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LADDER THEOREM AND LENGTH-SCALE ESTIMATES FOR A
LERAY ALPHA MODEL OF TURBULENCE∗

HANI ALI†

Abstract. In this paper, we study the Modified Leray alpha model with periodic boundary
conditions. We show that the regular solution satisfies a sequence of energy inequalities which are
called “ladder inequalities”. Furthermore, we estimate some quantities of physical relevance in terms
of the Reynolds number.
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1. Introduction

We consider in this paper the ML-α model of turbulence
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∂u

∂t
+(u ·∇)u−ν∆u+∇p=f in IR+×T3,

−α2∆u+u=u in T3,

∇·u=∇·u=0,
∮

T3

u=

∮

T3

u=0,

ut=0=uin.

, (1.1)

where the boundary conditions are periodic. Therefore we consider these equations on
the three dimensional torus T3=

(

IR3/T3
)

where T3=2πZ3/L, x∈T3, and t∈]0,+∞[.
The unknowns are the velocity vector field u and the scalar pressure p. The viscosity
ν, the initial velocity vector field uin, and the external force f with ∇·f =0 are given.
In this paper the force f does not depend on time.
This model was first studied in [8], where the authors prove the global existence and
uniqueness of the solution. They also prove the existence of a global attractor A to
this model and they made estimates of the fractal dimension of this attractor in terms
of Grashof number Gr.
The dimension of the attractor gives us some idea of the level of the complexity of
the flow. The relation between the number of determining modes, determining nodes,
and the evolution of volume elements of the attractors are discussed by Jones and
Titi in [12]. Temam also interprets in his book [15] the dimension of the attractors as
the number of degrees of freedom of the flow.

It is easily seen that when α=0, Equation (1.1) reduce to the usual Navier-Stokes
equations for incompressible fluids.
Assuming that f ∈C∞, any C∞ solution to the Navier-Stokes equations formally
satisfies what is called the ladder inequality [3]. That means that for any C∞ solution
(u,p) to the (NSE), the velocity part u satisfies the following relation between its
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higher derivatives:

1

2

d

dt
HN ≤−νHN+1+CNHN ‖∇u‖∞+H

1/2
N ΦN

1/2,

where HN =

∫

T3

∣

∣∇Nu
∣

∣

2
dx and ΦN =

∫

T3

|∇Nf |2dx.
(1.2)

These differential inequalities are used first in [3] to show the existence of a lower
bound on the smallest scale in the flow. The same result is obtained in [4] by a
Gevrey class estimate. Recently, the ladder inequalities have been used to study the
intermittency of solutions to the Navier-Stokes equations; see [9]. The ladder inequal-
ities to the Navier-Stokes equations are based on the assumption that a solution exists
such that the higher order norms are finite. Note that we need no such assumption in
the case of the alpha regularization, where existence and uniqueness of a C∞ solution
are guaranteed.

The ladder inequalities are generalized in [10, 11] to other equations based on
the Navier-Stokes equations such as Navier-Stokes-alpha model [5] and Leray alpha
model [1].
In this paper we aim to study ladder inequalities for model (1.1). In the whole paper,
α>0 is given and we assume that the initial data is C∞. One of the main results of
this paper is

Theorem 1.1. Assume f ∈C∞(T3)
3 and uin∈C∞(T3)

3. Let (u,p) :=(uα,pα) be
the unique solution to problem (1.1). Then the velocity part u satisfies the ladder
inequalities,

1

2

(

d

dt
HN +α2 d

dt
HN+1

)

≤−ν(HN+1+α2HN+2)

+CN ‖∇u‖∞ (HN +α2HN+1)+HN
1/2

ΦN
1/2,

(1.3)

where

HN =

∫

T3

∣

∣∇Nu
∣

∣

2
dx,C0=0 and CN ≈2N for all N ≥1. (1.4)

The gradient symbol ∇N here refers to all derivatives of every component of u of
order N in L2(T3).

Remark 1.1. We note that HN →HN as α→0. Thus we find the inequality (1.2).

