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Abstract. The two dimensional primitive equations with multiplicative noise are studied in
this paper. The existence and uniqueness of solutions in a fixed probability space and a Wentzell-
Freidlin type large deviation principle for small multiplicative noise by weak convergence method are
obtained.
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1. Introduction
As a fundamental model in meteorology, the Primitive Equations (PEs) were

derived from the Navier-Stokes equations, with rotation, coupled to thermodynamics
and salinity diffusion-transport equations, by assuming two important simplifications:
the buoyancy forces and stratification effects under the Boussinesq approximation, and
the vertical motion by the hydrostatic balance. For further background and detailed
physical derivations, we could refer to [9] or [35], for example.

The mathematical study of the PEs originated in a series of articles by J. L. Lions,
R. Temam, and S. Wang in the early 1990s [30, 31, 32]. They defined the notions of
weak and strong solutions and also proved the existence of weak solutions. Existence
of strong solutions (local in time) and their uniqueness were obtain in [22] and [43]. Hu
et al. studied the local existence of strong solutions to the primitive equations under
the small depth hypothesis in [24]. In [3], Cao and Titi developed a delicate approach
to prove that the L6-norm of the fluctuation ṽ of horizontal velocity is bounded, and
obtained the global well-posedness for the 3D viscous primitive equations. Another
different proof of this result was given by Kobelkov in [27] and [28]. The existence
of the attractor was obtained in [25]. In [29], existence and uniqueness for different
physically relevant boundary conditions are established with a third method (different
from both [3, 27]) that directly treats the pressure terms in the equations. For a
general reference on the current research of the (deterministic) mathematical theory
for the Primitive equations, we can refer to [39]. Moreover, the deterministic 2D
Primitive equations were studied also in [37, 38].

The addition of white noise driven terms to the basic governing equations for a
physical system is natural for both practical and theoretical applications. Stochastic
solutions of the 2D primitive equations of the ocean and atmosphere with an additive
noise has been studied in [14]. Weak and strong random attractors have been ob-
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576 THE 2D STOCHASTIC PROMITIVE EQUATIONS

tained for the 3D stochastic primitive equations with additive noise in [23] and [18],
respectively. The existence and uniqueness of solutions for 2D stochastic primitive
equations with multiplicative noise had been discussed in [21], where they ignored
the coupling with the temperature and salinity equations. There have also been other
recent works on the stochastic 2D and 3D primitive equations [19, 11], in which a cou-
pling with temperature and salinity equations as well as physically relevant boundary
conditions are considered. No small noise conditions are imposed, in contrast with
this paper. Recently, a significant literature has developed concerning the Navier-
Stokes equations which are driven by a multiplicative white noise; see [15, 20, 33]. In
this paper, we first obtain the well-posedness and general a priori estimates for 2D
stochastic primitive equations with small and more general multiplicative noise which
couple the temperature equation by a method different to that in [21]. Our second
result is a Wentzell-Freidlin type large deviation principle (LDP) for 2D stochastic
primitive equations. There are already several interesting and important papers on
LDP and its applications [4]-[8], [12, 13, 17, 26, 36, 41, 42, 44]. Especially in [8],
they dealt with a class of abstract nonlinear stochastic models, which covers many
2D hydrodynamical models including 2D Navier-Stokes equations, 2D MHD models,
the 2D magnetic Bénard problem and also some shell models of turbulence, but does
not include our problem since the mapping B in this paper does not satisfy Condition
(C1) of [8]. The idea of our proof by weak convergence [1, 2] is similar to [13], so that
in this paper we only give the outline of the proof.

This paper is organized as follows. The mathematical formulation for the stochas-
tic primitive equation is in §2. Then the well-posedness and general a priori estimates
for the model are proved in §3. Finally, a large deviation principle is given in §4.

2. Mathematical formulation
The two dimensional primitive equations can be formally derived from the full

three dimensional system under the assumption of invariance with respect to the
second horizontal variable y as in [21]. Atmospheric or oceanic motions exhibit fluc-
tuations over a broad range of spatial and temporal scales ranging from centimeters to
thousands of kilometers and from seconds to decades and beyond. Such fluctuations
can be caused by internal instability processes, as well as by external forcing. As usual,
the atmospheric forcing field should be regarded as random; see e.g. [15, 16, 34, 40].
As result, we arrive at the following stochastic evolution system:

duε

dt
=ν1∆u

ε−uε∂xuε−wε∂zuε−∂xp+f+
√
εσ1(t,φ

ε)Ẇ1, (2.1)

∂zp=−θ, (2.2)

∂xu
ε=−∂zwε, (2.3)

dθε

dt
=ν2∆θ

ε−uε∂xθε−wε∂zθε+q+
√
εσ2(t,φ

ε)Ẇ2, (2.4)

with velocity uε=uε(t,x,z)∈R, temperature θε=θε(t,x,z)∈R, φε=(uε,θε), pressure
p, and where f is an external forcing term, q is a given heat source, (x,z)∈M=
[0,l]× [−h,0], t>0, and Ẇ1 and Ẇ2 are the white noise processes. Here ∆ is the
Laplacian operator, and without lost of generality in this paper we take ν1, ν2 to be
1.

We partition the boundary into the top Γu={z=0}, the bottom Γb={z=−h},
and the sides Γs={x=0}∪{x= l}. In this paper, we consider the following boundary
conditions:

onΓu : ∂zu
ε=0, wε=0, ∂zθ

ε=0,
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onΓb : ∂zu
ε=0, wε=0, ∂zθ

ε=0,

onΓs : u
ε=0, ∂xθ

ε=0.

