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MODELS OF MICROBIAL DORMANCY IN BIOFILMS AND

PLANKTONIC CULTURES∗

BRUCE P. AYATI† AND ISAAC KLAPPER‡

Abstract. We present models of dormancy in planktonic cultures and in biofilm, and a new
numerical technique for solving the model equations. We use this modeling framework to examine the
relative advantage of short dormancy versus long dormancy times in planktonic cultures and biofilms
under some basic assumptions. Simulations and asymptotic analyses indicate that in planktonic batch
cultures and in chemostats, live biomass is maximized by the fastest possible exit from dormancy.
The lower limit of time to reawakening is thus perhaps governed by physiological, biochemical, or
other constraints within the cells. In biofilm we see, in contrast, that the slower waker may have an
advantage over the faster waker.
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1. Introduction

Microbial populations, particularly those in biofilms (sessile, matrix encased com-
munities; see [16] for an overview), can contain cells in varying phenotypic or phys-
iological states. An important difference between planktonic (free-swimming) and
biofilm environments is that the former is generally well-mixed whereas the latter
is unmixed and spatially heterogeneous as a result of their self-generated spatially
variable environments [22, 26]. Models that include phenotypic and physiological
variation can aid in understanding biofilms and planktonic cultures, and the differ-
ences between them. Structured population methods are particularly well-suited for
tracking internal states.

Here we consider one type of physiological state — dormancy (possibly related
to the phenomenon of persister cells [6, 9, 10, 17]) — where, in response to an envi-
ronmental stress, cells differentiate into a protected, slow- or non-growing condition
[8, 20]. Bacteria in planktonic states have been found to revive faster from dormancy
than those in a biofilm state [8]. Thus it would seem that dormancy-regulating pa-
rameters are subject to influence of environmental variation, at least of the sort found
in biofilms.

We present a modeling and simulation framework designed to study dormancy
within batch, chemostat, and biofilm population dynamics, in particular with respect
to competitiveness. The physiological structure is represented by a continuous variable
(see [25] for a broader discussion). Compartmentalized dormancy models have been
considered elsewhere [18, 19].

These tools are an extension of those discussed in [6] for persistence and senes-
cence, primarily in the numerical methods used to solve the more general physiological
structure used in this paper, and we expect they will have wider applicability to de-
scriptions of physiological states in both mixed and unmixed microbial communities.
Robust and efficient numerical methods for handling physiological structure may be
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necessary as additional interacting phenotypes are included in the study of complex
microbial communities.

We use our modeling tools to gain insight into role and regulation of dormancy in
spatially mixed systems (batch and chemostat microbial communities) and unmixed
systems (biofilm communities). Our attention is directed to the relative advantage
of short dormancy versus long dormancy times in the cases of batch, chemostat, and
biofilm states.

This paper is organized as follows. We present models of chemostat and batch
cultures, and then derive the biofilm model. We discuss the numerical methods devel-
oped for these computations and compute numerical solutions of the model equations
for the batch, chemostat, and biofilm cultures. We then provide a study of the conver-
gence of the numerical results. To aid in understanding our computations, we present
asymptotic analyses of their long-time behavior. We conclude with a discussion of
the implications of our results.

2. Models of dormancy in chemostat and batch cultures

We introduce s∈ [s0,s
∗] to index the dormancy state of individual cells, with s0 the

value at which cells enter dormancy and s∗ the value at which cells leave dormancy and
become active. Cells progress through dormancy states with “speed” g(s,c), where c
is concentration of relevant chemicals (e.g. substrates or antimicrobials); for example,
large concentrations of substrates and/or small concentrations of antimicrobials imply
larger values of g. While dormant, cells do not grow and divide; on the other hand,
dormant cells are presumed to be hardier in response to environmental stress.

Let t≥0 represent time. Let ui(t) represent the density of active cells of species
i, vi(s,t) represent the density of dormant cells of species i, and c(t) be a vector
of substrate chemical species concentrations. Let u and v be vectors containing the
active and dormant densities, respectively, of all species. Let the operator ∂y denote
partial differentiation in the subscript variable y. The active cell populations are
modeled by an ordinary differential equation for each i and t>0,

d

dt
ui(t)= bi(c)ui(t)

︸ ︷︷ ︸

cell division

−µui
(c)ui(t)

︸ ︷︷ ︸

death

+ gi(s
∗,c)vi(s

∗,t)
︸ ︷︷ ︸

exit from dormancy

− hi(c)ui(t)
︸ ︷︷ ︸

entrance to dormancy

−d0ui(t)
︸ ︷︷ ︸

washout

, (2.1a)

where d0 is the chemostat dilution rate (roughly, the inverse of the time scale for the
chemostat contents to be flushed). The functions bi and µui

account for cell division
and cell “death” for species i. We use “death” as shorthand for all forms of inertness
not tied to strategic dormancy on the part of the bacteria. The function hi≥0 is the
dormancy rate of active cells. Let gi≥0 (as above) and µvi

≥0 denote the reactivation
and death rates, respectively, of the dormant cells. We use physiologically structured
equations for the dormant cell populations,

∂tvi(s,t)+∂s(gi(s,c)vi(s,t))
︸ ︷︷ ︸

reactivation kinetics

=−µvi
(s,c)vi(s,t)

︸ ︷︷ ︸

death

−d0vi(s,t)
︸ ︷︷ ︸

washout

, (2.1b)

gi(s0,c)vi(s0,t)= hi(c)ui(t)
︸ ︷︷ ︸

creation of newly dormant cells

, (2.1c)
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Fig. 3.1. Spatial domains for the biofilm model.

for s0<s≤s∗. For the substrate chemicals, we have

d

dt
c(t)=−f(c(t),u(t),v(·,t))

︸ ︷︷ ︸

chemical reactions

+d0(C0(t)−c(t))
︸ ︷︷ ︸

chemostat turnover

, (2.1d)

where f is the vector of reactions and C0(t) is the input concentration vector from the
chemostat tank. Initial conditions are u(0)=u0, v(0,s)=v0(s), and c(0)= c0. The
model for a batch culture is obtained from (2.1) by setting d0=0.