Another task of this paper is to estimate quantities of physical relevance in terms
of the Reynolds number Re (see (2.8) below); these results are summarized in Table
2.1. For simplicity, Equation (1.1) will be considered with forcing f(x) taken to be
in L2 of narrow band type with a single length scale ℓ (see [9, 10]) such that

‖∇nf‖L2 ≈ ℓ−n‖f‖L2 . (1.5)

In order to estimate small length scales associated with higher order moments, we
combine in Section 5 the force with the higher derivative of the velocity [3, 9, 10],
such that

JN =FN +2α2FN+1, (1.6)
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where

FN =HN +τ2ΦN , (1.7)

the quantity FN is different from 0, and the quantity τ is defined by

τ = ℓ2ν−1(Gr lnGr)−1/2. (1.8)

We notice that τ has the dimension of time and is chosen in this way to ensure that the
additional forcing term in (1.7) becomes negligible with respect to HN when Gr→∞
(compare [10, Appendix A.2]). The JN is used to define a set of time-dependent
inverse length scales

κN,r=

(

JN
Jr

)
1

2(N−r)

. (1.9)

The second main result of the paper is the following theorem.

Theorem 1.2. Let f ∈C∞(T3)
3 be of narrow-band type and uin∈C∞(T3)

3. Let
u :=uα be the velocity part of the solution to problem (1.1). Then estimates in terms
of Reynolds number Re for the length scales associated with higher order moments
solution κN,0 (N ≥2), the inverse Kolmogorov length λk, and the attractor dimension
dF,ML−α(A) are given by

ℓ2
〈

κ2
N,0

〉

≤C(α,ν,ℓ,L)(N−1)/NRe5/2−3/2N (lnRe)1/N +CRe lnRe, (1.10)

ℓλ−1
k ≤ cRe5/8, (1.11)

dF,ML−α(A)≤ c

(

L3ℓ−4

α2λ
3/2
1

)3/4

Re9/4, (1.12)

where 〈·〉 is the long time average defined below (2.2).

The paper is organized as follows: In Section 2, we start by summarizing and
discussing the results given above. In Section 3 we recall some helpful results about
existence and uniqueness for this ML−α model, and we prove a general regularity
result. In Section 4, we prove Theorem 1.1. We stress that for all N ∈N fixed,
inequality (1.3) goes to inequality (1.2) when α→0, at least formally. In Section 5,
we prove Theorem 1.2.

2. Summary and discussion of the results
Generally the most important of the estimates in Navier-Stokes theory have been

found in terms of the Grashof number Gr defined below in terms of the forcing, but
these are difficult to compare with the results of Kolmogorov scaling theories [7] which
are expressed in terms of Reynolds number ReNS based on the Navier-Stokes velocity
u. A good definition of this is

ReNS =
Uℓ

ν
, U2=L−3

〈

‖u‖2L2

〉

, (2.1)

where 〈·〉 is the long time average

〈g(·)〉=Limt→∞
1

t

∫ t

0

g(s)ds, (2.2)
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where Lim indicates a generalized limit that extends the usual limits [6].
With frms=L−3/2‖f‖L2 , the standard definition of the Grashof number in three
dimensions is

Gr=
ℓ3frms

ν2
. (2.3)

Doering and Foias [2] have addressed the problem of how to relate ReNS and Gr and
have shown that in the limit Gr→∞, solutions of the Navier-Stokes equations must
satisfy

Gr≤ c(Re2NS +ReNS). (2.4)

Using the above relation (2.7), Doering and Gibbon [9] have reexpressed some
Navier-Stokes estimates in terms of ReNS . In particular they showed that the energy
dissipation rate ǫNS =ν

〈

‖∇u‖2L2

〉

L−3 is bounded above by

ǫNS ≤ cν3ℓ−4
(

Re3NS+ReNS

)

, (2.5)

and the inverse Kolmogorov length λ−1
k,NS =(ǫNS/ν

3)1/4 is bounded above by

ℓλ−1
k,NS ≤ cRe

3/4
NS . (2.6)

The relation (2.4) is essentially a Navier-Stokes result. In [10] it was shown that
this property holds for the Navier-Stokes-alpha model [5]; the same methods can be
used to show that for Equation (1.1) we have (compare [10, Appendix A.1])

Gr≤ c(Re2+Re), (2.7)

where Re is the Reynolds number based on the smoothed velocity u which is the
solution for Equation (1.1),

Re=
Uℓ

ν
, U

2
=L−3

〈

‖u‖2L2

〉

. (2.8)

In this paper, we will use (2.7) to obtain estimates in terms of the Reynolds number
Re. These estimates are listed in Table 2.1.

