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TRANSONIC SHOCK SOLUTIONS FOR A SYSTEM OF
EULER-POISSON EQUATIONS∗

TAO LUO† AND ZHOUPING XIN‡

Abstract. A boundary value problem for a system of Euler-Poisson equations modeling semicon-
ductor devices or plasma is considered. The boundary conditions are supersonic inflow and subsonic
outflow. The purpose of this paper is to elucidate the role played by the electric field in the structure
of solutions with transonic shocks. The existence, non-existence, uniqueness, and non-uniqueness of
solutions with transonic shocks are obtained according to the different cases of boundary data and
physical interval length. Detailed structures of solutions are given. Shock locations are determined
by the boundary data. Different phenomena are shown for the different situations when the density
of fixed, positively charged background ions is in supersonic and subsonic regimes.
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1. Introduction
The following system of one-dimensional Euler-Poisson equations:











ρt+(ρu)x=0,

(ρu)t+(p(ρ)+ρu2)x=ρE,

Ex=ρ−b,

(1.1)

where x and t are space and time variables, respectively, models several physical
flows including the propagation of electrons in submicron semiconductor devices and
plasma (cf. [13]) (hydrodynamic model), and the biological transport of ions for
channel proteins (cf. [2]). In the hydrodynamical model of semiconductor devices
or plasma, u, ρ, and p represent the average particle velocity, electron density, and
pressure, respectively, E is the electric field, which is generated by the Coulomb force
of particles, and b>0 stands for the density of fixed, positively charged background
ions. The biological model describes the transport of ions between the extracellular
side and the cytoplasmic side of the membranes ([2]). In this case, ρ, ρu, and E are
the ion concentration, the ions translational mass, and the electric field, respectively.

In this paper, we study the transonic shock solutions for the following time-
independent problem:

(ρu)x=0, (p(ρ)+ρu2)x=ρE, Ex=ρ−b, (1.2)

Assume that p satisfies

p(0)=0, p′(ρ)>0, p′′(ρ)>0, for ρ>0, p(+∞)=+∞. (1.3)

We consider a boundary value problem for (1.2) in an interval 0≤x≤L with the
boundary conditions

(ρ,u,E)(0)=(ρl,ul,α), (ρ,u)(L)=(ρr,ur). (1.4)
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It will assumed that ul>0 and ur>0. It follows from the first equation in (1.2) that
ρu(x)= constant (0≤x≤L) so the boundary data should satisfy ρlul=ρrur. We
denote

ρlul=ρrur=J. (1.5)

Then ρu(x)=J (0≤x≤L) and the velocity is given by

u=J/ρ. (1.6)

The boundary value problem for system (1.2) reduces to

(

p(ρ)+
J2

ρ

)

x

=ρE, Ex=ρ−b, (1.7)

with the boundary conditions

(ρ,E)(0)=(ρl,α), ρ(L)=ρr. (1.8)

We use the terminology from gas dynamics to call c=
√

p′(ρ) the sound speed. There
is a unique solution ρ=ρs for the equation p′(ρ)ρ2=J2, which is the sonic state (recall
that J =ρu). In this case, the flow is called supersonic if

p′(ρ)ρ2<J2, i.e., ρ<ρs. (1.9)

If

p′(ρ)ρ2>J2, i.e., ρ>ρs, (1.10)

then the flow is called subsonic.
We notice that (1.7)1 is singular at sonic state (p′(ρs)−

J2

ρ2
s
=0) and the coeffi-

cient of ρx changes the sign for the supersonic flow and subsonic flow. This makes the
problem of determining which kind of boundary conditions should be posed to make
the boundary value problem well-posed a subtle one. In previous works, some pure
subsonic or supersonic solutions are obtained for both one-dimensional and multidi-
mensional cases (cf. [5] and [13]). For a viscous approximation of transonic solutions in
the two-dimensional case for the equations of semiconductors, see [7]. However, there
have been only a few results for the transonic flow. In the following, we list several
results which are closely related to the present paper. First, a boundary value problem
for (1.7) was discussed in [1] for a linear pressure function of the form p(ρ)=kρ with
the special boundary conditions ρ(0)=ρ(L)= ρ̄ with ρ̄ being a subsonic state for the
case when 0<b<ρs. The solution obtained in [1] may contain transonic shock. On
the other hand, since the boundary conditions and the pressure function are special
in [1], it is desirable to consider the more general boundary conditions with a more
general pressure function. Moreover, only the case when 0<b<ρs (i.e., when b is in
the supersonic regime) is considered. As we will show later, the cases when 0<b<ρs
and b>ρs are completely different. Actually, (b,0) is a center when 0<b<ρs and a
saddle point when b>ρs for system (1.7). We will construct solutions with transonic
shocks for both cases. In [14], the local-in-time stability of transonic shock solutions
for the Cauchy problem of (1.1) is considered by assuming the existence of steady
transonic shocks. In [15], a phase plane analysis is given for system (1.7). However,
no transonic shock solutions are constructed in [15]. A transonic solution which may
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contain transonic shocks was constructed by I. Gamba (cf. [8]) by using a vanishing
viscosity limit method. However, the solutions as the limit of vanishing viscosity may
contain boundary layers. Therefore, the question of well-posedness of the boundary
value problem for the inviscid problem can not be answered by the vanishing viscosity
method. Moreover, the structure of the solutions constructed by the vanishing vis-
cosity method in [8] is shown to be of bounded total variation and possibly contain
more than one transonic shocks. One of the main purposes of the present paper is to
obtain more detailed structure of the solutions for the boundary value problem (1.7)
and (1.8) and answer the question of well-posedness of solutions for this boundary
value problem. We give a thorough study of the structure of the solutions to the
boundary value problem for the different situations of boundary data and the interval
length L. The existence, non-existence, uniqueness, and non-uniqueness of solutions
with transonic shocks are obtained according to the different cases of boundary data
and physical interval length. The solution (when it exists) that we construct contains
exactly one transonic shock in the interval [0,L]. On the left of this transonic shock,
the flow is supersonic, it is subsonic on the right of this shock. Moreover, we can de-
termine the shock location by the boundary data and L. It is interesting to compare
this result with the transonic solutions of a quasi-one-dimensional gas flow through a
nozzle studied by Embid, Goodman, and Majda ([4]). The time-dependent equations
for the one dimensional isentropic nozzle flow are

{

ρt+(ρu)x=−A′(x)
A(x) ρu,

(ρu)t+(ρu2+p(ρ))x=−A′(x)
A(x) ρu

2,
(1.11)

where ρ, u, and p denote respectively the density, velocity, and pressure, and A(x)
is the cross-sectional area of the nozzle. In [4], steady state solutions containing
transonic shocks are constructed for the boundary value problem in the interval [0,
1] with the boundary conditions (ρ,u)(0)=(ρl,ul) and (ρ,u)(1)=(ρr,ur) satisfying
ρlul=ρrur, with (ρl,ul) being supersonic and (ρr,ur) being subsonic. It is shown
in [4] that, if A(x) is not strictly monotone, then there exist multiple steady state
transonic shock solutions, and the shock locations are not unique. Particularly, when
A′(x)≡0 (this means the duct is uniform), the transonic shock can be anywhere in
the duct. Therefore, the structure of solutions depends on the geometry of the nozzle.
The electric field E plays a similar role as we will show later. The difference is that
the geometry of the nozzle is given, while the electric field E is unknown and is a part
of the solutions.

There have been many studies on the stability of transonic shocks for system
(1.13) (cf. [10], [11], and [9]). It is interesting to investigate the stability of steady
transonic solutions obtained in the paper. This is achieved recently in [12]. It would
be interesting to extend the results of this paper to the multi-dimensional case, as
those for gas dynamics (cf. [3] and [16]). An effort in this direction was made in [7]
for a viscous approximation of transonic solutions in the 2-d case for the equations
of semiconductors. However, passing to limit when the viscosity tends to zero for the
viscosity approximation in [7] is still an open problem.

2. Transonic shock solutions
For the boundary value problem (1.7) and (1.8), we assume that ρl<ρs and

ρr>ρs. This means that the flow is supersonic at x=0 and subsonic at x=L. The
solutions for this boundary value problem are expected to have transonic shocks in the
interval [0,L]. A transonic shock solution is a discontinuous solution of the boundary
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value problem (1.7) and (1.8). Suppose the shock location is at a point a∈ [0,L],
then we require the following Rankine-Hugoniot condition and entropy condition:
Rankine-Hugoniot condition

(

p(ρ)+
J2

ρ

)

(a+)=

(

p(ρ)+
J2

ρ

)

(a−),E(a+)=E(a−); (2.1)

Entropy condition

ρ(a+)>ρ(a−). (2.2)

To say that the shock is transonic means

ρ(a+)>ρs>ρ(a−). (2.3)

The definition of transonic shock solutions for the boundary value problem (1.7) and
(1.8) is given as follows:

Definition 2.1. A piecewise smooth solution (ρ,E) with ρ>0 to the boundary value
problem (1.7) and (1.8) is said to be a transonic shock solution if it is separated by a
shock discontinuity located at a∈ [0,L], and of the form

(ρ,E)=

{

(ρsup,Esup)(x), 0≤x≤a,

(ρsub,Esub)(x), a≤x≤L,

satisfying the Rankine-Hugoniot condition

p(ρsup(a))+
J2

ρsup(a)
=p(ρsub(a))+

J2

ρsub(a)
,Esup(a)=Esub(a),

and is supersonic behind the shock and subsonic ahead of the shock, i.e.,

ρsup(x)<ρs for x∈ [0,a],

and

ρsub(x)>ρs, for x∈ [a,L].

Moreover, (ρsup,Esup)(x) and (ρsub,Esub)(x) satisfy Equation (1.7) on the intervals
[0,a] and [a,L], respectively, and the following boundary conditions:

(ρsup,Esup)(0)=(ρl,α), ρsub(L)=ρr. (2.4)

The main result of this paper can be summarized as follows:

Proposition 2.2. For the cases of b<ρs and b>ρs, one can classify the boundary
data (ρl,α), ρr, and the length of the interval L such that the boundary value problem
(1.7) and (1.8) has:

1) no transonic shock solution;

2) a unique transonic shock solution;

3) more than one transonic shock solution.
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3. Initial value problem for system (1.7)
We will use the shock matching method to construct the transonic shock solutions

for the boundary value problem. For this purpose, we study the following initial value
problem for (1.7):

{

(p(ρ)+ J2

ρ )x=ρE, Ex=ρ−b, for x>x0,

(ρ,E)(x0)=(ρ0,E0).
(3.1)

The solution of (1.7) can be analyzed in (ρ,E)-phase plane.
Any trajectory in (ρ,E)-plane satisfies the following equation:

d

(

1

2
E2−H(ρ)

)

=0, where H ′(ρ)=
ρ−b

ρ

(

p′(ρ)−
J2

ρ2

)

. (3.2)

The trajectory passing through the point (ρ0,E0) with ρ0>0 is given by

1

2
E2−

∫ ρ

ρ0

H ′(s)ds=
1

2
E2

0 . (3.3)

Since the cases when 0<b<ρs (b is in supersonic region) and b>ρs (b is in subsonic
region) are completely different, we discuss these two cases separately. The phase
portraits for these two cases can be found in Figure 1 and Figure 2 (all the figures are
at the end of this paper).

A phase plane analysis of Equation (1.7) is given in [15]. We give some details
here for our study of the transonic shock solutions.

3.1. The case when 0<b<ρs. The following facts will be useful:

H ′(ρs)=H ′(b)=0, H ′(ρ)>0 for 0<ρ<b and ρ>ρs, H
′(ρ)>0 for b<ρ<ρs, (3.4)

lim
ρ→0+

∫ ρ

ρ0

H ′(s)ds=−∞, for any ρ0>0. (3.5)

For the different situations of the initial value (ρ0,E0) on the (ρ,E)-plane, we give the
following classification of solutions. First, we define the critical trajectory for the
case when 0<b<ρs.