3. A model of dormancy in a biofilm

For the biofilm model we remove the chemostat-specific terms and extend the sys-
tem (2.1) with i=1 to include a spatial domain Ω consisting of stratified subdomains
Bt for biomass and Ω\Bt for the bulk fluid. There are two moving interfaces in Ω: Γt

separating Bt from the rest of Ω, and a bulk-substrate interface ΓHb
that is a fixed

height Hb above Γt. The biofilm rests on a surface, denoted by a lower boundary
ΓB . The spatial domains are illustrated in Figure 3.1. The active and dormant cell
populations, and the chemical concentrations, now depend on x∈Ω.

Exterior (to the biofilm) flow is neglected here. The principle effects of fluid
flow, such as mechanical stress and spatial variation of substrate concentrations in
the streamwise direction, are not central to those particular dormancy issues we in-
vestigate.

Unlike the planktonic models presented above, we need to track explicitly the
fully inert (non-resuscitative) cell biomass as well as the dormant cell biomass since
they both affect volume fraction calculations. We denote fully inert cells by w. For
simplicity we neglect any lysis on the part of those fully inert cells that might be
necrotic.

Conservation of biomass yields, for t>0 and s0<s≤s∗,

∂tu(x,t)+∇·Ju= b(c)u(x,t)−µu(c)u(x,t)+g(s∗,c)v(x,s∗,t)−h(c)u(x,t), (3.1a)

∂tv(x,s,t)+∂s(g(s,c)v(x,s,t))+∇·Jv =−µv(s,c)v(x,s,t), (3.1b)

g(s0,c)v(x,s0,t)=h(c)u(x,t), (3.1c)

∂tw(x,t)+∇·Jw=µu(c)u(x,t)+

∫ s∗

s0

µv(s,c)v(x,s,t) ds,

(3.1d)

∂tc(x,t)+∇·Jc=f(c(t),u(x,t),v(x, ·,t)), (3.1e)
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where ∇· denotes divergence in space, Jy denotes the flux of subscript variable y, and
where we assume appropriate initial conditions and boundary condition on the spatial
domains.

Assuming Fick’s Law gives Jc=−D∇c with diffusion constant D. The substrate
masses are also subject to advection, but the velocity is sufficiently slow that we
can neglect the advective contribution to substrate flux. Likewise, substrate material
diffusion time scales are at least several orders of magnitude shorter than those at
which bacteria grow or advect, allowing us to make a quasi-steady-state assumption
so that

−D∇2c=f. (3.2)

Let ϑ(x,s,t) and ρ(x,s,t) denote the volume fraction per dormancy state and
density per dormancy state relative to volume fraction, respectively, of dormant cells.
We assume incompressibility of biomass with ρ(x,s,t)≡ρ∗ for positive constant ρ∗.
We also assume, based on the fact that the main constituent of all cells is water,
that active and fully inert cells have the same incompressibility properties, and the
same densities relative to volume fractions, ρ∗, as dormant cells. We let ν(x,t) and
η(x,t) denote the volume fractions of active and fully inert cells, respectively, which
are related to the density of active and fully inert cells by u=ρ∗ν and w=ρ∗η. We
require the biomass volume fractions to total to one so that

ν(x,t)+η(x,t)+

∫ s∗

s0

ϑ(x,s,t) ds=1. (3.3)

Polymer production depends on activity. We are making the simplifying assump-
tions that cell growth and polymer production are proportional and that matrix ma-
terial does not decay. These assumptions have the consequence that density of cells
(whether active, dormant or fully inert) and density of polymer matrix are constant.

Assuming that transport of biomass, including dormant cells, is governed by an
advective process, with a volumetric flow u(x,t), gives the fluxes Ju=ρ∗uu, Jv=
ρ∗vu, and Jw=ρ∗wu. As in [6], we follow [1, 13] and assume that the volumetric
flow is stress driven according to

u=−λ∇p, (3.4)

where p(t,x) is the pressure, λ>0 is the Darcy constant, and p=0 in Ω\Bt. Pressure is
determined in order to enforce incompressibility in response to growth and hence (3.4)
can be viewed as a balance of growth-induced stress against friction. Other choices of
force balance are possible.

Substituting u=ρ∗ν, Ju=ρ∗uu, v=ρ∗ϑ, Jv=ρ∗vu, w=ρ∗η, and Jw=ρ∗wu into
Equation (3.1) gives

∂tν(x,t)+∇·(uν)= b(c)ν(x,t)−µv(c)ν(x,t)+g(s∗,c)ϑ(x,s∗,t)−h(c)ν(x,t), (3.5a)

∂tϑ(x,s,t)+∂s(g(s,c)ϑ(x,s,t))+∇·(uϑ)=−µv(s,c)ϑ(x,s,t), (3.5b)

g(s0,c)ϑ(x,s0,t)=h(c)ν(x,t), (3.5c)

∂tη(x,t)+∇·(uη)=µu(c)ν(x,t)+

∫ s∗

s0

µv(s,c)ϑ(x,s,t) ds,

(3.5d)

−D∇2c=f, (3.5e)
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with appropriate initial conditions and boundary condition on the spatial domains
(see (3.10) for details).

Integrating (3.5b) over s gives

∂t

(
∫ s∗

s0

ϑ(x,s,t) ds

)

︸ ︷︷ ︸

=−∂tν−∂tη

+g(s∗,c)ϑ(x,s∗,t)−g(s0,c)ϑ(x,s0,t)
︸ ︷︷ ︸

=hν

+∇·

(

u

∫ s∗

s0

ϑ(x,s,t) ds

)

︸ ︷︷ ︸

=∇·u(1−ν−η)

=−

∫ s∗

s0

µv(s,c)ϑ(x,s,t) ds. (3.6)

Substituting for −∂tν−∂tη yields

∇·u= b(c)ν. (3.7)

Substituting u=−λ∇p gives an equation for the pressure in Bt,

−λ∇2p= b(c)ν. (3.8)

Distributing the divergence operator gives

∇·(uν)=−λ∇p ·∇ν+b(c)ν2, (3.9a)

∇·(uϑ)=−λ∇p ·∇ϑ+b(c)νϑ, (3.9b)

∇·(uη)=−λ∇p ·∇η+b(c)νη. (3.9c)

We see from (3.8) that p is proportional to λ−1, so that λ∇p is independent of λ.
Consequently ν, ϑ, and η are independent of λ, allowing us to set λ=1.