Due to (2.2) and (2.3), we have that

w(x,z,t)=−
∫ z

−h
∂xu

ε(x,ξ,t)dξ, (2.5)

p(x,z,t)=ps(x,t)−
∫ z

−h
θε(x,ξ,t)dξ. (2.6)

Note that ps denotes the surface pressure (with only x-dependence). We define the
function spaces H and V as follows:

H=H1×H2, V =V1×V2, (2.7)

H1=
{
v∈L2(M) |

∫ 0

−h
vdz=0

}
, (2.8)

H2=
{
θ∈L2(M)

}
, (2.9)

V1=
{
v∈H1(M) |

∫ 0

−h
vdz=0, v|Γs

=0
}
, (2.10)

V2=
{
θ∈H1(M)

}
. (2.11)

These spaces are endowed with the L2 and H1 norms, which we respectively denote
by | · | and ‖·‖. The inner products and norms on V,H are given by

(U,U1)=(v,v1)+(θ,θ1)=

∫

M
(vv1+θθ1)dM,

((U,U1))=((v,v1))+((θ,θ1))=

∫

M
(∇v∇v1+vv1+∇θ∇θ1+θθ1)dM,

|U |=(U,U)
1
2 , ‖U‖=((U,U))

1
2 ,

where U =(v,θ),U1=(v1,θ1)∈V. We shall also need the intermediate space

Y =Y1×Y2, (2.12)

Y1={v∈H1,∂zv∈H1}, Y2={θ∈H2,∂zθ∈H2}. (2.13)

Let V ′ be the dual space of V . We have the dense and continuous embeddings
V →֒H=H ′ →֒V ′ and denote by 〈φ,ψ〉 the duality between φ∈V (resp. Vi) and
φ∈V ′ (resp. V ′

i ).
Consider an unbounded linear operator A=(A1,A2)=(∆,∆) :D(A)→H with

D(A)=D(A1)×D(A2), where

D(A1)={u∈V1∩H2(M) :∂zu|Γu
=∂zu|Γb

=0}⊂V1∩H2(M),

D(A2)={θ∈V2∩H2(M) :∂xθ|Γs
=0,∂zθ|Γb

=∂zθ|Γu
=0}⊂V2∩H2(M),
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and define

〈A1u,v〉=((u,v)), 〈A2θ,η〉=((θ,η)), ∀u,v∈D(A1), ∀θ,η∈D(A2).

The operator A1 is self-adjoint and positive, with compact self-adjoint inverses whose
(discrete) eigenvalues are positive. The operator A2 is a self-adjoint, nonnegative
unbounded operator with eigenvalue 0 and the other (discrete) eigenvalues positive.
They map Vi to V

′
i (i=1,2).

In accordance with (2.5) we take

W(v) :=−
∫ z

−h
∂xv(x,z̃)dz̃ (2.14)

and let

B1(u,v) :=u∂xv+W(u)∂zv, (2.15)

where u∈V1 and v∈V1 or V2.
One would like to establish that B1 is a well defined and continuous mapping

from V1×V1→V
′

1 or V1×V2→V
′

2 according to

〈B1(u,v),w〉= b1(u,v,w), (2.16)

where the associated trilinear form is given by

b1(u,v,w)=

∫

M
(u∂xvw+W(u)∂zvw)dM.

In the sequel, when no confusion arises, we denote by C a constant which may change
from one line to the next one.

Lemma 2.1 (Estimates for b1 and B1). The trilinear forms b1 and B1 have the
following properties. There exists a constant C>0 such that

|b1(u,v,w)|≤C
(
|u| 12 ‖u‖ 1

2 ‖v‖|w| 12 ‖w‖ 1
2 + |∂xu||∂zv||w|

1
2 ‖w‖ 1

2

)
,

u∈V1, v∈V1(or V2), w∈V1(or V2), (2.17)

b1(u,v,v)=0, u∈V1, v∈V1(or V2), (2.18)

〈B1(u,u),∂zzu〉=0, u∈V1. (2.19)

Proof. We only give the proof of (2.17) and (2.19). By Hölder’s inequality,
Ladyzhenskaya’s inequality, we have

|b1(u,v,w)|≤
∫

M

(
|u∂xvw|+ |W(u)∂zvw|

)
dM

≤C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2 +

∫ l

0

(
sup

z∈[−h,0]

{∫ z

−h
∂xudz

}∫ l

0

|∂zvw|dz
)
dx

≤C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2

+C

∫ l

0

(∫ 0

−h
|∂xu|2dz ·

∫ 0

−h
|∂zv|2dz ·

∫ 0

−h
|w|2dz

)1/2

dx

≤C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2
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+C sup
x∈[0,l]

(∫ 0

−h
|w|2dz

)1/2
∫ l

0

(∫ 0

−h
|∂xu|2dz ·

∫ 0

−h
|∂zv|2dz

)1/2

dx

≤C|u| 12 ‖u‖ 1
2 ‖v‖|w| 12 ‖w‖ 1

2 +C|∂xu||∂zv||w|
1
2 ‖w‖ 1

2 .

Noting (2.15) and (2.16) and regarding boundary conditions, we have

〈B1(u,u),∂zzu〉=
∫

M
(u∂xu∂zzu+W(u)∂zu∂zzu)dM

=−
∫

M
[∂z(u∂xu)∂zu+∂z(W(u)∂zu)∂zu]dM

=

∫

M
[−∂xu(∂zu)2−u∂xzu∂zu+

1

2
∂xu(∂zu)

2]dM

=0.

Remark 2.1. In [19] the authors considered the boundary conditions ∂zu+αuu=
0,∂zθ+αθθ=0 on the top boundary for u and θ, respectively, and defined different
function spaces from this paper. Due to the boundary conditions which they con-
sidered on the top boundary, in order to deal with the pressure term the authors
introduced a projection operator Q onto H from L2(M)2 such that Q∂xps=0 and
〈B1(u,u),∂zzu〉 6=0. Due to the boundary conditions on the top boundary and the
definition of H1 in this paper, we do not introduce the projection operator, and thus
the pressure term remains in equations. Due to the boundary conditions in this paper
and since ps depends only on x, we have the inner product

〈u,∂xps〉=
∫ l

0

∫ 0

−h
u∂xpsdxdz

=−
∫ l

0

ps

(
∂x

∫ 0

−h
udz

)
dx

=0,

and

〈∂zzu,∂xps〉=
∫ l

0

∫ 0

−h
∂zzu∂xpsdxdz

=−
∫ l

0

ps

(
∂x

∫ 0

−h
∂zzudz

)
dx

=−
∫ l

0

ps

(
∂x∂zu|z=0

z=−h

)
dx

=0.

We could now obtain the estimates for |u|2p and |∂zu|2p. If we consider the same
boundary conditions as in [19], we should introduce the projection operator Q and
add estimates for 〈B1(u,u),∂zzu〉, for which we could refer to [19].

In the present paper, we assume that W1(t)∈H1(M), W2(t)∈H2(M) are inde-
pendent Wiener processes defined on a filtered probability space (Ω,F ,Ft,P), with
linear symmetric positive covariant operators Q1 and Q2, respectively. We denote
Q=(Q1,Q2); this is a linear symmetric positive covariant operator in the Hilbert
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space H. We assume that Q1, Q2, and thus Q are trace class (and hence compact
[10]), i.e., tr(Q)<∞.

