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REGULARIZATION IN KELLER-SEGEL TYPE SYSTEMS AND THE

DE GIORGI METHOD∗

BENOı̂T PERTHAME† AND ALEXIS VASSEUR‡

Abstract. Fokker-Planck systems modeling chemotaxis, haptotaxis, and angiogenesis are nu-
merous and have been widely studied. Several results exist that concern the gain of Lp integrability
but methods for proving regularizing effects in L

∞ are still very few.
Here, we consider a special example, related to the Keller-Segel system, which is both illuminating

and singular by lack of diffusion on the second equation (the chemical concentration). We show the
gain of L

∞ integrability (strong hypercontractivity) when the initial data belongs to the scale-
invariant space.

Our proof is based on De Giorgi’s technique for parabolic equations. We present this technique in
a formalism which might be easier that the usual iteration method. It uses an additional continuous
parameter and makes the relation to kinetic formulations for hyperbolic conservation laws.

Key words. De Giorgi method, entropy methods, regularizing effects, hypercontractivity,
Keller-Segel system, haptotaxis.
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1. Introduction

The Keller-Segel [19] model is certainly the simplest and best known model of a
nonlinear Fokker-Planck equation where the nonlinearity comes from the drift term.
The fact that, despite the mass being globally conserved, singularities occur in finite
time for large data while smooth solutions exist globally for small data [17, 25, 26, 20,
21, 22, 3] is both a generic property of conservative nonlinear PDEs and a symptom
of the inherent mathematical difficulties of such problems.

Our first purpose here is to exemplify, in the case of a particularly singular cou-
pling, the use of the De Giorgi method [13] for proving the gain of the L∞ property
within the framework of such model. This is the reason why we prefer, in place of the
Keller-Segel system, another Fokker-Planck equation more related to the modeling of
haptotaxis and angiogenesis and which reads as























∂
∂tn=∆n−∇· [nχ(c)∇c], t>0, x∈R

d,

∂
∂tc=−cn, t>0, x∈R

d,

n(0,x)=n0(x)≥0, c(0,x)= c0(x)≥0, x∈R
d.

(1.1)

Here n(x,t) denotes the population density of cells moving according to biased random
motion towards high values of a substance concentration denoted by c(x,t) and which
is consumed by the cells. We refer to [12, 15, 23] for more realistic models in this
area and more details on the modeling aspects. The sensitivity χ(c) is a given smooth
positive function on R+, generally chosen as a decreasing function since sensitivity is
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lower for higher concentrations of the chemical because of saturation effects; a related
case with sensitivity χ=1/c has a particularly interesting mathematical structure
[18, 24].

Weak solutions to (1.1) are treated in [9, 10] and propagation of L∞ bounds in
[11]. For this model we prove the following theorem.

Theorem 1.1. Let d≥2. A classical solution to (1.1), with c0∈
L∞(Rd) and ‖n0‖

L
d
2 (Rd)

≤K(d,‖c0‖∞) small enough, satisfies for some constant

C
(

d,‖n0‖
L

d
2 (Rd)

,‖c0‖L∞(Rd)

)

‖n(t)‖L∞(Rd)≤
C(d)

t
∀t>0. (1.2)

This result expresses both the regularizing effect and time decay of the heat
equation. Not only does it establish these properties for a more singular system than
those used presently (parabolic or elliptic equations on c) but it also treats the critical

space L
d
2 which frequently appears in the Keller-Segel type of models. Indeed L

d
2 is

the scale-invariant space for these coupled systems.
Our second motivation is to write the De Giorgi method in terms which make a

direct connection with recent tools used in hyperbolic PDEs and make the univer-
sality of the formalism somehow remarkable. Namely, we have in mind the kinetic
formulations for conservation laws [27] (see also [4, 5]), and level sets (the relation
between level sets and kinetic formulations was already noticed in [14]).

The use of Stampachia truncations, which is fundamental in the De Giorgi
method, was used for reaction-diffusion system for the first time in [1]. It was also
used in [16, 7] to study the global regularity for some reaction-diffusion systems. The
idea to replace the original method, which uses iterations on a discrete parameter, by
the use of a continuous ‘kinetic’ parameter (and differentiation in this parameter) has
already been used in the elliptic case in [28]. Here we show it also applies to parabolic
equations.

