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NUMERICAL SOLUTION OF BI-PERIODIC ELLIPTIC PROBLEMS

IN UNBOUNDED DOMAINS∗

CHUNXIONG ZHENG†

Abstract. This paper aims at an efficient numerical approach for bi-periodic elliptic problems
with local defects in unbounded domains. We employ the methodology of artificial boundary methods
and try to design an accurate boundary condition in the form of a Dirichlet-to-Neumann (DtN) map.
The key issue is how to take advantage of periodicity as much as possible. We develop an approach
of computing the DtN map based on the DtN gluing and homogenization techniques, and prove the
unique solvability of the resulting discrete variational problem. Numerical evidence validates the
effectiveness of the proposed method.
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1. Introduction

Periodic media play an important role in many applications such as optics and
material science. When the number of periodic cells is huge, a domain-based dis-
cretization method directly using the details of each periodic cell could be too de-
manding and even hopeless. However, if the size of periodic cell is relatively small,
one can apply the homogenization theory [2], either directly or indirectly, to develop
a PDE solver which is asymptotically valid for the large scale homogenized equation.
We say that this kind of numerical method is homogenization-based. So far, the
validity of homogenization-based methods strongly relies on the scale separation of
the exact solution. In more realistic applications, unfortunately, this precondition is
generally violated since the media are not perfectly periodic and the defects appear
in some local regions. In this case, a full continuous set of scales might get involved,
which renders the homogenization-based methods either inaccurate or not applicable.
New ideas should be developed for this kind of problem.

In this paper, we are concerned with the numerical strategy for a particular
instance of the above defect problems: the exterior elliptic problem with bi-periodic
variable coefficients of the form

−∇·(A(x)∇u)+a0(x)u=0, ∀x∈R
2\D̄, (1.1)

u(x)=g(x), ∀x∈∂D, (1.2)
∫

R2\D̄

|∇u|2dx<∞, (1.3)

where g∈H
1
2 (∂D), a0(x) is a nonnegative scalar function, and A is a symmetric

matrix-valued function such that for two positive constants α and β,

α|ξ|2≤ ξ ·A(x)ξ≤β|ξ|2, ∀x∈R
2, ∀ξ∈R

2. (1.4)

We use the notation C00=(−0.5,0.5)2 and assume D⊂C00 is a Lipschitz domain. We
suppose A and c are bi-periodic with period of 1 except on the defect cell C00. More
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precisely, for any m,n∈Z and x=(x1,x2)∈R
2 with x 6∈C00 and (x1+m,x2+n) 6∈C00,

we assume

A(x1+m,x2+n)=A(x1,x2), c(x1+m,x2+n)= c(x1,x2).

According to the analysis in [11], there exist a constant u∞ and two positive constants
C and δ such that for sufficiently large x, the solution of (1.1)-(1.3) satisfies

|u(x)−u∞|≤C|x|−δ. (1.5)

This implies that the solution of (1.1) with a finite Dirichlet integral tends to a
constant when the location point is far away from the coordinate origin. For instance,
if A(x)= I2×2 and c(x)=0, then δ=1, and if c(x)≥ c0>0, then u∞=0 and δ can be
made arbitrarily large since the solution decays exponentially fast at infinity.

Since the definition domain is an exterior region, the problem (1.1)-(1.3) is a so-
called unbounded domain problem. If one is interested in the numerical behavior of
such problems, a common practice is to introduce some suitable artificial boundary
and confine the computation to a bounded domain. For the considered problem, a
natural choice of this artificial boundary is the defect cell boundary ∂C00. If the
exact Dirichlet-to-Neumann (DtN) map on ∂C00, denoted by K, is derived for the
governing Equation (1.1) on the residual unbounded domain R

2\C̄00, the solution of
the problem

−∇·(A(x)∇u)+a0(x)u=0, ∀x∈C00\D̄, (1.6)

u(x)=g(x), ∀x∈∂D, (1.7)

n ·(A(x)∇u(x))+K[u|∂C00
](x)=0, ∀x∈∂C00, (1.8)

will be the same as that of the original problem (1.1)-(1.3) restricted to the bounded
domain C00\D̄. Here n denotes the unit normal directed into R

2\C̄00. A suitable
numerical method is then employed to compute the solution of the truncated domain
problem (1.6)-(1.8).

