×Ky matrix-valued functions, respectively. Observe that here κ

does not depend on y, while σ does not depend on x, as the coupling between the
slow and fast variables must be deterministic to allow for total energy conservation.

In Section 3 we assumed that both the slow and fast dynamics in (2.1) do not
depend explicitly on time, and that assumption rendered the fast limiting dynamics
in (2.3) autonomous with the invariant distribution measure µx. Since the dynamics
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in (8.1) explicitly depend on t/ε, the fast limiting dynamics as ε→∞ (the analogue
of that in (2.3)) is non-autonomous:

dz=G(x,z,t,s)ds+σ(z,t,s)dW s. (8.2)

Here, x and t are the constant parameters, and the invariant measure µ for the
dynamics of z(s) above may no longer exist because of the explicit dependence of
(8.2) on s. However, practice shows that, from the physical perspective, averages
exist even in a non-autonomous system (where the averaging is assumed to be with
respect to the time s). Usually, the reason for that is that the way F , G, κ, and σ

depend on s is bounded, so in the limit as s→∞, these functions “average out” over
some bounded subset of the phase space instead of blowing up to infinity (as a simplest
example, one could think of a periodic dependence on s). In Appendix C we set up
a suitable mathematical framework, in which the above arguments are arranged in
a more formal fashion through a combination of the appropriate skew product flows
(see, for example, [9, 10] and references therein). The resulting averaged system is
given by

dx= 〈F 〉(x,t)dt+〈κ〉(x,t)dV t, (8.3a)

〈F 〉(x,t)= lim
r→∞

1

r

∫ r

0

F (x,z(s),t,s)ds (8.3b)

〈κ〉(x,t)〈κ〉(x,t)T = lim
r→∞

1

r

∫ r

0

κ(x,t,s)κ(x,t,s)T ds. (8.3c)

dTXt0,t
x

=

[(〈

∂F

∂x

〉

(x,t)+H(x,t)

)

dt+
∂〈κ〉(x,t)

∂x
dV t

]

TXt0,t
x

, (8.3d)

〈

∂F

∂x

〉

(x,t)= lim
r→∞

1

r

∫ r

0

∂F

∂x
(x,z(s),t,s)ds, (8.3e)

H(x,t)=

∫ ∞

0

(

lim
r→∞

1

r

∫ r

0

∂F

∂y
(x,z(τ+s),t,τ+s)×

×T
τ,s
x,t,z(τ)

∂G

∂x
(x,z(τ),t,τ)dτ

)

ds,

(8.3f)

where T
τ,s
x,t,z(τ) is the tangent map of (8.2) at z(τ) to τ+s.

Now, following Section 4, we write (8.1) in the linear energy-preserving coupling
form:

dx=
[

f(x,t,t/ε)+S−1/2
x L(t)S1/2

y y
]

dt+κ(x,t,t/ε)dV t, (8.4a)

dy=
1

ε

[

g(y,t,t/ε)−S−1/2
y LT (t)S1/2

x x
]

dt+
1√
ε
σ(y,t,t/ε)dW t. (8.4b)

Here, observe that the linear coupling matrix L may depend on the slow time t,
L=L(t). With (8.4) it is not hard to see that that averaged dynamics for the slow
tangent map are given by

dTXt0,t
x

=

[(〈

∂f

∂x

〉

(x,t)−S−1/2
x L(t)S1/2

y C(x,t)S−1/2
y LT (t)S1/2

x

)

dt

+
∂〈κ〉(x,t)

∂x
dV t

]

TXt0,t
x

,

(8.5a)
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〈

∂f

∂x

〉

(x,t)= lim
r→∞

1

r

∫ r

0

∂f

∂x
(x,t,s)ds, (8.5b)

C(x,t)=

∫ ∞

0

(

lim
r→∞

1

r

∫ r

0

T
τ,s
x,t,z(τ)dτ

)

ds. (8.5c)

Here we can see that the situation is completely analogous to what was found in
Sections 4–5, that is, the positive-definiteness of C(x,t) in the canonical energy coor-
dinates has a damping effect on the slow averaged tangent dynamics in (8.5), thereby
reducing chaos at the slow variables.