We introduce some additional definitions (see [42, 13]) in the following.

• Denote by H0=Q
1
2H the Hilbert space with scalar product

(φ,ψ)0=(Q− 1
2φ,Q− 1

2ψ), ∀φ,ψ∈H0,

together with the induced norm | · |0=
√

(·, ·)0.
• Let LQ be the space of linear operators S such that SQ

1
2 is a Hilbert-Schmidt

operator (and thus a compact operator [10]) from H to H. The norm in the space
LQ is defined by |S|2LQ

= tr(SQS∗), where S∗ is the adjoint operator of S.

• Define A as the set of H0-valued (Ft)−predictable stochastic processes φ with

the property
∫ T
0
|φ(s)|20ds<∞, a.s. Define

AM ={φ∈A :φ(ω)∈SM , a.s.}. (2.20)

With this notation, the above primitive equations become

duε

dt
=∆uε−uε∂xuε−W(uε)∂zu

ε−∂xps+
∫ z

−h
∂xθ

ε+f+
√
εσ1(t,φ

ε)Ẇ1, (2.21)

dθε

dt
=∆θε−uε∂xθε−W(uε)∂zθ

ε+q+
√
εσ2(t,φ

ε)Ẇ2. (2.22)

Thus, we rewrite this system for φε=(uε,θε) as

dφε+[Aφε+B(φε,φε)+F (φε)]dt=Rdt+
√
εσ(t,φε)dW (t), (2.23)

where W (t)=(W1(t),W2(t)) and

Aφε=(A1u
ε, A2θ

ε), (2.24)

B(φε)=(B1(u
ε,uε), B1(u

ε,θε)), (2.25)

Fφε=(∂xps−
∫ z

−h
∂xθ

ε, 0), (2.26)

R=(f, q), (2.27)

σ(t,φε)=(σ1(t,φ
ε),σ2(t,φ

ε)). (2.28)

The noise intensity σ : [0,T ]×V →LQ(H0,H) is assumed to satisfy the following con-
ditions:

Assumption A: There exist positive constants K and L such that

(A.1) σ∈C
(
[0,T ]×H;LQ(H0,H)

)
;

(A.2) |σ(t,φ)|2LQ
≤K(1+‖φ‖2), ∀t∈ [0,T ] , ∀φ∈V ;

(A.3) |σ(t,φ)−σ(t,ψ)|2LQ
≤L‖φ−ψ‖2, ∀t∈ [0,T ], ∀φ,ψ∈V .

In order to obtain large deviation, we should introduce the stochastic control
equation, let h∈A, ε≥0, and consider the following generalized primitive equations
with initial condition φεh(0)= ξ:

dφεh(t)+
[
Aφεh(t)+B(φεh(t))+F (φ

ε
h)
]
dt=Rdt+

√
εσ(φεh(t))dW (t)+ σ̃(φεh(t))h(t)dt.

(2.29)
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Then, we introduce another intensity coefficient σ̃∈C([0,T ]×V ;LQ(H0,H)) such
that
Assumptions Ã: There exist positive constants K̃ and L̃ such that

(Ã.1) |σ̃(t,φ)|2LQ
≤ K̃(1+ |φ|2L4), ∀t∈ [0,T ], ∀φ∈L4(D);

(Ã.2) |σ̃(t,φ)− σ̃(t,ψ)|2LQ
≤ L̃|φ−ψ|2L4 , ∀t∈ [0,T ], ∀φ,ψ∈L4(D).

Remark 2.2. Continuity condition (A.1) and Lipschitz condition (A.3) im-
ply the growth condition (A.2). Meanwhile, (Ã.2) together with the assumption
σ̃∈C([0,T ]×V ;LQ(H0,H)) imply (Ã.1). We list (A.2) and (Ã.1) here only for con-
venience.

To obtain Theorem 3.1, we have to give additional assumptions on the σ and σ̃.
Assumption B: There exists a positive constant K such that

(B.1) |∂zσ(t,φ)|2LQ
≤K(1+‖∂zφ‖2), ∀t∈ [0,T ] , ∀∂zφ∈V ;

(B.2) |∂zσ̃(t,φ)|2LQ
≤K(1+‖∂zφ‖2), ∀t∈ [0,T ] , ∀∂zφ∈V .

3. Well-posedness
Let X :=C

(
[0,T ];H

)
∩L2

(
(0,T );V

)
denote the Banach space with the norm de-

fined by

‖φ‖X =
{

sup
0≤s≤T

|φ(s)|2+
∫ T

0

‖φ(s)‖2ds
} 1

2

. (3.1)

Recall that an (Ft)-predictable stochastic process φεh(t,ω) is called the weak solution
for the generalized stochastic primitive problem (2.29) on [0,T ], with initial condition
ξ∈X, if φεh is in C([0,T ];H)∩L2((0,T );V ), a.s., and satisfies

(φεh(t),ψ)−(ξ,ψ)+

∫ t

0

[〈φεh(s),Aψ〉+
〈
B(φεh(s)),ψ

〉
+(F (φεh(s)),ψ)]ds

=

∫ t

0

(R,ψ)ds+
√
ε

∫ t

0

(
σ(φεh(s))dW (s)ds,ψ

)
+

∫ t

0

(
σ̃(φεh(s))h(s) , ψ

)
ds, a.s., (3.2)

for all ψ∈D(A) and all t∈ [0,T ]. Note that this solution is a strong one in the
probabilistic meaning, that is written in terms of stochastic integrals with respect
to the given Brownian motion W. The main result of this section is the following
theorem.

Theorem 3.1 (Well-posedness and a priori bounds). Fix M>0. Then there
exists ε0 := ε0(K,K,L,K̃,L̃,T,M)>0 such that the following existence and uniqueness
result is true for 0≤ ε≤ ε0. Let the initial datum ξ∈Y satisfy E|ξ|4<∞, E|∂zξ|4<∞,

and let h∈AM , f, ∂zf ∈L4(Ω;L2(0,T ;H)), q, ∂zq∈L4(Ω;L2(0,T ;H)), and ε∈ [0,ε0].
Then there exists a unique weak solution φεh of the generalized stochastic primitive
problem (2.29) with initial condition φεh(0)= ξ∈Y , such that φεh∈X a.s. Furthermore,
there exists a constant

C :=C
(
K,K,L,K̃,L̃,T,M, |f |L4(Ω;L2(0,T ;H)), |q|L4(Ω;L2(0,T ;H)),

|∂zf |L4(Ω;L2(0,T ;H)), |∂zq|L4(Ω;L2(0,T ;H))

)

such that for ε∈ [0,ε0] and h∈AM ,

E‖φεh‖2X ≤1+E
(

sup
0≤t≤T

|φεh(t)|4+
∫ T

0

‖φεh(t)‖2dt
)
≤C

(
1+E|ξ|4

)
, (3.3)
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and also

∂zφ
ε
h(t)∈L4(Ω,L∞(0,T ;H)∩L2(0,T ;V )). (3.4)

For φ=(u,θ)∈V , define

E(φ)=−Aφ−B(φ)−F (φ)+R. (3.5)

We first obtain monotonicity properties of E.