The estimate for dF,ML−α(A) is consistent with the long-standing belief that
Re3/4×Re3/4×Re3/4 resolution grid points are needed to numerically resolve the
flow. The fact that this bound is not valid for the Navier-Stokes equations is consistent
with the fact that dF,ML−α(A) blows up as α tends to zero. The improved estimate
to the inverse Kolmogorov λ−1

k coincide with the estimate to the Navier-Stokes-alpha
given in [10] and blows up when α tends to zero. The estimate for

〈

H3

〉

is not
calculated for the NS-α and the Bardina model in [10, 11], but it can be obtained for
these two models by following the same method used here for the Modified Leray-
α. The estimate for

〈

κ2
N,0

〉

is obtained directly from the ‖∇u‖∞ term in the ladder

inequalities (1.3) as opposed to the ν−1‖u‖2∞ term in [10]. In the case when the ladder
inequalities with the ν−1‖u‖2∞ term as in [10] are used, we obtain that the solution

to the Modified Leray-α also satisfies ℓ2
〈

κ2
N,0

〉

≤ cRe
11
4 − 7

4N (lnRe)
1
N . However, the

exponent 5
2 −

3
2N from our study is less than 11

4 − 7
4N for all N >1.

We finish this section with the following remark. The existence and the uniqueness
of a C∞ solution for all time T to the ML-α motivate the present study. Provided that
a regular solution exists for a maximal interval time [0,T ∗[, we can show the ladder
inequalities to the Navier-Stokes equations in [0,T ∗[. We then naturally ask ourselves
if we can use the convergence of (1.3) to (1.2) in [0,T ∗[ to deduce some information
about the regular solution beyond the time T ∗. This is a crucial problem.
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NS-α/Bardina Leray-α ML-α Eq.

ℓλ−1
k Re5/8 Re7/12 Re5/8 (5.23)

〈

H1

〉

Re5/2 Re7/3 Re5/2 (5.22)
〈

H2

〉

Re3 Re8/3 Re3 (5.17)
〈

H3

〉

- / - Re3 Re7 (5.8)
dF (A) Re9/4 / Re9/5 Re9/7 Re9/4 (5.25)
ℓ2
〈

κ2
N,r

〉

Re11/4 Re17/12 Re5/2 (5.10)

ℓ2
〈

κ2
1,0

〉

Re lnRe Re lnRe Re lnRe (5.5)
〈

‖u‖2∞
〉

Re11/4 Re5/2 Re11/4 (5.6)
〈‖∇u‖∞〉 Re35/16 Re17/12 Re5/2 (5.9)

ℓ2
〈

κ2
N,0

〉

Re
11
4 − 7

4N (lnRe)
1
N Re

17
12−

5
12N (lnRe)

1
N Re

5
2−

3
2N (lnRe)

1
N (5.13)

Table 2.1. Comparison of various upper bounds for the Navier-Stokes-α, Bardina, Leray-
α from [10, 11], and Modified Leray-α with constant omitted.

3. Existence, unicity and regularity results
We begin this section by recalling the system (1.1) considered with periodic

boundary conditions.

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














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



∂u

∂t
+(u ·∇)u−ν∆u+∇p=f in IR+×T3,

−α2∆u+u=u in T3,

∇·u=∇·u=0,
∮

T3

u=

∮

T3

u=0,

ut=0=uin.

(3.1)

Note that given u=u−α2∆u, the Poincaré inequality ‖u‖L2 ≤L/2π‖∇u‖L2 im-
mediately leads to

α2‖u‖H2 ≤‖u‖L2 ≤

(

L2

4π2
+α2

)

‖u‖H2 . (3.2)

In order to prove the ladder inequalities (1.3) we need first to show a regularity result
for (1.1) or (3.1).

Proposition 3.1. If f ∈Hm−1(T3)
3 and uin∈Hm(T3)

3, m≥1, then the solution
(u,p) of (1.1) is such that

u∈L∞([0,T ],Hm(T3)
3)∩L2([0,T ],Hm+1(T3)

3), (3.3)

p∈L2([0,T ],Hm(T3)
3). (3.4)

The following theorem is a direct consequence of Proposition 3.1.