We impose periodic and other boundary conditions, similar to what was done in
[1], to obtain the complete model. The active cell volume fractions satisfy

∂tν(x,t)−∇p ·∇ν=−µv(c)ν(x,t)+g(s∗,c)ϑ(x,s∗,t)

−h(c)ν(x,t)+b(c)ν(x,t)
(
1−ν(x,t)

)
, (3.10a)

for x∈Bt, t>0 with conditions

∂ν

∂z
=0, x∈ΓB , t≥0, (3.10b)

ν(x,0)=ν0(x), x∈Bt, (3.10c)

where z denotes the spatial variable orthogonal to the surface ΓB , and ν0 is the initial
active cell population. The dormant cell volume fractions satisfy

∂tϑ(x,s,t)+∂s(g(s,c)ϑ(x,s,t))−∇p ·∇ϑ

=−µv(s,c)ϑ(x,s,t)−b(c)ν(x,t)ϑ(x,s,t), (3.10d)

for x∈Bt, s>s0,t>0, with conditions

g(s0,c)ϑ(x,s0,t)=h(c)ν(x,t), x∈Bt, t>0, (3.10e)

∂ϑ

∂z
=0, x∈ΓB , t≥0, s>s0, (3.10f)

ϑ(x,s,0)=0, x∈Bt, s≥s0. (3.10g)
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The fully inert cell volume fractions, including necrotic cells, satisfy

∂tη(x,t)−∇p ·∇η=µu(c)ν(x,t)+

∫ s∗

s0

µv(s,c)ϑ(x,s,t) ds−b(c)ν(x,t)η(x,t), (3.10h)

for x∈Bt, t>0, with conditions

∂η

∂z
=0, x∈ΓB , t≥0, (3.10i)

η(x,0)=η0(x), x∈Bt, (3.10j)

where η0 is the initial inert cell population. Pressure satisfies

−∇2p=b(c)ν, x∈Bt, t≥0, (3.10k)

p=0, x∈Γt, t≥0, (3.10l)

∂p

∂z
=0, x∈ΓB , t≥0. (3.10m)

Let f =[f1, . . . ,fm] and c=[c1, . . . ,cm]. The chemical species satisfy, for j=1, . . . ,m,

−Dj∇
2cj =fj , x∈Ω,t>0, (3.10n)

fj =0, x∈Ω\Bt, (3.10o)

cj =c∗j , x∈ΓHb
, t≥0, (3.10p)

∂cj
∂z

=0, x∈ΓB , t≥0, (3.10q)

where the Dj are chemical diffusion coefficients and the c∗j are the chemical concen-
trations in the bulk fluid. The normal velocity of the interface ΓB is given by

−∇p ·n=−
∂p

∂n
, (3.10r)

where n is the unit outward normal of ΓB . In practice, to avoid uninhibited growth,
some limiting process is added to (3.10r) (see (5.3) below for the case of one spatial
dimension).

4. Computational methodology

As was done for senescence-structure in [6, 17], we often handle a general phys-
iologically structured system such as (2.1a)-(2.1c) more easily if it is transformed to
an age-structured system, whether in the statement of the problem, or indirectly in
the numerical method [12]. Once our system is transformed to one with just age
structure, existing numerical methods become sufficient. However, for dormancy such
an approach is ill-advised.

To see this, let a≥0 represent the time a cell has spent dormant. We make a
change of variables so that dormancy, s(a,t), is a separate function of age and time.
We then get age-structured equations for v,

∂tv(a,t)+∂av(a,t)=− µ̃v(s,c)v(a,t)−Dv(a,t), 0<a≤a∗,t>0, (4.1a)

v(0,t)=h(c)u(t), t>0, (4.1b)

∂ts(a,t)+∂as(a,t)=g(s(a,t),c(t)), 0<a≤a∗,t>a, (4.1c)

s(0,t)=s0, (4.1d)
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where µ̃v(s,c)=µv(s,c)+∂sg(s,c) and s(a∗,t)=s∗. Setting the initial condition v0=0
requires only that we consider t>a for the domain of s(a,t).

For a choice of g(s,c)=
kgc
γg+c for scalar c, we get

s∗=s0+

∫ t

t−a

γg+c(τ)

kgc(τ)
s∗ dτ, (4.2)

so that a∗→∞ if c→0. Since functions with similar behavior to g are natural rep-
resentations of the dormancy dynamics, we thus find that the original physiologi-
cally structured system is more tractable computationally than the equivalent age-
structured system for most forms of g that interest us.

To solve directly equations with more general physiological structure, we use an
extension of the natural-age-grid Galerkin methods developed for age- and space-
structured systems in [2, 3]. These methods move the discretization nodes in age
smoothly along characteristic lines. The solutions are approximated by piecewise
polynomials, rather than moments as was done by de Roos [11]. Our extension of
these methods to general physiological structure moves the discretization nodes in
the physiological variable along characteristic curves, similar to a method of Sulsky
[23], but with the preservation of the property in our methods that each time step
need not result in a new discretization node in the physiological variable. This is
essential when variation of spatial structure, or any other dynamics in the problem,
occurs on a faster time scale than that of the physiological trait. Otherwise, the need
to take lots of small time steps would induce many more physiological nodes than are
necessary for accuracy, resulting in potentially great loss of efficiency from additional
computation or interpolation onto a coarser grid.