The key ingredient of the above practice is the determination of the DtN map K.
This issue has been a research subject for nearly forty years under various problem
settings. However, the closed form of this map is only available for some PDEs in
special geometries. In general, a good approximation is the best one could expect.
The readers are referred to [1, 7, 8, 9, 12] for some nice review papers. As far as the
periodic structure problems are concerned, an analytical expression for the scattering
operator in the form of a DtN map was presented in [13] for the one-dimensional
Schrödinger equation with sinusoidal potential. Later this expression was extended
to more general second-order ODE problems [5] in the case that the coefficient func-
tions are symmetric. The DtN map for general one-dimensional periodic arrays was
considered in [10, 3, 4]. Instead of seeking a closed form analytical expression, the
authors of [10, 3, 4] proposed some viable algorithms for computing the DtN map
in the discrete form. The underlying ideas had been further extended for bi-periodic
structure problems in [6, 3].

In this paper, we propose a new approach of approximating the DtN map of bi-
periodic elliptic problems by taking (1.1)-(1.3) as an example. Let us indicate Gn as
the union of a 3n×3n bi-periodic array centered at the origin. It holds that G0=C00,
G0⊂G1⊂G2⊂··· , and limn→∞Gn=R

2. Put Dn=Gn+1\Ḡn. Then {Dn}
∞
n=0 forms

a non-overlapping decomposition of the residual domain R
2\C̄00; see Figure 1.1.
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Fig. 1.1. The residual unbounded domain R
2\C̄00=R

2\Ḡ0 is decomposed into a sequence of

similar bounded domains {Dn}∞n=0. Each Dn consists of eight identical cells or super-cells. Here

G0=C00 denotes the defect cell.

Confined to any Dn with n≥0, the governing Equation (1.1) is well-posed pro-
vided the Dirichlet boundary conditions are specified on the two disjointed boundaries
∂Gn and ∂Gn+1. A DtN map, denoted by KDn

, is thus uniquely determined. Setting
the Dirichlet and Neumann data as

un,D=u|∂Gn
, un,N =n ·A(x)∇u(x)|∂Gn

,

with n being the unit normal directed to the exterior of Gn, we have
(

−un,N

un+1,N

)

=KDn

(

un,D

un+1,D

)

, n=0,1, · · · . (1.9)

Note that KDn
is non-negative in the sense that

〈KDn
u|∂Dn

,u|∂Dn
〉=

∫

∂Dn

(n ·A(x)∇u(x))u(x)ds=

∫

Dn

[

∇u ·A(x)∇u+a0(x)u
2
]

dx≥0.

After KDn
has been determined, the DtN map on ∪L

n=0Dn=GL+1\C̄00 for any L≥1
can be derived by the following gluing procedure. Take the case L=1 as an example.
Rewriting KD0

and KD1
into the block form (Aij) and (Bij), we have

(

−u0,N

u1,N

)

=

(

A11 A12

A21 A22

)(

u0,D

u1,D

)

,

(

−u1,N

u2,N

)

=

(

B11 B12

B21 B22

)(

u1,D

u2,D

)

or, equivalently,

−u0,N =A11u0,D+A12u1,D, (1.10)

u1,N =A21u0,D+A22u1,D, (1.11)

−u1,N =B11u1,D+B12u2,D, (1.12)

u2,N =B21u1,D+B22u2,D. (1.13)

Adding (1.11) and (1.12) together yields

u1,D=−(A22+B11)
−1(A21u0,D+B12u2,D). (1.14)

The invertibility of A22+B11 is ensured by the well-posedness of governing Equation
(1.1) in conjunction with the Dirichlet boundary conditions on ∂G0 and ∂G2.
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Substituting (1.14) into (1.10) and (1.13) gives

−u0,N =
[

A11−A12(A22+B11)
−1A21

]

u0,D−A12(A22+B11)
−1B12u2,D, (1.15)

u2,N =−B21(A22+B11)
−1A21u0,D+

[

B22−B21(A22+B11)
−1B12

]

u2,D, (1.16)

which implies

KD0∪D1
=

(

A11−A12(A22+B11)
−1A21 −A12(A22+B11)

−1B12

−B21(A22+B11)
−1A21 B22−B21(A22+B11)

−1B12

)

.

For L≥2, the DtN map KD0∪···∪DL
is derived by repeating the above gluing procedure

L times.
Since the size of domain GL grows exponentially fast with respect to L, in terms

of (1.5), we can terminate the gluing procedure for a moderately large L and impose
the homogeneous Neumann boundary condition at ∂GL+1. Rewriting KD0∪···∪DL

into
a block form (Cij,L) we have

(

−u0,N

uL+1,N

)

=

(

C11,L C12,L
C21,L C22,L

)(

u0,D

uL+1,D

)

, uL+1,N =0.