In order to motivate our method, we begin with the ‘kinetic’ proof of De Giorgi’s
result; Section 2 deals with the elliptic case and Section 3 with the parabolic case.
With this material in hand, we can handle the case of system (1.1), which is done in
Section 4.

2. De Giorgi method: elliptic case

We illustrate our approach to the derivation of L∞ regularizing effects by the
simpler case of elliptic equations. Let u satisfy the inequality

−

d
∑

i,j=1

∂

∂xi
[aij(x)

∂

∂xj
u]≤f ∈Lp(Rd), u+∈Lp′

(Rd),
1

p
+

1

p′
=1, p>

d

2

(2.1)
in the ‘kinetic’ or ‘entropy’ sense (that is the related inequality holds for (u−ξ)+),
with aij(x)≥ Id measurable. We wish to prove the standard result that u is bounded
above, namely

u(x)≤Cp (‖f‖p,‖(u)+‖p′) . (2.2)

Step 1. For ξ≥0, we have (Sobolev injection for the first inequality and direct
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estimate on (2.1) for the second)

‖(u−ξ)+‖
2
2d/(d−2)≤C(d)

∫

Rd

|∇(u−ξ)+|
2≤C(d)‖f‖p ‖(u−ξ)+‖p′ . (2.3)

Notice that because p> d
2 , we have p′< d

d−2 and p′<p′+1<2d−1
d−2 <

2d
d−2 . Therefore,

from (2.3) we conclude that (u−ξ)+∈Lp′+1 (and this leaves room for the case of
dimension 2 using Gagliardo-Nirenberg-Sobolev inequality instead of the Sobolev in-
equality).

Step 2. Next, we claim that

d

dξ

∫

(u−ξ)p
′+1

+ =−(p′+1)

∫

(u−ξ)p
′

+ ≤−C

(
∫

(u−ξ)p
′+1

+

)β

,

with

β=
p′

p′+1

2

θ+1
, 0<θ<1.

Indeed, this inequality follows from interpolation:

‖(u−ξ)+‖p′+1≤‖(u−ξ)+‖
θ
p′ ‖(u−ξ)+‖

(1−θ)
2d/(d−2)≤C(f)‖(u−ξ)+‖

θ+(1−θ)/2
p′ ,

with

1

p′+1
=

θ

p′
+(1−θ)

d−2

2d
.

Step 3. It remains to notice that β<1 for p>d/2. To prove it (i) notice that
for p=d/2, p′=d/(d−2), therefore 1

p′+1 =
d−2
d

1+θ
2 and β=1, (ii) for p>d/2 then

d−2
d < 1

p′
and thus 1

p′+1 <
θ
p′
+ 1−θ

2p′
= 1

p′

1+θ
2 .

Finally for ξ=0, the function F (ξ) :=
∫

(u−ξ)p
′+1

+ is bounded and the inequality

F ′(ξ)≤−CF (ξ)β , 0≤β<1,

shows that F (·) vanishes for a finite value ξmax.
As mentioned earlier, [28] used this method and also proved Hölder regularity.

We can obtain the following explicit dependence on the norms of f and (u)+:

u(x)≤Cp

√

‖f‖p‖(u)+‖p′ , for d=2,

u(x)≤Cp

(

‖(u)+‖
2−d/p
p′ ‖f‖d/p

′

p

)

1

2− d
p
+ d

p′ for d>2.

Indeed, consider for ε,λ>0,

uε,λ(x)=λu(εx),

fε,λ(x)= ε2λf(εx).

This also solves (2.1) for the diffusion matrix aij(εx) which still satisfies aij(εx)≥ Id.
We choose ε,λ such that

‖(uε,λ)+‖p′ =1,

‖fε,λ‖p=1.
(2.4)
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From above we have uε,λ(x)≤Cp for a universal constant Cp. So u(x)≤Cp/λ for any
x. To compute λ, we check that (2.4) is equivalent to

λε−d/p′

‖(u)+‖p′ =1,

λε2−d/p‖f‖p=1.

This leads to

λ−1=
√

‖f‖p‖(u)+‖p′ , for d=2,

λ−1=
(

‖(u)+‖
2−d/p
p′ ‖f‖d/p

′

p

)

1

2− d
p
+ d

p′ for d>2.

3. De Giorgi method: parabolic case

Following the elliptic case we turn to the heat equation















∂u
∂t −

d
∑

i,j=1

∂

∂xi

[

aij(x)
∂

∂xj
u

]

≤0,

(u0)+∈Lp(Rd).

