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A COUPLED KELLER–SEGEL–STOKES MODEL: GLOBAL

EXISTENCE FOR SMALL INITIAL DATA AND BLOW-UP DELAY∗

ALEXANDER LORZ†

Abstract. We study a system consisting of the elliptic-parabolic Keller–Segel equations coupled
to Stokes equations by transport and gravitational forcing. We show global-in-time existence of
solutions for small initial mass in 2D. In 3D we establish global existence assuming that the initial
L
3/2-norm is small. Moreover, we give numerical evidence that for this extension of the Keller–Segel

system in 2D, solutions exist with mass above 8π, which is the critical mass for the system without
fluid.
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1. Motivation

The Keller–Segel system modelling chemotaxis is a very well studied model in
mathematical biology. In the following, we investigate a system consisting of the
elliptic-parabolic Keller–Segel equations coupled to Stokes equations:



















u ·∇c=∆c+n−a1c,
nt+u ·∇n=∆n−∇·(χn∇c),
a2ut+∇P −η∆u+n∇φ=0,

∇·u=0.

(1.1)

Here c denotes the concentration of a chemical, n a cell density, and u a fluid velocity
field described by Stokes equations. The fluid couples to n and c through transport and
gravitational forcing modelled by ∇φ. The pressure P can be seen as the Lagrange
multiplier enforcing the incompressibility constraint. The chemical c diffuses, it is
produced by the cells and it degrades. The cell density diffuses and it moves in the
direction of the chemical gradient. The constant a1≥0 measures self-degradation of
the chemical and the constants a2≥0, η>0 determine the evolution undergone by u.

The motivation for this model comes from experiments described in [21,30,33] for
the case of bacteria consuming the chemical. There the authors observed large-scale
convection patterns in a water drop sitting on a glass surface containing oxygen-
sensitive bacteria, oxygen diffusing into the drop through the fluid-air interface and
they proposed this model:



















ct+u ·∇c=∆c−nf(c),
nt+u ·∇n=∆n−∇·(nχ(c)∇c),
ut+u ·∇u+∇P −η∆u+n∇φ=0,

∇·u=0.

(1.2)

The idea behind this paper is to take these equations and change consumption of
the chemical to production i.e. make it the mathematically more interesting case of
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556 A COUPLED KELLER–SEGEL–STOKES MODEL

Keller–Segel chemotaxis. An example in biology could be E. coli which can swim and
excrete aspartate [1]. The ultimate aim is to study if and how fluid coupling changes
the blow-up behaviour.

Assuming a vanishing fluid velocity field u, we recover the elliptic-parabolic
Keller–Segel equations; see [31]. The problem of global existence vs. blow-up is
very well understood for the elliptic-parabolic Keller–Segel model

{

−∆c=n,

∂tn+∇·(χn∇c−∇n)=0,
(1.3)

in R
2. [5] summarizes the results, i.e. there is a critical mass Mcrit such that if the

initial mass is below Mcrit, then there is global-in-time existence, and if the initial
mass above Mcrit, then the solution blows up in finite time. On a bounded domain
Ω⊂R

2 the analysis is more involved because boundary effects play an important role.
With zero Dirichlet boundary conditions for c and corresponding no-flux conditions
on n, the results are the same as in full space; see [3]. For homogeneous Neumann
boundary conditions, the Keller-Segel system must be changed to

{

−∆c=n−〈n〉,
∂tn+∇·(χn∇c−∇n)=0,

(1.4)

because we need the right-hand side of the c-equation to have zero average. In this
case, there are several threshold values: if Ω is regular then solutions are global if
χM <4π and may blow up above this threshold, either on the boundary or inside the
domain. For more information about this type of boundary conditions; see [22]. For
the parabolic-parabolic Keller–Segel model recent progress has been achieved in [10].
For more references on the general Keller–Segel system, the interested reader can refer
to recent work [4,5,10]. The Keller–Segel system in higher space dimensions has been
investigated in [13,14], and results for the system with nonlinear diffusion to prevent
blow-up can be found in [9,24]. Other ways to model prevention of overcrowding can
be found in [6, 7, 20]. Kinetic models for chemotaxis can be found in [12]. Numerics
for the Keller–Segel model have been performed in [17,29].

For the system (1.2) and related systems there is a local existence result [28].
Moreover, in [16] the authors proved global existence for a simplified version of (1.2)
with weak potential or small initial c. In [15], global existence of solutions to the
system (1.2) with nonlinear diffusion is shown. Furthermore, in [27] and [34], global
existence results without smallness assumptions are given. To our knowledge, these
are the only results on (1.2). However, attention has recently been focused on coupled
kinetic–fluid systems first introduced in [8] which have a similar mathematical flavor;
we also refer the reader to [11, 19] for studies of the Vlasov-Fokker-Planck equation
coupled with the compressible or incompressible Navier-Stokes or Stokes equations,
where the main tool used to prove the global existence of weak solutions or hydrody-
namic limits is an existing entropy inequality.

For the Navier-Stokes and Stokes equations see [25,26] and references therein for
detailed mathematical theory.