From these equations we derive

−u0,N =KLu0,D, KL=C11,L−C12,LC
−1
22,LC21,L.

The operator KL gives an approximation of the exact DtN map K on ∂G0, and
limL→∞KL=K in a suitable sense.

Intuitively, the above idea of deriving an approximate DtN map is not limited
to the considered periodic structure problems, and is seemingly applicable in a much
more general case. Practically, however, unless some symmetry is prescribed in the
problem setting, this idea is of no use since the computational cost of the DtN map in a
large domain is very expensive for a general variable coefficient problem. Fortunately,
the problem considered in this paper fulfills the symmetry requirement perfectly; the
whole domain consists of identical periodic cells except only one defect cell. In this
special case, the DtN map on the large domain can be derived very efficiently. For
example, after the DtN map on a single periodic cell has been derived, the DtN map
KD0

can be computed by gluing together 8 single cell DtN maps. The domain D1

consists of 9×8=72 periodic cells, much more than D0 does. However, if the DtN
map on a super-cell, a 3×3 bi-periodic array, has been derived successfully, one can
compute KD1

by merely gluing 8 super-cell DtN maps. The computation of other
KDn

is analogous. We will study these technical issues in detail in the next section.

2. Discrete approximation of the DtN map

Given a bounded Lipschitz domain Ω⊂R
2\C̄00, set

aΩ(u,v)
def
= (A(x)∇u,∇v)Ω+(a0(x)u,v)Ω, ∀u,v∈H1(Ω). (2.1)

According to the Assumption (1.4), aΩ(·, ·) defines a bounded symmetric bilinear form

on H1(Ω). For any f ∈H
1
2 (∂Ω), let us consider the minimization problem

J∂Ω(f)
def
= inf

v|∂Ω=f,v∈H1(Ω)

aΩ(v,v)

2
. (2.2)



C. ZHENG 517

By Dirichlet’s principle, the infimum is attained by S(f)∈H1(Ω) which uniquely
solves the following variational problem:
Find u∈H1(Ω) with u|∂Ω=f ∈H

1
2 (∂Ω) such that

aΩ(u,v)=0, ∀v∈H1
0 (Ω). (2.3)

Therefore, it holds that

J∂Ω(f)=
aΩ(S(f),S(f))

2
.

The variation of J∂Ω is

<δJ∂Ω(f),g >∂Ω=aΩ(S(f),S(g)), ∀g∈H
1
2 (∂Ω),

which implies that δJ∂Ω is simply the DtN map KΩ on the domain Ω.
Let Bh

∂Ω be a boundary triangulation of ∂Ω with the characteristic mesh size h,
and T h

Ω a triangulation of Ω by triangles and/or rectangles compatible with Bh
∂Ω. Let

Pk denote the polynomials of total degree k, and Qk the polynomials of maximum
degree k for each spatial variable. If T ∈T h

Ω is a triangle, put V (T )=P k(T ), and if T
is a rectangle, put V (T )=Qk(T ). Set

V h
Ω =

{

v∈C(Ω̄) : v|T ∈V (T ),∀T ∈T h
Ω

}

,

Bh
∂Ω=

{

w∈C(∂Ω) :w|e∈Pk(e),∀e∈Bh
∂Ω

}

.
(2.4)

For any fh∈Bh
∂Ω, let us consider the discrete counterpart of the minimization problem

(2.2):

Jh
∂Ω(f

h)= inf
v|∂Ω=fh,v∈V h

Ω

aΩ(v,v)

2
. (2.5)

The infimum is attained by Sh(fh)∈V h
Ω , which uniquely solves the following discrete

variational problem:
Find uh∈V h

Ω with uh|∂Ω=fh such that

aΩ(u
h,v)=0, ∀v∈V h

Ω with v|∂Ω=0. (2.6)

Similar to the continuous case, it holds that

Jh
∂Ω(f

h)=
aΩ(S

h(fh),Sh(fh))

2
. (2.7)

The variation of Jh
∂Ω is

(δJh
∂Ω(f

h),gh)∂Ω=aΩ(S
h(fh),Sh(gh)), ∀gh∈Bh

∂Ω. (2.8)

Therefore, δJh
∂Ω gives a discrete approximation of the exact DtN map δJ∂Ω=KΩ.