Definition 3.1. The critical trajectory is the trajectory passing through the point
(ρs,0) with the equation

1

2
E2−

∫ ρ

ρs

H ′(s)ds=0. (3.6)

There are two branches of the critical trajectory — a supersonic branch and a subsonic
branch.
The supersonic branch is for ρcmin≤ρ≤ρs where ρcmin is determined by

∫ ρc
min

ρs

H ′(s)ds=0, 0<ρcmin<b. (3.7)

The subsonic branch is for ρ>ρs. The supersonic branch is a loop with center (b,0),
which is called the supersonic loop of the critical trajectory. The supersonic branch
and subsonic branch intersect at the sonic point (ρs,0).
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Solutions for IVP (3.1) for the case 0<b<ρs.

Case 1: (ρ0, E0) is inside the critical supersonic loop, i.e., ( 12E
2
0 −
∫ ρ0

ρs
H ′(s)ds<0

and 0<ρ0<ρs (ρ0,E0) 6=(b,0)).
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all

x≥x0. In (ρ,E)-plane, the trajectory of the solution is given by Equation (3.3). In
this case, the trajectory is a loop with the center (b,0). The direction of the trajectory
is counter clockwise. The solution is periodic and always supersonic.

Case 2: (ρ0, E0) is inside the critical subsonic branch of the critical trajectory, i.e.,
( 12E

2
0 −
∫ ρ0

ρs
H ′(s)ds<0 and ρ0>ρs).

In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. E is strictly increasing. The solution is always subsonic. Moreover,

lim
x→∞

(ρ,E)=(∞,∞).

Case 3: (ρ0,E0) is on the critical supersonic trajectory , i.e., 1
2E

2
0 −
∫ ρ0

ρs
H ′(s)ds=0

and 0<ρ0≤ρs. In this case, there are infinitely many smooth solutions to the IVP
(3.1) for all x≥x0. These solutions are of the following types:

i)(Type I) (Periodic) The solution (ρ,E) is always on the supersonic loop of the
critical trajectory.

ii) (Type II) The solution travels along the supersonic loop of the critical tra-
jectory n times (n=0,1,2, · · ·), and then travels to the sonic point (ρs,0). From
this sonic point, it travels along the upper subsonic branch of the critical trajectory
1
2E

2−
∫ ρ

ρs
H ′(s)ds=0, E >0, ρ>ρs. In this case, we have

lim
x→∞

(ρ,E)=(∞,∞).

Case 4: ((ρ0,E0) is on the critical trajectory, and ρ0>ρs (subsonic) and E0>0.)
In this case, there exists a unique solution (ρ,E)(x) to the initial value problem

(3.1) for all x≥x0, which travels along the upper subsonic branch of the critical
trajectory 1

2E
2−
∫ ρ

ρs
H ′(s)ds=0, E >E0, ρ>ρ0 satisfying

ρx>0, Ex>0, lim
x→∞

(ρ,E)=(∞,∞).

Case 5: ((ρ0,E0) is on the critical trajectory, and ρ0>ρs (subsonic) and E0<
0.) In this case, there are infinitely many solutions. In (ρ,E) plane, the solutions
start from (ρ0,E0), travel along the lower subsonic branch of the critical trajectory
1
2E

2−
∫ ρ

ρs
H ′(s)ds=0, 0>E>E0, ρ<ρ0 in the direction ρ decreases and E increases.

The solutions reaches the sonic point (ρs,0) at some x1>x0. After then (x>x1), this
case reduces to Case 3.

Case 6: ( 12E
2
0 −
∫ ρ0

ρs
H ′(s)ds>0 and 0<ρ0<ρs.)

In this case, the solution to the initial value problem (3.1) exists only on a finite
interval [x0,x2) for some x2>x0. Moreover,

lim
x→x−

2

(ρ,E)=(ρs,E1),

where E1 is determined by

1

2
E2

1 −

∫ ρs

ρ0

H ′(s)ds=
1

2
E2

0 ,E1<0.



T. LUO AND Z. XIN 425

Furthermore,

lim
x→x−

2

ρx(x)=+∞.

Case 7: ( 12E
2
0 −
∫ ρ0

ρs
H ′(s)ds>0 and ρ0>ρs,E0>0.)

In this case, the solution to the initial value problem (3.1) exists for all x≥x0.
Along the trajectory of the solution, both ρ and E are strictly increasing. Moreover,

lim
x→∞

(ρ,E)(x)=(+∞,+∞).

Case 8: ( 12E
2
0 −
∫ ρ0

ρs
H ′(s)ds>0 and ρ0>ρs,E0<0.)

In this case, the solution to the initial value problem (3.1) exists only on a finite
interval [x0,x3) for some x3>x0. Moreover,

lim
x→x−

3

(ρ,E)=(ρs,E2),

where E2 is determined by

1

2
E2

2 −

∫ ρs

ρ0

H ′(s)ds=
1

2
E2

0 , E2<0.

Furthermore,

lim
x→x−

3

ρx(x)=−∞.

3.2. The case when b>ρs. In the case when b>ρs, the equilibrium point
(b,0) is a saddle point on the phase plane (see Figure 2).
One can also define the critical trajectory for the case b>ρs as:

Definition 3.2. The critical trajectory (for the case b>ρs) is the trajectory passing
through the point (b,0) with the equation:

1

2
E2−

∫ ρ

b

H ′(s)ds=0. (3.8)

The initial value problem 3.2 for the different cases of the initial data (ρ0,E0) can be
solved as follows.

Case 1 (ρ0<ρs), i.e., ρ0 is supersonic. In this case, the solution of (3.1) only exists
in a finite interval [x0,x4). Moreover,

lim
x→x4−

(ρ,E)=

(

ρs,−

√

E2
0 +2

∫ ρs

ρ0

H ′(s)ds

)

, lim
x→x4−

ρx=+∞.

Case 2 ρ0>ρs.
a) (ρ0,E0) is inside the critical trajectory, i.e.,

1

2
E2

0 +

∫ b

ρ0

H ′(s)ds<0, ρ0>ρs.

There are two subcases.
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a1) ρs<ρ0<b.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) in a finite
interval [x0, x5). Moreover,

b>ρ(x)>ρs, x∈ [x0,x5),

lim
x→x5−

(ρ,E)(x)=

(

ρs,−

√

E2
0 +2

∫ ρs

ρ0

H ′(s)ds

)

, lim
x→x5−

ρx(x)=−∞.

a2) ρ0>b.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. Moreover,

ρ(x)>b>ρs, Ex>0, x∈ [x0,∞),

lim
x→∞

(ρ,E)(x)=(+∞,+∞).

b) (ρ0,E0) is outside the critical trajectory, i.e.,

1

2
E2

0 +

∫ b

ρ0

H ′(s)ds>0, ρ0>ρs.

There are two subcases.

b1) E0>0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. Moreover,

ρ(x)>ρs, x∈ [x0,∞),

lim
x→∞

(ρ,E)(x)=(+∞,+∞).

b2) E0<0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) in a finite
interval [x0, x6). Moreover,

ρ(x)>ρs, x∈ [x0,x6),

lim
x→x6−

(ρ,E)(x)=

(

ρs,−

√

E2
0 +2

∫ ρs

ρ0

H ′(s)ds

)

, lim
x→x6−

ρx(x)=−∞.

c) (ρ0,E0) is on the critical supersonic trajectory, i.e.,

1

2
E2

0 +

∫ b

ρ0

H ′(s)ds=0.

c1) ρs<ρ0<b, E0>0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. Moreover,

ρx>0, Ex<0, x>x0,

lim
x→∞

(ρ,E)(x)=(b, 0).
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c2) ρs<ρ0<b, E0<0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) in a finite
interval [x0, x7). Moreover,

ρx(x)<0, Ex(x)<0, x∈ [x0,x7),

lim
x→x7−

(ρ,E)(x)=

(

ρs,−

√

2

∫ ρs

b

H ′(s)ds

)

, lim
x→x7−

ρx(x)=−∞.

c3) ρ0>b, E0>0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. Moreover,

ρx>0, Ex>0, x>x0,

lim
x→∞

(ρ,E)(x)=(∞, ∞).

c4) ρ0>b, E0<0.
In this case, the initial value problem (3.1) admits a unique solution (ρ,E) for all
x≥x0. Moreover,

ρx(x)>0, Ex(x)>0, x>x0,

lim
x→∞

(ρ,E)(x)=(b, 0).

4. Some general lemmas
In this section, we give several lemmas which will be used later. In what follows,

(ρ,E)(x,ρ0,E0) (x≥x0) denotes the solution of the initial value problem (3.1) and
T (ρ0,E0) presents the trajectory passing through the state (ρ0,E0) in the direction
as x increases. Precisely, we define

Definition 4.1. We say that a state (ρ1,E1)∈T (ρ0,E0) if there exist x0∈R1 and
x1∈R1 satisfying x1≥x0 such that (ρ1,E1)=(ρ,E)(x1,ρ0,E0).

Therefore, if (ρ1,E1)∈T (ρ0,E0), then

1

2
E2

1 −

∫ ρ1

ρ0

H ′(s)ds=
1

2
E2

0 .

For any ρ∈ (0,ρs), there exists one and only one F (ρ) satisfying

p(F (ρ))+
J2

F (ρ)
=p(ρ)+

J2

ρ
, F (ρ)>ρs, (4.1)

i.e., the state (ρ,E) and (F (ρ),E) can be connected by a transonic shock (cf. the
Rankine-Hogoniout condition 2.1). It is easy to verify that

F ′(ρ)=
p′(ρ)− J2

ρ2

p′(F (ρ))− J2

F (ρ)2

<0, for 0<ρ<ρs, (4.2)

H ′(F (ρ))F ′(ρ)=
F (ρ)−b

F (ρ)

(

p′(ρ)−
J2

ρ2

)

, for 0<ρ<ρs. (4.3)
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For the trajectory passing through (ρl,α), the shock curve is defined by Tshock:

Tshock={(F (ρ),E) : (ρ,E)∈T (ρl,α)}.

Let ℓ((ρ1,E1);(ρ2,E2)) be the length in x for the trajectory of (1.7) to travel
from the state (ρ1,E1) to the state (ρ2,E2) when (ρ1,E1) and (ρ2,E2) are on the
same trajectory. When (ρ1,E1) and (ρ2,E2) are on the same periodic trajectory,
ℓ((ρ1,E1);(ρ2,E2)) is understood as the length in x which does not exceed one pe-
riod. Some elementary but important properties of these trajectories and shock wave
curves are listed in the following lemmas.

Lemma 4.2. Suppose that the two states (ρ1,E1) and (ρ2,E2) are on the same tra-
jectory of system (1.7), i.e., (ρ2,E2)∈T (ρ1,E1). Then

i) if on the trajectory connecting these two states, E does not change sign (then E is
a function of ρ, denoted by E(ρ)),

ℓ((ρ1,E1);(ρ2,E2))=

∫ ρ2

ρ1

p′(ρ)− J2

ρ2

ρE(ρ)
dρ, (4.4)

ii) if on the trajectory connecting these two states, E is strictly increasing or decreasing
(then ρ is a function of E, denoted by ρ(E,ρ1)), then

ℓ((ρ1,E1);(ρ2,E2))=

∫ E2

E1

dE

ρ(E,ρ1)−b
, (4.5)

as long as ρ(E,ρ1) 6= b for E between E1 and E2.

Proof. It follows from (1.7)1 that
p′(ρ)− J2

ρ2

ρE dρ=dx when E does not change

sign. This proves (4.4), while the second equation in (1.7) yields dE
ρ−b =dx. Thus (4.5)

follows.