9. Nonlinear energy-preserving coupling with dependence on the slow
and fast variables

Recall that in Sections 4 and 8 we assumed that the matrix L in the energy
preserving coupling is either a constant matrix (Section 4), or is a function of only
the slow time t (Section 8). However, for the purpose of the energy preservation, L
can be an arbitrary Nx×Ny matrix function L(x,y,t,t/ε). Below we briefly outline
the situation when L is a function of x, y, t, and t/ε.

In such a case, we can extract the slow part L(t) of the energy-preserving coupling
L(x,y,t,t/ε) by time-averaging over the fast variables on the trajectory x(t):

L(t)= lim
r→∞

1

r

∫ r

0

L(x(t),z(s),t,s)ds, (9.1a)

L(x,y,t,s)=L(t)+L′(x,y,t,s), (9.1b)

where x(t) is the solution of (8.4), and z(s) is the solution of (8.2) for given x and t.
Thus, the term L′(x,y,t,s) in (9.1) represents rapid oscillations with zero mean state
around the slowly varying L(t):

lim
r→∞

1

r

∫ r

0

L′(x(t),z(s),t,s)ds=0. (9.2)

With (9.1), the equations in (8.4) become

dx=
[

f(x,y,t,t/ε)+S−1/2
x L(t)S1/2

y y
]

dt+κ(x,t,t/ε)dV t, (9.3a)

dy=
1

ε

[

g(x,y,t,t/ε)−S−1/2
y LT (t)S1/2

x x
]

dt+
1√
ε
σ(y,t,t/ε)dW t, (9.3b)

where we denote

f(x,y,t,s)=f(x,t,s)+S−1/2
x L′(x,y,t,s)S1/2

y y, (9.4a)

g(x,y,t,s)=g(y,t,s)−S−1/2
y L′T (x,y,t,s)S1/2

x x. (9.4b)

With the above changes, the right-hand side of (C.6) acquires a new term:

dTXt0,t
x

=

[(〈

∂f

∂x

〉

(x,t)−S−1/2
x L(t)S1/2

y C(x,t)S−1/2
y LT (t)S1/2

x

+

∫ ∞

0

H ′(x,t,s)

)

ds+
∂〈κ〉(x,t)

∂x
dV t

]

TXt0,t
x

,

(9.5a)
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H ′(x,t,s)=S−1/2
x L(t)S1/2

y

[

lim
r→∞

1

r

∫ r

0

T
τ,s
x,t,z(τ)

∂g

∂x
(x,z(τ),t,τ)dτ

]

(9.5b)

−
[

lim
r→∞

1

r

∫ r

0

∂f

∂z
(x,z(τ+s),t,τ+s)T τ,s

x,t,z(τ)dτ

]

S−1/2
y LT (t)S1/2

x

+ lim
r→∞

1

r

∫ r

0

∂f

∂z
(x,z(τ+s),t,τ+s)T τ,s

x,t,z(τ)

∂g

∂x
(x,z(τ),t,τ)dτ.

It is not known at present how the new term H ′(x,t,s) is going to affect the dy-
namics, however, the chaos-suppressing term C(x,t) is nonetheless retained by the
dynamics. One can presume that if the effect of the new term is small, the chaos sup-
pression through C(x,t) would still be observed. At this point, it is hardly possible
to say anything about the effect of H ′(x,t,s) without making additional assumptions
about its structure. Clearly, the answer to this question depends on a particular type
of energy-preserving coupling used in the model. While a general coupling of the
form in (9.1) might not necessarily promote the suppression of chaos at the slow vari-
ables, there could be additional restrictions on L′(x,y,t,s) imposed by the physics
of a particular model under consideration. In future work, the author intends to
derive suitable classes of a more general nonlinear energy-preserving coupling which
nonetheless promotes the suppression of chaos at the slow variables.