Note that by setting Kh
Ω= δJh

∂Ω, we have

Jh
∂Ω(f

h)=
(Kh

Ωf
h,fh)∂Ω
2

. (2.9)
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2.1. Single cell DtN map. In this part we compute the discrete DtN
map Kh

C for a single periodic cell C. More precisely, we will compute the matrix
representation of Kh

C under a suitable set of basis functions. Here and hereafter, by
matrix representation of an operator L in some Hilbert space V , we mean a matrix
B=(bij) such that

bij =(Lϕi,ϕj)V ,

where (·, ·)V stands for the inner product and {ϕi} consists of a complete set of basis
functions in V .

Let Bh
∂C be a boundary triangulation of ∂C obtained by decomposing each of

four edges into M =1/h equivalent segments, and let T h
C be a triangulation of C by

triangles and/or rectangles compatible with Bh
∂C . The finite element spaces V h

C and
Bh

∂C are defined as (2.4).

Let {Φb,k(x)}
dimBh

∂C

k=1 be the boundary element basis functions of Bh
∂C . We use

the same notation Φb,k(x) to indicate its natural extension into V h
C . Besides, let

{Φi,k(x)}
dimV h

C
−dimBh

∂C

k=1 be the finite element basis functions of V h
C associated with

the interior degrees of freedom of T h
C . We denote the stiffness matrix associated with

the bilinear form aC(·, ·) (see (2.1)) by

A=

(

A11 A12

A21 A22

)

, Amn=(amn;kl),

where

a11;kl=aC(Φb,l,Φb,k), a12;kl=a21;lk=aC(Φi,l,Φb,k), a22;kl=aC(Φi,l,Φi,k).

Set

B=A11−A12A
−1
22 A21, B=(bkl).

According to (2.8) and (2.6) we have

bkl=
(

Kh
CΦb,l,Φb,k

)

∂C
,

which implies that B is the matrix representation of Kh
C under the boundary element

basis functions {Φb,k(x)}
dimBh

∂C

k=1 of Bh
∂C .

Proposition 2.1. Kh
C is a symmetric non-negative definite operator from Bh

∂C to

Bh
∂C . Besides, the only possible null functions of Kh

C are constant. Any operator with

these properties is regarded almost symmetric positive definite (SPD).

Proof. By (2.8), Kh
C is symmetric and non-negative definite. If there exists

fh∈Bh
∂C satisfying Kh

Cf
h=0, then Jh

∂C(f
h)=0 by (2.9). In terms of (2.7), it holds

that

aC(S
h(fh),Sh(fh))=0.

Since (see (1.4))

aC(S
h(fh),Sh(fh))≥α|Sh(fh)|21,C ,

Sh(fh) is constant. Therefore, fh should be constant. This ends the proof.
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2.2. DtN gluing. Suppose {Ωi}
N
i=1 are N non-overlapping bounded domains

such that Ω=∪N
i=1Ω̄i has a connected interior part. See Figure 2.1 for two typical

examples. Let Bh
∂Ωi

be the boundary function space on ∂Ωi. Suppose {Bh
∂Ωi

}Ni=1 is
consistent in the sense that their restricted spaces are the same on any shared part
of boundary. With this assumption, {Bh

∂Ωi
}Ni=1 induces an interface function space,

denoted by Bh
∪N

i=1
∂Ωi

, which is defined on the union of all ∂Ωi. {B
h
∂Ωi

}Ni=1 also induces

the boundary function space Bh
∂Ω on ∂Ω. We should point out that the consistency

requirement is automatically satisfied if all Ωi consist of identical periodic cells and
all periodic cells are meshed in the same manner as in the last subsection.

Fig. 2.1. Left: Gluing 8 cell DtN maps for the ring-shaped domain. Right: Gluing 9 cell DtN

maps for the super-cell.

The approximate DtN map Kh
Ω can surely be determined with the method in

the last subsection. However, if the approximate DtN maps Kh
Ωi

on the sub-domains

Ωi have been derived, then Kh
Ω can be computed more efficiently, as shown in the

following.
For any fh∈Bh

∂Ω, according to (2.5) and (2.9) we have

J
h
∂Ω(f

h)= inf
v|∂Ω=fh,v∈V h

Ω

aΩ(v,v)

2
= inf

v|∂Ω=fh,v∈V h
Ω

N
∑

i=1

aΩi
(v,v)

2

= inf
w|∂Ω=fh,w∈Bh

∪
N
i=1

∂Ωi

inf
vi|∂Ωi

=w|∂Ωi
,vi∈V h

Ωi

N
∑

i=1

aΩi
(vi,vi)

2

= inf
w|∂Ω=fh,w∈Bh

∪
N
i=1

∂Ωi

N
∑

i=1

J
h
∂Ωi

(w|∂Ωi
)

= inf
w|∂Ω=fh,w∈Bh

∪
N
i=1

∂Ωi

N
∑

i=1

(Kh
Ωi
w|∂Ωi

,w|∂Ωi
)∂Ωi

2
.