The paper is structured as follows. In Section 2 we state the problem in detail
and give our results on global existence. In Section 3 we prove the global existence of
solutions to (1.1) in 2D for small mass in the following steps: obtaining an entropy,
using the regularizing effect, and passing to the limit. In Section 4, we give the main
technical differences to address the existence issues in 3D for (1.1). Finally, in Section
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5 we give numerical evidence that solutions to (1.1) exists for initial mass larger than
8π, but for even larger mass blow-up seems to occur. So the blow-up is delayed.

2. Preliminaries

We consider the system (1.1) in full space R
d, d=2,3. The system must be

supplied with initial data n(t=0,x)=n0(x), for a2>0 also u(t=0,x)=u0(x). ∇φ is
assumed to be in L∞(Rd).

Following [5] we call a triple (c,n,u) a weak solution to (1.1) if the following two
conditions hold:

(i) for every T >0, 0≤ t≤T , n(t,x)≥0, c(t,x)≥0, x∈R
d,

c∈L2(0,T ;H2(Rd));c(·,t)∈H1
0 (R

d) for a.e. t, (2.1)

n(1+ |x|+ | lnn|)∈L∞(0,T ;L1(Rd)), ∇
√
n∈L2(0,T ;L2(Rd)), (2.2)

u∈L2(0,T ;H2(Rd)), a2ut∈L2(0,T ;L2(Rd)); (2.3)

(ii) it is further required that for ψ1,ψ2,ψ3∈C∞
0 (Rd,R) and ψ̃∈C∞

0 (Rd,Rd) with
∇· ψ̃=0,

−
∫

Rd

∇ψ1 ·ucdx=
∫

Rd

(−∇ψ1 ·∇c+ψ1n−a1ψ1c) dx, (2.4)

d

dt

∫

Rd

ψ2ndx=

∫

Rd

(∇ψ2 ·un−∇ψ2 ·∇n−χ∇ψ2 ·n∇c) dx, (2.5)

a2
d

dt

∫

Rd

ψ̃udx+

∫

Rd

(

η∇ψ̃ ·∇u+ ψ̃ ·n∇φ
)

dx=0, (2.6)

∫

Rd

∇ψ3 ·udx=0. (2.7)

The main idea for showing existence is to first establish a bound on

∫

Rd

nln(n) and

then use the regularizing effect to achieve Lp-bounds.
Let us define

E(t) :=
∫

R2

n(t)| ln(n(t))|dx+‖u(t)‖22, D :=λ‖∇
√
n‖22+η‖∇u‖22. (2.8)

and Lq
σ(R

d) for 1≤ q≤∞ as the closure of
{

v∈C∞
0 (Rd)d | ∇·v=0

}

(2.9)

in Lq(Rd). Let us recall (see [18]) that each vector f ∈Lq(Rd) is uniquely decomposed
as

f =f0+∇Q

with some f0∈Lq
σ(R

d), Q∈Lq
loc(R

d), ∇Q∈Lq(Rd) and

‖∇Q‖q ≤C‖f‖q and ‖Q‖Lq(B0)≤C‖Q‖q,

where C is independent of f and B0 is an open ball in R
d. The mapping f→f0

defines a continuous projection Pq from Lq(Rd)d onto Lq
σ(R

d). Now we can define the
Stokes operator Aq :=−Pq∆ and also the space

Dα,s
q :=

{

v∈Lq(Ω);‖v‖q+
(
∫ ∞

0

‖t1−αAqe
−tAqv‖sq

dt

t

)1/s

<∞
}

.
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More information on the Stokes operator and this definition can be found in [18].
The following result holds for all a1,a2>0. For simplicity, let us fix a2=1.

Theorem 2.1 (2D). Assume n0≥0, χ,η>0, u0∈D2/3,3
3/2 , and

∫

R2

n0 ln(n0)+n0|x|+n0dx<∞. (2.10)

There exists a Mexist>0 such that if
∫

R2

n0dx<Mexist, (2.11)

then there is a global in time weak solution for (1.1) and we have an entropy inequality

E(t)+
∫ t

0

Ddt′≤C+Ct+C

∫ t

0

E dt′, (2.12)

where E and D are given in (2.8) and 0≤ t.
Remark 2.2 (Justification of the assumption a1,a2>0). Assuming a1>0 gives

∫

R2

ndx=a1

∫

R2

cdx, and this together with a gradient bound achieved below enables

us to control a range of Lq-norms of c which we could not obtain in full space R2 just
from the L2-bound on the gradient. The reason for a2=1 is similar: for the stationary
Stokes system in R

2 we only obtain a L2-gradient bound, which does not allow us to
control any Lq-norm of u itself.

Remark 2.3 (Reusing techniques from classical Keller–Segel). We recall that
the entropy for the classical Keller–Segel reads as

EKS :=

∫

R2

nln(n)− χ

2
ncdx.

Already when calculating the time evolution of the second term, we see

d

dt

∫

R2

χ

2
ncdx=χ

∫

R2

c∂tn+n∂tcdx

=χ

∫

R2

∇c ·∇n+ χ

2
n∇c ·∇n+n∂tcdx.