10. Invariance with respect to time-scaling and independence of ε
Throughout the work, it was presumed that the dependence of the model on the

time-scale separation parameter ε is explicit. However, often in real-world situations
the parameter ε is not present explicitly, but it is known from the observations that
there is a subset of the “slow” variables in the system, while the rest of the variables
are “fast”. It turns out that the framework, developed here, also does not explicitly
depend on ε. Observe that the averages in (C.6) are invariant under the time-rescaling
of the limiting dynamics in (8.2) as

dz=αG(x,z,t,s)ds+
√
ασ(z,t,s)dW s, (10.1)

where α>0 is an arbitrary parameter. Setting α= ε−1 yields

dz=
1

ε
G(x,z,t,s)ds+

1√
ε
σ(z,t,s)dW s, (10.2)

which is obtained directly from the fast equation in (8.1b) by setting x and t as
constant parameters. Due to this property, the explicit knowledge of the time-scale
separation parameter ε is not necessary; for all practical purposes, one can assume that
the original slow-fast system in (8.1) is supplied, without the time-scale separation
parameter ε, in the form

dx=F (x,y,t,t)dt+κ(x,t,t)dV t, (10.3a)

dy=G(x,y,t,t)dt+σ(y,t,t)dW t, (10.3b)

for which it is known that x is the set of slow variables and y is the set of fast variables,
and that the dependence on the first t-parameter in each function is slow, while the
dependence on the second t-parameter is fast. The limiting dynamics in (8.2) are thus
obtained by setting x and first t-parameter in (10.3b) to constants, and the averaged
slow tangent dynamics in (C.6) remain in effect with no corrections.
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11. Summary

In this work we study the effect of the fast rapidly mixing dynamics on the chaos
at slow variables in a two-scale system with a deterministic linear energy-preserving
coupling. A suitable theory is developed by applying the averaging formalism to the
tangent dynamics of the system, and it is found that the linear energy-preserving
coupling creates a systematic damping effect on the chaos at the slow scales when the
fast dynamics is rapidly mixing (the precise criterion is the positive-definiteness of the
infinite-time linear response to a small constant external forcing at the fast scales),
which can also be interpreted as the linear stability property of the long-term mean
state of the fast limiting system under the external perturbations. It is suggested
that this property must strongly depend on the ratio of the autocorrelation time and
the advection time scale at the fast variables, however, a systematic study of this
proposition is left for the future work. The effect of the chaos suppression at the slow
variables through the rapidly mixing fast dynamics is systematically demonstrated
for the two-scale Lorenz model, which is also appropriately rescaled so that the ad-
justments for the mixing regime at the fast variables do not affect the mean state
and variance of both the slow and fast variables. In particular, it is shown through
the numerical experiment that the uncoupled slow dynamics, where the fast variables
are replaced with their averages (which are zeros in the rescaled Lorenz model), may
remain chaotic, while the full coupled system loses chaos and becomes completely
predictable at the slow scales as the dynamics at the fast scales become more turbu-
lent. The theory is also systematically generalized onto the more general setting with
nonautonomous dynamics and stochastic noise at both the slow and fast variables.

Future work. Clearly, the present work, while uncovering a dynamical mech-
anism for the chaos suppression at the slow variables in a multiscale system, does
not yet provide any systematic quantification of the chaos suppression effect, which
will have to be addressed in the future work. Below we sketch a few key directions,
immediately emerging from the results of the present study.

• Is there a simple direct quantitative connection between the chaos
at the slow variables and the infinite-time linear response at the fast
variables? Above, while the dynamical mechanism of the chaos suppression
is discussed, no quantitative connections between the Lyapunov characteristic
exponents of the slow averaged dynamics and the eigenvalues of the symmetric
part of the infinite-time linear response at the fast variables are investigated.
Are there any simple direct estimates of the chaos reduction at the slow
variables through the autocorrelation times of the fast variables?

• Is it possible to estimate the chaos suppression effect from the au-
tocorrelation time/advection time scale ratio? Above we briefly for-
mulated the hypothesis that the suppression of chaos at the slow variables
could be amplified by a large ratio of the advection time scale to the autocor-
relation time at the fast variables. If this hypothesis is correct, would it be
possible to make an estimate of the chaos suppression effect by knowing the
ratio of the advection time scale to the autocorrelation time, perhaps through
the theory of turbulence?