(3.1)

For ξ >0, consider the ‘energy’

U(ξ)= sup
0≤t≤∞

∫

Rd

(

u−ξη(t)
)p

+
dx+4

p−1

p

∫ ∞

0

∫

Rd

∣

∣

∣
∇
(

u−ξη(t)
)p/2

+

∣

∣

∣

2

dxdt.

The weight in time that will come out of our analysis is

η(t)= t−
d
2p , 1≤p≤∞, (3.2)

and we will show that, for some ξ1>0, U(ξ1) vanishes, which furnishes the regularizing
effect in L∞ (strong hypercontractivity) via the estimate

u(x,t)≤ ξ1η(t). (3.3)

Step 1. Because η(0)=∞, elementary manipulations of Equation (3.1) give the
energy estimate

U(ξ)≤2pξ

∫ ∞

0

∫

Rd

|η̇(t)|
(

u−ξη(t)
)p−1

+
dxdt.

Step 2. We prove the inequality

(
∫ ∞

0

∫

Rd

(

u−ξη(t)
)q

+
dxdt

)p/q

≤C(d)U(ξ), q=p
d+2

d
, (3.4)

where C(d) is a constant.
This follows from the Sobolev inequality with r=2∗ p

2 ,
1
2∗ =

1
2 −

1
d (here again, in

dimension 2 one should use Gagliardo-Nirenberg-Sobolev inequality)

∫ ∞

0

‖
(

u−ξη(t)
)

+
‖pr dt≤C(d)

∫ ∞

0

∫

Rd

∣

∣

∣
∇
(

u−ξη(t)
)p/2

+

∣

∣

∣

2

dxdt,
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or in other words

‖
(

u−ξη(t)
)

+
‖Lp

t (L
r
x)
≤C(d)U(ξ)1/p,

which we can interpolate with

‖
(

u−ξη(t)
)

+
‖L∞

t (Lp
x)≤U(ξ)1/p.

To get Lq
tL

q
x, we choose q and θ̄ which satisfy

1

q
=

θ̄

p
+0,

1

q
=

θ̄

r
+

1− θ̄

p
,

and thus

1

q
=

p

q

2

p

(

1

2
−

1

d

)

+
q−p

pq
=⇒

q

p
=2−2

(

1

2
−

1

d

)

=1+
2

d
.

Step 3. We introduce a weight ν(t) that will be determined later on, and we define
the function

F (ξ)=

∫ ∞

0

∫

Rd

ν(t)
(

u−ξη(t)
)p

+
dxdt.

We compute by interpolation, and use of steps 1 and 2,

F (ξ)1/p ≤
(

∫∞

0

∫

Rd ν(t)
p−1

p(1−θ)
(

u−ξη(t)
)p−1

+
dxdt

)(1−θ)/(p−1)

×
(

∫∞

0

∫

Rd

(

u−ξη(t)
)q

+
dxdt

)θ/q

≤Cξθ/p
(

∫∞

0

∫

Rd |η̇(t)|
(

u−ξη(t)
)p−1

+

)

1−θ
p−1+

θ
p

dxdt,

with 1
p =

θ
q +

1−θ
p−1 , which is also

1=θ
2p+d

d+2
, 0≤θ≤1, (3.5)

and we need the compatibility conditions

ν(t)
p−1

p(1−θ) = |η̇(t)|=ν(t)η(t)

(the second equality will be used later on to obtain the correct F ′).
After a few computations (which are left to the reader) these two equalities define

η by the differential relation

−η̇(t)=η(t)
p−1
θp−1

and p−1
θp−1 =1+ 2p

d . Its solution is indeed the negative power function (3.2), namely

η(t)= t−d/(2p). Notice that ν(t)η(t)=η(t)1+
2p
d , and thus

ν(t)=η(t)
2p
d =

1

t
. (3.6)
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Step 4. We have

d
dξF (ξ) =−p

∫∞

0

∫

Rd ν(t)η(t)
(

u−ξη(t)
)p−1

+
dxdt

≤−Cξ−θβF (ξ)β ,

with

1

β
=θ+(1−θ)

p

p−1
=1+

1−θ

p−1
>1, 0<β<1,

and because θ<1,

0<θβ<1.

Therefore the function F (ξ) vanishes in finite ξ.