Lemma 3.2. Assume that φ=(u,θ)∈V and ψ=(v,η)∈V . We have

〈
E(φ)−E(ψ),φ−ψ

〉
+

1

2
‖φ−ψ‖2≤C|φ−ψ|‖φ−ψ‖‖ψ‖+C(1+ |∂zψ|4)|φ−ψ|2.

(3.6)

Proof. Set U =u−v,Θ=θ−η and Φ=φ−ψ := (U,Θ). We deduce

〈
E(φ)−E(ψ),Φ

〉
=−

〈
A(φ)−A(ψ),Φ

〉
−
〈
B(φ)−B(ψ),Φ

〉
−
〈
F (φ)−F (ψ),Φ

〉

≡ I1+I2+I3.

Integrating by parts, using Lemma (2.1), Hölder’s inequality, Ladyzhenskaya’s in-
equality for two-dimensional domain, and Young’s inequality, we have

I1=−|∇(u−v)|2−|∇(θ−η)|2=−‖φ−ψ‖2,

I2= b1(u−v,u−v,v)+b1(u−v,θ−η,η)
≤|u−v|L4‖v‖|u−v|L4 + |u−v|L4‖η‖|θ−η|L4

+|∂x(u−v)||∂zv||u−v|
1
2 ‖u−v‖ 1

2 + |∂x(u−v)||∂zη||θ−η|
1
2 ‖θ−η‖ 1

2

≤C|u−v|‖u−v‖‖v‖+C|u−v| 12 ‖u−v‖ 1
2 ‖η‖|θ−η| 12 ‖θ−η‖ 1

2

+‖u−v‖ 3
2 |∂zv||u−v|

1
2 +‖u−v‖ 1

2 |‖θ−η‖ 1
2 |∂zη||θ−η|

1
2

≤C|φ−ψ|‖φ−ψ‖(‖v‖+‖η‖)+C‖φ−ψ‖ 3
2 |φ−ψ| 12 |∂zψ|

≤C|φ−ψ|‖φ−ψ‖‖ψ‖+ 1

4
‖φ−ψ‖2+C|∂zψ|4|φ−ψ|2,

I3=

∫

M

(∫ z

−h
∂x(θ−η)dz̃ ·(u−v)

)
dM

≤
∫

M

(∫ 0

−h
|∂x(θ−η)|dz̃ · |u−v|

)
dM

≤h|∂x(θ−η)||u−v|≤
1

4
‖φ−ψ‖2+C|φ−ψ|2.

Combining I1, I2, and I3, we end the proof.

We now introduce the Galerkin systems associated to the original equation and
establish some uniform a priori estimates. For any n≥1, let Hn=span(e1, · · · ,en)⊂
Dom(A) and let Pn :H→Hn denote the orthogonal projection onto Hn. Note that
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Pn contracts the H and V norms. Suppose that the H−valued Wiener process W
with covariance operator Q is such that

PnQ
1
2 =Q

1
2Pn, n≥1,

which is true if Qh=
∑
n≥1λnen with trace

∑
n≥1λn<∞. Then for H0=Q

1
2H and

(φ,ψ)0=(Q− 1
2φ,Q− 1

2ψ), for φ,ψ∈H0, we see that Pn :H0→H0∩Hn contracts the H
and H0 norms. Let Wn=PnW , σn=Pnσ and σ̃n=Pnσ̃.

For h∈AM , we consider the stochastic ordinary differential equation on the n-
dimensional space Hn defined by

d(φεn,h,ψ)=
[
〈E(φεn,h),ψ〉+(σ̃n(φ

ε
n,h)h,ψ)

]
dt+

√
ε(σn(φ

ε
n,h)dWn,ψ), (3.7)

for ψ=(v,η)∈Hn and φεn,h(0)=Pnξ.
We note that the formulation (3.7) allows one to treat φεn,h as a process in Rn.

Hence, by a well-posedness result for stochastic ordinary differential equations, there
exists a maximal solution to (3.7), i.e., a stopping time τεn,h≤T such that (3.7) holds
for t<τεn,h and as t↑ τεn,h<T , |φεn,h(t)|→∞. One can then apply the finite dimen-
sional Itô’s calculus to the above Galerkin systems. We next establish some uniform
estimates on φεn,h (independent of n). For every N >0, set

τN =inf{t : |φεn,h(t)|≥N}∧ inf{t : |∂zφεn,h(t)|≥N}∧T. (3.8)

The following proposition provides the (global) existence and uniqueness of approxi-
mate solutions and also their uniform (a priori) estimates. This is the main prelimi-
nary step in the proof of Theorem 3.1.

Proposition 3.1. There exists ε0,p := ε0,p(K,K̃,T,M) such that for 0≤ ε≤ ε0,p the
following result holds for an integer p≥1 (with the convention x0=1). Let h∈AM ,

f,q∈L2p(Ω;L2(0,T ;H)), and ξ∈L2p(Ω,H). Then the equation (3.7) has a unique
solution with a modification φεn,h∈C([0,T ],Hn) satisfying

sup
n

E

(
sup

0≤t≤T
|φεn,h(t)|2p+

∫ T

0

‖φεn,h(s)‖2 |φεn,h(s)|2(p−1)ds
)

≤C(p,K,K̃,T,M, |f |L2p(Ω;L2(0,T ;H)), |q|L2p(Ω;L2(0,T ;H)))
(
E|ξ|2p+1

)
. (3.9)

Proof. Itô’s formula yields that for t∈ [0,T ] and τN defined by (3.8),

|φεn,h(t∧τN )|2= |Pnξ|2+2
√
ε

∫ t∧τN

0

(
σn(φ

ε
n,h(s))dWn(s),φ

ε
n,h(s)