• What if the energy-preserving coupling is nonlinear? We briefly
sketched that if the energy-preserving coupling is nonlinear, then an addi-
tional term appears in the dynamics of the slow averaged tangent map, and
it is not immediately clear whether it would create a damping or amplify-
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ing slow chaos effect. Can one identify suitable physically relevant classes of
nonlinear coupling which suppresses chaos at the slow variables?

• What happens in more sophisticated models? Are the fully coupled
models less chaotic at the slow variables than the uncoupled low-frequency
variability models? If so, could the global climate be generally less chaotic
than we presently tend to think? Could the predictive skill be improved
by appropriately adjusting the uncoupled models to match the slow chaos
properties of the coupled dynamics?

The author intends to address these problems in the future work, possibly in
collaboration with atmospheric scientists.

Acknowledgment. The author thanks Ibrahim Fatkullin for fruitful discus-
sions. The author is supported by the National Science Foundation CAREER grant
DMS-0845760, and the Office of Naval Research grants N00014-09-0083 and 25-74200-
F6607.

Appendix A. Infinite time linear response to changes in x.
Let µx be an invariant measure for the dynamics given by

dz

dt
=G(x,z) (A.1)

with flow φt
x
and ergodic attractor Ax, where x is a fixed parameter. Let B(z) be a

differentiable function of z, and let 〈B〉x denote the average

〈B〉x=
∫

Ax

B(z)dµx(z). (A.2)

Our goal here is to compute the derivative of 〈B〉x with respect to x (if it exists):

d〈B〉x
dx

=

∫

Ax

B(z)dµ′
x
(z). (A.3)

Here we are going to use the linear response theory from [1–3, 5–7, 20, 25, 28]. Let
us assume that, at the initial time t=0, there is a statistical ensemble of points z,
distributed according to µx, and, at the same time, there is a change x+δx in (A.1).
Then, one can treat the difference between the averages along the perturbed and
unperturbed trajectories of (A.1), emerging from the initial statistical ensemble, as
time goes to infinity, as the derivative in (A.3):

∫

Ax

B(z)dµ′
x
(z)δx+O(‖δx‖2)

= lim
t→∞

∫

Ax

[

B(φt
x+δxz)−B(φt

x
z)
]

dµx(z).

(A.4)

For the above relation to hold, the structural stability of µx under the changes in
x is required. It is known that uniformly hyperbolic diffeomorphisms on the whole
phase space of (A.1) (Anosov) or just its nonwandering set (Axiom A) are structurally
stable [13, 26–28,33]. The integral in the right-hand side above is given by

∫

Ax

[

B(φt
x+δxz)−B(φt

x
z)
]

dµx(z)

=

∫

Ax

[

∇B(φt
x
z)

∂

∂x
φt
x
z

]

dµx(z)δx+O(‖δx‖2).
(A.5)
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To compute the derivative of the flow φt
x
z in x, we use the fact that it is a solution

of (A.1), and therefore satisfies

∂

∂t
φt
x
z=G(x,φt

x
z),

∂

∂t
φt
x+δxz=G(x+δx,φt

x+δxz). (A.6)

Subtracting one identity from another and Taylor-expanding in δx, we obtain

∂

∂t

(

∂

∂x
φt
x
z

)

=
∂G

∂z
(x,φt

x
z)

(

∂

∂x
φt
x
z

)

+
∂G

∂x
(x,φt

x
z)+O(‖δx‖). (A.7)

By sending δx to zero, the formal solution to the above equation with zero initial
condition is given by Duhamel’s principle:

∂

∂x
φt
x
z=

∫ t

0

T t−s
x,z

∂G

∂x
(x,φs

x
z)ds, (A.8)

where T t
x,z is the tangent map of φt

x
z

T t
x,z =

∂

∂z
φt
x
z, (A.9)

satisfying

∂

∂t
T t

x,z =
∂G

∂z
(x,φτ

x
z)T t

x,z. (A.10)

Substituting the above equation into (A.5), we obtain
∫

Ax

[

B(φt
x+δxz)−B(φt

x
z)
]

dµx(z)

=

∫ t

0

∫

Ax

[

∇B(φt
x
z)T t−s

x,z

∂G

∂x
(x,φs

x
z)

]

dµx(z)dsδx+O(‖δx‖2). (A.11)