But there is no way to handle the time derivative on c.
At least for a large viscosity η and sufficiently large mass, one would expect blow-

up because in this case u is small and the system is therefore close to the Keller-Segel
system. But regarding the additional terms in the computation of the second moment
of n:

d

dt

∫

R2

|x|2ndx=4

∫

R2

ndx+2

∫

R2

x ·undx+2

∫

R2

nx ·∇cdx

=4M+2

∫

R2

x ·undx+2

∫

R2

(u ·∇c−∆c+a1c)x ·∇cdx,

already for

∫

R2

x ·undx the regularity that we can obtain for u by using n in L1 is not

enough to estimate this term.
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3. Existence in R
2

Here we prove Theorem 2.1: We will establish a-priori estimates. We first establish

positivity of n and c. In the expression for
d

dt

∫

nln(n) the term

∫

nu ·∇c occurs.

In order to bound it, we use an estimate of ‖∇c‖2. We conclude this section by
employing a regularizing effect to pass to the limit.

3.1. Positivity. By some standard argument, e.g. a maximum principle, we
can show that for n0≥0, we have n(x,t)≥0 for almost all t; cf. [2]. The Equation
(1.1)2 leads to

d

dt

∫

R2

ndx=0.

So the L1-norm of n, also called its mass, is conserved.
Moreover, also by a maximum principle we obtain c(x,t)≥0 for almost all t.

Therefore, the L1-norm of c is also conserved:

a1‖c‖1=‖n‖1.

3.2. ‖∇c‖2 bound. Multiplying the Equation (1.1)1 by c and using the
Gagliardo-Nirenberg inequality

‖c‖q′ ≤C‖∇c‖1−1/q′

2 ‖c‖1/q
′

1 ,

we obtain
∫

R2

(cu ·∇c)dx+‖∇c‖22=
∫

R2

ncdx−a1‖c‖22,

‖∇c‖22≤‖n‖q‖c‖q′ ≤C‖n‖q‖∇c‖1−1/q′

2 ‖c‖1/q
′

1 ≤C‖n‖q‖∇c‖1/q2 ‖c‖1−1/q
1 , (3.1)

with 1/q+1/q′=1 and 1<q′,q <∞. Therefore it follows using the Gagliardo-
Nirenberg inequality for 1≤ q≤2,

‖n‖q=‖
√
n‖22q ≤C

(

‖∇
√
n‖1−1/q

2 ‖
√
n‖1/q2

)2

=C‖∇
√
n‖2−2/q

2 ‖n‖1/q1 , (3.2)

that

‖∇c‖2≤C‖n‖q/(2q−1)
q ‖c‖(q−1)/(2q−1)

1 ≤ C

a
(q−1)/(2q−1)
1

‖n‖q/(2q−1)
q ‖n‖(q−1)/(2q−1)

1

≤ C

a
(q−1)/(2q−1)
1

(

‖∇
√
n‖2−2/q

2 ‖n‖1/q1

)q/(2q−1)

‖n‖(q−1)/(2q−1)
1

=
C

a
(q−1)/(2q−1)
1

‖∇
√
n‖(2q−2)/(2q−1)

2 ‖n‖q/(2q−1)
1 . (3.3)

3.3. Estimate of the L1-norm of nu ·∇c. Let us work on the term (u ·∇c)n:
Using (3.3) with q=9/8 and the inequality

‖u‖∞≤C‖u‖2/52 ‖D2u‖3/53/2,
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we arrive at
∫

R2

|u ·∇c|ndx≤‖u‖∞‖∇c‖2‖n‖2≤C‖u‖2/52 ‖D2u‖3/53/2‖∇
√
n‖6/52 ‖n‖7/51 .

Integrating over time and applying Hölder’s inequality, we obtain

∫ t

0

∫

R2

|u ·∇c|ndxdt′

≤C
(
∫ t

0

‖u‖22dt′
)1/5(∫ t

0

‖D2u‖33/2dt′
)1/5(∫ t

0

‖∇
√
n‖22dt′

)3/5

‖n‖7/51 .

Now we recall a regularity result for the Stokes equations:

Theorem 3.1 (from [18]). Assume Ω=R
d or Ω⊂R

d is a smooth bounded do-

main. Let 1<s,q<∞. Then for every f ∈Ls((0,T );Lq(Ω)) and u0∈D1−1/s,s
q there

exists a unique solution of the Stokes system
{

ut+∇P −η∆u=f,
∇·u=0,

satisfying

∫ t

0

‖D2u‖sq dt′+
∫ t

0

‖∂tu‖sq dt′≤C
(
∫ t

0

‖f‖sq dt′+‖u0‖sD1−1/s,s
q

)

.