Theorem 3.1. Assume f ∈C∞(T3)
3 and uin∈C∞(T3)

3. Let (u,p) be the solution
to problem (1.1). Then the solution is C∞ in space and time.

The aim of this section is the proof of Proposition 3.1. We begin by recalling
some known results for (1.1) or (3.1).
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3.1. Known results. Results in [8] can be summarized as follows:

Theorem 3.2. Assume f ∈L2(T3)
3 and uin∈H1(T3)

3. Then for any T >0, (1.1)
has a unique distributional solution (u,p) :=(uα,pα) such that

u∈L∞([0,T ],H−1(T3)
3)∩L2([0,T ],L2(T3)

3), (3.5)

u∈L∞([0,T ],H1(T3)
3)∩L2([0,T ],H2(T3)

3), (3.6)

‖u(t)‖2L2 +α2‖u(t)‖2H1 ≤ (‖uin‖2L2 +α2‖uin‖2H1)exp
(

−4πνt/L2
)

+
L2

4π2ν2
‖f‖2H−1

(

1−exp
(

−4πνt/L2
))

.
(3.7)

Furthermore, if uin∈H2(T3)
3 then

u∈L∞([0,T ],L2(T3)
3), (3.8)

u∈L∞([0,T ],H2(T3)
3), (3.9)

‖u(t)‖2H1 +α2‖u(t)‖2H2 ≤k(t), . (3.10)

Where k(t) satisfies

(i) k(t) is finite for all t>0.

(ii) limsup
t→∞

k(t)<∞.

Remark 3.1.

(1) The proof is based on the following energy inequality that is obtained by taking
the inner product of (1.1) with u:

1

2

(

d

dt
‖u‖2L2 +α2 d

dt
‖∇u‖2L2

)

+ν(‖∇u‖2L2 +α2‖∆u‖2L2)≤‖f‖L2‖u‖L2 . (3.11)

(2) Note that the pressure may be reconstructed from u and u by solving the elliptic
equation

∆p=∇·((u ·∇)u).

One concludes from the classical elliptic theory that p∈L1([0,T ],L2(T3)
3).

We recall that we can extract subsequences of solutions that converge as α→0
to a weak solution of the Navier-Stokes equations. The reader can look in [8] and [5]
for more details.

Corollary 3.1.

(1) We have u∈L2([0,T ],L2(T3)), and by the Sobolev embedding we obtain that u∈
L2([0,T ],L∞(T3)). Thus there exists a constant M(T ) :=M(uin,f ,α,T )>0 such that

∫ t

0

‖u‖2L∞ ≤
1

α2

∫ t

0

‖u‖2L2 ≤M(T ) for all t∈ [0,T ].

(2) We also observe by using (3.2) that there exists a constant C(α) :=C(α,L)>0
such that

‖u(t)‖2L2 ≤C(α)k(t), (3.12)

for all t>0, and k(t) is defined in (3.10).
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3.2. Regularity: Proof of proposition 3.1. The proof of proposition 3.1 is
classical (see for example in [13]). In order to make the paper self-contained we will
give a complete proof for this regularity result. The proof is given in many steps.

Step 1: We show that u∈L∞([0,T ],L2(T3)
3)∩L2([0,T ],H1(T3)

3).

Step 2: We take ∂tu as a test function in (1.1).

Step 3: We take the m−1 derivative of (1.1) then we take ∂t∇
m−1u as a test

function and the result follows by induction.

Step 1: We have the following Lemma.

Lemma 3.1. For uin∈L2(T3)
3 and f ∈H−1(T3)

3, Equation (1.1) has a unique so-
lution (u,p) such that

u∈L∞([0,T ],L2(T3)
3)∩L2([0,T ],H1(T3)

3). (3.13)

Proof of Lemma 3.1. We show formal a priori estimates for the solution estab-
lished in Theorem 3.2. These estimates can be obtained rigorously using the Galerkin
procedure.

We take the inner product of (1.1) with u to obtain

1

2

d

dt
‖u(t,x)‖2L2 +ν‖∇u(t,x)‖2L2 ≤‖∇−1f‖L2‖∇u‖L2 + |((u ·∇)u,u)|. (3.14)

Integration by parts and the Cauchy-Schwarz inequality yield

|((u ·∇)u,u)|≤‖u⊗u‖L2‖∇u‖L2 , (3.15)

and by Young’s inequality we obtain

‖∇−1f‖L2‖∇u‖L2 ≤
1

ν
‖∇−1f‖2L2 +

ν

4
‖∇u‖2L2 ,

|((u ·∇)u,u)|≤
1

ν
‖u⊗u‖2L2 +

ν

4
‖∇u‖2L2 .