)
ds (3.10)

+2

∫ t∧τN

0

〈
E(φεn,h(s)),φ

ε
n,h(s)〉ds

+2

∫ t∧τN

0

(
σ̃n(φ

ε
n,h(s))h(s),φ

ε
n,h(s)

)
ds

+ε

∫ t∧τN

0

|σn(φεn,h(s))Pn|2LQ
ds. (3.11)

Applying again Itô’s formula for xp when p≥2, using Lemma 2.1, and with the
convention p(p−1)xp−2=0 for p=1, this yields for t∈ [0,T ],

|φεn,h(t∧τN )|2p+2p

∫ t∧τN

0

|φεn,h(r)|2(p−1)
[
‖uεn,h(r)‖2+‖θεn,h(r)‖2

]
dr
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≤|Pnξ|2p+
∑

1≤j≤6

Tj(t), (3.12)

where

T1(t)=2p

∫ t∧τN

0

|
〈
φεn,h,F (φ

ε
n,h)

〉
||φεn,h(r)|2(p−1)dr,

T2(t)=2p

∫ t∧τN

0

|
〈
φεn,h,R

〉
||φεn,h(r)|2(p−1)dr,

T3(t)=2p
√
ε
∣∣∣
∫ t∧τN

0

(
σn(φ

ε
n,h(r))dWn(r),φ

ε
n,h(r)

)
|φεn,h(r)|2(p−1)dr

∣∣∣,

T4(t)=2p

∫ t∧τN

0

|(σ̃n(φεn,h(r))h(r),φεn,h(r))| |φεn,h(r)|2(p−1)dr,

T5(t)=pε

∫ t∧τN

0

|σn(φεn,h(r))Pn|2LQ
|φεn,h(r)|2(p−1)dr,

T6(t)=2p(p−1)ε

∫ t∧τN

0

|Πnσ∗
n(φ

ε
n,h(r))φ

ε
n,h(r)|2H0

|φεn,h(r)|2(p−2)dr.

Hölder’s inequality and Young’s inequality imply that

T1(t)≤2p

∫ t∧τN

0

|φεn,h(r)|2(p−1)

∫

M

((∫ 0

−h
|∂xθεn,h(r)|dz

)
· |uεn,h(r)|

)
dMdr

≤2p

∫ t∧τN

0

|φεn,h(r)|2(p−1)[h|∂xθεn,h(r)||uεn,h(r)|]dr

≤ 1

12

∫ t∧τN

0

|φεn,h(r)|2(p−1)‖φεn,h(r)‖2dr+C1

∫ t∧τN

0

|φεn,h(r)|2pdr (3.13)

and

T2(t)=2p

∫ t∧τN

0

[(uεn,h(r),f)+(θεn,h(r),q)]|φεn,h(r)|2(p−1)dr

≤ 1

12

∫ t∧τN

0

|φεn,h(r)|2(p−1)‖φεn,h(r)‖2dr

+C2 sup
0≤s≤t∧τN

|φεn,h(r)|2(p−1)

∫ t∧τN

0

(|f(r)|2+ |q(r)|2)dr

≤ 1

12

∫ t∧τN

0

|φεn,h(r)|2(p−1)‖φεn,h(r)‖2dr

+
1

2
sup

0≤s≤t∧τN
|φεn,h|2p+C2

(
|f |2pL2(0,t∧τN ;H)+ |q|2pL2(0,t∧τN ;H)

)
. (3.14)

Using the Cauchy-Schwarz inequality and (Ã.1), we get

T4(t)≤2p

∫ t∧τN

0

[
K̃(1+ ‖φεn,h(r)‖2)

] 1
2 |h(r)|0 |φεn,h(r)|2p−1dr

≤ 1

12

∫ t∧τN

0

‖φεn,h(r)‖2 |φεn,h(r)|2(p−1)dr+C4

∫ t∧τN

0

|h(r)|20 |φεn,h(r)|2pdr

+
1

12

∫ t∧τN

0

|φεn,h(r)|2(p−1)dr. (3.15)
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Using (A.2), we deduce that

T5(t)+T6(t)≤2p2Kε

∫ t∧τN

0

‖φεn,h(r)‖2 |φεn,h(r)|2(p−1)dr

+2p2Kε

∫ t∧τN

0

|φεn,h(r)|2(p−1)dr. (3.16)

Finally, the Burkholder-Davies-Gundy inequality (see [10]), (A.2), and Schwarz’s in-
equality yield that for t∈ [0,T ] and δ3>0,

E

(
sup

0≤s≤t
|T3(s)|

)
≤6p

√
εE

{∫ t∧τN

0

|φεn,h(r)|2(2p−1) |σn,h(φεn,h(r))Pn|2LQ
dr
} 1

2

≤ δ3E
(

sup
0≤s≤t∧τN

|φεn,h(s)|2p
)
+

9p2Kε

δ3
E

∫ t∧τN

0

|φεn,h(r)|2(p−1)dr

+
9p2Kε

δ3
E

∫ t∧τN

0

‖φεn,h(r)‖2 |φεn,h(r)|2(p−1)dr. (3.17)

Consider the following property I(i) for an integer i≥0:
I(i) There exists ε0,i := ε0,i(K,K̃,T,M)>0 such that for 0≤ ε≤ ε0,i,

sup
n

E

∫ t∧τN

0

|φεn,h(r)|2idr≤C(i) :=C(i,K,K̃,T,M)<+∞.

The property I(0) obviously holds with ε0,0=1 and C(0)=T . Assume that for some
integer i with 1≤ i≤p, the property I(i-1) holds; we prove that I(i) holds. Here we
mainly use a version of Gronwall’s lemma [8, 12, 13].