By using the fact that µx is the invariant measure for φt
x
, we obtain

∫

Ax

[

B(φt
x+δxz)−B(φt

x
z)
]

dµx(z)

=

∫ t

0

∫

Ax

[

∇B(φt−s
x

z)T t−s
x,z

∂G

∂x
(x,z)

]

dµx(z)dsδx+O(‖δx‖2)

=

∫ t

0

∫

Ax

[

∇B(φs
x
z)T s

x,z

∂G

∂x
(x,z)

]

dµx(z)dsδx+O(‖δx‖2). (A.12)

Comparing the above relation with (A.4), we obtain, as δx→0,

∫

Ax

B(z)dµ′
x
(z)=

∫ ∞

0

∫

Ax

[

∇B(φs
x
z)T s

x,z

∂G

∂x
(x,z)

]

dµx(z)ds. (A.13)

By using ergodicity of µx, we can replace the measure averages above with time
averages over a long-term trajectory z(t) of (A.1):

∫

Ax

B(z)dµ′
x
(z)=

∫ ∞

0

(

lim
r→∞

1

r

∫ r

0

[

∇B(z(τ+s))T s
x,z(τ)

∂G

∂x
(x,z(τ))

]

dτ

)

ds.

(A.14)
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In terms of the linear response theory [1–3,5–7,20,25,28], the above expression is the
infinite time linear response of 〈B〉 to the changes in x.

Appendix B. Infinite time linear response of the mean state to constant
additive perturbation.

Let µ be an invariant measure for the dynamics given by

dz

dt
=G(z) (B.1)

with flow φt and ergodic attractor A. Let 〈z〉 be the mean state of (B.1):

〈z〉=
∫

A

zdµ(z). (B.2)

Now, assume that (B.1) is perturbed by a constant additive perturbation δf ,

dz

dt
=G(z)+δf , (B.3)

with perturbed flow given by φ∗t. Our goal here is to compute the infinite time linear
response of 〈z〉. Following Appendix A, we write

∂

∂t
φtz=G(φtz),

∂

∂t
φ∗tz=G(φ∗tz)+δf . (B.4)

Let the difference between the perturbed and unperturbed flows be given as δφtz.
Now, taking the difference between the two relations above, we obtain

∂

∂t
(δφtz)=G(φtz+δφtz)−G(φtz)+δf

=∇G(φtz)δφtz+δf+O(‖δφtz‖2). (B.5)

Neglecting the higher-order term, we obtain, through Duhamel’s principle,

δφtz=

∫ t

0

T s
z
dsδf , (B.6)

where T t
z
is the tangent map of (B.1), given by

∂

∂t
T t

z
=∇G(φtz)T t

z
. (B.7)

Then, by integrating over µ and taking t→∞, for the infinite time response of 〈z〉
we obtain

δ〈z〉=
∫ ∞

0

∫

A

T s
z
dµ(z)dsδf . (B.8)

Assuming ergodicity of µ and replacing measure average with time average over a
long-term trajectory z(t) of (B.1), we obtain

δ〈z〉=
∫ ∞

0

(

lim
r→∞

1

r

∫ r

0

T s
z(τ)dτ

)

dsδf . (B.9)

Appendix C. Averaged dynamics with explicit time dependence.
Here, we assume that the fast limiting system in (8.2), which includes both the

s-dependent Wiener process W s and the explicit s-dependence of G and σ, can be
expressed as a collection of the following dynamical systems:
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• A flow θs :Q→Q on a measurable space Q with a distribution measure ρ,
where s is the time parameter. The elements q∈Q play the role of a bounded
pseudo-“time” in the deterministic time-dependence of F , G, κ, and σ. θs

has the following properties:
– The semigroup property: θ0= I, θsθr=θs+r;
– θ is measure-preserving: ρ(Q)=ρ(θsQ) for any subset Q⊂Q.

• A base flow ϑs :Ω→Ω, given over a probability space {Ω,F ,P} (this probabil-
ity space documents all realizations of the Wiener process W s(ω)). The idea
of this dynamical system is to “fast-forward” or “rewind” W s(ω) as needed
by specifying the time parameter s. ϑs has the following properties:

– The semigroup property: ϑ0= I, ϑsϑr=ϑs+r;

– If A∈F , then ϑsA is also in F for any s;

– Measure preservation: P(A)=P(ϑsA) for any s;

– The Wiener process W s(ω) satisfies W r(ϑ
sω)=W s+r(ω)−W s(ω).