Lemma 4.3. For fixed (ρ0,E0) and ρr, let

X(ρ̄)= ℓ((ρ0,E0);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))), (4.6)

where ρ0<ρs, ρ̄<ρs, ρr>ρs, (ρ̄,E(ρ̄))∈T (ρ0,E0), (ρr,Er(ρ̄))∈T (F (ρ̄),E(ρ̄)). If
E does not change sign along the trajectories from (ρ0,E0) to (ρ̄,E(ρ̄)) and from
(F (ρ̄),E(ρ̄)) to (ρr,Er(ρ̄)), then

X ′(ρ̄)=

(

p′(ρ̄)−
J2

ρ̄2

)(

1

ρ̄
−

1

F (ρ̄)

)

Q(ρ̄), (4.7)

provided E(ρ̄) 6=0, where

Q(ρ̄)=
1

E(ρ̄)
+b

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt, (4.8)

and

E(ρ̄,t)=sgn(E(ρ̄))

√

E2(ρ̄)+2

∫ t

F (ρ̄)

H ′(s)ds, (4.9)
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for t between F (ρ̄) and ρr. Moreover,

Q′(ρ̄)=

(

p′(ρ̄)−
J2

ρ̄2

)

(

1

E3(ρ̄)

[

b

ρ̄
−

b

F (ρ̄)
−1

]

+3b2
[

1

ρ̄
−

1

F (ρ̄)

]
∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE5(ρ̄,t)
dt

)

.

(4.10)

Proof. Let X1(ρ̄)= ℓ((ρ0,E0);(ρ̄,E(ρ̄))) and X2(ρ̄)= ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))).
Then it follows from Lemma 4.2 that

X1(ρ̄)=

∫ ρ̄

ρ0

p′(t)− J2

t2

tE(t)
dt, X2(ρ̄)=

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE(ρ̄,t)
dt, (4.11)

where (t,E(t))∈T (ρ0,E0) for t between ρ0 and ρ̄, and E(ρ̄,t) is given by

1

2
E2(ρ̄,t)−H(t)=

1

2
E2(ρ̄)−H(F (ρ̄)), (4.12)

for t between F (ρ̄) and ρr. Since (ρ̄,E(ρ̄))∈T (ρ0,E0), it holds that

1

2
E2(ρ̄)−H(ρ̄)=

1

2
E2

0 −H(ρ0). (4.13)

Therefore

E(ρ̄)E′(ρ̄)=H ′(ρ̄). (4.14)

By (4.11), one can get

X ′
1(ρ̄)=

p′(ρ̄)− J2

ρ̄2

ρ̄E(ρ̄)
. (4.15)

Noting that E(ρ̄,t)=E(ρ̄) as t=F (ρ̄) in (4.12), and using the second equation in
(4.11), we obtain

X ′
2(ρ̄)=−

p′(F (ρ̄))−
J2

(F (ρ̄))2

F (ρ̄)E(ρ̄)
F ′(ρ̄),

−

∫ ρr

F (ρ̄)

(p′(t)− J2

t2 )∂E(ρ̄,t)/∂ρ̄

tE2(ρ̄,t)
dt. (4.16)

By virtue of (4.3), (4.12), and (4.13), one has

E(ρ̄,t)
∂E(ρ̄,t)

∂ρ̄
=E(ρ̄)E′(ρ̄)−H ′(F (ρ̄)F ′(ρ̄)

=H ′(ρ̄)−H ′(F (ρ̄))F ′(ρ̄)

=

(

p′(ρ̄)−
J2

ρ̄2

)(

b

F (ρ̄)
−

b

ρ̄

)

. (4.17)

Since X(ρ̄)=X1(ρ̄)+X2(ρ̄), (4.7) follows from (4.15)-(4.17). (4.10) can be obtained
by the same method.

The following alternative lemma will be used later.
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Lemma 4.4. For the fixed (ρ0,E0) and ρr satisfying ρ0<ρs, ρr>ρs, assume that
(ρ̄,E(ρ̄))∈T (ρ0,E0) satisfies 0<ρ̄<ρs and E does not change sign along the trajec-
tory from (ρ0,E0) to (ρ̄,E(ρ̄)). Moreover, suppose that the trajectory starting from
(F (ρ̄),E(ρ̄)) crosses the ρ-axis at the point (q(ρ̄),0) and then intersects the line ρ=ρr
at (ρr,Er(ρ̄)) (i.e. (q(ρ̄),0)∈T (F (ρ̄),E(ρ̄)) and (ρr,Er(ρ̄))∈T (q(ρ̄),0)). Assume fur-
ther that ρ 6= b on the trajectory T (F (ρ̄),E(ρ̄)) . Let

X(ρ̄)= ℓ((ρ0,E0);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))).

Then

dX(ρ̄)

dρ̄
=

(

p
′(ρ̄)−

J2

ρ̄2

)

F (ρ̄)− ρ̄

ρ̄

{

1

(F (ρ̄)−b)E(ρ̄)
−

b

F (ρ̄)

[

1

(ρr−b)Er(ρ̄)

+

∫ q(ρ̄)

F (ρ̄)

dρ

(ρ−b)2E1(ρ,ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ−b)2E2(ρ,ρ̄)

]}

, (4.18)

provided E(ρ̄) 6=0 and Er(ρ̄) 6=0, where

E1(ρ,ρ̄)=sgn(E(ρ̄))

√

E2(ρ̄)+2

∫ ρ

F (ρ̄)

H ′(t)dt, (4.19)

E2(ρ,ρ̄)=−sgn(E(ρ̄))

√

E2(ρ̄)+2

∫ ρ

F (ρ̄)

H ′(t)dt. (4.20)

Proof. By the definition of E1(ρ,ρ̄), E2(ρ,ρ̄), and q(ρ̄), it is clear that

E1(q(ρ̄), ρ̄)=E2(q(ρ̄), ρ̄)=0, (4.21)

E1(F (ρ̄), ρ̄)=E(ρ̄), E2(ρr, ρ̄)=Er(ρ̄). (4.22)

Let

Y1(ρ̄)= ℓ((ρ0,E0);(ρ̄,E(ρ̄))),

and

Y2(ρ̄)= ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))). (4.23)

Similar to (4.14), one has

Y ′
1(ρ̄)=

p′(ρ̄)− J2

ρ̄2

ρ̄E(ρ̄)
(4.24)

as long as E(ρ̄) 6=0. The Equation dE1(ρ,ρ̄)
dx =ρ−b yields that

L2(ρ̄) := ℓ((F (ρ̄),E(ρ̄));(q(ρ̄),0))=

∫ q(ρ̄)

F (ρ̄)

∂E1(ρ,ρ̄)/∂ρ

ρ−b
dρ. (4.25)

Due to (4.21) and (4.22), integration by parts gives

L2(ρ̄)=−
E(ρ̄)

F (ρ̄)−b
+

∫ q(ρ̄)

F (ρ̄)

E1(ρ,ρ̄)

(ρ−b)2
dρ. (4.26)
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Similarly,

L3(ρ̄) := ℓ((q(ρ̄),0);(ρr,Er(ρ̄)))=
Er(ρ̄)

ρr−b
+

∫ ρr

q(ρ̄)

E2(ρ,ρ̄)

(ρ−b)2
dρ. (4.27)

It should be noted that

ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄)))=L2(ρ̄)+L3(ρ̄). (4.28)

By (4.26), (4.21), and (4.22), we have,

L′
2(ρ̄)=−

E′(ρ̄)

F (ρ̄)−b
+

∫ q(ρ̄)

F (ρ̄)

∂E1(ρ,ρ̄)/ρ̄

(ρ−b)2
dρ. (4.29)

An argument similar to that for (4.14) shows

E′(ρ̄)E′(ρ̄)=H ′(ρ̄). (4.30)

It follows from (4.19) that

1

2
E2

1(ρ,ρ̄)=
1

2
E2(ρ̄)+

∫ ρ

F (ρ̄)

H ′(t)dt.

Therefore, in view of (4.30), one obtains that

E1(ρ,ρ̄)
∂E1

∂ρ̄
=H ′(ρ̄)−H ′(F (ρ̄))F ′(ρ̄). (4.31)

This then yields, with the help of (4.30), (4.31), and (4.32), that

L′
2(ρ̄)=−

H ′(ρ̄)

(F (ρ̄)−b)E(ρ̄)
+(H ′(ρ̄)−H ′(F (ρ̄))F ′(ρ̄))

∫ q(ρ̄)

F (ρ̄)

1

(ρ−b)2E1(ρ,ρ̄)
dρ. (4.32)

Now we show that
∫ q(ρ̄)

F (ρ̄)
1

(ρ−b)2E1(ρ,ρ̄)
dρ is finite. This is necessary because

E1(q(ρ̄), ρ̄))=0. Let

g(ρ)=E2(ρ̄)+2

∫ ρ

F (ρ̄)

H ′(t)dt.

Then (4.19) yields that

E1(ρ,ρ̄)=sgn(E(ρ̄))
√

g(ρ). (4.33)

Clearly, g(q(ρ̄))=0 and

g′(q(ρ̄))=H ′(q(ρ̄)) 6=0 (4.34)

because q(ρ̄) 6= b and q(ρ̄) 6=ρs. So

g(ρ)=g′(q(ρ̄))(ρ−q(ρ̄))+O((ρ−q(ρ̄))2),

as |ρ−q(ρ̄)| is small. This, together with (4.33) and (4.34), implies that
∫ q(ρ̄)

F (ρ̄)
1

(ρ−b)2E1(ρ,ρ̄)
dρ is finite. Similarly, one can show that

L′
3(ρ̄)=(H ′(ρ̄)−H ′(F (ρ̄))F ′(ρ̄))

(

1

(ρr−b)Er(ρ̄)
+

∫ ρr

q(ρ̄)

1

(ρ−b)2E2(ρ,ρ̄)
dρ

)

. (4.35)

Then (4.18) follows from (4.24), (4.32), and (4.35), in view of (4.2).

In the following, since the behavior of solutions for 0<b<ρs and b>ρs are com-
pletely different, we construct transonic shock solutions for those two cases separately.
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5. Transonic shock solutions for the case of 0<b<ρs
We consider this problem according to the relative position of (ρ1,α).

The first case is that (ρl,α) is inside the critical trajectory. In this case, by Case 1
discussed in Section 2, the initial value problem

{

(p(ρ)+ J2

ρ )x=ρE, Ex=ρ−b, for x>0,

(ρ,E)(0)=(ρl,α)
(5.1)

has a unique periodic supersonic solution. Denote the period of the solution beyP .
Let ρL(x) be the solution of initial value problem (5.1), and

ρmin=: min
0≤x≤P

ρL(x), ρmax=: max
0≤x≤P

ρL(x).

Then ρmin and ρmax are two solutions of the following equation for ρ:

1

2
α2=

∫ ρl

ρ

H ′(s)ds.

So (ρmin,0) and (ρmax,0) are the two intersection points of the trajectory for (5.1)
with the line E=0 on the (ρ,E)-plane (see Figure 3 and Figure 4). Then we have the
following theorem:

Theorem 5.1. Suppose that 0<b<ρs and (ρl,α) is inside the supersonic loop of
critical trajectory, i.e.,

1

2
α2−

∫ ρl

ρs

H ′(s)ds<0, and 0<ρl<ρs, (5.2)

and

(ρl,α) 6=(b,0), (5.3)

and assume that
ρr>F (ρmin). (5.4)

Then
1) If

L<ℓ((F (ρl),α);(ρr,Emax)),

the boundary value problem (1.7) and (1.8) does not have a transonic shock solution;
2) If

L≥ ℓ((F (ρl),α);(ρr,Emax)),

then the boundary value problem (1.7) and (1.8) admits a unique transonic shock
solution containing a single transonic shock, the location of the transonic shock is
uniquely determined by the boundary data (ρl,α), ρr, and the interval length L.

Proof. For L≥ ℓ((F (ρl),α);(ρr,Emax)), there exists an integer k≥0 such that

kP +ℓ((F (ρl),α);(ρr,Emax))≤L< (k+1)P +ℓ((F (ρl),α);(ρr,Emax)). (5.5)

We shall prove that the length ℓ((ρl,α); (ρ,E))+ℓ((F (ρ),E); (ρr,Emax)) is
strictly increasing as (ρ,E)∈T (ρl,α) and moves counterclockwise along the trajec-
tory of (5.1) starting from (ρl,α). Then 1) and 2) follow immediately. We will treat
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only the case that α>0, since the case when α≤0 can be handled similarly. The
proof consists of several steps.