To motivate the integration in age and time, we ignore for the moment the dis-
cretization in space. We partition the domain [s0,s

∗] at each time by the set of nodes

{si(t)}
N
i=0 where s0(t)=s0 (in this section i denotes a node in the dormancy dis-

cretization rather than species number as above). If sN (t)≥s∗, we simply ignore that
node and the function value over it until needed. This is not an issue for our choices
of g. We compute the solution at times tj and let ∆tj = tj+1− tj , si,j =si(tj), and
∆si,j =si+1,j−si,j . For the last interval we use ∆sN,j =max(s∗−sN,j ,0). Although
we are not including space in this discussion for reasons of clarity, the presence of
spatial structure in a problem will induce different time scales into a problem, making
adaptivity and nonuniformity of time intervals an important property of any method
used.

For the computations in this paper, we use a piecewise constant approximation
space over the domain [s0,s

∗]. Higher-order approximation spaces can be used, as
was done in age in [2]. We define the projection into the space of piecewise constants
over the partition of [s0,s

∗] by

Π(v(s,tj))=

{ 1
∆si,j

∫ si+1,j

si,j
v(s,tj) ds, if si,j ≤s<si+1,j ,

0, otherwise.
(4.3)

We make the approximation Vi,j ≈Π(v(s,tj)) via the following algorithm. Let
∆smax be the largest we want the first interval in s to be. For most time steps we
have ∆s0,j ≤∆smax. In this case we set

si,j+1=si,j+∆tjg(si,j ,c(tj)), for i=1, . . . ,N. (4.4a)

We choose ∆tj such that si,j+1≥s∗ for at most one i, so as to keep N fixed.
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Let the value Vi,j denote the density over [si,j ,si+1,j ] for i=1, . . . ,N−1. We use
B(t) to denote the creation of newly dormant cells at s0. Then

Vi,j+1=
∆si,j

∆si,j+1
Vi,j , for i=1, . . . ,N−1, (4.4b)

V0,j+1=
1

∆s0,j+1

(
∆s0,jV0,j+∆tjB(tj)

)
, (4.4c)

VN,j+1=
∆sN−1,j−∆tj

∆sN,j+1
VN−1,j . (4.4d)

Because the applications in this paper provide for the first extension of the methods
presented in [2, 3], we have kept B(t) general in this part of the presentation of the
method. In our case we have B(tj)=g(s0,c(t))v(s0,t). Also, if g is independent of s,
we have ∆si,j/∆si,j+1=1 for i=1, . . . ,N−1.

If ∆s0,j >∆smax, we introduce a new node and set

si+1,j+1=si,j+∆tjg(si,j ,c(tj)), for i=1, . . . ,N−1, (4.4e)

Vi+1,j+1=
∆si,j

∆si,j+1
Vi,j , for i=0, . . . ,N−1, (4.4f)

for the intermediate intervals, and set

s1,j+1=∆tjg(s0,c(tj)), (4.4g)

V0,j+1=
∆tjB(t)

∆s0,j+1
, (4.4h)

VN,j+1=
∆sN−1,jVN−1,j+

(
∆sN,j−∆tjg(s

∗,c(tj))
)
VN,j

∆sN,j+1
, (4.4i)

for the first and last intervals.
The above calculations account for transport in the physiological variable, entry

into dormancy, and exit from dormancy. Upwind differences approximate the ad-
vection terms in space. Center differences approximate the diffusion terms in space.
Backward Euler formulæ, embedded in step-doubling with local extrapolation, ap-
proximate the time derivatives. We choose step-doubling because it is easy to imple-
ment and creates a likely second-order correct time integration scheme [4]. This notion
of convergence order is a theoretical measure; because step-doubling is an adaptive
method, we use a tolerance parameter for local truncation error rather than refine a
fixed time step. We note that other suitable choices of time-integration scheme cer-
tainly exist and our choice is not essential to our computational results or the broader
relevance of our discretization of the physiological variable.

5. Computations

In this section we present computational results for models of batch cultures,
chemostat cultures, and biofilms. We have two goals for these examples: 1) to illus-
trate our modeling and simulation approach, and 2) show that even under very simple
assumptions biofilm and planktonic cultures can differ substantially.

We make several simplifying assumptions in order to identify core differences
between the behavior in biofilm and planktonic cultures. In particular, we assume no
mortality for dormant cells (biologically reasonable on time scales considered here)
and substrate-independent mortality for active cells (to isolate other advantages to
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dormancy). We also do not consider the case of dormancy as a defense against anti-
microbial attack.

We use the same parameters for planktonic and biofilm cultures to emphasize
the effects of spatial structure. Because the parameters are taken from the biofilm
literature, we can interpret the planktonic cases as being suspended activated flocs.

5.1. Batch culture dormancy as a response to nutrient deprivation.

We let c(t) be a scalar value representing nutrient. For a two-species model (i=2 in
system (2.1)), we choose the functional forms

bi(c)=
kc

γ+c
, (5.1a)

hi(c)=
kh
ζ+c

+ǫh, (5.1b)

gi(s,c)=max

(
kgi(c− ĉ)

γ+(c− ĉ)
, 0

)

, (5.1c)

µui
(c)=µu, (5.1d)

µvi
(s,c)=0, (5.1e)

v0(s)=1, (5.1f)

u0=0, (5.1g)

with constant µu, rate constants k, kh, kg, saturation constant γ, Monod constant ζ,
critical substrate ĉ. We highlight that the two species differ only in the selection of
kgi .

We will examine two types of substrate usage and introduce the yield constant
Y . The first is no usage of substrate by dormant cells,

f =f1(c,u,v)=−
kc

Y (γ+c)
(u1+u2), (5.2a)

and the second is some usage, increasing with s, for cells to transit and exit dormancy,

f =f2(c,u,v)=−
kc

Y (γ+c)

(

u1+u2+

∫ 1

0

e−(1−s)/kg (v1+v2) ds

)

. (5.2b)

The dependence of the integral weight in f2 on kg reflects the assumption that two
cells which transit dormancy under identical substrate levels will consume an equal
amount of total substrate, even though their transit times may differ. In other words,
the amount of resources to transit and exit dormancy does not differ appreciably for
our two cells under similar conditions, just the length of time to do so.