Step 5. It remains to explain why F is finite for some ξ0>0 using ν(t)=1/t. When
u>2ξη and for q>p, we have (u−ξη(t))p−q

+ < (ξη(t))p−q, hence the Tchebichev type
inequality

F (2ξ)≤

∫ ∞

0

∫

Rd

ν(t)

(ξη(t))q−p
(u−ξη(t))q+dxdt<∞.

Since we have q−p= 2p
d , and using the exponents in (3.6), we arrive at

ν(t)

(ξη(t))q−p
=1/ξq−p.

Therefore, for ξ >0, we have

F (2ξ)≤
1

ξq−p

∫ ∞

0

∫

Rd

(u−ξη(t))q+dxdt

≤
1

ξq−p

∫ ∞

0

∫

Rd

uq
+dxdt≤

C

ξq−p
‖(u0)+‖Lp(Rd)<∞,

where the last inequality follows by the argument of step 2 choosing η≡1 (then
the energy is directly controlled by the initial data, in opposition to the case when
η(0)=∞). The proof is complete.

Note that the estimates depend only on ‖(u0)+‖p. Hence, there exists a universal

constant Cp such that for ū(x,t)=u(x,t)/‖(u0)+‖p, ū(x,t)≤Cp t
−d
2p . This allows us

to sharpen (3.3) as

u(x,t)≤Cp ‖(u
0)+‖p t

−d
2p .

4. A nonlinear parabolic PDE arising in angiogenesis

As mentioned in the introduction, the Keller-Segel system for chemotaxis has
attracted a lot of studies mostly because solutions may blow-up for large mass. For
small initial data global weak solutions exists (and many settings are possible) and
gain of integrability is proved. For instance in [3] the authors prove, for initial mass
below the critical mass, the gain of Lp regularity for all p∈ (1,∞) when the problem
is set in R

2 for the parabolic/elliptic problem. In [8], the parabolic/parabolic case in
dimension larger than 3 is treated and Lp integrability is reached with data just above
the scale invariant exponents. This has been improved in [6] and in [21, 22]. The large
time decay as 1/t is also known in some cases; see [2] for the 2-d parabolic-elliptic
Keller-Segel system with small mass.
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4.1. Setting the problem. The model reads






















∂
∂tn=∆n−∇· [nχ(c)∇c], t>0, x∈R

d,

∂
∂tc=−cn, t>0, x∈R

d,

n(0,x)=n0(x)≥0, c(0,x)= c0(x)≥0, x∈R
d.

(4.1)

The sensitivity χ(c) is a given positive function on R+, generally chosen as a decreasing
function since sensitivity is lower for higher concentrations of the chemical due to
saturation effects.

Solutions to the angiogenesis system satisfy obvious a priori estimates for all t≥0:

n(t)≥0, 0≤ c(t,x)≤max
x∈Rd

c0(x), (4.2)

∫

Rd

n(t,x)=M0 :=

∫

Rd

n0(x). (4.3)

Moreover, when χ(c) is such that

µ :=
1

2
inf
c≥0

{

c χ′(c)
χ(c)

+1

}

>0, (4.4)

system (4.1) satisfies an energy inequality given by















d
dtE(t)≤−

∫

Rd n
[

|∇ln(n)|2+µ|∇Φ(c)|2
]

≤0 ,

E(t) :=
∫

Ω
[ 12 |∇Φ(c)|2+nln(n)] and Φ′(c)=

√

χ
c .

(4.5)

With these estimates the existence of weak solutions has been proved in [9].
Here, we are more interested in strong solutions in Lp (see [24] for Hs spaces). It

is proved in [10] that there are strong solution in Lp, for appropriate p∈ [1,∞) and
for ‖n0‖

L
d
2 (Rd)

small enough, and in [11] that they are bounded in L∞ for an initial

data in L∞. The regularizing effect, however, is open and this is what we want to
prove here.

In the direction of strong solutions, another estimate can be proved:

‖n(t)‖
L

d
2 (Rd)

≤‖n0‖
L

d
2 (Rd)

for ‖n0‖
L

d
2 (Rd)

≤K(d,‖c0‖∞) small enough.