Step 1. For any ρ̄∈ [ρmin,ρl], let

E(ρ̄)=

√

α2+2

∫ ρ̄

ρl

H ′(s)ds, (5.6)

Er(ρ̄)=

√

E2(ρ̄)+2

∫ ρr

F (ρ̄)

H ′(s)ds, (5.7)

i.e., (ρl,α) and (ρ̄,E(ρ̄)) are on the same supersonic trajectory of (1.7) and (ρr,Er(ρ̄))
and (F (ρ̄),E(ρ̄)) are on the same subsonic trajectory. Let

X1(ρ̄)= ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))), for ρmin<ρ≤ρl. (5.8)

Then Lemma 4.3 yields

X ′
1(ρ̄)<0, for ρmin<ρ≤ρl, (5.9)

where one has used the facts that 0<ρ̄<ρs<F (ρ̄)<ρr, E(ρ̄)>0, and 0<b<ρs.

Step 2. For ρ̄∈ [ρmin,ρmax], we define

E(ρ̄)=−

√

2

∫ ρ̄

ρmin

H ′(s)ds. (5.10)

Er(ρ̄)=

√

E(ρ̄)2+2

∫ ρr

F (ρ̄)

H ′(s)ds, (5.11)

i.e., (ρmin,0) and (ρ̄,E(ρ̄)) are on the same supersonic trajectory and (ρr,Er(ρ̄)) and
(F (ρ̄),E(ρ̄)) are on the same subsonic trajectory. Let

X2(ρ̄)= ℓ((ρmin,0);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))), for ρmin<ρ̄≤ρmax.

Then one can apply Lemma 4.3 again to show that

X ′
2(ρ̄)>0, for ρ̄min<ρ<ρmax (5.12)

due to the facts that 0<b<ρs, and for ρmin<ρ̄<ρmax , 0<ρ̄<ρs, E(ρ̄)<0, Er(ρ̄)>
0, ρr>ρs>b, q(ρ̄)<F (ρ̄) and q(ρ̄)<F (ρ̄). Moreover,

E1(ρ,ρ̄)<0, for q(ρ̄)<ρ≤F (ρ̄),

and

E1(ρ,ρ̄)>0, for q(ρ̄)<ρ≤ρr.

These quantities are defined in Lemma 4.3.

Step 3. For ρ̄∈ [ρl,ρmax], we define

E(ρ̄)=

√

2

∫ ρ̄

ρmax

H ′(s)ds, (5.13)
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Er(ρ)=

√

E(ρ̄)2+2

∫ ρr

F (ρ̄)

H ′(s)ds, (5.14)

i.e., (ρmax,0) and (ρ̄,E(ρ̄)) are on the same supersonic trajectory of (1.7) and
(ρr,Er(ρ̄)) and (F (ρ̄),E(ρ̄)) are on the same subsonic trajectory. Let

X3(ρ̄)= ℓ((ρmax,0);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))), for ρl<ρ̄<ρmax.

A similar analysis as in the proof of Step 1 shows that

X ′
3(ρ̄)<0, for ρl<ρ<ρmax. (5.15)

Based on these monotonicity properties, the transonic solutions can be shown to have
the structure as described in the following. We only describe the case for k=0, since
for other values of k, starting from the state (ρl,α), the solution first travels k times
along the periodic trajectory of (5.1) and comes back to the state (ρl,α) at x=kP .

(i) When

ℓ((F (ρl),α);(ρr,Emax))≤L≤ ℓ((ρl,α), (ρmin,0))+ℓ((F (ρmin),0);(ρr,Emin)),

with Emax=
√

α2+2
∫ ρr

F (ρl)
H ′(ρ)dρ and Emin=

√

α2+2
∫ ρr

F (ρmin)
H ′(ρ)dρ, there exist

a unique state (ρ∗,E∗) on the trajectory of system (1.7) passing through (ρl,α) sat-
isfying ρmin≤ρ∗≤ρl and E∗≥0 and a unique number β satisfying Emin≤β≤Emax

such that the following equality holds true:

L= ℓ((ρl,α);(ρ
∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,β)) . (5.16)

Thus the transonic shock location is a= ℓ((ρl, α);(ρ
∗,E∗)).

(ii) If L3+L4<L<L3+L5+L6, where

L3= ℓ((ρl,α);(ρmin,0)) , L4= ℓ((F (ρmin),0);(ρr,Emin)) ,

with Emin=
√

2
∫ ρr

F (ρmin)
H ′(s)ds,

L5= ℓ((ρmin,0);(ρmax,0)) , L6= ℓ
(

(F (ρmax),0);(ρr,Ẽ)
)

,

with Ẽ=
√

2
∫ ρr

F (ρmax)
H ′(s)ds and Emax=

√

α2+2
∫ ρr

F (ρl)
H ′(s)ds, there exist a unique

number β1 and a unique state (ρ∗,E∗) on the trajectory of system (1.7) passing
through (ρl,α) satisfying ρmin<ρ∗<ρmax and E∗<0 such that the following equality
holds true:

L= ℓ((ρl,α);(ρ∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,β1)) . (5.17)

So the transonic shock location is a= ℓ((ρl,α);(ρ∗,E∗)).

(iii) If

L3+L5+L6<L<L3+L5+L7+L8,
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where Li (i=3,5,6) are defined in (ii) above, and

L7= ℓ((ρmax,0);(ρl,α)) , L8= ℓ(F (ρl,α);(ρr,Eα)) ,

with Eα=
√

α2+2
∫ ρr

F (ρl)
H ′(s)ds, there exist a unique number β2 and a unique state

(ρ∗∗,E∗∗) on the trajectory of (1.7) passing through (ρl,α) satisfying ρl<ρ∗∗<ρmax

and E∗∗>0 such that the following equality holds true:

L= ℓ((ρl,α);(ρ
∗∗,E∗∗))+ℓ((F (ρ∗∗),E∗∗);(ρr,β2)) . (5.18)

Hence the transonic shock location is ℓ((ρl,α);(ρ
∗∗,E∗∗)).

We now turn to the case when (ρl,α) is on the supersonic loop of the critical
trajectory, i.e.,

1

2
α2−

∫ ρl

ρs

H ′(s)ds=0,ρl<ρs. (5.19)

There are two intersection points of the supersonic loop of the critical trajectory

and the line E=0. One is (ρs,0), another one is (ρ
c
min,0) (

∫ ρc
min

ρs
H ′(t)dt=0,0<ρcmin<

b). The solution of (5.1) through any state on the supersonic loop of the critical
trajectory is periodic with period Pc (see Figure 4).

Then the following theorem holds.

Theorem 5.2. Suppose that 0<b<ρs and (ρl,α) is on the supersonic loop of
critical trajectory, i.e., (5.19) holds, and assume that ρr>F (ρcmin). Let Ē(ρl)=
√

α2+2
∫ ρr

F (ρl)
H ′(t)dt such that (ρr,Ē(ρl))∈T (F (ρl),α). Then

(1) If L<ℓ((F (ρl),α); (ρr,Ē(ρl))), then the boundary value problem (1.7) and (1.8)
does not have a solution;

(2)If L=kPc+ℓ((ρl,α);(ρs,0))+ℓ((ρs,0); (ρr,Ec)), where Ec=
√

2
∫ ρr

ρs
H ′(t)dt such

that (ρr,Ec)∈T (ρs,0) and k≥0 is an integer, then the solution of the boundary value
problem (1.7) and (1.8) admits a unique smooth solution;

(3) If L≥ ℓ((F (ρl),α); (ρr,Ē(ρl))), but L 6=kPc+ℓ((ρl,α);(ρs,0))+ℓ((ρs,0); (ρr,Ec))
for some integer k≥0, then the boundary value problem of (1.7) and (1.8) admits a
unique transonic shock solution.

Proof. We only consider the case when α>0; the case when α≤0 can be handled
similarly. Set

Ē(ρcmin)=

√

2

∫ ρr

F (ρc
min

)

H ′(t)dt, Lc
1= ℓ((ρl,α); (ρ

c
min,0)), L

c
2= ℓ((ρcmin,0); (ρs,0)),

Lc
3= ℓ((ρcmin,0); (ρl,α)), L

c
4= ℓ((F (ρl),α); (ρr,Ē(ρl))),

Lc
5= ℓ((F (ρcmin),0); (ρr,Ē(ρcmin))), L

c
6= ℓ((ρs,0); (ρr,Ec)).

One notes that

Pc=Lc
1+Lc

2+Lc
3.
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(1) is obvious by the structure of the solutions for (5.1) described in Section 2. If
L≥Lc

4, then there exists an integer k≥0 such that

kPc+Lc
4≤L< (k+1)Pc+Lc

4.

We only need to consider the case when k=0. In this case, similar to the proof for
Lemma 4.2, the solution can be constructed as follows:

(a) If

Lc
4≤L≤Lc

1+Lc
5, (5.20)

then there exist a unique state (ρ∗c ,E
∗
c ) on supersonic loop of the critical trajectory

satisfying ρcmin≤ρ∗c ≤ρl and E∗
c ≥0 and a unique number βc satisfying Ē(ρcmin))≤

βc≤ Ē(ρl) such that the following equality holds true:

L= ℓ((ρl,α);(ρ
∗
c ,E

∗
c ))+ℓ((F (ρ∗c),E

∗
c );(ρr,β

c)) . (5.21)

So the transonic shock location is a= ℓ((ρl, α);(ρ
∗
c ,E

∗
c )).

(b) If Lc
1+Lc

5≤L<Lc
1+Lc

2+Lc
6, then there exist a unique number βc

1 and a
unique state (ρ∗∗c ,E∗∗

c ) on supersonic loop of the critical trajectory satisfying ρcmin≤
ρ∗c <ρs and E∗

c ≤0 such that the following equality holds true:

L=Lc
1+ℓ((ρcmin,0);(ρ

∗∗
c E∗∗

c ))+ℓ((F (ρ∗∗c ),E∗∗
c );(ρr,β

c
1)) . (5.22)

Hence the transonic shock location is a=Lc
1+ℓ((ρcmin,0);(ρ

∗∗
c E∗∗

c )).

(c) If L=Lc
1+Lc

2+Lc
6, then the solution of the boundary value problem of (1.7)

and (1.8) is smooth (no transonic shock). In the (ρ,E)-phase plane, the solution starts
from (ρl,α), travels along the supersonic loop of the critical trajectory to the sonic
state (ρs,0), then travels along the subsonic branch of the critical trajectory to the
state (ρr,Ec).

(d) If Lc
1+Lc

2+Lc
6<L≤Lc

1+Lc
2+Lc

3+Lc
4, then there exist a unique number βc

2

and a unique state (ρ0c ,E
0
c ) on the supersonic loop of the critical trajectory satisfying

ρl≥ρ0c <ρs and E0
c >0 such that the following equality holds true:

L=Lc
1+Lc

2+ℓ
(

(ρs,0);(ρ
0
c ,E

0
c )
)

+ℓ
(

(F (ρ0c),E
0
c );(ρr,β

c
2)
)

. (5.23)

Thus the transonic shock location is a=Lc
1+Lc

2+ℓ
(

(ρs,0).(ρ
0
c ,E

0
c )
)

. This finishes the
proof of the Theorem.

When the state (ρl,α) is outside the supersonic loop of the critical trajectory, i.e.

1

2
α2−

∫ ρl

ρs

H ′(s)ds>0, and 0<ρl<ρs, (5.24)

the solutions can be constructed as follows. Let To the supersonic trajectory passing
through the point (ρl,α) on (ρ,E) phase plane, i.e.,

To={(ρ,E) :
1

2
E2=

1

2
α2+

∫ ρ

ρl

H ′(t)dt,0<ρ<ρs},

and T shock
o be the shock conjugate of To,

T shock
o ={(F (ρ),E) : (ρ,E)∈To}.
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Then T shock
o intersects the subsonic branch of the critical trajectory at two points,

denoted by (ρ̌,Ě) and (ρ̌,−Ě), where Ě >0. Denote the intersection point of To with
ρ-axis by (ρomin,0). Then we have the following theorem:

Theorem 5.3. Suppose that 0<b<ρs and (ρl,α) is outside the supersonic loop of
critical trajectory, i.e., (5.24) holds, and assume that ρr>F (ρcmin). Then

(1) if α≥−Ě and if L<ℓ((F (ρl),α);(ρr,Ē(ρl))), where Ē(ρl)=
√

α2+2
∫ ρr

ρl
H ′(s)ds, or α<−Ě, then the boundary value problem (1.7) and

(1.8) does not have a solution;

(2) if α≥−Ě and L≥ ℓ((F (ρl),α); (ρr,Ē(ρl))), then the boundary value problem
of (1.7) and (1.8) admits a unique transonic shock solution.