Set

bΩ(v,w)
def
=

N
∑

i=1

(Kh
Ωi
v|∂Ωi

,w|∂Ωi
)∂Ωi

, ∀v,w∈Bh
∪N

i=1
∂Ωi

, (2.10)

then we have

Jh
∂Ω(f

h)= inf
w|∂Ω=fh,w∈Bh

∪
N
i=1

∂Ωi

bΩ(w,w)

2
.
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The infimum of the above minimization problem is attained by S∗(fh)∈Bh
∪N

i=1
∂Ωi

which solves the following interface variational problem:
Find v∈Bh

∪N

i=1
∂Ωi

with v|∂Ω=fh such that

bΩ(v,w)=0, ∀w∈Bh
∪N

i=1
∂Ωi

with w|∂Ω=0. (2.11)

The variational problem (2.11) is uniquely solvable since all Kh
Ωi

are almost SPD.
Therefore, we have

Jh
∂Ω(f

h)=
bΩ(S

∗(fh),S∗(fh))

2
,

and

(Kh
Ωf

h,gh)∂Ω=(δJh
∂Ω(f

h),gh)∂Ω= bΩ(S
∗(fh),S∗(gh)), ∀fh,gh∈Bh

∂Ω. (2.12)

The determination of Kh
Ω is much similar to that of the cell DtN map explained

in the last subsection. Let {Φb,k(x)}
dimBh

∂Ω

k=1 be the boundary element basis functions
of Bh

∂Ω. We use the same notation Φb,k(x) to indicate its natural extension into the

interface function space Bh
∪N

i=1
∂Ωi

. Besides, let {Φi,k(x)}
dimBh

∪
N
i=1

∂Ωi

−dimBh

∂Ω

k=1 be the

interface element basis functions of Bh
∪N

i=1
∂Ωi

associated with the interior degrees of

freedom. The stiffness matrix associated with the bilinear form bΩ(·, ·) (see (2.10)) is
denoted by

B=

(

B11 B12

B21 B22

)

, Bmn=(bmn;kl),

where

b11;kl=

N
∑

i=1

(Kh
Ωi
Φb,l,Φb,k)∂Ωi

,

b12;kl= b21;lk=

N
∑

i=1

(Kh
Ωi
Φi,l,Φb,k)∂Ωi

,

b22;kl=

N
∑

i=1

(Kh
Ωi
Φi,l,Φi,k)∂Ωi

.

B can be easily written out if the matrix representations of Kh
Ωi

are available. Set

C
def
= B11−B12B

−1
22 B21, C=(ckl).

According to (2.12) and (2.11) we then have

ckl=
(

Kh
ΩΦb,l,Φb,k

)

∂Ω
.

This implies that C is the matrix representation of Kh
Ω under the boundary element

basis functions {Φb,k(x)}
dimBh

∂Ω

k=1 of Bh
∂Ω.

Proposition 2.2. If all Kh
Ωi

are almost SPD, then so is Kh
Ω. The proof is analogous
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to that of Proposition 2.1, and we omit it here.

The benefit of the proposed gluing method is obvious: the approximate DtN map
in a large domain can be determined merely through the DtN maps on individual
components, without consulting the details of the interior mesh structure. The com-
putational cost is nearly cubic to the dimension of the interface function space. This
is a remarkable reduction of complexity compared with the direct method in the last
subsection, since the latter involves the invertibility of a matrix whose rank is the
total number of degrees of freedom in the solid domain.

2.3. DtN homogenization. After the single cell DtN map Kh
C has been

derived as in the Subsection 2.1, one glues eight such cell DtN maps to derive Kh
D0

,
the approximation of the DtN map KD0

onD0. To approximate KD1
, one can first glue

nine cells’ DtN maps to derive the DtN map Kh
1,C for a super-cell consisting of a 3×3

bi-periodic array, and then glue eight Kh
1,C to obtain Kh

D1
. The approximation of KDn

with n≥2 is derived recursively. With the above treatment, however, one immediately
realizes that since the number of operations needed for Kh

Dn
is of O((dimBh

∂Gn
)3), and

dimBh
∂Gn

is tripled each time as n increases, the computational cost tends to a heavy
burden quickly. In this part, we propose a novel technique called DtN homogenization

to avoid this complexity disaster.