Using this, we estimate the second term above (by means of (3.2)) as follows:

∫ t

0

‖D2u‖33/2dt′≤C
(
∫ t

0

‖n‖33/2dt′+‖u0‖3D2/3,3

3/2

)

≤C
∫ t

0

‖∇
√
n‖22‖n‖21dt′+C. (3.4)

Therefore with

ab≤C(δ)a5+δb5/4,

we have
∫ t

0

∫

R2

|u ·∇c|ndxdt′≤C(δ)
∫ t

0

‖u‖22dt′+δ
∫ t

0

‖∇
√
n‖22dt′+C(n0,u0). (3.5)

3.4. nln(n) estimate. Now we have all the necessary tools to establish the

bound on

∫

nln(n). Multiplying the Equation (1.1)2 by ln(n), integrating over R
2,

integrating by parts, and using Equation (1.1)1 gives

d

dt

∫

R2

nln(n)dx=

∫

R2

nt ln(n)dx=

∫

R2

−|∇n|2
n

+χ∇n ·∇cdx

=

∫

R2

−|∇n|2
n

−χn∆cdx=
∫

R2

−|∇n|2
n

−χn(u ·∇c−n+a1c)dx. (3.6)

Using the Gagliardo-Nirenberg inequality

‖n‖22≤K‖n‖1‖∇
√
n‖22,
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and integrating over (0,t), gives

∫

R2

n(t)ln(n(t))dx+

∫ t

0

(4−χK‖n‖1)‖∇
√
n‖22dt′

≤
∫

R2

n0 ln(n0)dx−χ
∫ t

0

∫

R2

(u ·∇c)ndxdt′. (3.7)

Multiplying the Equation (1.1)3 with u and integrating over R2 gives

1

2

d

dt
‖u‖22+η‖∇u‖22=−

∫

R2

n∇φ ·udx≤‖∇φ‖∞‖n‖2‖u‖2≤
χδ

2
‖∇

√
n‖22+C‖u‖22.

Integrating also this inequality over (0,t), adding it to (3.7), and inserting (3.5), we
obtain

∫

R2

n(t)ln(n(t))dx+‖u(t)‖22+
∫ t

0

(4−χK‖n‖1−χδ)‖∇
√
n‖22dt′+η

∫ t

0

‖∇u‖22dt′

≤C
∫ t

0

‖u(t)‖22dt′+C(n0,u0). (3.8)

3.5. Moment control. Since we work in full space Ω=R
2, we have to bound

∫

R2 n(t)ln(n(t))dx from below. In order to do that, we have to control the behavior
of n as |x|→+∞ similarly to [16]. To perform this task, we multiply (1.1)2 by the
smooth function ξ=

√

1+ |x|2, integrate and use (3.3) with q=3/2:

d

dt

∫

R2

ξndx=

∫

R2

nu ·∇ξdx+
∫

R2

n∆ξdx+χ

∫

R2

n∇c ·∇ξdx

≤‖n‖1‖u‖∞‖∇ξ‖∞+‖n‖1‖∆ξ‖∞+‖n‖2‖∇c‖2‖∇ξ‖∞
≤C‖u‖2/52 ‖D2u‖3/53/2+C‖∇

√
n‖2‖n‖1/21 ‖∇

√
n‖1/22 ‖n‖3/41 +C

≤ δ′‖u‖2‖D2u‖3/23/2+δ
′‖∇

√
n‖22+C(δ′). (3.9)

We used that ‖∇ξ‖∞ and ‖∆ξ‖∞ are bounded. Integrating the inequality over (0,t)
gives

∫

R2

ξn(t)dx≤ δ′
(
∫ t

0

‖u‖22dt′
)1/2(∫ t

0

‖D2u‖33/2dt′
)1/2

+δ′
∫ t

0

‖∇
√
n‖22dt′+Ct.

(3.10)

Moreover we have
∫

R2

nln

(

1

n

)

1n≤1dx≤
∫

R2

nln

(

1

n

)

1e−ξ≤ndx+

∫

R2

nln
1

n
1n≤e−ξ dx

≤
∫

R2

ξndx+C

∫

R2

n1/21n≤e−ξ dx

≤C+

∫

R2

ξndx. (3.11)

Combining (3.11), (3.10), and (3.4), it follows that

−
∫

R2

n(t)ln(n(t))1n≤1dx≤
χδ

2

∫ t

0

‖∇
√
n‖22dt′+C

∫ t

0

‖u‖22dt′+Ct+C. (3.12)
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Since
∫

R2

n| ln(n)|dx=
∫

R2

nln(n)dx−2

∫

R2

nln(n)1n≤1dx,

we obtain from (3.8) and (3.12) that
∫

R2

n(t)| ln(n(t))|dx+‖u(t)‖22+
∫ t

0

(4−χK‖n‖1−2χδ)‖∇
√
n‖22dt′+η

∫ t

0

‖∇u‖22dt′

≤C
∫ t

0

‖u‖22dt′+C+Ct. (3.13)

Now let us define

Mexist :=
4

χK
.

Therefore if ‖n0‖1<Mexist, we can choose δ small enough, such that
λ :=4−χK‖n‖1−2χδ>0 and we obtain the entropy inequality (2.12)

E(t)+
∫ t

0

Ddt′≤C(n0,u0)+Ct+C
∫ t

0

E dt′.

Remark 3.2. This is the same mass threshold that can be obtained for the elliptic-
parabolic Keller-Segel model with the methods from [23].

With the entropy inequality at hand, we have

1. n| ln(n)|∈L∞((0,T ),L1(R2)),

2. ∇√
n∈L2((0,T )×R

2),

3. n|x|∈L∞((0,T ),L1(R2)),

4. u∈L∞((0,T ),L2(R2))∩L2((0,T ),H1(R2)).
Moreover, we can prove the following lemma:

Lemma 3.3. ∆c∈L2((0,T )×R
2).