Proof. (1) follows easily by a phase plane analysis. To prove (2), we assume
that α>0 (the proof for −Ě≤α≤0 is similar). Define

L̄(ρ)= ℓ((ρl,α);(ρ,E(ρ)))+ℓ
(

(F (ρ),E(ρ));(ρr,Ē(ρ))
)

, for (ρ,E(ρ))∈To, E(ρ)≥0,
(5.25)

where Ē(ρ)=
√

E2(ρ)+2
∫ ρr

F (ρ)
H ′(t)dt,

L̃(ρ)= ℓ((ρomin,0);(ρ,E(ρ)))+ℓ
(

(F (ρ),E(ρ));(ρr,Ē(ρ))
)

, (5.26)

for (ρ,E(ρ))∈To, ρomin≤ρ<F−1(ρ̌), E(ρ)<0, where Ē(ρ)=
√

E2(ρ)+2
∫ ρr

F (ρ)
H ′(t)dt. It follows from the same argument as in the proof of

Lemmas 4.2 and 4.3 that L̄(ρ) is a strictly decreasing function of ρ for ρomin≤ρ≤ρl
and L̃(ρ) is a strictly increasing function of ρ for ρomin≤ρ<F−1(ρ̌). There are three
cases to consider.

(a) If L̄(ρl)≤L≤ L̄(ρomin), then there exits a unique state (ρ1,E1)∈To with E1≥
0 such that L= L̄(ρ1). In this case, the transonic shock location is at a=
ℓ((ρl,α);(ρ1,E1)) .

(b). If ℓ((ρl,α);(ρ
o
min,0))+ L̃(ρomin)≤L<ℓ((ρl,α);(ρ

o
min,0))+limρ→F−1(ρ̌) L̃(ρ), then

there exits a unique state (ρ2,E2)∈To with −Ě <E2≤0 such that L= L̃(ρ1). In this
case, the transonic shock location is at a= ℓ((ρl,α);(ρ2,E2)) .

(c) If L≥ ℓ((ρl,α);(ρ
o
min,0))+limρ→F−1(ρ̌) L̃(ρ), the only possible solution of the

boundary value problem is described as follows: in the (ρ,E)-phase plane, the solu-
tion starting from (ρl,α) travels along To counterclockwise and can not travel beyond
the point (F−1(ρ̌),−Ě). Since otherwise, it travels beyond the point (F−1(ρ̌),−Ě)
and can never reach the state ρr. So the solution travels along the To and reaches
the point (F−1(ρ̌),−Ě), and jumps to the point (ρ̌,−Ě) by a transonic shock. From
(ρ̌,−Ě) the solution travels along the lower portion of the subsonic branch of the

critical trajectory {(ρ,E) :E=−
√

2
∫ ρ

ρs
H ′(t)dt,ρ>ρs} and reaches the sonic point

(ρs,0), and from the sonic point (ρs,0) the solution travels along the supersonic loop
{(ρ,E) : 12E

2=
∫ ρ

ρs
H ′(t)dt,ρ<ρs} k times k=0,1,2, . . . and comes back to the sonic

point, where the value of k is determined by L. Then from the sonic point, the solu-
tion travels along the upper portion of the subsonic branch of the critical trajectory

{(ρ,E) :E=
√

2
∫ ρ

ρs
H ′(t)dt,ρ>ρs} in the direction that ρ increases and reaches the

state (ρr,Ec) where Ec=
√

2
∫ ρr

ρs
H ′(t)dt.
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6. Transonic shock solutions for the case when b>ρs.
In this section, we study the case when b>ρs, i.e., b is in the subsonic region. It

is easy to see that

H ′(ρ)>0 for 0<ρ<ρs and ρ>b, H ′(ρ)<0, for ρs<ρ<b. (6.1)

First, we study the geometry of the shock curves in the (ρ,E)-plane in the following
two lemmas. Let

Tb :={(ρ,E) :
1

2
E2−H(ρ)=−H(F−1(b)),ρ≤ρs}, (6.2)

and Sb be the set of states which can be connected to the states of Tb by transonic
shocks, i.e.,

Sb :={(F (ρ),E) : (ρ,E)∈Tb}.

Then Sb is a curve in the (ρ,E)-plane satisfying the following equation:

1

2
E2−H(F−1(ρ))=−H(F−1(b)), ρs≤ρ≤ b. (6.3)

Clearly (b,0)∈Sb. Let

Csub
b :={(ρ,E) :

1

2
E2−H(ρ)=−H(b), ρs≤ρ≤ b},

the subsonic branch of the critical trajectory passing through (b,0). Then the following
lemma holds (see Figure 5).

Lemma 6.1. Suppose that the pressure function p satisfies (1.3) and b>ρs. Then

H(F−1(ρ))−H(F−1(b))>H(ρ)−H(b), ρs≤ρ<b, (6.4)

i.e., the curve Sb is outside the curve Csub
b .

Proof. Let ρb be the density satisfying

0<ρb<ρs, H(ρb)=H(b). (6.5)

We first show that

ρs<F (ρb)<b. (6.6)

Since H(ρb)=H(b), it follows from the definition of the function H that

(

p(b)+
J2

b

)

−

(

p(ρb)+
J2

ρb

)

−

∫ b

ρb

(

p′(t)−
J2

t2

)

b

t
dt=0. (6.7)

Let

f(z) :=

(

p(z)+
J2

z

)

−

(

p(g(z))+
J2

g(z)

)

−

∫ z

g(z)

(

p′(t)−
J2

t2

)

z

t
dt (6.8)
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for z≥ρs, where g(z)=F−1(z). Since g(ρs)=ρs, one has

f(ρs)=0. (6.9)

On the other hand,

p(g(z))+
J2

g(z)
=p(z)+

J2

z
, z≥ρs.

Hence,

(

p′(g(z))−
J2

(g(z))2

)

g′(z)=p′(z)−
J2

z2
, z≥ρs. (6.10)

(6.8) and (6.10) yield

f ′(z)=

(

p′(z)−
J2

z2

)

1

g(z)
(z−g(z))−

∫ z

g(z)

(

p′(t)−
J2

t2

)

1

t
dt

=

∫ z

g(z)

(

p′(z)−
J2

z2

)

1

g(z)
dt−

∫ z

g(z)

(

p′(t)−
J2

t2

)

1

t
dt. (6.11)

Since p′′(ρ)>0 for ρ>0 (see (1.3)), it follows that

p′(z)−
J2

z2
>p′(t)−

J2

t2
, for g(z)≤ t<z.

This, together with (6.11), implies

f ′(z)>0, for z>ρs.

Therefore, in view of (6.9), one has

f(b)>0 (6.12)

since b>ρs. This means, in view of (6.8),

(

p(b)+
J2

b

)

−

(

p(g(b))+
J2

g(b)

)

−

∫ b

g(b)

(

p′(t)−
J2

t2

)

b

t
dt>0. (6.13)

Next, we define

q(ρ) :=

(

p(b)+
J2

b

)

−

(

p(ρ)+
J2

ρ

)

−

∫ b

ρ

(

p′(t)−
J2

t2

)

b

t
dt, for 0<ρ<ρs. (6.14)

It is easy to verify that

q′(ρ)=

(

p′(ρ)−
J2

ρ2

)(

b

ρ
−1

)

<0, for 0<ρ<ρs, (6.15)
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since b>ρs>ρ. This, together with (6.7) and (6.13), implies

ρb<g(b)=F−1(b). (6.16)

Since F ′(ρ)<0 for 0<ρ<ρs (cf. 4.2), (6.6) follows.
Next, let

h(ρ)=H(F−1(ρ))−H(ρ)+H(b)−H(F−1(b)), ρs≤ρ<b.

Since F−1(ρs)=ρs, it holds that

h(ρs)=H(b)−H(F−1(b))=H(ρb)−H(F−1(b)), (6.17)

where ρb<ρs is the constant defined in (6.5). Since ρs<b, H ′(ρ)>0 for 0<ρ<ρs.
Thus, (6.16) and (6.17) imply

h(ρs)>0. (6.18)

On the other hand, just as in (6.10), one has

(

p′(g(ρ))−
J2

(g(ρ))2

)

g′(ρ)=p′(ρ)−
J2

ρ2
, ρ≥ρs, (6.19)

where and in the following

g(ρ)=F−1(ρ).

This gives

H ′(g(ρ))g′(ρ)=

(

p′(ρ)−
J2

ρ2

)(

g(ρ)−b

g(ρ)

)

, ρ≥ρs. (6.20)

Therefore,

h′(ρ)=

(

p′(ρ)−
J2

ρ2

)(

b

ρ
−

b

g(ρ)

)

, ρ≥ρs. (6.21)

Since g(ρ)=F−1(ρ)<ρs for ρ>ρs, it follows that

h′(ρ)<0, ρ>ρs. (6.22)

On the other hand

h(b)=0. (6.23)

This, together with (6.18) and (6.22), implies (6.4).

For (ρl,α) satisfying 0<ρl<ρs, let

T̄ (ρl,α)={(ρ,E) :
1

2
E2−H(ρ)=

1

2
α2−H(ρl), ρ>0}, (6.24)

and

S(ρl,α)={(ρ,E) :
1

2
E2−H(F−1(ρ))=

1

2
α2−H(ρl), ρ≥ρs}. (6.25)
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So S(ρl,α) is the set of states which can be connected to the set {(ρ,E)∈ T̄ (ρl,α) :
0<ρ≤ρs} by a transonic shock. Moreover, we define

E2
1(ρ)=α2+2(H(ρ)−H(ρl)), (6.26)

E2
2(ρ)=α2+2(H(F−1(ρ))−H(ρl)), ρs≤ρ≤ρα, (6.27)

where ρα is determined by

H(F−1(ρα))=H(ρl)−
1

2
α2, ρα>ρs. (6.28)

Obviously

E2(ρ
α)=0. (6.29)

Then we have following lemma.

Lemma 6.2. Suppose the pressure function p satisfies (1.3) and b>ρs. Then

E2
1(ρ)>E2

2(ρ), for ρs<ρ≤ρα, (6.30)

i.e., the curve T̃ (ρl,α) is outside the shock curve S(ρl,α) in the (ρ,E)-plane.

Proof. Obviously

E2
1(ρs)=E2

2(ρs). (6.31)

Let g(ρ)=F−1(ρ) for ρ≥ρs. By (4.2), we have

p′(g(ρ))−
J2

(g(ρ))2
g′(ρ)=p′(ρ)−

J2

ρ2
, ρ≥ρs. (6.32)

It follows from (6.26), (6.27), and (6.32) that

d(E2
1(ρ)−E2

2(ρ))

dρ

=2(H ′(ρ)−H ′(g(ρ))g′(ρ))

=2

(

p′(ρ)−
J2

ρ2

)(

b

g(ρ)
−

b

ρ

)

, (6.33)

for ρs≤ρ≤ρα. For ρ>ρs, g(ρ)=F−1(ρ)<ρs, p′(ρ)− J2

ρ2 >0. Therefore,
d(E2

1(ρ)−E2
2(ρ))

dρ >0 for ρs<ρ≤ρα. This, together with (6.31), implies (6.30).