We take the baseline parameters k=1/4hr, γ=4gCODB/m
3, ǫh=0.05, µu=

0.005/hr, and Y =0.63gCODB/gCODS [24]. The units gCODB and gCODS are the chem-
ical oxygen demand of biomass and substrate mass, respectively. We assume a small
ζ, say ζ=γ/20=gCODB/5m

3. Given the linkage between the nutrient needed to re-
produce and that needed to transit dormancy, we set ĉ to be proportional to ζ. For
definiteness and to halt transit through dormancy at minimum substrate, we use
ĉ=2ζ. We require kh/ζ≥1/24hr, so take kh=gCODB/(6hr m

3).
We set the dormancy domain to be s0=0 and s∗=1, and assume 24 hr emergence

for species 1 when c− ĉ=γ (ample substrate), so that kg1 =1/12 hr. To compare the
relatively fast dormancy time of a normal planktonic species with one that reawakens
more slowly, we set kg2 =1/24 hr for species 2.
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Fig. 5.1. Results for the batch model with f =f2 for two species with kg1 =1/12 (solid/blue)
and kg2 =1/24 (dashed/red) showing (a) total live-cell density and (b) active-cell density. Each sub-
population was recultured onto new media every 72 hours in proportion to their densities, summing
to unity. Functional forms are as in (5.1) with parameters k=1/4hr, γ=4gCODB/m

3, ǫh=0.05,
µu=0.005/hr, Y =0.63gCODB/gCODS, ζ= gCODB/5m

3, ĉ=2ζ, and kh= gCODB/(6hr m3). The dor-
mancy domain is [0,1]. Time is measured in hours. In the long run, the slow waker is driven to
extinction in both cases, f =f1 and f =f2. The two cases do not differ qualitatively and only have
minor quantitative differences.

We conducted simulations with two species where each subpopulation was recul-
tured into fresh media every 4, 8, 12, 24, 48, 72, 168, and 240 hours in proportion to
their densities, summing to unity. In all cases the fast-waker population (kg1 =1/12
hr) outgrew the slow-waker population (kg2 =1/24 hr). This outcome is not sur-
prising; conditions favor microbes that more rapidly resuscitate. Results for 72-hour
reculturing are shown in Figure 5.1. We characterize the decay process of the slow
waker population as time (td) and number of reculturing events (nr) until the slow
waker population is limited to 10% of the total biomass at the time of the reculturing
event. The results for our range of reculturing interval times (tc) are

tc 4 8 12 24 48 72 168 240
td 1476 1368 1164 384 288 432 1008 1200
nr 369 171 97 16 6 6 6 5

5.2. Chemostat culture dormancy as a response to nutrient depriva-

tion. We use the functional forms and parameter values of Section 5.1, with
d0=k/2. The active population, dormant population, and nutrient relax to a peri-
odic oscillation. We study periodic oscillations in substrate level in imitation of the
periodic recultured batch system. Note (and see later analysis) that dormancy would
seem unlikely to be of benefit in a steady chemostat. Possible advantage, or not, of
dormancy in a periodic chemostat system is less evident, especially if the oscillation
and dormancy times scales are comparable.

For two competing species, the only difference being kg1 =1/12 vs. kg2 =1/24, the
results are shown in Figure 5.2. As in the batch case, the faster waker outcompetes
the slower waker in the long run. This is true for a wide range of periods, C(t)=
8+8cos(2πt/̟) with ̟=0.5, 1, 4, 8, 12, 24, 48, 72, 168, and 240 hours, verifying
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Fig. 5.2. Results for the chemostat model with f =f2 for two species with kg1 =1/12 (solid/blue
line) and kg2 =1/24 (dashed/red line) showing (a) total live-cell density and (b) active-cell density.
We take d0=k/2 and C(t)=8+8cos(πt/12), i.e. ̟=24. All other parameters are as in Figure
5.1. In the long run, the slow waker is driven to extinction in both cases, f =f1 and f =f2, and the
cases do not differ qualitatively and only have minor quantitative differences.

the asymptotics predictions for short and long periods and extending to intermediate
periods (see Section 7.2).

As expected, the fast waker also outcompetes the slow waker in the case of a
steady, rather than oscillating, nutrient source (as predicted in Section 7.1).

5.3. Biofilm dormancy as a response to nutrient deprivation. We
present computational results for one spatial dimension (height of the biofilm), and
explicit dormancy structure for the dimensional system (3.10). The height of the
biofilm, ΓB , is regulated using an erosion or shedding term at the biofilm/substrate
interface (a standard device in biofilm models; see e.g. [14]). We modify (3.10r) in
one spatial dimension to obtain

∂ΓB

∂t
=−

∂p

∂z

∣
∣
∣
∣
z=ΓB

−αΓ2
B , (5.3)

where α is the erosion or shedding coefficient.
In the biofilm model, the two choices of substrate usage (5.2) become

f =f1(c,ν,ϑ)=−
kρ∗c

Y (γ+c)
ν, (5.4a)

f =f2(c,ν,ϑ)=−
kρ∗c

Y (γ+c)

(

ν+

∫ 1

0

e−(1−s)/kgϑ ds

)

. (5.4b)

Otherwise we use the functional forms and parameter values of Section 5.1, with the
addition of ρ∗=104gCODB/m

3 and D=10−4m2/day [24]. Initial conditions for all
runs are ν=1 up to a height of 50 µm.