Proof. From the Equation (1.1)1, we arrive at an estimate for ∆c:
∫ T

0

‖∆c(t)‖22dt≤
∫ T

0

(‖u‖∞‖∇c‖2+‖n‖2+a1‖c‖2)2 dt

≤
∫ T

0

C‖u‖4/52 ‖D2u‖6/53/2‖∇c‖
2
2+C‖∇

√
n‖22‖n‖1+C‖c‖1‖∇c‖2dt.

Working on the first term, we have

∫ T

0

‖u‖4/52 ‖D2u‖6/53/2‖∇c‖
2
2dt≤‖u‖4/5L∞

t L2
x

(

∫ T

0

‖D2u‖33/2dt
)2/5(

∫ T

0

‖∇c‖10/32 dt

)3/5

.

As in (3.8), and using (3.3) with q=7/4, it follows that

∫ T

0

‖u‖4/52 ‖D2u‖6/53/2‖∇c‖
2
2dt

≤C‖u‖4/5L∞

t L2
x

(

∫ T

0

‖∇
√
n‖22dt+C(u0)

)2/5(
∫ T

0

‖∇
√
n‖22dt

)3/5

.
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3.6. Regularizing effect.

Theorem 3.4. Let t>0 and 1<p<∞. With the hypothesis of Theorem 2.1, there
exists a constant C(t) not depending on ‖n0‖p such that

∫

R2

npdx≤C(t)(1+(t′)1−p), ∀0<t′≤ t, (3.14)

i.e. the cell density n(·,t′) belongs to Lp for any positive time t′. The proof works
in the same way as in [10] and it uses the bound established in Lemma 3.3. For
completeness, we give a sketch of the proof in the appendix.

3.7. Passing to the limit. We approximate the system by



















uǫ ·∇cǫ=∆cǫ+nǫ ∗ρǫ−cǫ,
nǫt+u

ǫ ·∇nǫ=∆nǫ−∇·(χnǫ∇cǫ),
uǫt+∇P ǫ−η∆uǫ+(nǫ∇φ)∗ρǫ=0,

∇·uǫ=0,

(3.15)

with a standard mollifier ρǫ and mollified versions of n0, u0 as initial data nǫ0, u
ǫ
0. All

a-priori estimates still hold; e.g. Equation (3.6) becomes

d

dt

∫

R2

nǫ ln(nǫ)dx=

∫

R2

−|∇nǫ|2
nǫ

−χn(uǫ ·∇cǫ−nǫ ∗ρǫ+cǫ)dx.

Here we can estimate
∫

R2

nǫ(nǫ ∗ρǫ)dx≤‖nǫ‖2‖nǫ‖2‖ρǫ‖1=‖nǫ‖22.

In (3.1), we can estimate instead

‖∇cǫ‖22≤‖nǫ ∗ρǫ‖q‖cǫ‖q′ ≤‖nǫ‖q‖ρǫ‖1‖cǫ‖q′ .

Similarly, the estimate for regularity of u still holds. To be able to pass to the limit,
we show sufficient compactness.

We proceed similarly to [4].
Bound on ‖nǫ‖2: For every p<∞, we have nǫ∈L∞((δ,T ),Lp(R2)) for any

δ∈ (0,T ) from Theorem 3.4.
Bound on ‖∇nǫ‖2: We have

‖nǫ∇cǫ‖2≤‖nǫ‖3‖∇cǫ‖6≤C‖nǫ‖3‖∆cǫ‖3/2, (3.16)

and working on the second term we obtain

‖∆cǫ‖3/2≤‖uǫ‖6‖∇cǫ‖2+‖nǫ‖3/2+‖cǫ‖3/2.

Therefore nǫ∇cǫ is bounded in L∞((δ,T ),L2(R2)). Now

d

dt

∫

R2

|nǫ|2dx=−2

∫

R2

|∇nǫ|2dx+2χ

∫

R2

nǫ∇nǫ ·∇cǫdx

shows that β :=‖∇nǫ‖L2((δ,T )×R2) satisfies the estimate

2β2−2χ‖nǫ∇cǫ‖L∞((δ,T ),L2(R2))β≤2‖nǫ‖L∞((δ,T ),L2(R2)).
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This implies that ∇n is bounded in L2((δ,T )×R
2). We define

V :=
{

v∈H1(R2) : |x|1/4v∈L2(R2)
}

. Since

∫

|x|>R

v2≤R−1/2

∫

R2

√

|x|v2,

V embeds compactly in L2(R2). Moreover, the estimate

∫

R2

√

|x|(nǫ)2≤
(
∫

R2

|x|nǫ
)1/2(∫

R2

(nǫ)3
)1/2

shows that nǫ is bounded in L2((δ,T ),V ). Therefore, the Aubin-Lions lemma gives
a strongly convergent subsequence nǫ→n in L2

loc((δ,T )×R
2). Also from Theorem

3.4, we obtain enough regularity to make all terms in the definition of weak solutions
well-defined.