(3.16)

From the above inequalities we get

d

dt
‖u(t,x)‖2L2 +ν‖∇u(t,x)‖2L2 ≤

2

ν
‖∇−1f‖2L2 +

2

ν
‖uu‖2L2

≤
2

ν
‖∇−1f‖2L2 +

2

ν

1

α2
‖u‖4L2 ,

(3.17)

where we have used in the last step that

‖u‖2L∞ ≤
1

α2
‖u‖2L2 . (3.18)

This implies that

d

dt
(1+‖u(t,x)‖2L2)≤C1(1+‖u(t,x)‖2L2)2, (3.19)

where C1=max( 2ν
1
α2 ,

2

ν
‖∇−1f‖2L2). By Grönwall’s Lemma, since ‖u‖2L2 ∈L1([0,T ])

(Corollary 3.1), we conclude that

1+‖u(t,x)‖2L∞([0,T ],L2)≤K1(T ),



484LADDER THEOREM AND LENGTH-SCALE ESTIMATES FOR A LERAY ALPHA MODEL OF TURBULENCE

where K1(T ) :=K1(T,u
in,f) is given by

K1(T )=(1+‖uin‖2L2)exp

(

C1

∫ T

0

(1+‖u(s)‖2L2)ds

)

.

Furthermore, for every T >0 we have, from (3.17),

‖u(T,x)‖2L2 +ν

∫ T

0

‖∇u(t,x)‖2L2dt≤‖uin‖2L2 +
2

ν
‖∇−1f‖2L2T +

2

ν
K1M. (3.20)

Thus u∈L2([0,T ],H1(T3)
3) for all T >0.

Step 2:
With the same assumption in the initial data as in Theorem 3.2 , we can find the
following result:

Lemma 3.2. Assume f ∈L2(T3)
3 and uin∈H1(T3)

3 . Then for any T >0, Equation
(1.1) has a unique regular solution (u,p) such that

u∈C([0,T ],H1(T3)
3)∩L2([0,T ],H2(T3)

3), (3.21)

du

dt
∈L2([0,T ],L2(T3)

3), (3.22)

p∈L2([0,T ],H1(T3)
3). (3.23)

Proof of Lemma 3.2. It is easily checked that since u∈L∞([0,T ],L2(T3)
3)∩

L2([0,T ],H1(T3)
3), then u∈L∞([0,T ],H2(T3)

3)∩L2([0,T ],H3(T3)
3). Consequently,

by the Sobolev Injection Theorem, we deduce that u∈L∞([0,T ],L∞(T3)
3) and ∇u∈

L2([0,T ],L∞(T3)
3).

Therefore,

(u ·∇)u∈L2([0,T ],L2(T3)
3). (3.24)

Now, for fixed t, we can take ∂tu as a test function in (1.1), and the procedure is
the same as the one in [14]. Note that the proof given in [14] is formal and can be
obtained rigorously by using the Galerkin method combined with (3.24).

Once we obtain that

u∈L∞([0,T ],H1(T3)
3)∩L2([0,T ],H2(T3)

3)∩H1([0,T ],L2(T3)
3)

and p∈L2([0,T ],H1(T3)
3), interpolating between L2([0,T ],H2(T3)

3)
and H1([0,T ],L2(T3)

3) yields u∈C([0,T ],H1(T3)
3).

Step 3:
We proceed by induction. The case m=1 follows from Lemma 3.2.
Assume that for any k=1, ...,m−1, if f ∈Hk−1(T3)

3 and uin∈Hk(T3)
3 then

u∈ L∞([0,T ],Hk(T3)
3) ∩L2([0,T ],Hk+1(T3)

3) holds.

It remains to prove that when k=m, f ∈Hm−1(T3)
3 and uin∈Hm(T3)

3 that
u∈L∞([0,T ],Hm(T3)

3)∩L2([0,T ],Hm+1(T3)
3).

It is easily checked that for u∈L∞([0,T ],Hk(T3)
3)∩L2([0,T ],Hk+1(T3)

3),
u∈L∞([0,T ],Hk+2(T3)

3)∩L2([0,T ],Hk+3(T3)
3).
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Consequently, by the Sobolev Injection Theorem, we deduce that
∇ku∈L∞([0,T ],L∞(T3)

3), and ∇k+1u∈L2([0,T ],L∞(T3)
3).

By taking the m−1 derivative of (1.1) we get, in the sense of distributions, that


















∂∇m−1u

∂t
+∇m−1 ((u ·∇)u)−ν∇m−1∆u+∇m−1∇p=∇m−1f ,

∇·∇m−1u=0,

∇m−1ut=0=∇m−1uin.

(3.25)

where boundary conditions remain periodic with zero mean and the initial condition
still has zero divergence and mean.