(4.6)
This last estimate, borrowed from [10], requires an elementary computation that

will be useful later, in a more general form, which we present now. It uses the following
Nash-type inequality valid for p>0, d≥2:

∫

Rd

np+1≤C(d,p)‖∇np/2‖2L2(Rd) ‖n‖L
d
2 (Rd)

. (4.7)

For d>2, the proof uses the Sobolev inequality:
∫

Rd

np+1≤‖np/2‖2
L

2d
d−2 (Rd)

‖n‖
L

d
2 (Rd)

≤C(d)‖∇np/2‖2L2(Rd) ‖n‖L
d
2 (Rd)

.
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For d=2, we get the result in the following way:

∫

R2 n
p+1≤‖∇n

p+1
2 ‖2L1(R2) ≤C(p)‖n1/2∇np/2‖2L1(R2)

≤C(p)‖∇np/2‖2L2(R2) ‖n‖L1(R2).

We define φ by

φ′(c)=φ(c)χ(c), c>0, φ(0)=1,

and compute, following [10], for any dimension d≥2,

d
dt

∫

Rd

(

n
φ(c) −K

)p

+
φ(c) = −4p−1

p

∫

Rd φ(c)|∇( n
φ(c) −K)

p/2
+ |2

+(p−1)
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p+1

+

+(2p−1)K
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p

+

+pK2
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p−1

+
.

(4.8)

Therefore, we also have

d
dt

∫

Rd

(

n
φ(c) −K

)p

+
φ(c)

= −4p−1
p

[

∫

Rd φ(c)|∇( n
φ(c) −K)

p/2
+ |2− p

42φ
2(c)χ(c)c

(

n
φ(c) −K

)p+1

+

]

+(2p−1)K
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p

+
+pK2

∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p−1

+
.

From this equality, we deduce two useful inequalities.

On the one hand, with K=0, the Nash inequality (4.7) gives

d
dt

∫

Rd

(

n
φ(c)

)p

φ(c) =−4p−1
p

[

∫

Rd φ(c)|∇( n
φ(c) )

p/2|2− p
42φ

2(c)χ(c)c
(

n
φ(c)

)p+1
]

≤4p−1
p

∫

Rd |∇( n
φ(c) )

p/2|2
[

1−C(d,p,‖c‖∞)
∥

∥

n
φ(c)

∥

∥

d/2

]

,

(4.9)

which, with p=d/2, explains the a priori estimate (4.6). Also we conclude (with a
stronger smallness assumption if needed)

2
p−1

p

∫ T

0

∫

Rd

φ(c)|∇

(

n

φ(c)

)p/2

|2+

∫

Rd

(

n(T )

φ(c(T ))

)p

φ(c(T ))≤

∫

Rd

(

n0

φ(c0)

)p

φ(c0).

(4.10)

On the other hand, still under this smallness condition in (4.6), we have, for any
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max{1, d2 −1}≤p<∞,

d
dt

∫

Rd

(

n
φ(c) −K

)p

+
φ(c) ≤ −2p−1

p

∫

Rd φ(c)|∇
(

n
φ(c) −K

)p/2

+
|2

+(2p−1)K
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p

+

+pK2
∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −K

)p−1

+
.

(4.11)

4.2. Regularizing effects in L∞. It is our purpose to prove here our main
result.

Theorem 4.1. For c0∈L∞(Rd) and ‖n0‖Ld/2(Rd)≤C(d,‖c0‖∞) small enough, the
smooth solutions to (4.1) satisfy, for any T >0,

1. If n0∈L∞ then n∈L∞
(

(0,T )×R
d
)

,

2. if n0∈Lp(Rd) with p> d+2
2 , then ‖n(t)‖L∞(Rd)≤C(T )t−

d
2p , 0<t≤T, (the rate of

the heat equation),

3. if n0∈Lp(Rd) with p> d(d+4)
2(d+2) , then ‖n(t)‖L∞(Rd)≤

C(T )
t , 0<t≤T, (a rate weaker

than for the heat equation),

4. if n0∈Ld/2(Rd), then ‖n(t)‖L∞(Rd)≤
C(d,‖c0‖∞)

t for t>0.

In particular, this theorem implies some kind of remarkable regularizing effect on
c, even though it is driven by an ODE, because such integrability of n in L∞ is not
true for all bounded drifts c(t,x).

Also, the quadratic term in the model does not seem to have an effect on the
regularizing effects as this is the case for the long time decay [29, 8].

The first result is from [11] and we will not prove it again.

Proof. (Second estimate.) We follow the case of the heat equation, and in the
different steps we consider the additional terms coming from the energy inequality.
One of the consequences is that we have to work on a finite time interval (0,T ).