4. Existence in R
3

Ẽ(t) :=
∫

R3

n3/2dx, D̃(t) :=λ′
∫

R3

|∇n3/4|2dx. (4.1)

Theorem 4.1 (3D). Assume a2=0, Ω=R
3, n0≥0, χ,η>0, and

∫

R3

n
3/2
0 +n0|x|+n0dx<∞. (4.2)

There exists a M ′
exist(‖n0‖1)>0 such that if

‖n0‖3/2<M ′
exist, (4.3)

then there is a global in time weak solution for (1.1) and we have an entropy inequality

d

dt
Ẽ(t)+D̃(t)≤0, (4.4)

where Ẽ and D̃ are given in (4.1).

In 3D, the critical norm for the Keller-Segel equations is L3/2; see [14]. Let us
apply the method from before and understand why it does not work in 3D: If we just
consider the case without the fluid we have

d

dt

∫

R3

n3/2dx≤
[

1

2
K4χ‖n‖3/2−

4

3

]
∫

R3

|∇n3/4|2dx.

Details can be found in the calculations below. So for ‖n‖3/2 small enough initially, we
have ‖n(t)‖3/2≤‖n0‖3/2. With the non-stationary Stokes system, there is a additive
constant on the right-hand side that basically comes from the initial data of the fluid
(see the calculations in the 2D-case). So there can be linear growth of ‖n‖3/2, which
will eventually destroy the smallness required.

Therefore we restrict ourselves to system (1.1) with a2=0.



A. LORZ 565

Proof of Theorem 4.1. Proof. We first establish an entropy. Multiplying the
Equation (1.1)2 by n1/2, integrating over R3, and using the Equation (1.1)1 gives

d

dt

∫

R3

n3/2dx=

∫

R3

−4

3
|∇n3/4|2+ 1

2
χ∇n3/2 ·∇cdx

=

∫

R3

−4

3
|∇n3/4|2− 1

2
χn3/2∆cdx

=

∫

R3

−4

3
|∇n3/4|2dx− 1

2
χn3/2(u ·∇c−n+a1c)dx. (4.5)

Now working on the equation for c to obtain an estimate for ‖∇c‖2:
∫

R3

(cu ·∇c)dx+‖∇c‖22=
∫

R3

ncdx−a1‖c‖22,

‖∇c‖22≤‖n‖6/5‖c‖6.
Moreover, it follows with ‖v‖6≤K1‖∇v‖2 that

‖∇c‖2≤K1‖n‖6/5. (4.6)

The term n3/2(u ·∇c) can be estimated using ‖v‖6≤K1‖∇v‖2 and
‖∇u‖2≤K2‖D2u‖6/5:

‖n3/2(u ·∇c)‖1≤‖n3/2‖3‖u‖6‖∇c‖2≤K2
1‖∇n3/4‖22K1K2‖D2u‖6/5K1‖n‖6/5.

Now applying the regularity estimates for the stationary Stokes equation
‖D2u‖6/5≤K3‖n‖6/5 (see [25, 26]) and the Hölder inequality ‖n‖26/5≤‖n‖1‖n‖3/2,
it follows

‖n3/2(u ·∇c)‖1≤K4
1K2K3‖∇n3/4‖22‖n‖26/5≤K4

1K2K3‖∇n3/4‖22‖n‖1‖n‖3/2. (4.7)

Using
∫

R3

n5/2dx≤K4

∫

R3

|∇n3/4|2dx‖n‖3/2, (4.8)

we obtain

d

dt

∫

R3

n3/2dx=

∫

R3

−4

3
|∇n3/4|2− 1

2
χn3/2(u ·∇c−n+a1c)dx

≤
[

1

2
(K4+K

4
1K2K3‖n‖1)χ‖n‖3/2−

4

3

]
∫

R3

|∇n3/4|2dx. (4.9)

Now let us define

M ′
exist(‖n‖1) :=

8

3χ(K4+K4
1K2K3‖n‖1)

.

Therefore if ‖n0‖3/2<M ′
exist, we set λ′ := 4

3 − 1
2 (K4+K

4
1K2K3‖n‖1)χ‖n‖3/2>0 and

we obtain the entropy inequality (4.4)

d

dt
Ẽ(t)+D̃(t)≤0.

With the entropy inequality at hand, we obtain the following:
n is bounded in L5/2((0,T )×R

3) due to (4.8). Therefore, u is bounded in
L5/2((0,T );W 2,5/2(R3)) and c is bounded in L5/2((0,T );W 2,5/2(R3)). As in the 2D
case, we can use a regularizing effect (for details see [14]) and pass to the limit.
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(a) t=0.01 (b) t=0.1

(c) t=0.2 (d) t=0.5

(e) t=0.75 (f) t=1

Fig. 5.1: Evolution of the density n with symmetric initial data and mass M =27.
Although the mass is larger than 8π, so without the fluid we expect blow-up, with
the fluid we see convergence to a steady state.

5. Numerics

Finally we would like to illustrate the behavior of the Keller–Segel–fluid system
with different numerical examples. In particular, we give evidence that above the
critical mass of 8π solutions still exist.