By setting

ϕi(r)=2(C1+C4|h(r)|20),

Z=2

(
1

12
+2i2Kε

)∫ τN

0

|φεn,h(r)|2(i−1)dr+2|ξ|2i

+2C2(|f |2iL2(0,T ;H)+ |q|2iL2(0,T ;H)),

X(t)= sup
0≤s≤t

|φεn,h(s∧τN )|2i,

Y (t)=

∫ t∧τN

0

‖φεn,h(s)‖2 |φεn,h(s)|2(i−1)ds,

I(t)= sup
0≤s≤t

∣∣∣2i
√
ε

∫ t∧τN

0

(
σn(φ

ε
n,h(r))dWn(r),φ

ε
n,h(r)

)
|φεn,h(r)|2(i−1)

∣∣∣,

we have
∫ T
0
ϕi(s)ds≤Ci(M) :=2C1T +C4M . Let α=2(2p− 1

4 −2p2Kε), β= δ3=
1

2
[
1+Ci(M)eCi(M)

] , and C̃= 9i2K
δ3

E
∫ τN
0

|φεn,h(s)|2(i−1)ds. If we choose ε small enough

to satisfy ε≤ 2δ23(2i− 1
4 )

9i2K+4i2Kδ23
, then we have γ= 9p2Kε

δ3
≤αβ. Lastly, letting ε0,i=

2δ23(2i− 1
4 )

9i2K+4i2Kδ23
∧ε0,i−1, and using Gronwall’s lemma [8, 12, 13], we obtain I(i).

An induction argument shows that I(p−1) holds, and hence the previous com-
putations with i=p yield that for t=T and 0≤ ε≤ ε0,p,

sup
n

E

(
sup

0≤s≤τN
|φεn,h(s)|2p+

∫ τN

0

‖φεn,h(s)‖2 |φεn,h(s)|2(p−1)ds
)
≤C(p,K,K̃,T,M).
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By the definition of τn,h and (3.8), we know sup0≤s≤t∧τN |φn,h(s)|→∞, and τN ↑ τn,h
on {τn,h<T}, as N→∞. Hence, by the above estimate we have P(τn,h<T )=0 and
for almost all ω, for N(ω) large enough, τN(ω)(ω)=T . Thus we complete the proof of
the proposition.

Proposition 3.2. There exists ε0,p := ε0,p(K,K̃,K,T,M) such that for 0≤ ε≤ ε0,p
the following result holds: Let h∈AM , ∂zf,∂zq∈L2p(Ω;L2(0,T ;H)), and ∂zξ∈
L2p(Ω,H). Then we have

sup
n

E

(
sup

0≤t≤T
|∂zφεn,h(t)|2p+

∫ T

0

‖∂zφεn,h(s)‖2 |∂zφεn,h(s)|2(p−1)ds
)

≤C(K,K̃,K,T,M, |∂zf |L2p(Ω;L2(0,T ;H)), |∂zq|L2p(Ω;L2(0,T ;H)))
(
E|∂zξ|2p+1

)
.

(3.18)

Proof. Applying Itô’s formula for |∂zφεn,h|2p, for t∈ [0,T ] and τN defined by
(3.8), we get

|∂zφεn,h(t∧τN )|2p+2p

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)
[
‖∂zuεn,h(r)‖2+‖∂zθεn,h(r)‖2

]
dr

≤|Pn∂zξ|2p+
∑

1≤j≤6

Jj(t), (3.19)

where

J1(t)=2p

∫ t∧τN

0

|
〈
∂zzφ

ε
n,h,B(φεn,h)

〉
||∂zφεn,h(r)|2(p−1)dr,

J2(t)=2p

∫ t∧τN

0

|
〈
∂zzφ

ε
n,h,F (φ

ε
n,h)

〉
||∂zφεn,h(r)|2(p−1)dr,

J3(t)=2p

∫ t∧τN

0

|
〈
∂zzφ

ε
n,h,R

〉
||∂zφεn,h(r)|2(p−1)dr,

J4(t)=2p
√
ε
∣∣∣
∫ t∧τN

0

(
σn(φ

ε
n,h(r))dWn(r),∂zzφ

ε
n,h(r)

)
|∂zφεn,h(r)|2(p−1)dr

∣∣∣,

J5(t)=2p

∫ t∧τN

0

|(σ̃n(φεn,h(r))h(r),∂zzφεn,h(r))| |∂zφεn,h(r)|2(p−1)dr,

J6(t)=pε

∫ t∧τN

0

|∂zσn(φεn,h(r))Pn|2LQ
|∂zφεn,h(r)|2(p−1)dr,

J7(t)=2p(p−1)ε

∫ t∧τN

0

|Πn (∂zσn)∗(φεn,h(r))∂zφεn,h(r)|2H0
|∂zφεn,h(r)|2(p−2)dr.

Note that by (2.19), we have

J1(t)=2p

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)
∣∣∣b1

(
uεn,h(r),θ

ε
n,h(r),∂zzθ

ε
n,h(r)

)∣∣∣dr.

Integrating by parts and using Hölder’s inequality, Ladyzhenskaya’s inequality, and
Young’s inequality, one infers that

J1(t)≤2p

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)

∫

M
|∂zθεn,h(r)||∂zuεn,h(r)||∂xθεn,h(r)|dMdr
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+2p

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)

∫

M
|∂zθεn,h(r)|2|∂xuεn,h(r)|dMdr

≤4p

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)|∂zφεn,h(r)|2L4 |∂xφεn,h(r)|dr

≤ 1

12

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)‖∂zφεn,h(r)‖2dr

+C1

∫ t∧τN

0

|∂zφεn,h(r)|2p‖φεn,h(r)‖2dr, (3.20)

and

J2(t)=2p

∫ t∧τN

0

|
〈
∂zzu

ε
n,h,

∫ z

−h
∂xθ

ε
n,hdz

〉
||∂zφεn,h(r)|2(p−1)dr

=2p

∫ t∧τN

0

|
〈
∂zu

ε
n,h,∂xθ

ε
n,h

〉
||∂zφεn,h(r)|2(p−1)dr

≤2p

∫ t∧τN

0

‖θεn,h‖|∂zφεn,h(r)|2p−1dr

≤ 1

4
sup

0≤s≤t∧τN
|∂zφεn,h(s)|2p+C2

(∫ t∧τN

0

‖θεn,h(r)‖2dr
)2p

. (3.21)

As we obtained the estimate (3.14), we also have

J3≤
1

12

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)‖∂zφεn,h(r)‖2dr

+
1

4
sup

0≤s≤t∧τN
|∂zφεn,h|2p+C3

(
|∂zf |2pL2(0,t∧τN ;H)+ |∂zq|2pL2(0,t∧τN ;H)

)
. (3.22)

As in (3.15), using the Cauchy-Schwarz inequality and (B.2), we get

J5≤
1

12

∫ t∧τN

0

‖∂zφεn,h(r)‖2 |∂zφεn,h(r)|2(p−1)dr+C5

∫ t∧τN

0

|h(r)|20 |∂zφεn,h(r)|2pdr

+
1

12

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)dr. (3.23)