Our computational results suggest that there is no disadvantage for slow reawak-
ening when f1 is used for substrate usage – the amount of live active biomass at each
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Fig. 5.3. Results for the biofilm model, system (3.10) using f1 given by (5.4a). We consider
two cases of background substrate, c∗=10 (normal, solid/blue line) and c∗=5 (dashed/red line).
Functional forms are as in (5.1). Total live biomass and shedding rate of live biomass is indepen-
dent of kg for all t. Computations shown are for kg =1/12, which are identical to those conducted
for kg =1/24, kg =1/4, and kg =1. Other parameters are k=1/4hr, γ=4gCODB/m

3, ǫh=0.05,
µu=0.005/hr, Y =0.63gCODB/gCODS, ζ= gCODB/5m

3, kh= gCODB/(6hr m3), and ĉ=2ζ. The dor-
mancy domain is [0,1]. Time is measured in hours. Biomass is measured as height in microns times
volume fraction.

height level is the same, as is the amount of fully inert (i.e. dead) cells. Only the dis-
tribution of dormant cells differs. Figure 5.3 shows the live biomass and shedding rate
of live biomass for two background substrate levels (normal c∗=10 and low c∗=5),
which is independent of kg.

In retrospect, this might be expected. The combined population of cells con-
suming substrate is dictated by the substrate profile. In the case of only active cells
consuming substrate, the population of active cells is fixed by the substrate, indepen-
dent of the reawakening process (represented by kg). Since only active cells can die,
the dead cell profile is also independent of kg. We note that our two choices of the
transit rate parameter kg are significantly slower than the cell division time parameter
k. To assure ourselves that this insensitivity to kg was not due to dominance of the
effects of kg by k, we examined additional cases of even faster wakers (kg =k=1/4
and kg =1). The insensitivity of the live biomass and shedded live biomass rate held.
In the case where dormant cells use substrate to transit dormancy and reawaken (f2),
the advantage goes to the slower wakers – in contrast to the results from our plank-
tonic simulations. This can be understood by again considering that the substrate
profile dictates the population values concerned. Faster waker populations have, in
their steady state dormancy distributions (see Figure 5.4), more of their cells nearer
to reawakening, and hence using more substrate. This substrate is in effect being
taken away from contributing to active-cell population growth, which is what drives
the total growth of the biofilm.

This effect is not monotone, however. Although for the most biologically relevant
choices (small kg) this holds, and the choice of kg =1/24 yields more live biomass than
faster reawakening (and kg =1/48 even more so), we find that for values of kg >k (i.e.,
dormancy transit time relatively short in comparison to growth time) we begin to see
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Fig. 5.4. Results for the biofilm model, system (3.10) using f2 given by (5.4b). Functional
forms are as in (5.1). Parameters are as in Figure 5.3, with the exception that c∗ is fixed at 10.
The two figures differ in the values of kg. Time is measured in hours. The horizontal width of a
color constitutes the volume fraction of cells in the corresponding state. White denotes active cells,
black denotes fully inert cells, and the spectrum from cyan or light grey to magenta or dark grey
denotes dormancy from 0 to 1. In contrast to the results of the equivalent batch and chemostat
computations, slow reawakening has an advantage over fast reawakening in the case of using f2 for
substrate usage.

improved live biomass yield. The steady-state values of live biomass and live biomass
shedding rate are

kg 1/48 1/24 1/12 1/4 1/2 1 2
live biomass 301.6 295.3 285.0 279.0 281.7 285.3 287.0

shedding rate 9.526 9.133 8.511 8.155 8.317 8.525 8.628

To understand this nonmonotonicity of live biomass and shedding rate as a func-
tion of kg, we can interpret the dormant cell population as a second population that
consumes resources (related to v(x, ·,t) and ultimately g(·,c)) and is both a source for
live biomass (related to g(s∗,c)) and a sink (related to g(s0,c), which is independent
of kg). When g(s∗,c) is larger, it seems that the tradeoff between substrate usage and
this net yield (source minus sink) begins to change. We note that kg =2 is a large
velocity term for a domain of [0,1].

In cases where c∗ is a periodic function of time similar to the periodic chemostat
model,

c∗(t)=8+8cos(2πt/̟), (5.5)

with ̟=1, 8, 24, 48, 72, 168, and 240 hours, we found similar results for both choices
of f , namely that there was no advantage to either strategy when f =f1, and there
was an advantage to slow reawakening when f =f2.
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Fig. 6.1. Convergence of the method in s.

6. Convergence study of the numerical methods

In this section we examine the convergence of the discretization of the physiologi-
cal variable, s, presented in Section 4. We use as an example the batch computations
in Section 5.1 with f =f2. The choice of f2 better illustrates the relevance of the
method to other problems. We used a reculturing interval time of tc=72 out to five
reculturing periods (t=360).

To measure convergence, we need to take into consideration the nature of the
solution. When substrate density is very low, cells enter dormancy with s=0 and
remain there, forming a singularity in the true solution. Any numerical discretization
of this solution constitutes a regularization or mollification of a delta function, as
illustrated in Figure 6.1(a). Rather than trying to measure accuracy as convergence
to a singularity, in this context we are interested in conserving total biomass. We thus

study convergence in total biomass,
∫ 1

0
vi ds, the bulk of which is near s=0. However,

because of the form of f2 (which depends on s in a manner that is more heavily
weighted towards s=1) and the importance in accurately measuring cell populations
exiting from dormancy, the convergence of vi away from s=0 is also of interest.

We note that the way in which the natural-grid methods handle the singularity
at s=0 is one more reason to use this approach.

We study convergence by increasing the number of intervals, N . Recall that
the interval widths vary and are determined by the characteristics of the problem.
Hence there is no simple parameter called ∆s to reduce. We compute solutions with
N =20,40,50,80,100,160,200 and compare them to a calculation with N =300 inter-
vals by interpolating onto a common grid. Time is integrated using step-doubling
extrapolation. As mentioned in Section 4, there are other suitable time integration
methods. Rather than specifying a fixed ∆t, step-doubling determines a suitable ∆t
for each step in time given a tolerance parameter for local truncation error. We re-
quire the relative local truncation error in the 2-norm to be measured as less than
0.001.