All computations have been implemented using the software package FreeFem++
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[35]. We would like to solve the following system:



















u ·∇c=∆c+n,

nt+u ·∇n=∆n−∇·(χn∇c),
∇P −η∆u+n∇φ=0,

∇·u=0,

(5.1)

with zero Dirichlet boundary conditions for c and u and corresponding mass-
preserving Neumann conditions for n. This system has the advantage that without
the fluid there is a mass threshold to separate global existence and finite-time blow-
up. This is quite different from (1.4), where e.g. all constant states are steady, i.e. for
constant initial n0 there is always global existence independent of its mass. Moreover,
for (5.1) the existence result for small mass holds as for (1.1).

We solve system (5.1) in an iterative manner:

1. Solve the Stokes Equations (5.1)3 and (5.1)4 with a penalty method; cf. [32]
and the Solver Crout. We use a classical Taylor-Hood element technic, i.e.
the velocity u is approximated by P2 finite elements, and the pressure P is
approximated by P1 finite elements.

2. Approximate the chemoattractant c by P2 finite elements and solve Equation
(5.1)1 with UMFPACK.

3. Perform an implicit Euler finite difference approximation in time for Equation
(5.1)2, approximate the cell density n by P2 finite elements and solve Equation
(5.1)1 with UMFPACK.

We start with a Gaussian as initial distribution

n0(x,y)=Cmassexp[−5(x−x0)2−5(y−y0)2].

The constant Cmass is chosen initially such that a desired mass in the computational
domain is obtained and we set χ=1, η=1, ∇φ=(0;10). The test geometry is a square
[0,1]× [0,1] with a mesh consisting of 2500 squares. In the first two examples, we use
the massM =27>8.5π>8π+1.5 in the computational domain, i.e. above the critical
mass.

In the first example, we set dt=0.01 and choose a Gaussian with x0=y0=0.5
as initial datum. We observe that the solution does not blow up, although the mass
is above the critical value of 8π; cf. Figure 5.1. Moreover, we see that the solution
converges to a steady state. The density maximum moves downwards because of
gravity but stops since c vanishes at the boundary. The distribution of the chemical
c is shown in Figure 5.2.

Now we investigate various quantities for t=1, because this seems to be fairly close
to the steady state: Figure 5.3a shows the velocity of the fluid. So the fluid is con-
stantly transporting n and c. This is illustrated in Figures 5.3b – 5.3d. Figure 5.3b
represents the flux resulting from the chemotaxis / diffusion terms −(∇n−χn∇c),
whereas Figure 5.3c shows the flux coming from the fluid contribution un. The total
flux −(∇n−χn∇c−un) is given in Figure 5.3d. It should be noticed that the fluid
counteracts the chemotactic flux especially in the high concentration region. To high-
light the effect of the fluid, the 0-level set of the scalar product of chemotactic flux
and the total flux is plotted, i.e. inside this region the fluid changes the chemotactic
flux vector by more than ±90◦.
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(a) t=0.01 (b) t=1

Fig. 5.2: Evolution of the concentration c corresponding to Figure 5.1. Notice, the
order of magnitude of c stays the same.

(a) fluid velocity (b) chemotactic flux

(c) fluid flux (d) total flux

Fig. 5.3: Fluid velocity field, chemotactic flux −(∇n−χn∇c), fluid flux un and total
flux −(∇n−χn∇c−un) at the steady state. To highlight the effect of the fluid, the
0-level set of the scalar product of chemotactic flux and the total flux is plotted in
Figure 5.3d, i.e. inside this region the fluid changes the chemotactic flux vector by
more than ±90◦. So it can be seen that the fluid has the strongest effect in the high
concentration region of n.
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(a) t=0.01 (b) t=0.1

(c) t=0.2 (d) t=0.5

Fig. 5.4: Evolution of the density n with non-symmetric initial data and massM =27.
For the same mass but different initial data we observe again blow-up prevention and
convergence to the same steady state.

Moreover, different initial configurations with the same mass seem to converge to
the same steady state; cf. Figure 5.4. This is illustrated by the second example with
dt=0.01 and x0=0.8; y0=0.7.

These two results above are stable under mesh and time step refinement. More-
over, if we define

M∆ := |M−
∫

Ω

n(t)|,

and take its maximum over the first 100 time step, which is less than 10−9.
In a final step, for even larger mass M =40, we observe the development of very

high concentration, which might indicate blow-up; see Figure 5.5. Here we set dt=
0.005 and x0=y0=0.5.

These first numerical results illustrate the interesting behavior of the Keller-Segel-
Fluid system and can be regarded as a starting point for further research. In particular
we would like to use numerical schemes, which are able to couple the Stokes equa-
tions with the chemotactial system and capture blow-up e.g. [29] or [17] (for schemes
designed to resolve the blow-up for the Keller-Segel system).
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(a) t=0.005 (b) t=0.075

(c) t=0.11 (d) t=0.145

Fig. 5.5: Evolution of the density n with symmetric initial data and mass M =40.
So for higher mass, we observe the formation of very high concentration that might
indicate blow-up. Notice that the pictures are taken at much smaller times compared
the plots shown before.