In the following, it is always assumed that the pressure function p satisfies (1.3)
and b>ρs. Denote by

T(ρl,α) :={(ρ,E) :
1

2
E2−H(ρ)=

1

2
α2−H(ρl), ρ

out
min≤ρ<ρs} (6.34)

the supersonic trajectory passing through (ρl,α), and by

S(ρl,α) :={(F (ρ,E) : (ρ,E)∈T(ρl,α)} (6.35)
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the curve on the (ρ,E)-plane consisting of the states which can be connected to those
on T(ρl,α) by a transonic shock. In the case when the curve S(ρl,α) intersects the
critical trajectory passing through (b,0) at two points, we denote those two points by
(ρc,Ec) and (ρc,−Ec) with Ec>0 . It follows from Lemmas 6.1 and 6.2, the geometry
of the shock curves and the phase portrait of system (1.7) are as shown in Figures
6-16 for the different cases. With this, we can construct transonic shock solutions
according to the different situations of (ρl,α), ρr, and L. This will be done in the
following subsections.

6.1. Case 1: (ρl,α) is outside the trajectory through (F−1(b),0). In this
case,

1

2
α2−H(ρl)>−H(F−1(b)), 0<ρl<ρs. (6.36)

Define ρoutmin by

H(ρoutmin)=H(ρl)−
1

2
α2, 0<ρoutmin<ρs, (6.37)

so that (ρoutmin,0) is the intersection point of the trajectory through (ρ,α) and the line
E=0. There are the following subcases to consider.

Subcase 1.

ρr≥F (ρoutmin), (6.38)

the phase portrait of this case is given in Figure 6;

Subcase 2.

ρc≤ρr≤F (ρoutmin), (6.39)

the phase portrait of this case is given in Figure 7;

Subcase 3.

b<ρr<ρc, (6.40)

the phase portrait of this case is given in Figure 8;

Subcase 4.

ρs<ρr<b, (6.41)

the phase portrait of this case is given in Figure 9. The analysis for Subcase 1 is

simple. We give more detailed analysis for subcases 2-4.

Analysis for Subcase 2. In Subcases 2, (6.39), the line ρ=ρr intersects the shock
curve S(ρl,α) at two points (ρr,E

0
r ) and (ρr,−E0

r ) with E0
r >0, the trajectory passing

through (ρr,0) satisfying
1
2E

2−H(ρ)=−H(ρr) intersects the shock curve S(ρl,α) at
two points (ρ1r, E

1
r ) and (ρ1r, −E1

r ) with E1
r >0 (see Figure 7). Clearly, ρ1r >ρr and

E0
r >E1

r . For ρ̄∈ [F−1(ρ1r),F
−1(ρc)], set

Er(ρ̄)=
√

E2(ρ̄)+2((H(ρr)−H(F (ρ̄)), (6.42)

where

E(ρ̄)=−
√

α2+2(H(ρ̄)−H(ρl))
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satisfies (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α). In this case, for any state (ρ̄,E(ρ̄))∈T (ρl,α)
satisfying F−1(ρ1r)<ρ̄<F−1(ρc), −Ec<E(ρ̄)<−E1

r , the trajectory T (F (ρ̄),E(ρ̄))
starting from (F (ρ̄),E(ρ̄)) intersects the line ρ=ρr twice at (ρr,−Er(ρ̄)) and
(ρr,Er(ρ̄)). Obviously,

Er

(

F−1(ρ1r)
)

=0,Er

(

F−1(ρr)
)

=E0
r . (6.43)

For (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α), define

Y (ρ̄)=ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,−Er(ρ̄))),

for ρ̄∈ [F−1(ρ1r),F
−1(ρr)], −E0

r ≤E(ρ̄)≤−E1
r ,

Z(ρ̄)=ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))),

for ρ̄∈ [F−1(ρ1r),F
−1(ρc)), −Ec<E(ρ̄)≤−E1

r . (6.44)

It should be noted that Z(ρ̄)=Y (ρ̄)+ℓ((ρr,−Er(ρ̄));(ρr,Er(ρ̄))) for ρ̄∈
[F−1(ρ1r),F

−1(ρr)] and Y (F−1(ρ1r))=Z(F−1(ρ1r)). With those notations, we
have the following Lemma,

Lemma 6.3. Suppose that (ρl,α) satisfies (6.36), ρr satisfies (6.39), and α>E0
r .

Then there exists a unique state (ρ̂,E(ρ̂))∈T (ρl,α) satisfying F−1(ρ1r)<ρ̂<F−1(ρr)
and −E0

r <E(ρ̂)<−E1
r such that

Y ′(F−1(ρ1r))=−∞,

{

Y ′(ρ̄)<0, for F−1(ρ1r)<ρ̄< ρ̂,

Y ′(ρ̄)>0, for ρ̂< ρ̄≤F−1(ρr).
(6.45)

So

Y (ρ̂)= min
F−1(ρ1

r)≤ρ̄≤F−1(ρr)
Y (ρ̄). (6.46)

The proof of this Lemma will be given in the Appendix.

Analysis for Subcase 3. In Subcase 3, (6.40), the line ρ=ρr intersects the shock
curve S(ρl,α) at two points (ρr,Er) and (ρr,−Er) with Er>0, and the trajectory
passing through (ρr,0) satisfying 1

2E
2−H(ρ)=−H(ρr) intersects the shock curve

S(ρl,α) at two points (ρ̄r, Ēr) and (ρ̄r, −Ēr) with Ēr>0 (see Figure 8). Clearly,
ρ̄r>ρr and Er>Ēr.

For ρ̄∈ [F−1(ρ̄r),F
−1(ρr)], let

Er(ρ̄)=
√

E2(ρ̄)+2(H(ρr)−H(F (ρ̄))), (6.47)

where E(ρ̄)=−
√

α2+2(H(ρ̄)−H(ρl)) satisfies (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α).
In this case, for any state (ρ̄,E(ρ̄)∈T (ρl,α) satisfying F−1(ρ̄r)<ρ̄<F−1(ρc),

−Ec<E(ρ̄)<−Ēr, the trajectory T (F (ρ̄),E(ρ̄)) starting from (F (ρ̄),E(ρ̄)) inter-
sects the line ρ=ρr twice at (ρr,−Er(ρ̄)) and (ρr,Er(ρ̄)). Obviously, Er

(

F−1(ρ̄r)
)

=

0, Er

(

F−1(ρc)
)

=Ec. For (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α), define

Ȳ (ρ̄)=ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,−Er(ρ̄))),

for ρ̄∈ [F−1(ρ̄r),F
−1(ρr)], −Er≤E(ρ̄)≤−Ēr, (6.48)
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Z̄(ρ̄)=ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))),

for ρ̄∈ [F−1(ρ̄r),F
−1(ρc)), −Ec<E(ρ̄)≤−Ēr. (6.49)

It should be noted that Z̄(ρ̄)= Ȳ (ρ̄)+ℓ((ρr,−Er(ρ̄));(ρr,Er(ρ̄))) for ρ̄∈
[F−1(ρ̄r),F

−1(ρc)] and Ȳ (F−1(ρ̄r))= Z̄(F−1(ρ̄r)). Similar to Lemma 6.3, we
have

Lemma 6.4. Suppose that (ρl,α) satisfies (6.36), (6.40) holds, and α>E0
r . Then

there exists a unique state (ρ̂,E(ρ̂))∈T (ρl,α) satisfying F−1(ρ̄r)<ρ̂<F−1(ρc) and
−Er<E(ρ̂)<−Ec such that

Ȳ ′(F−1(ρ̄r))=−∞,

{

Ȳ ′(ρ̄)<0, for F−1(ρ̄r)<ρ̄< ρ̂,

Ȳ ′(ρ̄)>0, for ρ̂< ρ̄≤F−1(ρr).
(6.50)

So

Ȳ (ρ̂)= min
F−1(ρ̄r)≤ρ̄≤F−1(ρc)

Ȳ (ρ̄). (6.51)

The proof of this lemma is almost the same as that for Lemma 6.3 given in the
Appendix, so we omit it.

Analysis for Subcase 4. In Subcase 4, (6.41), the line ρ=ρr intersects the shock
curve S(ρl,α) at two points (ρr,Er) and (ρr,−Er) with Er>0. The trajectory passing
through (b,0) satisfying 1

2E
2−H(ρ)=−H(b) intersects the shock curve S(ρl,α) at two

points (ρc, Ec) and (ρc, −Ec) with Ec>0 (see Figure 9). For ρ̄∈ [F−1(ρc),F
−1(ρr)],

set

er(ρ̄)=−
√

E2(ρ̄)+2((H(ρr)−H(F (ρ̄)),

where E(ρ̄)=−
√

α2+2(H(ρ̄)−H(ρl)) satisfies (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α).
For (ρ̄,E(ρ̄))∈T (ρoutmin,0)⊂T (ρl,α), we define

µ(ρ̄)= ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,−er(ρ̄))) (6.52)

for ρ̄∈ [F−1(ρc),F
−1(ρr)], −Er≤E(ρ̄)≤−Ec. Then the following lemma holds.

Lemma 6.5. Suppose that (ρl,α) satisfies (6.36), (6.41) holds, and α>Er. Then
there exists a unique state (ρ̂,E(ρ̂))∈T (ρl,α) satisfying F−1(ρc)<ρ̂<F−1(ρr) and
−Er<E(ρ̂)<−Ec such that

lim
ρ̄→ρc+

µ′(ρ̄)=−∞,

{

µ′(ρ̄)<0, for F−1(ρc)<ρ̄< ρ̂,

µ′(ρ̄)>0, for ρ̂< ρ̄≤F−1(ρr).
(6.53)

So

µ(ρ̂)= min
F−1(ρc)≤ρ̄≤F−1(ρr)

µ(ρ̄). (6.54)

The proof of this Lemma is given in the Appendix.
The following three theorems give respectively the non-existence, the existence

and uniqueness, and existence of multiple transonic shock solutions to the boundary
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value problem (1.7) and (1.8) under various conditions, for the case when (ρl,α)
satisfies (6.36). In order to state these theorems, we set

β=
√

α2+2(H(ρr)−H(F (ρl)), when it is well defined. (6.55)

Also, in the statement of the following three theorems, the functions Y , Z, Ȳ , Z̄, µ,
and the state ρ̂ are given in the analysis for subcases 2-4. So we do not specify them
in the statement of the theorems.

Theorem 6.6 (Non-existence of transonic shock solutions).
Suppose that (ρl,α) satisfies (6.36). Then the boundary value problem (1.7) and (1.8)
has no solution if L<ℓ((F (ρl), α),(ρr,β)), or

(a) in Subcase 1, (6.38), if α<−Ec;

(b) in Subcase 2, i.e., (6.39), if −E1
r <α<E0

r or α<−Ec or α>E0
r and

ℓ((ρl,α);(F
−1(ρr),E

0
r ))<L<Y (ρ̂), (where and in the following ρ̂ is given in (6.45));

(c) in Subcase 3, (6.40): if −Ēr<α<Er or α<−Ec;

(d) in Subcase 4, (6.41), if−Ec≤α<Er or α<−Er.

Theorem 6.7 (Existence and Uniqueness of transonic shock solutions).
Suppose that (ρl,α) satisfies (6.36). Then the boundary value problem (1.7) and

(1.8) has a unique transonic shock solution in the following cases:

(a) in Subcase 1, (6.38), if

α>−Ec and ℓ((F (ρl), α);(ρr,β))≤L<+∞;

(b) in Subcase 2, (6.39), if

α>E0
r and ℓ((F (ρl),α);(ρr,β))≤L≤ ℓ((ρl,α);(F

−1(ρr),E
0
r ));

or if α>E0
r , and











α>E0
r and

min{Y (F−1(ρ̄r)),Y (F−1(ρr))}<L<max{Y (F−1(ρ̄r)),Y (F−1(ρr))}

when Y (F−1(ρ̄r))>Y (F−1(ρr)),

where the function Y is given in (6.44);

(c) in Subcase 3, (6.40), if

α>Er and ℓ((F (ρl),α);(ρr,β))≤L≤ ℓ((ρl,α);(F
−1(ρr),Er));

or if










α>Er and

min{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))}<L<max{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))}

when Ȳ (F−1(ρ̄r))>Ȳ (F−1(ρr)),

or if

max{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))}≤L<+∞;

(d) in Subcase 4, (6.41), if

α>Er and ℓ((F (ρl),α);(ρr,β))≤L≤ ℓ((ρl,α);(F
−1(ρr),Er)),
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or if

µ(F−1(ρr))≤L<+∞.