• A θ,ϑ-cocycle φq,ω,s
x,t :RNy →R

Ny with properties

φq,ω,0
x,t = I, φq,ω,s+r

x,t =φθrq,ϑrω,s
x,t φq,ω,r

x,t , ∀(q,ω)∈ (Q,Ω), (C.1)

which represents a solution of the non-autonomous fast limiting system in
(8.2).

Now, instead of considering a still compact global attractor Ax for the autonomous
dynamics like in Section 3 (which parametrically depends on the slow variables x),
here we consider a q,ω-dependent family of compact global pullback-attracting sets
Ax,t(q,ω)⊂R

Ny which is θ,ϑ-invariant, that is,

φq,ω,s
x,t Ax,t(q,ω)=Ax,t(θ

sq,ϑsω), lim
s→∞

dist(Ax,t(q,ω),φ
θ−sq,ϑ−sω,s
x,t B)=0, (C.2)

for all q∈Q, P-almost all ω∈Ω, and all compact subsets B of RNy , where dist is the
Hausdorff distance in R

Ny . Then, the family of sets Ax,t(q,ω) is called the global
pullback attractor of (8.2). Similarly, instead of a single invariant measure µx one
can consider a family of θ,ϑ-invariant measures µq,ω

x,t on Ax,t(q,ω) with the property

µq,ω
x,t (φ

q,ω,s
x,t A)=µθsq,ϑsω

x,t (A), ∀A⊂Ax,t(q,ω). (C.3)

At this point, let

F̃ (x,z,t,θsq0)=F (x,z,t,s), G̃(x,z,t,θsq0)=G(x,z,t,s),

κ̃(x,t,θsq0)=κ(x,t,s), σ̃(z,t,θsq0)=σ(z,t,s),
(C.4)

for all x, t, z, s, and some q0∈Q which corresponds to the zero time s=0. Now, the
slow limiting averaged system for (8.1) is given by

dx= 〈F 〉(x,t)dt+〈κ〉(x,t)dV t, (C.5a)

〈F 〉(x,t)=
∫

Q

∫

Ω

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµq,ω
x,t (z)dP(ω)dρ(q), (C.5b)

〈κ〉(x,t)〈κ〉(x,t)T =

∫

Q

κ̃(x,t,q)κ̃(x,t,q)T dρ(q)

= lim
r→∞

1

r

∫ r

0

κ(x,t,s)κ(x,t,s)T ds.

(C.5c)
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Here we assume that the cocycle in (C.1), which is a stochastic flow in s, is dif-
ferentiable with respect to its initial condition [17], and therefore the corresponding
equations for the averaged slow tangent map in (3.6) are given by

dTXt0,t
x

=

[(〈

∂F

∂x

〉

(x,t)+H(x,t)

)

dt+
∂〈κ〉(x,t)

∂x
dV t

]

TXt0,t
x

, (C.6a)

〈

∂F

∂x

〉

(x,t)=

∫

Q

∫

Ω

∫

Ax,t(q,ω)

∂F̃

∂x
(x,z,t,q)dµq,ω

x,t (z)dP(ω)dρ(q), (C.6b)

H(x,t)=

∫

Q

∫

Ω

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµ′q,ω
x,t (z)dP(ω)dρ(q), (C.6c)

where µ′ is the derivative of µ with respect to the parameter x. Observe that now
the solution of (C.5), starting from a point z, is given by the cocycle φ:

z(s)=φq,ω,s
x,t z, (C.7)

where q and ω denote parametric dependence on the starting time and probability
space outcome for the Wiener process W s(ω), which means that φ satisfies

dφq,ω,s
x,t z= G̃(x,φq,ω,s

x,t z,t,θsq)ds+ σ̃(φq,ω,s
x,t z,t,θsq)dW s(ω). (C.8)