Therefore, after using Leibniz Formula

∇m−1 ((u ·∇)u)=

m−1
∑

k=0

Ck
m−1∇

ku∇m−ku, (3.26)

since

∇ku∈L∞([0,T ],L2(T3)
3)

and

∇k+1u∈L2([0,T ],L∞(T3)
3),

for any k=1, ...,m−1, we deduce that

∇m−1 ((u ·∇)u)∈L2([0,T ],L2(T3)
3). (3.27)

Now, for fixed t, we can take ∂t∇
m−1u as a test function in (3.25) and the pro-

cedure is the same as the one in [14]. One obtains that u∈L∞([0,T ],Hm(T3)
3)∩

L2([0,T ],Hm+1(T3)
3) and p∈L2([0,T ],Hm(T3)

3). This finishes the proof of Proposi-
tion 3.1.

4. Ladder inequalities: Proof of Theorem 1.1
The first step in the proof of Theorem 1.1, which has been expressed in Section

1, is the energy inequality (3.11) that corresponds to the case when N =0 in the
inequality (1.3). Having showed in the above section the regularity result for (1.1),
we can take the N derivative of (1.1) and get, in the sense of distributions, that for
all N ≥1



















∂∇Nu

∂t
+∇N ((u ·∇)u)−ν∇N∆u+∇N∇p=∇Nf ,

∇·∇Nu=0,

∇Nut=0=∇Nuin,

(4.1)

where the boundary conditions remain periodic with zero mean and the initial con-
dition still has zero divergence and mean. Taking ∇Nu as test function in (4.1), we
can write

1

2

d

dt

∫

T3

∣

∣∇Nu
∣

∣

2
dx+α2 1

2

d

dt

∫

T3

∣

∣∇N+1u
∣

∣

2
dx

=ν

∫

T3

∇Nu∇N∆udx−να2

∫

T3

∇Nu∇N∆∆udx

+

∫

T3

∇Nu∇N ((u ·∇)u)dx−α2

∫

T3

∇Nu∇N ((∆u ·∇)u)dx+

∫

T3

∇Nu∇Nfdx,
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where the pressure term vanishes as ∇·∇Nu=0.
Using the definition of HN in (1.4) we obtain

1

2

(

d

dt
HN +α2 d

dt
HN+1

)

(4.2)

≤−ν(HN+1+α2HN+2)+

∣

∣

∣

∣

∫

T3

∇Nu∇N ((u ·∇)u)dx

∣

∣

∣

∣

+α2

∣

∣

∣

∣

∫

T3

∇N+1u∇N−1((∆u ·∇)u)dx

∣

∣

∣

∣

+

∣

∣

∣

∣

∫

T3

∇Nu∇Nfdx

∣

∣

∣

∣

,

(4.3)

where we have integrated by parts in the Laplacian terms.
The central terms are

NL1=

∣

∣

∣

∣

∫

T3

∇Nu∇N ((u ·∇)u)dx

∣

∣

∣

∣

(4.4)

and

NL2=α2

∣

∣

∣

∣

∫

T3

∇N+1u∇N−1((∆u ·∇)u)dx

∣

∣

∣

∣

(4.5)

These two terms NL1 and NL2 can be bounded using the following Gagliardo-
Nirenberg interpolation inequality [3]:

Lemma 4.1. The Gagliardo-Nirenberg interpolation inequality is:
For 1≤ q,r≤∞, j and m such that 0≤ j <m we have

∥

∥∇jv
∥

∥

p
≤C ‖∇mv‖

a
r ‖v‖

1−a
q , (4.6)

where

1

p
=

j

d
+a

(

1

r
−

m

d

)

+
1−a

q

for
j

m
≤a<1 and a=

j

m
if m−j−

d

r
∈N∗.

The first nonlinear term NL1 is estimated with the Gagliardo-Nirenberg inequality
[3] by cN ‖∇u‖∞HN , where c0=0 and cN ≤ c2N . Indeed, the nonlinear first term NL1

is found to satisfy

NL1=

∣

∣

∣

∣

∫

T3

∇Nu∇N ((u ·∇)u)dx

∣

∣

∣

∣

≤2NHN
1/2

N
∑

l=1

∥

∥∇lu
∥

∥

Lp

∥

∥∇N+1−lu
∥

∥

Lq ,

where p and q satisfy 1/p+1/q=1/2 according to the Hölder inequality.
We use now the two Gagliardo-Nirenberg inequalities

∥

∥∇lu
∥

∥

Lp ≤ c1
∥

∥∇Nu
∥

∥

a

L2 ‖∇u‖
1−a
∞ ,

∥

∥∇N+1−lu
∥

∥

Lq ≤ c2
∥

∥∇Nu
∥

∥

b

L2 ‖∇u‖
1−b
∞ ,
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where a and b must satisfy

1

p
=

l−1

3
+a

(

1

2
−

N−1

3

)

,

1

q
=

N− l

3
+b

(

1

2
−

N−1

3

)

.