Theorem 6.8 (Existence of multiple transonic shock solutions).
Suppose that (ρl,α) satisfies (6.36). Then the boundary value problem (1.7) and

(1.8) has more than one transonic shock solutions in the following cases:

(a) In Subcase 2, (6.39), if α>E0
r and Y (ρ̂)<L≤min{Y (F−1(ρ1r)),Y (F−1(ρr))},

then there exist two and only two solutions; if α>E0
r and

min{Y (F−1(ρ1r)),Y (F−1(ρr))}<L<max{Y (F−1(ρ1r)),Y (F−1(ρr))}

when Y (F−1(ρ1r))<Y (F−1(ρr)),

then there exist at least two transonic shock solutions;

(b) In Subcase 3, (6.40), if α>Er and Ȳ (ρ̂)<L≤min{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))},
then there exist two and only two solutions; if α>Er and

min{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))}<L<max{Ȳ (F−1(ρ̄r)),Ȳ (F−1(ρr))}

when Ȳ (F−1(ρ̄r))<Ȳ (F−1(ρr)),

then there at least two transonic solutions;

(c) In Subcase 4, (6.41), if α>Er and

min{µ(F−1(ρ̄r)),µ(F
−1(ρr))}<L<max{µ(F−1(ρ̄r)),µ(F

−1(ρr))}

when µ(F−1(ρ̄r))<µ(F−1(ρr)),

then there at least two transonic solutions.

Proof of Theorem 6.6. It follows from the definition of β that (ρr,β)∈
T (F (ρl), α). Then it can be checked easily that the boundary value problem (1.7)
and (1.8) has no solution if L<ℓ((F (ρl), α),(ρr,β)) by studying the phase portraits.
The other parts in (a)-(d) can be proved by the phase portrait analysis as well (see
Figures 6-9).

Proof of Theorem 6.7.
Proof. Proof of (a). In this case, it will be shown show that if α>−Ec and

ℓ((F (ρl), α);(ρr,β))≤L<+∞, then there exists a unique state (ρ∗,E∗)∈T (ρl,α)
satisfying ρoutmin≤ρ∗≤ρl and −Ec<E∗≤α and there is a constant Er such that

(ρr,Er)∈T (F (ρ∗),E∗), L= ℓ((ρl,α);(ρ
∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,Er)) , (6.56)

so the transonic shock location is a= ℓ((ρl, α);(ρ
∗,E∗)). We prove this for α>0. The

case when −Ec<α≤0 can be handled similarly.
In this case, we claim:

(i) If

ℓ((F (ρl), α);(ρr,β))≤L≤ ℓ((ρl,α); (ρ
out
min,0))+ℓ((F (ρoutmin),0);(ρr,Er1)), (6.57)

where β is given by (6.55), Er1 is determined by

Er1=
√

2(H(ρr)−H(F (ρoutmin)), (6.58)
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such that (ρr,Er1)∈T (F (ρoutmin), 0), then there exist a unique state (ρ∗,E∗)∈T (ρl,α)
satisfying ρoutmin≤ρ∗≤ρl and 0≤E∗≤α and a constant Er such that

(ρr,Er)∈T (F (ρ∗,E∗)), L= ℓ((ρl,α);(ρ
∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,Er)) , (6.59)

(ii) If

ℓ((ρl,α);(ρ
out
min,0))+ℓ((F (ρoutmin),0);(ρr,Er1))≤L<+∞, (6.60)

then there exist a unique state (ρ∗,E∗)∈T (ρoutmin,0) satisfying ρoutmin≤ρ∗≤F−1(ρc)
and -Ec<E∗≤0 and a constant E∗

r >0 such that

(ρr,E
∗
r )∈T (F (ρ∗),E∗), L= ℓ((ρl,α);(ρ

∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,E
∗
r )) . (6.61)

This will be proved by using Lemmas 4.3 and 4.4. First, if (6.57) holds, we define

X(ρ̄)= ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))) ,

for (ρ̄,E(ρ̄))∈T (ρl,α), ρ
out
min≤ρ<ρl and 0<E(ρ̄)≤α. Here the meaning of Er(ρ̄) is

the same as that in Lemma 4.3, i.e.

Er(ρ̄)=
√

E2(ρ̄)+2(H(F (ρ̄))−H(ρr)). (6.62)

Then one can apply (4.7) in Lemma 4.3 to obtain

X ′(ρ̄)<0, for ρoutmin≤ρ<ρl, (6.63)

due to the fact that 0<ρ̄<ρs, ρr>F (ρ̄)>ρs>ρ̄, E(ρ̄)>0, and E(ρ̄,t)>0 for ρr>
t>F (ρ̄) (the definition of E(ρ̄,t) can be found in Lemma 4.3). This proves (i).
In order to prove (ii), we set

φ(ρ̄)= ℓ
(

(ρoutmin,0);(ρ̄,E(ρ̄))
)

+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))) ,

for (ρ̄,E(ρ̄))∈T (ρoutmin,0), ρ
out
min<ρ̄<F−1(ρc), and −Ec<E(ρ̄)<0. Here the meaning

of Er(ρ̄) is the same as (6.62). It follows from Lemma 4.4 that

dφ(ρ̄)

dρ̄
=

(

p
′(ρ̄)−

J2

ρ̄2

)

F (ρ̄)− ρ̄

ρ̄

{

1

(F (ρ̄)−b)E(ρ̄)
−

b

F (ρ̄)

[

1

(ρr−b)Er(ρ̄)

+

∫ q(ρ̄)

F (ρ̄)

dρ

(ρ−b)2E1(ρ,ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ−b)2E2(ρ,ρ̄)

]}

, (6.64)

where

E1(ρ,ρ̄)=−

√

E2(ρ̄)+2

∫ ρ

F (ρ̄)

H ′(t)dt, (6.65)

E2(ρ,ρ̄)=

√

E2(ρ̄)+2

∫ ρ

F (ρ̄)

H ′(t)dt, (6.66)

and where q(ρ̄) is determined by

E1(q(ρ̄), ρ̄)=E2(q(ρ̄), ρ̄)=0. (6.67)



448 TRANSONIC SHOCK SOLUTIONS FOR EULER-POISSON EQUATIONS

It is clear that q(ρ̄)<F (ρ̄) and q(ρ̄)<ρr for ρoutmin<ρ̄<F−1(ρc). Moreover, E1(ρ,ρ)<
0 as q(ρ̄)<ρ≤F (ρ̄), so

∫ q(ρ̄)

F (ρ̄)

1

(ρ−b)2E1(ρ,ρ̄)
dρ>0. (6.68)

On the other hand, q(ρ)<ρr and E2(ρ,ρ̄)>0 as q(ρ̄)<ρ≤ρr, so

∫ ρr

q(ρ̄)

1

(ρ−b)2E2(ρ,ρ̄)
dρ>0. (6.69)

Note that p′(ρ̄)− J2

ρ̄2 <0, F (ρ̄)>b>ρ̄, and E(ρ̄)<0 for ρoutmin<ρ̄<F−1(ρc). This,

together with (6.69) and (6.68), yields

φ′(ρ̄)>0, for ρoutmin<ρ̄<F−1(ρc). (6.70)

Finally, it remains to show that

lim
ρ̄→F−1(ρc)−

ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄)))=+∞, (6.71)

where Er(ρ̄) is determined by (6.62). Since the trajectory T (F (ρ̄),E(ρ̄)) intersects
the ρ-axis at (q(ρ̄),0), it suffices to show that

ℓ((F (ρ̄),E(ρ̄));(q(ρ̄),0))=

∫ q(ρ̄)

F (ρ̄)

p′(t)− J2

t2

E1(t,ρ̄)t
dt→+∞, (6.72)

as ρ̄→F−1(ρc)−, where

E1(t,ρ̄)=−

√

2

∫ t

q(ρ̄)

(s−b)(p′(s)− J2

s2 )

s
ds, q(ρ̄)≤ t≤F (ρ̄). (6.73)

In fact, as ρ̄<F−1(ρc), F (ρ̄)≥ q(ρ̄)>b. Therefore

|E1(t,ρ̄)|≤ C

√

∫ t

q(ρ)

(s−b)ds=C

√

1

2
((t−b)2−(q(ρ̄)−b)2), q(ρ̄)≤ t≤F (ρ̄). (6.74)

It follows that

ℓ((F (ρ̄),E(ρ̄));(q(ρ̄),0))≥C

∫ F (ρ̄)

q(ρ̄)

1

|E1(t,ρ̄)|
dt≥C

∫ F (ρ̄)

q(ρ̄)

1
√

1
2 ((t−b)2−(q(ρ̄)−b)2)

.

As ρ̄→F−1(ρc)−, F (ρ̄)→ρc>b, q(ρ̄)→ b, (6.72) follows.

Proof. Proof of (b). First, we claim that if ℓ((F (ρl),α);(ρr,β))≤L≤
ℓ((ρl,α);(F

−1(ρr),E
0
r )), where β=

√

α2+2(H(ρr)−H(F (ρl)), then there exist a
unique state (ρ∗,E∗)∈T (ρl,α) satisfying F−1(ρr)≤ρ∗≤ρl and E0

r ≤E∗≤α and a
constant Er such that

(ρr,Er)∈T (F (ρ∗),E∗), L= ℓ((ρl,α);(ρ
∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,Er)) . (6.75)
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To prove this, one can define

x(ρ̄)= ℓ((ρl,α); (ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,Er(ρ̄))),

for (ρ̄,E(ρ̄))∈T (ρl,α), F−1(ρr)≤ ρ̄≤ρl and E0
r ≤E(ρ̄)≤α, where Er(ρ̄) is deter-

mined by (ρr,Er(ρ̄))∈T (F (ρ), E(ρ̄)) satisfying E0
r ≤Er(ρ̄)≤β . It follows from (4.7)

and (4.10) that

x′(ρ̄)=

(

p′(ρ̄)−
J2

ρ̄2

)(

1

ρ̄
−

1

F (ρ̄)

)

Q(ρ̄),

where

Q(ρ̄)=
1

E(ρ̄)
+b

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt.

Therefore,

x′(ρ̄)<0, F−1(ρr)≤ ρ̄≤ρl,

since E(ρ̄)≥E0
r >0, F (ρ̄)≤ρr, and E(ρ̄,t)>0 as F (ρ̄)≤ t≤ρr.

Second, using Lemma 6.3, one can show that if Y (F−1(ρ1r))>Y (F−1(ρr)), then
there exists a unique state (ρ̄∗,E(ρ̄∗))∈T (ρl,α) satisfying (F−1(ρ1r))<ρ̄∗<F−1(ρr)
such that L=Z(ρ̄∗). So the shock location is a= ℓ((ρl,α);(ρ̄

∗,E(ρ̄∗))). Hence (b) is
proved.

Proof. Proof of (c). As in the proof of (a), we can show that in Subcase 3, (6.40),
if

α>Er, ℓ((F (ρl),α);(ρr,β))≤L≤ ℓ((ρl,α);(F
−1(ρr),Er)),

then there exist a unique state (ρ∗,E∗)∈T (ρl,α) satisfying F−1(ρr)≤ρ∗≤ρl and
Er≤E∗≤α and a constant ER such that

(ρr,ER)∈T (F (ρ∗),E∗), L= ℓ((ρl,α);(ρ
∗,E∗))+ℓ((F (ρ∗),E∗);(ρr,ER)) .

So the transonic shock location is a= ℓ((ρl, α);(ρ
∗,E∗)). This finishes the first part

in (c). The rest is similar to that of for (b) by using Lemma 6.4.

Proof of (d). The proof of this part is similar to that for (b).