Appendix A. The proof for the regularizing effect is taken from [10]:

Proof of Theorem 3.4: Since
∫

R2 nln(n)(t)dx≤C(1+ t) we have

∫

R2

(n(x,t)−k)dx+≤ 1

ln(k)

∫

R2

(n(x,t)−k)+ ln(n(x,t))dx

≤ 1

ln(k)

∫

R2

n(x,t)(ln(n(x,t)))+dx. (A.1)

This means that there exists a modulus of equi-integrability ω(T,k), T >0, and k>0
such that

∫

R2

(n(x,t)−k)+≤ω(T ;k) and lim
k→∞

ω(T ;k)=0.

In this section we follow the by now classical idea to obtain Lp bounds for n by using
the equi-integrability property (A.1).
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First step: Multiplying the Equation (1.1)2 by (n−k)p−1
+ and integrating over

R
2 gives

d

dt

∫

R2

(n−k)p+dx

=−4
p−1

p

∫

R2

|∇(n−k)p/2+ |2dx−(p−1)

∫

R2

(n−k)p+∆cdx−pk
∫

R2

(n−k)p−1
+ ∆cdx.

(A.2)

Using the Galiardo-Nirenberg-Sobolev inequality for the second term

∫

R2

v4dx≤C
∫

R2

v2dx

∫

R2

|∇v|2dx (A.3)

leads to

∣

∣

∣

∣

∫

R2

(n−k)p+∆cdx
∣

∣

∣

∣

≤
(
∫

R2

(n−k)2p+ dx

)1/2

‖∆c‖2

≤
(
∫

R2

(n−k)p+dx
)1/2(∫

R2

|∇(n−k)p/2+ |2dx
)1/2

‖∆c‖2

≤ δC(p)‖∆c‖22
∫

R2

(n−k)p+dx+
2

δp

∫

R2

|∇(n−k)p/2+ |2dx. (A.4)

Moreover, by interpolation and the same Galiardo-Nirenberg-Sobolev inequality as
above, we have for p≥3/2 that

∣

∣

∣

∣

∫

R2

(n−k)p−1
+ ∆cdx

∣

∣

∣

∣

≤
(
∫

R2

(n−k)2(p−1)
+ dx

)1/2

‖∆c‖2

≤
(

C(M,p)+

∫

R2

(n−k)2p+ dx

)1/2

‖∆c‖2

≤C(M,p)‖∆c‖2+δ‖∆c‖22
∫

R2

(n−k)p+dx+
p−1

δp2k

∫

R2

|∇(n−k)p/2+ |2dx. (A.5)

Using the estimate

∫

R2

(n−k)p+1
+ dx=

∫

R2

(

(n−k)(p+1)/2
+

)2

dx≤C
(
∫

R2

∣

∣

∣
∇(n−k)(p+1)/2

+

∣

∣

∣
dx

)2

≤C(p)
(
∫

R2

(n−k)1/2+

∣

∣

∣
∇(n−k)p/2+

∣

∣

∣
dx

)2

≤C(p)
∫

R2

(n−k)+dx
∫

R2

∣

∣

∣
∇(n−k)p/2+

∣

∣

∣

2

dx, (A.6)
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and the fact that
∫

R2(n−k)+dx can be made small when choosing k large, we obtain
for p≥2

d

dt

∫

R2

(n−k)p+dx=(p−1)

(

1− 1

pC(p)ω(T,k)

)
∫

R2

(n−k)p+1
+ dx

+C(1+‖∆c‖22)
∫

R2

(n−k)p+dx+C‖∆c‖22+pk2M+C. (A.7)

For fixed p, we choose k=k(p,T ) sufficiently large such that

1− 1

pC(p)ω(T,k)
<0. (A.8)

Using

∫

R2

(n−k)p+dx≤
(
∫

R2

(n−k)+dx
)1/p(∫

R2

(n−k)p+1
+ dx

)1−1/p

≤
(
∫

R2

(n−k)+dx
)1/p(∫

R2

(n−k)p+1
+ dx

)1−1/p

, (A.9)

we achieve the following differential inequality for Yp(t), p≥2 and 0<t≤T :

d

dt
Yp(t)≤−(p−1)M1/(p−1)δY β

p (t)+C
(

1+‖∆c(t)‖22
)

Yp(t)+C
(

1+‖∆c(t)‖22
)

with β= p
p−1 .

Second step: Using ODE theory, we obtain that

Yp(t)≤C(T )
1

tp−1
; (A.10)

see [10] for details.
Third step: Using xp≤2p(x−k)p for x≥2k, we observe that

∫

R2

npdx=

∫

{n≤2k}

npdx+

∫

{n>2k}

npdx

≤ (2k)p−1M+2p
∫

{n>2k}

(n−k)pdx≤ (2k)p−1M+2p
∫

R2

(n−k)p+dx.

Therefore together with (A.10), we obtain (3.14)

∫

R2

npdx≤C(t)(1+ t′1−p), ∀0<t′≤ t (A.11)

for p≥2. For 1<p<2, the theorem holds by interpolation.

Appendix B. This publication is based on work supported by Award No. KUK-
I1-007-43, made by King Abdullah University of Science and Technology (KAUST).
A. Lorz would like to thank K. Fellner, P. Markowich, T. Pedley, B. Perthame, and
M.-T. Wolfram for useful discussions. Moreover, A. Lorz acknowledges support from
the ANR Samovar (France).
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