Since 1/p+1/q=1/2, we deduce a+b=1. Thus we obtain
∣

∣

∣

∣

∫

T3

∇Nu∇N ((u ·∇)u)dx

∣

∣

∣

∣

≤ cN ‖∇u‖∞HN . (4.7)

In the same way, we can estimate the nonlinear second term with Gagliardo-
Nirenberg inequality in order to have

α2

∣

∣

∣

∣

∫

T3

∇N+1u∇N−1((∆u ·∇)u)dx

∣

∣

∣

∣

≤ c
′

Nα2‖∇u‖∞HN+1, (4.8)

where c
′

N ≤ c2N .
The result (1.3) then follows.

5. Estimates in terms of Reynolds number: Proof of Theorem 1.2

5.1. Proof of inequality (1.10). We begin by forming the combination

FN =HN +τ2ΦN ,

where the quantity τ is defined by

τ = ℓ2ν−1(Gr lnGr)−1/2.

We define the combination

JN =FN +2α2FN+1.

The following result is a consequence of Theorem 1.1 and its proof follows closely to
that of the Navier-Stokes-alpha model in [10] and we will not repeat it.

Theorem 5.1. As Gr→∞, for N ≥1, 1≤p≤N the unique solution to Equation
(1.1) satisfies

1

2

d

dt
JN ≤−ν

J
1+ 1

p

N

J
1
p

N−p

+CN,α‖∇u‖∞JN +Cνℓ−2Re(lnRe)JN (5.1)

and, for N =0,

1

2

d

dt
J0≤−νJ1+Cνℓ−2Re(lnRe)J0. (5.2)

When α→0, JN tends to FN =HN +τ2ΦN , and the result of Theorem 5.1 is consis-
tent with the result achieved for the Navier-Stokes equations in [3].
To obtain length scales estimates, let us define the quantities

κN,r=

(

JN
Jr

)
1

2(N−r)

.



488LADDER THEOREM AND LENGTH-SCALE ESTIMATES FOR A LERAY ALPHA MODEL OF TURBULENCE

In the α→0 limit, κN,0 behaves as the 2Nth moment of the energy spectrum.
The aim of this subsection is to find an estimate for the length scales associated with
the higher order moments solution κN,0 (N ≥2). To this end, we first find upper
bounds for

〈

κ2
N,r

〉

,
〈

κ2
1,0

〉

, and 〈‖∇u‖∞〉 . Then we use the identity

κ2
N,0 = κ

2(N−1)/N
N,1 κ

2/N
1,0 (5.3)

in order to deduce the result.
(a) The first two bounds are obtained by dividing by JN in Theorem 5.1 and time

averaging to obtain
〈

κ2
N,r

〉

≤CN,αν
−1 〈‖∇u‖∞〉+Cℓ−2Re(lnRe) (5.4)

and
〈

κ2
1,0

〉

≤Cℓ−2Re(lnRe). (5.5)

Remark 5.1. Note that the bound on
〈

‖u‖2∞
〉

is found to satisfy (see in [10] for
more details)

〈

‖u‖2∞
〉

≤Cℓ−2ν2VαRe11/4, (5.6)

where

Vα :=

(

L

(ℓα)1/2

3)

.

(b) It is also possible to estimate 〈‖∇u‖∞〉 by returning to the Equation (1.1)
and taking a different way. We take u=−α2∆u+u as test function, then integrating
by parts (see Lemma 3.1), using (3.10) and time averaging, to obtain

ν
〈

H1+2α2H2+α4H3

〉

≤ C
〈

‖∇u‖L2‖∆u‖2L2

〉

+(1+α2ℓ−2)
〈

H0
1/2

Φ0
1/2
〉

≤ C
〈

‖∆u‖2L2

〉

‖u‖L∞([0,T ],H1)+(1+α2ℓ−2)
〈

H0
1/2

Φ0
1/2
〉

≤ Cα−2ν2ℓ−4L3Re3Gr2+C(1+α2ℓ−2)ν3ℓ−4L3Re3.
(5.7)

Thus we can write
〈

H3

〉

≤ C(α,ν,ℓ,L)Re7. (5.8)

This can be used to find the estimate for 〈‖∇u‖∞〉. In fact, Agmon’s inequality [6]