The basic idea of this technique is to control the dimension of the representative
space of the DtN map. It is known that Kh

D0
is an almost SPD operator defined on

Bh
∂G0

⊕Bh
∂G1

. Let Ph be the L2 projection from Bh
∂G1

to B3h
∂G1

⊂Bh
∂G1

, where B3h
∂G1

denotes the boundary function space with a characteristic mesh size 3h. Set

K̃h
D0

=(I⊗Ph)K
h
D0

(I⊗P⊤
h ).

Here P⊤
h denotes the adjoint operator of Ph, which identically embeds B3h

∂G1
into

Bh
∂G1

. Then K̃h
D0

, acting on Bh
∂G0

⊕B3h
∂G1

, gives a simplified version of the discrete

DtN map Kh
D0

by coarsening the representations of both Dirichlet and Neumann data

at ∂G1. Note that since dimB3h
∂G1

=dimBh
∂G0

, we have used the same number of
degrees of freedom on ∂G0 and ∂G1, the two disjointed boundaries of D0.

Let {Φh
∂G0,k

(x)}
dimBh

∂G0

k=1 , {Φh
∂G1,k

(x)}
dimBh

∂G1

k=1 , and {Φ3h
∂G1,k

(x)}
dimB3h

∂G1

k=1 be the

boundary element basis functions of Bh
∂G0

, Bh
∂G1

, and B3h
∂G1

respectively. Suppose
P =(pkl) satisfies

Φ3h
∂G1,k(x)=

∑

l

pklΦ
h
∂G1,l(x),

and C=(ckl) is the matrix representation of Kh
D0

under the basis functions

{Φh
∂G0,k

(x)}
dimBh

∂G0

k=1 and {Φh
∂G1,k

(x)}
dimBh

∂G1

k=1 , then under the basis functions

{Φh
∂G0,k

(x)}
dimBh

∂G0

k=1 and {Φ3h
∂G1,k

(x)}
dimB3h

∂G1

k=1 , the matrix representation of K̃h
D0

is
simply

C̃=

(

I 0
0 P

)

C

(

I 0
0 PT

)

.

The matrix elements of P are easily determined if the order of finite elements is
specified.
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To derive an approximation of KD1
, we first compute the super-cell DtN map

Kh
1,C with the gluing procedure. Note that Kh

1,C is defined on Bh
∂G1

. A homogenized

version of Kh
1,C is then derived as

K3h
1,C =PhK

h
1,CP

⊤
h .

This operator is defined on B3h
∂G1

. The approximate DtN map of KD1
, denoted by

K̃3h
D1

, is derived by first gluing eight super-cell DtN maps K3h
1,C , and then applying

the DtN homogenization on the exterior boundary ∂G2. Therefore, K̃3h
D1

is defined

on the space B3h
∂G1

⊕B9h
∂G2

. The approximations of KDn
with n≥2, denoted by K̃3nh

Dn
,

are computed recursively.
For the ease of reference, we write the entire algorithm.

Step 1 Given h, generate the boundary mesh Bh
∂C and the interior mesh T h

C for a
single periodic cell.

Step 2 Specify the order of finite elements. Form the boundary element space Bh
∂C

and the interior finite element space Th
C . Compute the single cell DtN map

Kh
C .

Step 3 Set the zeroth level super-cell DtN map Kh
0,C =Kh

C . For n=0,1, · · · , we perform

• Derive K3nh
Dn

by gluing together eight n-th level super-cell DtN maps

K3nh
n,C . Set

K̃3nh
Dn

=(I⊗P)K3nh
Dn

(I⊗P⊤),

where P is the L2 projection from B3nh
∂Gn+1

to B3n+1h
∂Gn+1

.

• Derive n+1-st level super-cell DtN map K3nh
n+1,C by gluing together nine

n-th level super-cell DtN maps K3nh
n,C . Set the homogenized n+1-st level

super-cell DtN map as

K3n+1h
n+1,C =PK3nh

n+1,CP
⊤.

It should be pointed out that what we really derive from the above algorithm are the
matrix representations of K̃3nh

Dn
under the natural boundary element basis functions

{Φh
∂Gn,k

(x)}
dimB3nh

∂Gn

k=1 of B3nh
∂Gn

and {Φ3n+1h
∂Gn+1,k

(x)}
dimB3n+1

h

∂Gn+1

k=1 of B3n+1h
∂Gn+1

.