Step 1. We define, with C=2p−1
p

φmax

φmin
,

U(ξ)= sup
0≤t≤T

∫

Rd

(

n

φ(c)
−ξη(t)

)p

+

+C

∫ T

0

∫

Rd

|∇

(

n

φ(c)
−ξη(t)

)p/2

+

|2

and we first deduce after integrating (4.11) that, still under the condition η(0)>
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‖n0‖∞,

φminU(ξ) ≤ sup
0≤t≤T

∫

Rd

(

n
φ(c) −ξη(t)

)p

+
φ(c)+2p−1

p

∫ T

0

∫

Rd φ(c)|∇( n
φ(c) −ξη(t))

p/2
+ |2

≤ −ξ
∫ T

0
η̇(t)

∫

Rd

(

n
φ(c) −ξη(t)

)p−1

+
φ(c)

+(2p−1)
∫ T

0
ξη(t)

∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −ξη(t)

)p

+

+p
∫ T

0
(ξη(t))2

∫

Rd φ
2(c)χ(c)c

(

n
φ(c) −ξη(t)

)p−1

+
.

(4.12)
Step 2. On the other hand the Sobolev inequality still gives, as in (3.4) for the linear
case,

(

∫ T

0

∫

Rd

(

n

φ(c)
−ξη(t)

)q

+

dxdt

)p/q

≤CU(ξ), q=p
d+2

d
. (4.13)

Step 3. We again introduce a weight ν(t) to be determined later on, and define

F (ξ)=

∫ T

0

∫

Rd

ν(t)

(

n

φ(c)
−ξη(t)

)p

+

dxdt.

We get

F (ξ)1/p ≤
(

∫ T

0

∫

Rd ν(t)
p−1

p(1−θ)
(

n
φ(c) −ξη(t)

)p−1

+
dxdt

)(1−θ)/(p−1)

×
(

∫ T

0

∫

Rd

(

n
φ(c) −ξη(t)

)q

+
dxdt

)θ/q

or equivalently, using (4.13),

F (ξ)1/p≤ [U(ξ)]θ/p

(

∫ T

0

∫

Rd

ν(t)
p−1

p(1−θ)

(

n

φ(c)
−ξη(t)

)p−1

+

dxdt

)(1−θ)/(p−1)

, (4.14)

still with

θ=
d+2

d+2p
.

At this stage, we impose that there is a constant C(T ) (for this it might be necessary
to work with T finite):







ν(t)
p−1

p(1−θ) + |η̇(t)|≤C(T )ν(t)η(t),

η(t)≤C(T )ν(t), η̇(t)≤0.
(4.15)

We can take, for instance (although another choice is made later),

ν(t)=
1

t
, η(t)= t−

d
2p , p≥d/2, (4.16)
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with C(T )=T 1− d
2p . In the case at hand, because p−1

p(1−θ) =1+ d
2p , the constraint

T <∞ only comes from the necessity to fulfill the second line in (4.15).

We can then write (4.12) as

U(ξ)≤Cξ
(

−F ′(ξ)
)

+CξF (ξ)+Cξ2
(

−F ′(ξ)
)

, (4.17)

and we can write (4.14) as

F (ξ)≤ [U(ξ)]θ (−F ′(ξ))
(1−θ)p/(p−1)

. (4.18)

Step 4. Then we combine (4.17) and (4.18) to obtain with

p′=
p

p−1
,

F (ξ)1/θ≤C(−F ′(ξ))
(1−θ)p′

θ

[

ξ(−F ′(ξ))+ξF (ξ)+ξ2(−F ′(ξ))
]

,

and because we only consider this differential inequality for ξ≥ ξ0>0,

F (ξ)1/θ≤C
(

−F ′(ξ)
)

(1−θ)p′

θ
[

ξF (ξ)+ξ2(−F ′(ξ))
]

.

Furthermore, still with

1

β
=1+

1−θ

p−1
>1, 0<β<1,

we have the differential inequality

1≤C

(

−F ′(ξ)

F (ξ)β

)

(1−θ)p′

θ
[

ξF (ξ)1−β+ξ2
−F ′(ξ)

F (ξ)β

]

.