‖u‖∞≤‖u‖
1/2
H1 ‖u‖

1/2
H2

says that

〈‖∇u‖∞〉 ≤
〈

H3

〉1/4〈
H2

〉1/4

≤ C(α,ν,ℓ,L)Re5/2.
(5.9)

(c) Thus we obtain from (5.4) and (5.9) that

ℓ2
〈

κ2
N,r

〉

≤ C(α,ν,ℓ,L)Re5/2+CRe(lnRe). (5.10)
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In particular, for r=0,

ℓ2
〈

κ2
N,0

〉

≤ C(α,ν,ℓ,L)Re5/2+CRe(lnRe). (5.11)

By choosing r=1 we can then get an improvement for
〈

κ2
N,0

〉

by writing

〈

κ2
N,0

〉

=
〈

κ
2(N−1)/N
N,1 κ

2/N
1,0

〉

≤
〈

κ2
N,1

〉(N−1)/N 〈
κ2
1,0

〉1/N
,

(5.12)

and then using the above estimates for
〈

κ2
N,1

〉

and
〈

κ2
1,0

〉

which give, for N ≥2,

ℓ2
〈

κ2
N,0

〉

≤ C(α,ν,ℓ,L)(N−1)/NRe5/2−3/2N (lnRe)1/N +CRe lnRe. (5.13)

Note that when N =1 we return to ℓ2
〈

κ2
1,0

〉

≤CRe lnRe.

5.2. Proof of inequality (1.11). Let us come back to relation (1.3); when
N =0, we get the energy inequality (3.11):

d

dt
(H0+α2H1)≤−ν(H1+α2H2)+H0

1/2
Φ0

1/2. (5.14)

The Poincaré inequality together with the Cauchy-Schwarz, Young, and Grönwall
inequalities in (5.14) imply that H0+α2H1 is uniformly bounded in time according
to (3.7). Time averaging, using the fact that the time average of the time derivative
in (5.14) vanishes, we obtain

〈

H1+α2H2

〉

≤
〈

H0
1/2

Φ0
1/2
〉

≤ cν2ℓ−4L3Re3.
(5.15)

Thus

〈

H1

〉

≤ cν2ℓ−4L3Re3 (5.16)

and

〈

H2

〉

≤ cα−2ν2ℓ−4L3Re3. (5.17)

We deduce from (5.16) that the energy dissipation rate ǫ=ν
〈

‖∇u‖2L2

〉

L−3 is
bounded above by

ǫ≤ cν3ℓ−4Re3, (5.18)

and the inverse Kolmogorov length λ−1
k =(ǫ/ν3)1/4 is bounded above by

ℓλ−1
k ≤ cRe3/4. (5.19)

From (5.17) and by using the interpolation inequality

HN ≤HN−s

r
r+sHN+r

s
r+s , (5.20)

that is

H1≤H0

1
2H2

1
2 , (5.21)
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and we can improve (5.16) in order to obtain

〈

H1

〉

≤
〈

H0

〉
1
2
〈

H2

〉
1
2 ≤ cα−1ν2ℓ−3L3Re5/2. (5.22)

This improves the above result (5.19) for the inverse Kolmogorov length to

ℓλ−1
k ≤ c

(

ℓ

α

)1/4

Re5/8. (5.23)

We also deduce that the energy dissipation rate ǫ=ν
〈

‖∇u‖2L2

〉

L−3 is also bounded

by Re5/2, but all of the improved estimates blow up when α tends to zero.

5.3. Proof of inequality (1.12). The authors in [8] showed the existence of
a global attractor A to this model and they made estimates of the fractal dimension
of this attractor. The sharp estimate found in [8] for the fractal dimension of A
expressed in terms of Grashof number Gr is

dF,ML−α(A)≤ c

(

2π

Lα2γ

)3/4

Gr3/2, (5.24)

where

1

γ
=min

(

1,
2π

α2L

)

.

However, the estimate (5.24) can be reexpressed in terms of Re (compare to [10,
Section 3]). We observe that their bound for the attractor dimension in [8] depends
upon

〈

H1+α2H2

〉

, for which the upper bound is Re3. With this observation used in
[10], it is found that the estimate of dF,ML−α(A) in [8] converts to

dF,ML−α(A)≤ c

(

L3/2(2π)3/2ℓ−4

α2

)3/4

Re9/4. (5.25)

In term of degrees of freedom, the result (5.25) says that Re3/4×Re3/4×Re3/4 reso-
lution grid points are needed.
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