Proposition 2.1. If Kh
C is almost SPD, so are K3nh

n,C and K̃3nh
Dn

.

Proof. It suffices to prove that K3h
1,C and K̃h

D0
are almost SPD. By Proposition

2.2, Kh
1,C and Kh

D0
are almost SPD. Thus both K3h

1,C and K̃h
D0

are non-negative definite.

If there exists a function v∈B3h
∂G1

such that K3h
1,Cv=0, then P⊤v should be constant,

since Kh
1,C is almost SPD. This implies that v is constant, considering P⊤ is the

embedding operator from B3h
∂G1

to Bh
∂G1

. This indicates that K3h
1,C is almost SPD.

The proof for K̃h
D0

is analogous.

2.4. Truncated domain problem. With the gluing and homogenization
techniques, we have derived a sequence of approximate DtN maps K̃3nh

Dn
of KDn

on

the domain Dn, which acts on B3nh
∂Gn

⊕B3n+1h
∂Gn+1

. By Proposition 2.1, all K̃3nh
Dn

are al-
most SPD. For any L≥0, we can employ the gluing procedure again to derive an
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approximate DtN map on ∪L
n=0Dn=GL+1\Ḡ0. We denote this map by K̃h

L, which is
also an almost SPD operator. Recall that the size of domain ∪L

n=0Dn increases expo-
nentially fast with respect to L. In terms of (1.5), we can terminate the above gluing
process at a moderately large L, and apply the homogeneous Neumann boundary
condition at ∂GL+1.

Let u3nh
n,D/N ∈B3nh

∂Gn
be the approximate Dirichlet/Neumann data. Rewriting K̃h

L

into a block form gives

(

−uh
0,N

u3L+1h
L+1,N

)

= K̃h
L

(

uh
0,D

u3L+1h
L+1,D

)

=

(

C11,L C12,L
C21,L C22,L

)

(

uh
0,D

u3L+1h
L+1,D

)

, (2.13)

where (Cij,L) is the block representation of K̃h
L. Let u

3L+1h
L+1,N =0. We have

C21,Lu
h
0,D+C22,Lu

3L+1h
L+1,D=0. (2.14)

C22,L is an SPD operator since K̃h
L is almost SPD. From (2.14) we have

u3L+1h
L+1,D=−C−1

22,LC21,Lu
h
0,D.

Substituting the above into the first equation of (2.13) gives

−uh
0,N =

[

C11,L−C12,LC
−1
22,LC21,L

]

uh
0,D≡Kh

Lu
h
0,D.

Proposition 2.2. Kh
L is an almost SPD operator.

Proof. Obviously Kh
L is symmetric. Note that

(uh
0,D,Kh

Lu
h
0,D)∂G0

=(uh
0,D,−uh

0,N )∂G0

=

((

uh
0,D

u3L+1h
L+1,D

)

,

(

−uh
0,N

u3L+1h
L+1,N

))

∂G0∪∂GL+1

=

((

uh
0,D

u3L+1h
L+1,D

)

,K̃h
L

(

uh
0,D

u3L+1h
L+1,D

))

∂G0∪∂GL+1

.

If (uh
0,D,Kh

Lu
h
0,D)∂G0

equals zero, then uh
0,D should be constant since K̃h

L is almost

SPD. This implies Kh
L is almost SPD.

Let {Φh
∂G0,k

(x)}
dimBh

∂G0

k=1 and {Φ3L+1h
∂GL+1,k

(x)}
dimB3L+1

h

∂GL+1

k=1 be the boundary element

basis functions of Bh
∂G0

and B3L+1h
∂GL+1

, and let CL be the matrix representation of K̃h
L

under this set of basis functions. Suppose

CL=

(

C11,L C12,L

C21,L C22,L

)

is in block form. Then

C11,L−C12,LC
−1
22,LC21,L

gives the matrix representation of Kh
L under the boundary element basis functions

{Φh
∂G0,k

(x)}
dimBh

∂G0

k=1 of Bh
∂G0

.
Now we are ready to consider the numerical solution of (1.1)-(1.3) restricted

to the defect cell. Set Ω=G0\D̄=C00\D̄. Let T h
Ω be a triangulation of Ω, with
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Fig. 3.1. Meshes used in the computation. M =8. Left: Example A. Right: Example B.

rectangles and/or triangles, which is compatible with Bh
∂G0

. Let V h
Ω be the k-th

degree conforming Lagrangian finite element space. With the DtN map Kh
L imposed

at Bh
∂G0

, the approximate variational problem with truncated domain Ω reads:

Find uh∈V h
Ω with uh|∂D= Ihg, such that

(A(x)∇uh,∇v)Ω+(a0(x)u
h,v)Ω+(Kh

Lu
h,v)∂G0

=0, ∀v∈V h
Ω with v|∂D=0. (2.15)

Here Ih is the standard Lagrangian interpolating operator. Since Kh
L is non-negative,

the following proposition is obvious.