Using again (B.1), we deduce that

J6(t)+J7(t)≤2p2Kε

∫ t∧τN

0

‖∂zφεn,h(r)‖2 |∂zφεn,h(r)|2(p−1)dr

+2p2Kε

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)dr. (3.24)

Finally, the Burkholder-Davies-Gundy inequality, (B.1), and Schwarz’s inequality
yield that for t∈ [0,T ] and δ4>0,

E

(
sup

0≤s≤t
|J4(s)|

)
≤6p

√
εE

{∫ t∧τN

0

|∂zφεn,h(r)|2(2p−1) |∂zσn,h(φεn,h(r))Pn|2LQ
dr
} 1

2

≤ δ4E
(

sup
0≤s≤t∧τN

|∂zφεn,h(s)|2p
)
+

9p2Kε

δ4
E

∫ t∧τN

0

|∂zφεn,h(r)|2(p−1)dr
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+
9p2Kε

δ4
E

∫ t∧τN

0

‖∂zφεn,h(r)‖2 |∂zφεn,h(r)|2(p−1)dr. (3.25)

Using similar steps to those in Proposition 3.1, due to (3.20)-(3.25) we get (3.18).

Due to Ladyzhenskaya’s inequality for two-dimensional domains, we now have the
following bound in L4(M).

Proposition 3.3. Let h∈AM and ξ∈L4(Ω,H), and let ε2,0 be defined as in Propo-
sition 3.1 with p=2. Then there exists a constant

C2 :=C2(K,K̃,T,M, |f |L4(Ω;L2(0,T ;H)), |q|L4(Ω;L2(0,T ;H)))

such that

sup
n

E

∫ T

0

|φεn,h(s)|4L4ds≤C2(1+E|ξ|4). (3.26)

The following result is a consequence of Itô’s formula.

Lemma 3.3. Let ρ′ : [0,T ]×Ω→ [0+∞) be adapted such that for almost every ω

t→ρ′(t,ω)∈L1([0,T ]) and for t∈ [0,T ], set ρ(t)=
∫ t
0
ρ′(s)ds. For i=1,2, let σi satisfy

Assumptions (A) and (B), σ̄i∈C([0,T ]×H,L2
Q), and let σ̄ satisfy Assumptions Ã and

B. Let E satisfy condition (3.6) and hε∈AM . Let φi∈L2([0,T ],V )∩L∞([0,T ],H)
a.s. and be such that φi(0)= ξ∈L4(Ω,H), for ξ F0-measurable, and satisfy the equa-
tion

dφi(t)=R(φi(t))dt+
√
εσi(t,φi(t))dW (t)+

(
σ̄(t,φi(t))+ σ̄i(t,φi(t))

)
hε(t)dt. (3.27)

Let Φ=φ1−φ2. Then for every t∈ [0,T ],

e−ρ(t) |Φ(t)|2≤
∫ t

0

e−ρ(s)
{
− 1

2
‖Φ(s)‖2+ε

∣∣σ1(s,φ1(s))−σ2(s,φ2(s))
∣∣2
L2

Q

+|Φ(s)|2
[
−ρ′(s)+2C(1+ |∂zφ2(s)|4)+C ‖φ2(s)‖2+C |hε(s)|20

]}
ds

+2

∫ t

0

e−ρ(s)
(
σ̄1(s)− σ̄2(s) ,Φ(s)

)
ds+I(t), (3.28)

where I(t)=2
√
ε
∫ t
0
e−ρ(s)

([
σ1(s,φ1(s))−σ2(s,φ2(s))

]
dW (s) ,Φ(s)

)
.

Proof. Itô’s formula, (3.6), and condition (Ã.2) imply that for t∈ [0,T ],

e
−ρ(t) |Φ(t)|2

=

∫ t

0

e
−ρ(s)

{

−ρ
′(s)|Φ(s)|2+ε

∣

∣σ1(s,φ1(s))−σ2(s,φ2(s))
∣

∣

2

LQ

+2〈E(φ1(s))−E(φ2(s)) ,Φ(s)〉+2
(

σ̄(s,φ1(s))hε(s)− σ̄(s,φ2(s))hε(s) ,Φ(s)
)

}

ds

+

∫ t

0

e
−ρ(s)2

([

σ̄1(s)− σ̄2(s)
]

hε(s) ,Φ(s)
)

ds+I(t)

≤

∫ t

0

e
−ρ(s)

{

−ρ
′(s) |Φ(s)|2+ε

∣

∣σ1(s,φ1(s))−σ2(s,φ2(s))
∣

∣

2

LQ
− ‖Φ(s)‖2

+2C|Φ(s)|‖Φ(s)‖‖φ2(s)‖+2C(1+ |∂zφ2(s)|
4)|Φ(s)|2+2C

√

L̃‖Φ(s)‖|hε(s)|0 |Φ(s)|
}

ds
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+

∫ t

0

e
−ρ(s)2

(

σ̄1(s)− σ̄2(s) ,Φ(s)
)

ds+I(t).

The inequalities

2C|Φ(s)|‖Φ(s)‖‖φ2(s)‖≤
1

4
‖Φ(s)‖2+C‖φ2(s)‖2|Φ(s)|2

and

2C
√
L̃‖Φ(s)‖|hε(s)|0 |Φ(s)|≤

1

4
‖Φ(s)‖2+C|hε(s)|20 |Φ(s)|2

conclude the proof of (3.28).

Proof of Theorem 3.1: As in [13], due to monotonicity property (3.6), a priori
estimates (3.9), (3.18), and Lemma 3.3, we obtain Theorem 3.1.

4. Large deviations
Since the PEs are a large scale model, one may neglect the effect of small scale

and intermediate scale in its modeling. One may consider this effect by adding small
noise in the equations. Large deviations theory is concerned with the study of precise
asymptotics governing the decay rate of probabilities of rare events. A classical area
of large deviations is the Wentzell-Freidlin theory that deals with path probability
asymptotics for small noise stochastic dynamical systems. More precisely, we will put
a bound on the probability that the random perturbed trajectory goes very far from
the unperturbed trajectory, and see the rate at which this probability goes to zero
as the noise shrinks (ε→0). We consider large deviations via a weak convergence
approach (originated with Budhiraja, Dupuis [1, 2], and Sritharan and Sundar [42],
Duan and Millet [13], among others). In this paper, the idea of the proof for large
deviations is the same as [13], so here we only give the outline of the proof. Firstly,
we recall some classical definitions with large deviations.