Now, let us denote the tangent map of the cocycle φ as

T̃
q,ω,s

x,t,z =
∂

∂z
φq,ω,s
x,t z, (C.9)

which obviously obeys the chain rule

T̃
q,ω,s+r

x,t,z = T̃
θrq,ϑrω,s

x,t,φq,ω,r
x,t z

T̃
q,ω,r

x,t,z , ∀(q,ω)∈ (Q,Ω) (C.10)

and satisfies the equation

dT̃
q,ω,s

x,t,z =

[

∂G̃

∂z
(x,φq,ω,s

x,t z,t,θsq)ds+
∂σ̃

∂z
(φq,ω,s

x,t z,t,θsq)dW s(ω)

]

T̃
q,ω,s

x,t,z . (C.11)

Then, through Duhamel’s principle, the x-derivative of φ after elapsed time a is
computed as

∂

∂x
φq,ω,a
x,t z=

∫ a

0

T̃
θsq,ϑsω,a−s

x,t,φq,ω,s
x,t z

∂G̃

∂x
(x,φq,ω,s

x,t z,t,θsq)ds, (C.12)

while the average linear response of F to the changes in µq,ω
x,t , which is after the elapsed

time a since x was changed, is given, in the pullback sense, as

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµ′q,ω
x,t (z)=

∫ a

0

∫

Ax,t(θ−aq,ϑ−aω)

∂F̃

∂z
(x,z,t,q)T̃

θs−aq,ϑs−aω,a−s

x,t,φq,ω,s−a
x,t z

×∂G̃

∂x
(x,φq,ω,s−a

x,t z,t,θs−aq)dµθ−aq,ϑ−aω
x,t (z)ds.

(C.13)
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After applying (C.3), the above formula becomes

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµ′q,ω
x,t (z)

=

∫ a

0

∫

Ax,t(θs−aq,ϑs−aω)

{

∂F̃

∂z
(x,φθs−aq,θs−aω,a−s

x,t z,t,q)

×T̃
θs−aq,ϑs−aω,a−s

x,t,z

∂G̃

∂x
(x,z,t,θs−aq)

}

dµθs−aq,ϑs−aω
x,t (z)ds.(C.14)

Averaging over ρ and P yields

∫

Q

∫

Ω

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµ′q,ω
x,t (z)dP(ω)dρ(q)

=

∫ a

0

∫

Q

∫

Ω

∫

Ax,t(θs−aq,ϑs−aω)

{

∂F̃

∂z
(x,φθs−aq,ϑs−aω,a−s

x,t z,t,q)T̃
θs−aq,ϑs−aω,a−s

x,t,z

×∂G̃

∂x
(x,z,t,θs−aq)dµθs−aq,ϑs−aω

x,t (z)

}

dP(ω)dρ(q)ds,

(C.15)

where, after using the invariance of ρ and P under θ and ϑ, respectively, and replacing
a−s with s in the integral over s, we finally obtain

∫

Q

∫

Ω

∫

Ax,t(q,ω)

F̃ (x,z,t,q)dµ′q,ω
x,t (z)dP(ω)dρ(q)

=

∫ a

0

∫

Q

∫

Ω

∫

Ax,t(q,ω)

{

∂

∂z
F̃ (x,φq,ω,s

x,t z,t,θsq)

×T̃
q,ω,s

x,t,z

∂

∂x
G̃(x,z,t,q)

}

dµq,ω
x,t (z)dP(ω)dρ(q)ds.

(C.16)

Then the term H(x,t) in (C.6) is formally given by sending the response time a in
the formula above to infinity:

H(x,t)=

∫ ∞

0

∫

Q

∫

Ω

∫

Ax,t(q,ω)

∂

∂z
F̃ (x,φq,ω,s

x,t z,t,θsq) (C.17)

×T̃
q,ω,s

x,t,z

∂

∂x
G̃(x,z,t,q)dµq,ω

x,t (z)dP(ω)dρ(q)ds. (C.18)

The assumption of the joint ergodicity of Q and Ω is that a sufficiently long trajectory
s completely samples Q and Ω through θs and ϑs, respectively, with the correspond-
ing statistical weights given by the product of the measures ρ and P. Under this
assumption, one can replace the measure averages with the time averages, leading to
(8.3).
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