Proposition 2.3. The discrete variational problem (2.15) is uniquely solvable.

Since the matrix elements of Kh
L have been computed with the gluing and homog-

enization techniques, the discrete variational problem (2.15) is now solvable with the
standard choice of finite element basis functions.

3. Numerical examples

In this section, we present two numerical tests to demonstrate the performance
of the proposed algorithm.

3.1. Example A. As a first example, we consider an exterior problem of
Laplace’s equation. Let D be a square of width 0.5 centered at the origin, and let
g(x)= x1

x2
1+x2

2

be the Dirichlet boundary data at ∂D. The exact solution of this exterior

problem is simply

u(x)=
x1

x2
1+x2

2

.

We consider the underlying homogeneous medium as a special instance of bi-periodic
structures with the period of 1. In the left of Figure 3.1 we show the coarsest mesh
with M =8 for the defect cell used in the computation. The mesh for periodic cells
is generated with identical square elements. We plot the relative L2 errors of the
numerical solution uh in Figure 3.2, where L is the parameter in the approximate
DtN map Kh

L; see Subsection 2.4. Remember that we derive Kh
L by truncating the

residual unbounded domain R
2\C̄00 and applying the homogeneous Neumann data

at ∂GL+1. For L=10, the errors degenerate almost with a rate of second order for
the linear finite elements, and a rate of fourth order for the quadratic finite elements.
This implies that in the mesh regime considered in this numerical test, the error from
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Fig. 3.2. Example A. Left: linear finite elements. Right: quadratic finite elements.
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Fig. 3.3. Example B. Error plot for the computed displacement field uh.

the approximate DtN map on the artificial boundary is negligible. An interesting
thing that we cannot explain is the super-convergence behavior of the quadratic finite
elements. For L=3, the errors first decrease and then saturate when the mesh is
successively refined. This typically indicates that the artificial boundary condition
for L=3 is not accurate enough.

3.2. Example B. In this numerical test, we consider a non-trivial bi-periodic
structure problem of period 1 by setting

a(x)=exp(sin(2π(x1+x2))), c(x)=0.

The domain D is a circle of radius 0.25, and the Dirichlet data g is the same as in
Example A. For this problem, the exact solution with closed form is not available.
To evaluate the quality of numerical solutions, we compute a reference solution with
the fourth order finite elements by setting M =32 and L=10. The mesh for M =8
is illustrated in the right of Figure 3.1, and the reference solution restricted to the
defect cell is shown in the left of Figure 3.3. The relative L2 errors with linear finite
elements are plotted in the right of Figure 3.3, from which an analogous observation
can be made as for Example A.

4. Conclusion

We proposed a new approach of designing approximate DtN map in a discrete
form for a specific bi-periodic elliptic problem. The basic idea consists of several steps.
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First, the residual unbounded domain is partitioned into a sequence of bounded do-
mains {Dn}

∞
n=0 with similar shape. Second, after the single cell DtN map is deter-

mined, the DtN map Kn for each Dn is computed by gluing eight cell (or super-cell)
DtN maps. The gluing technique is also used to derive the DtN map for ∪L

n=0Dn,
which approaches the whole residual domain as L goes to infinity. Third, an approx-
imate DtN map for the residual domain is derived by truncating the residual domain
and imposing homogeneous Neumann boundary condition at a suitable place. This
approximate DtN map is finally combined with the governing elliptic equation to
determine the solution only in the local defect region.

At the discrete level, to control the growth of degrees of freedom involved in Kn

we introduced a new concept — DtN homogenization. The underlying idea is to
coarsen the representations of both Dirichlet and Neumann data while maintaining
the energy of the smooth part of the data as much as possible. We proved the unique
solvability for the discrete variational problem. Though the error analysis is beyond
our capability at the moment, the numerical tests showed that the proposed techniques
are promising.
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