Definition 4.1. The random family {φε} is said to satisfy a large deviation principle
on X with the good rate function I if the following conditions hold:

I is a good rate function. The function function I :X→ [0,∞] is such that for
each M ∈ [0,∞[ the level set {φ∈X : I(φ)≤M} is a compact subset of X.
For A∈B(X), set I(A)= infφ∈A I(φ).

Large deviation upper bound. For each closed subset F of X:

limsup
ε→0

ε logP(φε∈F )≤−I(F ).

Large deviation lower bound. For each open subset G of X:

lim inf
ε→0

ε logP(φε∈G)≥−I(G).

To establish the large deviation principle, we need to strengthen the hypothesis on
the growth condition and Lipschitz property of σ (and σ̃) as follows:
There exist positive constants K and L such that

(A.4) |σ(t,φ)|2LQ
≤K (1+ |φ|2), ∀t∈ [0,T ], ∀φ∈V .

(A.5) |σ(t,φ)−σ(t,ψ)|2LQ
≤L |φ−ψ|2, ∀t∈ [0,T ], ∀φ,ψ∈V .

The following theorem is the main result of this section.
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Theorem 4.1. Suppose σ does not depend on time and satisfies (A.1), (B), (A.4),
and (A.5), and let φε be the solution of the stochastic Primitive Equations (2.23).
Then {φε} satisfies the large deviation principle in C([0,T ];H)∩L2((0,T );V ), with
the good rate function

Iξ(ψ)= inf
{h∈L2(0,T ;H0):ψ=G0(

∫
.

0
h(s)ds)}

{1

2

∫ T

0

|h(s)|20ds
}
. (4.1)

Here the infimum of an empty set is taken as infinity.

The proof of the large deviation principle will use the following technical lemma
which studies time increments of the solution to the stochastic control equation. For
any integer k=0, · · · ,2n−1, and s∈ [kT2−n,(k+1)T2−n[, set sn=kT2

−n and s̄n=
(k+1)T2n. Given N >0, h∈AM , ε≥0 small enough, let φεh denote the solution to
(2.29) given by Theorem 3.1, and for t∈ [0,T ] let

GN (t)=
{

ω :
(

sup
0≤s≤t

|φε
h(s)(ω)|

2
)

∨
(

∫ t

0

‖φε
h(s)(ω)‖

2
ds

)

∨
(

sup
0≤s≤t

|∂zφ
ε
h(s)(ω)|

2≤N
)}

.

Lemma 4.2. Let M,N >0, σ and σ̃ satisfy the Assumptions (A.1), (B), (A.4), and
(A.5), and ∂zξ, ξ∈L4(H). Then there exists a positive constant

C :=C
(
K,L, |f |L4(Ω;L2(0,T ;H)), |q|L4(Ω;L2(0,T ;H)), |∂zf |L4(Ω;L2(0,T ;H)), (4.2)

|∂zq|L4(Ω;L2(0,T ;H)),T,M,N,ε0

)
(4.3)

such that for any h∈AM and ε∈ [0,ε0],

In(h,ε) :=E

[
1GN (T )

∫ T

0

|φεh(s)−φεh(s̄n)|2ds
]
≤C 2−

n
2 . (4.4)

Proof. The proof is close to that of Lemma 4.2 in [13], and we omit the details
here.

Now we return to the setting of Theorem 4.1. Let ε0 be defined as in Theorem
3.1 and (hε,0<ε≤ ε0) be a family of random elements taking values in AM . Let φεhε

be the solution of the corresponding stochastic control equation with initial condition
φεhε

(0)= ξ∈H:

dφεhε
+[Aφεhε

+B(φεhε
)+F (φεhε

)]dt=Rdt+σ(φεhε
)hεdt+

√
εσ(φεhε

)dW (t). (4.5)

Note that φεhε
=Gε

(√
ε
(
W.+

1√
ε

∫ .
0
hε(s)ds

))
due to the uniqueness of the solution.

For all ω and h∈L2([0,T ],H0), let φh be the solution of the corresponding control
equation with initial condition φh(0)= ξ(ω):

dφh+[Aφh+B(φh)+F (φh)]dt=Rdt+σ(φh)hdt. (4.6)

Note that here we may assume that h and ξ are random, but φh may defined pointwise
by (4.6).

Let C0={
∫ .
0
h(s)ds : h∈L2([0,T ],H0)}⊂C([0,T ],H0). For every ω∈Ω, define G0 :

C([0,T ],H0)→X by G0(g)(ω)=φh(ω) for g=
∫ .
0
h(s)ds∈C0 and G0(g)=0 otherwise.
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Proposition 4.2 (Weak convergence). Suppose that σ does not depend on
time and satisfies the Assumptions (A.1), (B), (A.4), and (A.5). Let ξ∈Y be F0-
measurable such that E|ξ|4H <+∞, E|∂zξ|4H <+∞, and let hε converge to h in dis-
tribution as random elements taking values in AM . (Note that here AM is endowed
with the weak topology induced by the norm (3.1)). Then as ε→0, φεhε

converges
in distribution to φh in X=C([0,T ];H)∩L2((0,T );V ) endowed with the norm (3.1).

That is, Gε
(√

ε
(
W.+

1√
ε

∫ .
0
hε(s)ds

))
converges in distribution to G0

(∫ .
0
h(s)ds

)
in X,

as ε→0.

The proof can be obtained by delicate estimates and the method of [13].
The following compactness result is the second ingredient which allows us to

transfer the LDP from
√
εW to uε. Its proof is similar to that of Proposition 4.2, so

we refer to [13].

Proposition 4.3 (Compactness). Let M be any fixed finite positive number and
let ξ∈Y be deterministic. Define

KM ={φh∈C([0,T ];H)∩L2((0,T );V ) :h∈SM},

where φh is the unique solution of the deterministic control equation

dφh(t)+
[
Aφh(t)+B(φh(t))+Rφh(t)

]
dt=Fφh(t)dt+σ(φh(t))h(t)dt,

φh(0)= ξ, (4.7)

and σ does not depend on time and satisfies (A.1), (B), (A.4), and (A.5). Then KM

is a compact subset of X.

Proof of Theorem 4.1: Propositions 4.3 and 4.2 imply that {φε} satisfies the
Laplace principle, which is equivalent to the large deviation principle in X=
C([0,T ],H)∩L2((0,T ),V ) with the above-mentioned rate function; see Theorem 4.4
in [1] or Theorem 5 in [2].
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