We may use G(ξ)=F (ξ)1−β instead, the result of which would read

1≤C
(

−G′(ξ)
)

(1−θ)p′

θ
[

ξG(ξ)+ξ2(−G′(ξ))
]

,

ξ2
(

−G′(ξ)
)

1
βθ +ξG(ξ)(−G′(ξ))

1
βθ−1≥ c,

ξ2βθ
(

−G′(ξ)
)

+ξβθG(ξ)βθ(−G′(ξ))1−βθ ≥ c>0.

which is equivalent to

G′(ξ)≤−cmin
(

ξ−2βθ, [ξG(ξ)]
βθ

1−βθ
)

. (4.19)

We recall that we always have 0<βθ<1. The term in ξG(ξ) is bad in the right
hand side of (4.19) and we have to assume that p is such that

2βθ<1 ⇐⇒
1

θβ
=1+

2p

d+2
>2.



474 DE GIORGI METHOD FOR KELLER-SEGEL SYSTEM

This condition also gives the possible exponents in our proof:

p>
d+2

2
. (4.20)

Then we may built supersolutions of the ODE (4.19):

Ḡ(ξ)=A−Bξ1−2βθ, B>0 small enough.

We choose A large enough so as to impose G(ξ0)<A−Bξ1−2βθ
0 (see step 5). Therefore

G(ξ)≤A−Bξ1−2βθ and thus G (or equivalently F ) vanishes for a finite ξ1.

Step 5. We have G(ξ0)<∞ for some ξ0 by the Tchebichev argument of Section 3,
which holds true here because we have handled the same weights η and ν. The proof
of the second inequality is completed.

Proof. (Third estimate.) We use the same proof. But, in order to extend the
range of validity for initial integrability, we choose in (4.15) the weights

η(t)=ν(t)=1/t,

and the constant C(T ) comes now from the first inequality in (4.15). We choose also
p> (d+2)/2 according to (4.20) so that the above proof holds true. But we modify
Step 5 as follows.

(Step 5-modified.) By a Tchebichev type inequality we have

F (2ξ)≤

∫ ∞

0

∫

Rd

ν(t)

(ξη(t))q̄−p
(n−ξη(t))q̄+dxdt<∞.

We choose q̄=p+1 so that the exponents in t cancel and we arrive at

F (2ξ)≤
1

ξ

∫ ∞

0

∫

Rd

(n−ξη(t))q̄+dxdt≤
1

ξ

∫ ∞

0

∫

Rd

nq̄ dxdt≤
C

ξ
‖n0‖Lp̄(Rd)<∞,

with

p̄= q̄
d

d+2
=(p+1)

d

d+2
<

d+4

2

d

d+2
,

by the Sobolev injection argument of step 2 of Section 3 and by using the a priori
bound (4.10) (with p̄ in place of p).

The proof is complete.

Proof. (Fourth estimate.) We use the fact that the norms ‖n0‖Ld/2 and ‖c0‖L∞

are scale invariant. Let us first show the estimate for T =2. Let ‖n0‖Ld/2 be small
enough. Then from the a priori bound (4.10) with p=d/2, and still with the Sobolev
inequality as in (3.4) for the linear case, we have

∫ 1

0

∫

Rd

n
d+2
2 dxdt≤C.

Therefore there is a t0≤1 for which
∫

n(t0)
d+2
2 dx≤C, and the decay property in

(4.10) gives

∫

Rd

n(1)
d+2
2 dx≤C.
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Since

d+2

2
>

d

2

d+4

d+2
,

then from the third decay result, departing from 1 we conclude that for 1<t

‖n(t)‖L∞(Rd)≤C

(
∫

Rd

n(1)
d+2
2 dx

)

1

t−1
.

In particular, for t=2,

‖n(2)‖L∞(Rd)≤ C̃.

Note that the constant C̃ depends only on ‖n0‖Ld/2 and ‖c0‖L∞ .

Consider now

nR(t,x)=R2n(R2t,Rx), cR(t,x)= c(R2t,Rx).

The scales have been chosen because (nR,cR) satisfies the same equation (1.1) with
initial value

nR(0,x)=R2n0(Rx), cR(0,x)= c0(Rx).

The critical exponents are such that

‖n0
R‖Ld/2 =‖n0‖Ld/2 , ‖c0R‖L∞ =‖c0‖L∞ .

We can then obtain at t=2 the same inequality with the same constant C̃:

‖nR(2)‖Ld/2 ≤ C̃,

which leads to

‖n(2R2)‖L∞ ≤
2C̃

2R2
.

Since the estimate is valid for any R>0, the fourth result follows.
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