Figure 6.1(b) indicates superlinear asymptotic convergence of the relative error

in the 2-norm in computing total biomass,
∫ 1

0
v1 ds. The slope in the log-log plane is

roughly -1.8 for the higher values of N , which corresponds to a convergence order of
roughly 1.8. A theoretical limit is provided by analyses for natural-grid methods for
age-structured systems, methods that constitute special cases of the method presented
in this paper [2, 3]. For the case where the solution is approximated by piecewise
constant functions, we can obtain second-order convergence in the age variable. One
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additional source of error when going from age to a more general physiological variable
such as dormancy is that g needs to be approximated (for age structure g=1).

Figure 6.1(c) indicates superlinear asymptotic convergence of the relative error in
the 2-norm in v1 on the interval [0.1, 1].

The convergence study presented in this section suggests the value of an energy
analysis of the methods similar to those in [2, 3, 5]. An additional consideration is
the effect of the error in computing g on the estimates. This analysis is primarily
suitable for a specialized numerical analysis audience, and most appropriately done
for the first time in a more general context of physiological structure rather than a
rather specific biofilm model. The work presented in this paper helps to illustrate the
broader relevance of a more theoretical work in numerical analysis.

7. Long-time behavior

In this section we examine the long-time behavior of chemostat models for steady
and periodic cases.

7.1. Steady chemostat. We consider the long-time behavior of the steady
(C0(t)=C0) chemostat system by studying the time-independent solution of Equa-
tion (2.1) with i=1. In the steady state c(t)= c, so that we can define a new dormancy
coordinate a∈ [0,a∗] by

a(s)=

∫ s

s0

ds′

g(s′,c)
, (7.1)

with a∗=a(s∗). Setting the time derivative to zero, (2.1b) together with (2.1c) can
be solved to obtain

v(a)=
h(c)u

g(a∗,c)
e−d0ae−

∫
a

0
µv(a

′,c)da′

, (7.2)

where u is the steady state value of the active cell density and s has been replaced by
a. The first exponential factor accounts for loss due to washout and the second for
loss due to death. Plugging into (2.1a) and again setting the time-derivative to zero,
we obtain

0=u
[

b(c)−µu(c)−d0−
(

1−e−d0a
∗

e−
∫

a∗

0
µv(a,c)da

)

h(c)
]

. (7.3)

If u 6=0, then the second factor of (7.3) provides an equation for c. Assuming that
µu, µv, and h are all decreasing functions of c, we can write that second factor in the
form b(c)− ᾱ− α̃(c), where ᾱ is a constant and α̃(c) is a decreasing function of c such
that α̃(c)→0 as c→∞. Thus, assuming that b(c) is a monotone increasing function
of c and that b(c)>ᾱ for c sufficiently large, then it follows that there is a unique
value of c that solves (7.3) with u 6=0. However if that value is larger than C0 or if
b(c)<ᾱ for all c, then the only admissible solution of (7.3) is u=0 (washout).

Finally, given the solution for c, Equation (2.1d) can be solved to obtain the
long-time behavior of u by setting the time derivative to zero1. In the case that f is
monotone increasing in its arguments, we obtain a unique solution for u.

For two (or more) species competing in the same chemostat, the one that has the
steady-state solution with smallest value of substrate c is the only long-time survivor

1If u=0, then (2.1d) requires that d0(C0−c)=f(c,0,0); generally f(c,0,0)=0, in which case
c=C0.
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[21]; it excludes the other species by continually reducing substrate until the substrate
level is below the others’ steady-state requirements. Thus, from (7.3) it is apparent
that the smaller the size of h (i.e., the lesser the likelihood of entry to dormancy)
and the smaller the value of a∗ (i.e., the shorter the dormancy period), the more
competitive the species. Note that a species which does not go dormant at all will
outcompete an otherwise similar species which does.

7.2. Periodic chemostat

We consider next the long-time behavior of a periodic chemostat with input sub-
strate concentration C0(ωt) where C0(a+1)=C0(a), and offer asymptotics for two
special cases (again with i=1).

7.2.1. Fast Oscillations. We suppose that the chemostat oscillation period
is short compared to all other time scales of interest. In this limit, the chemostat
will oscillate many times before the microbial inhabitants can react. This intuition
suggests a multiple time scale expansion with a slow time t1 and a fast time t2 defined
by

t1= t, t2= ǫ−1t, (7.4)

where ǫ=ω−1≪ τ for any inherent time scale τ in the system. Note C0=C0(t2). We
expand

u=u0(t1,t2)+ǫu1(t1,t2)+ . . . , (7.5a)

v=v0(s,t1,t2)+ǫv1(s,t1,t2)+ . . . , (7.5b)

c= c0(t1,t2)+ǫc1(t1,t2)+ . . . , (7.5c)

We suppose that the solution (u,v,c) approaches periodicity with period ω−1 for
long times, so we look for a solution independent of slow time t1, i.e.,

u=u0(t2)+ǫu1(t2)+ . . . , (7.6a)

v=v0(s,t2)+ǫv1(s,t2)+ . . . , (7.6b)

c= c0(t2)+ǫc1(t2)+ . . . , (7.6c)

In this case, d/dt= ǫ−1d/dt2. Then to lowest order (=O(ǫ−1)), system (2.1) becomes

∂u0

∂t2
=

∂v0
∂t2

=
∂c0
∂t2

=0, (7.7)

so that u0, c0 are constants and v0=v0(s), i.e.,

u=u0+ǫu1(t2)+ . . . , (7.8a)

v=v0(s)+ǫv1(s,t2)+ . . . , (7.8b)

c= c0+ǫc1(t2)+ . . . , (7.8c)

At the next order (=O(ǫ0)), system (2.1) becomes

d

dt2
u1(t2)= b(c0)u0−µu(c0)u0+g(s∗,c0)v0(s

∗)−h(c0)u0−d0u0, (7.9a)

∂

∂t2
v1(s,t2)=−∂s(g(s,c0)v0(s))−µv(s,c0)v0(s)−d0v0(s), (7.9b)

∂

∂t2
c1(t2)=−f(c0,u0,v0(·))+d0(C0(t2)−c0), (7.9c)
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with g(s0,c0)v(s0)=h(c0)u0. Averaging over a period ω−1, we obtain

0= b(c0)u0−µu(c0)u0+g(s∗,c0)v0(s
∗)−h(c0)u0−d0u0, (7.10)

0=−∂s(g(s,c0)v0(s))−µv(s,c0)v0(s)−d0v0(s), (7.11)

0=−f(c0,u0,v0(·))+d0(C̄0−c0), (7.12)

with g(s0,c0)v(s0)=h(c0)u0, where C̄0 is the average of C0(t2) over one chemostat
oscillation period. This system, the same as was solved previously in the steady
chemostat case except with C̄0 replacing C0, has essentially the same solutions for
u0, v0(s), and c0; the next order terms u1(t2), v1(s,t2), c1(t2) add a correction of
O(ǫ). Note thus that the same conclusion holds: a species without dormancy will
outcompete an otherwise similar species which can go dormant (because the fast
oscillating chemostat acts like a steady chemostat with input substrate C̄0).

7.2.2. Slow oscillations. We suppose now that the chemostat oscillation
period is long compared to all other time scales of interest, i.e., that the chemostat
can nearly reach equilibrium before input C0(ωt) changes noticeably. Intuition again
suggests a multiple time scale expansion with a slow time t1 and a fast time t2, in
this case defined by

t1= ǫt, t2= t, (7.13)

where ǫ=ω≪ τ−1 for any inherent time scale τ in the system. Note that C0=C0(t1).
We expand

u=u0(t1,t2)+ǫu1(t1,t2)+ . . . , (7.14a)

v=v0(s,t1,t2)+ǫv1(s,t1,t2)+ . . . , (7.14b)

c= c0(t1,t2)+ǫc1(t1,t2)+ . . . , (7.14c)

We suppose quasi-equilibrium in the sense that u0, v0, and c0 are independent
of fast time t2. Noting that d/dt= ǫ∂/∂t1+∂/∂t2, then at its slowest, ǫ0 order, sys-
tem (2.1) becomes

0= b(c0)u0−µu(c0)u0+g(s∗,c0)v0(s
∗)−h(c0)u0−d0u0, (7.15a)

0=−∂s(g(s,c0)v0)−µv(s,c0)v0−d0v0, (7.15b)

0=−f(c0,u0,v0(·))+d0(C0(t1)−c0), (7.15c)

with g(s0,c0)v(s0)=h(c0)u0. Note that t1 is essentially a parameter appearing ex-
plicitly only in the input substrate concentration C0(t1). Thus to zeroth order, the
quantities u, v, and c obey system (7.15), which is the same as the steady chemostat
except with parameterized input substrate. Hence we again conclude that a species
that does not go dormant will outcompete an otherwise similar one that does. Note
one caveat though: if C(t1) drops below the minimum required to sustain a particular
population (see Section 7.1) at any point in its cycle, then extinction may occur.

7.2.3. Computational validation of asymptotics. Recall that for a wide
range of periods, C(t)=8+8cos(2πt/̟) with ̟=0.5, 1, 4, 8, 12, 24, 48, 72, 168, and
240 hours, we have verified the asymptotics predictions for short and long periods,
and extending these to intermediate periods.

Computations of competing species in a chemostat, where one species undergoes
no dormancy (h=0) and the other undergoes dormancy with parameter kg =1/12,
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confirm the results of Section 7.2.1 (using C(t)=8+8cos(4πt) where t is measured in
hours) and Section 7.2.2 (using C(t)=8+8cos(πt/12) where t is measured in hours).
A species without dormancy capability will outcompete an otherwise similar species
which can go dormant, under both fast and slow oscillations in nutrient.

8. Conclusions

Our modeling and simulation results show either no disadvantage or some ad-
vantage for slow reawakening cells in biofilms – under our simplifying assumption of
substrate-independent mortality and the two cases of substrate usage presented. In
contrast, dormancy-capable cells in well-mixed, planktonic systems (e.g. batch and
chemostat cultures) appear to have less advantage over “regular” cells. In the absence
of spatially structured populations, live biomass is maximized by the fastest possible
exit from dormancy.

Note though that we present here a somewhat awkward comparison between the
planktonic and biofilm systems as a consequence of the absence of direct competition
within our biofilm model. Modeling methodology for multispecies competition in
biofilms is still, in our view, unsettled [15] and hence we prefer not to address the
issue here. Multispecies competition within a biofilm should more appropriately be
resolved outside the context of physiological structure. Nevertheless, we feel we have
been able to argue that the behavior in biofilm is not simply congruent to that in
planktonic cultures, and have identified a potential explanation for the observation
that dormancy times are longer in biofilms than planktonic cultures.

We make no claims as to the definitiveness of these results in identifying the mech-
anisms underlying the observed differences in reawakening in biofilm and planktonic
cultures, but rather use them to show that it is natural to look to the spatial structure
of biofilm and the physiological structure of both types of systems to understand why
reawakening from dormancy can differ in these two states. As most lab populations
are of the well-mixed batch or chemostat sort, and many natural populations are of
the spatially-structured biofilm sort, this presents a cautionary warning for the use of
typical laboratory systems for the characterization of natural ones.

We remark that we have only considered here dormancy response in the context
of resource deprivation. Dormancy is also likely an effective defense strategy against
antimicrobial agents – many antimicrobials are only effective against metabolically
active targets. Thus the presence of antimicrobials reinforces the utility of dormancy
in biofilms and also may advantage dormancy-capable populations in well-mixed cul-
tures. The nature of dormancy as defense could itself benefit from modeling studies.

More generally, beyond dormancy specifically, recent studies suggest that pheno-
typic heterogeneity of many sorts is typical in spatially structured microbial popula-
tions such as biofilms [7]. Hence, models and robust and efficient numerical methods
of the sort presented here are likely to be useful and possibly necessary for model-
ing the function and ecology of diverse, spatially unmixed microbial populations that
dominate the natural environment.
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