Proof of Theorem 6.8.
Proof. Proof of (a). We consider the Subcase 2, (6.39). First, if

α>E0
r ,

Y (ρ̂)<L≤min{Y (F−1(ρ1r)),Y (F−1(ρr))},

it then follows from (6.45) and (6.46) that there exist two and only two states
(ρ∗1,E(ρ∗1))∈T (ρl,α) and (ρ∗2,E(ρ∗2))∈T (ρl,α) satisfying

F−1(ρ1r)<ρ∗1<ρ̂, ρ̂<ρ∗2<F−1(ρr),

E(ρ̂)<E(ρ∗1)<−E1
r , −E0

r <E(ρ∗2)<E(ρ̂)
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such that

L=Y (ρ∗1)=Y (ρ∗2). (6.76)

In this case, there are two shock locations, i.e., ℓ((ρl,α);(ρ
∗
1,E(ρ∗1)) and

ℓ((ρl,α);(ρ
∗
2,E(ρ∗2))).

Next, if α>E0
r and

min{Y (F−1(ρ1r)),Y (F−1(ρr))}<L<max{Y (F−1(ρ1r)),Y (F−1(ρr))}

when Y (F−1(ρ1r))<Y (F−1(ρr)), since Y (F−1(ρ1r))=Z(F−1(ρ1r)), by using (6.50) and
(6.51), one can show that there exist two states (ρ̄∗1,E(ρ̄∗1))∈T (ρl,α) and (ρ̄∗2,E(ρ̄∗2))∈
T (ρl,α) satisfying (F−1(ρ1r))<ρ̄∗1, ρ̄

∗
2<F−1(ρr) such that

L=Z(ρ∗1)=Y (ρ∗2), (6.77)

This finishes the proof of (a). The proofs for (b) and (c) are similar.
Next, we consider the following case.

6.2. Case 2: (ρl,α) is between the trajectory passing through (F−1(b),0)
and the subsonic part of the trajectory passing through (b,0). In this case,
(ρl,α) satisfies:

−H(b)<
1

2
α2−H(ρl)<−H(F−1(b)), 0<ρl<ρs. (6.78)

The supersonic part of the trajectory passing through (ρ,α) intersects the line E=0 at
(ρbwmin,0), the shock curve S(ρl,α) intersects the subsonic part of the critical trajectory
passing through (b,0) at two points, denoted by (ρc,Ec) and (ρc,−Ec).
There are four cases to consider:

Subcase1 : ρr>bm, (6.79)

Subcase2 : F (ρbwmin)<ρr<b, (6.80)

Subcase3 : ρc<ρr<F (ρbwmin), (6.81)

Subcase4 : ρs<ρr<ρc. (6.82)

The phase portraits for above four subcases can be found in Figures 10-13, respectively.
The analysis for Subcase 1 is simple, and Subcase 4 can be treated similarly as

Subcase 3. Therefore, we give only detailed analysis for subcases 2 and 3.
Analysis on Subcase 2.
In this case, the trajectory passing through (ρr,0) satisfying

1
2E

2−H(ρ)=−H(b)
intersects the shock curve S(ρl,α) at two points, denoted by (ρK ,EK) and (ρK ,−EK).
For any state (ρ0,E0) between the trajectory through (ρr,0) and the critical trajectory
Tb through (b,0), i.e.,

−H(ρr)<
1

2
E2

0 −H(ρ0)<−H(b), (6.83)

the trajectory through (ρ0,E0) is also between the trajectory through (ρr,0) and the
critical trajectory Tb through (b,0), and thus intersects the line ρ=ρr at two points,
denoted by (ρr,Er(ρ0,E0)) and (ρr,−Er(ρ0,E0)).

Analysis on Subcase 3.
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In this case, the line ρ=ρr intersects the shock curve S(ρl,α) at two points
(ρr,E

0
r ) and (ρr,−E0

r ) with E0
r >0. The trajectory passing through (b,0) satisfying

1
2E

2−H(ρ)=−H(b) intersects the shock curve S(ρl,α) at two points (ρc, Ec) and
(ρc, −Ec) with Ec>0 (see Figure 12).

For ρ̄∈ [ρbwmin,F
−1(ρr)], set

E−
r (ρ̄)=−

√

E−
2(ρ̄)+2(H(ρr)−H(F (ρ̄))), (6.84)

where

E−(ρ̄)=−
√

α2+2(H(ρ̄)−H(ρl))

satisfies (ρ̄,E−(ρ̄))∈T (ρbwmin,0)⊂T (ρl,α) and −E0
r ≤E−(ρ̄)≤0. In this case, we define

also

Y(ρ̄)=ℓ((ρl,α);(ρ̄,E−(ρ̄)))+ℓ((F (ρ̄),E−(ρ̄));(ρr,Er(ρ̄))),

for ρ̄∈ [F−1(ρbwmin),F
−1(ρr)], −E0

r ≤E−(ρ̄)≤0. (6.85)

For ρ̄∈ [ρbwmin,F
−1(ρc)], set

E−
r (ρ̄)=−

√

E+
2(ρ̄)+2(H(ρr)−H(F (ρ̄))), (6.86)

where

E+(ρ̄)=
√

α2+2(H(ρ̄)−H(ρl))

satisfies (ρ̄,E+(ρ̄))∈T (ρl,α) and 0≤E+(ρ̄)≤Ec. In this case, we define

Z(ρ̄)= ℓ((ρl,α);(ρ̄,E+(ρ̄)))+ℓ((F (ρ̄),E+(ρ̄));(ρr,E
−
r (ρ̄))),

for ρ̄∈ [ρbwmin,F
−1(ρc)), 0≤E+(ρ̄)<Ec. (6.87)

It is easy to see that

Y(ρbwmin)=Z(ρbwmin). (6.88)

Then the following lemma holds.

Lemma 6.9. Suppose that (ρl,α) satisfies (6.78), ρr satisfies (6.81), and α>Ec.
Then there exists a unique state (ρ̂,E(ρ̂))∈T (ρmin

min,0)⊂T (ρl,α) satisfying ρcmin<ρ̂<
F−1(ρr) and −E0

r <E(ρ̂)<0 such that

Y′(ρbwmin)=−∞,

{

Y′(ρ̄)<0, for ρbwmin<ρ̄< ρ̂,

Y′(ρ̄)>0, for ρ̂< ρ̄≤F−1(ρr).
(6.89)

So

Y(ρ̂)= min
ρbw
min

≤ρ̄≤F−1(ρr)
Y(ρ̄). (6.90)

Also

Z′(ρ̄)>0, for ρbwmin≤ ρ̄<F−1(ρc),

lim
ρ̄→F−1(ρc)

Z(ρ̄)=+∞. (6.91)
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The proof of this lemma is almost the same as that for Lemma 6.3 and thus omitted.
With these preparations, we are ready to state the following well-posedness results

for transonic shock solutions. We will consider only Subcases 1-3 since the results
when Subcase 4 holds are completely similar to those for Subcase 3.

Theorem 6.10. Suppose that (ρl,α) satisfies (6.78). Then the boundary value prob-
lem (1.7) and (1.8)
(1) has no solution if
(1a) in Subcase 1, (i) α≤Ec or (ii)

α>Ec, L<ℓ((F (ρl),α);(ρr,E
α
r )), (6.92)

(where Eα
r is determined by (ρr,E

α
r )∈T (F (ρl),α));

(1b) in Subcase 2, (i) α<EK or (ii) (6.92) holds;
(1c) in Subcase 3, (i) α<−E0

r or (ii) (6.92) holds; or (iii)

α>Ec,ℓ((ρl,α);(F
−1(ρr),E

0
r ))<L<Y(ρ̂)), (6.93)

(where and in the following ρ̂ is given in (6.90));
(2) has a unique transonic shock solution if:
(2a) in Subcase1,

α>Ec, ℓ((F (ρl),α);(ρr,E
α
r ))≤L<∞, (6.94)

(2b) in Subcase 2,

α>EK , ℓ((F (ρl),α);(ρr,E
α
r ))≤L<+∞; (6.95)

(2c) in Subcase 3, (i)

α>Ec, ℓ((F (ρl),α);(ρr,β))≤L≤ ℓ((ρl,α);(F
−1(ρr),E

0
r )), (6.96)

where β is determined by (6.55), or (ii)

α>Ec,

Y(F−1(ρbwmin))>Y(F−1(ρr)), min{Y(ρbwmin),Y(F−1(ρr))}<L<Y(F−1(ρbwmin)),
(6.97)

or (iii)

max{Y(F−1(ρ1r)),Y(F−1(ρr))}≤L<+∞; (6.98)

(3) has more than one transonic shock solutions in the following cases:
(3a) in Subcase 3, if

α>Ec, Y(ρ̂)<L≤min{Y((ρbwmin),Y(F−1(ρr))}, (6.99)

then there exist two and only two transonic shock solutions;
(3b) in Subcase 3, there are at least two transonic shock solutions if











α>Ec,

Y(F−1(ρbwmin))<Y(F−1(ρr)),

min{Y(ρbwmin),Y(F−1(ρr))}<L<Y(F−1(ρr)).
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(1a), (1b), and (1c) are easily seen from phase portraits (see Figure 10 for (1a), Figure
11 for (1b) and Figure 12 for (1c)).

Proof. Proof of (2a). When (6.94) holds, we claim that there exists a unique state
(ρ∗,E(ρ∗))∈T (ρl,α) satisfying F−1(ρc)<ρ∗≤ρl and Ec<E(ρ∗)≤α such that

L= ℓ((ρl,α);(ρ
∗,E(ρ∗)))+ℓ((F (ρ∗);E(ρ∗)),(ρr,E

∗
r )), (6.100)

where E∗
r satisfies (ρr,E

∗
r )∈T (F (ρ∗),E(ρ∗)). This can be shown as follows: If ρr>b

and α>Ec, for (ρ,E(ρ)∈T (ρl,α) satisfying F−1(ρc)<ρ≤ρl, we define

X(ρ)= ℓ((ρl,α);(ρ,E(ρ))+ℓ((F (ρ),E(ρ),(ρr,Er(ρ))),

where Er(ρ) satisfies (ρr,Er(ρ))∈T (F (ρ),E(ρ)). It follows from (4.7) that

X ′(ρ)<0, (6.101)

for (ρ,E(ρ))∈T (ρl,α) satisfying F−1(ρc)<ρ≤ρl and Ec<E(ρ)≤α. Moreover, just
as (6.72),

lim
ρ→F−1(ρc)+

ℓ((F (ρ),E(ρ));(ρr,Er(ρ)))→+∞. (6.102)

This implies

lim
ρ→F−1(ρc)+

X(ρ)→+∞. (6.103)

(6.100) follows from (6.101) and (6.103). This finishes the proof of (2a).

Proof of (2b). In this case, we show that:

Proof. (2b1) If α>EK and

ℓ((F (ρl),α);(ρr,E
α
r ))≤L≤ ℓ((ρl,α),(F

−1(ρK),EK))+ℓ((ρK ,EK),(ρr,0)), (6.104)

then there exists a unique state (ρ∗,E(ρ∗))∈T (ρl,α) satisfying F−1(ρK)≤ρ∗≤ρl and
EK ≤E(ρ∗)≤α such that

L= ℓ((ρl,α);(ρ
∗,E(ρ∗)))+ℓ((F (ρ∗),E(ρ∗));(ρr,E

∗
r )), (6.105)

where E∗
r satisfies (ρr,E

∗
r )∈T (F (ρ∗),E(ρ∗));

(2b2) If α>EK and

ℓ((ρl,α),(F
−1(ρK),EK))+ℓ((ρK ,EK),(ρr,0))≤L<+∞, (6.106)

then there exists a unique state (ρ∗,E(ρ∗))∈T (ρl,α) satisfying F−1(ρK)≤ρ∗≤ρl and
EK ≤E(ρ∗)<Ec such that

L= ℓ((ρl,α);(ρ
∗,E(ρ∗)))+ℓ((F (ρ∗),E(ρ∗));(ρr,−Er((F (ρ∗),E∗)))). (6.107)

This can be shown as follows: For (ρ,E(ρ))∈T (ρl,α) satisfying F−1(ρK)<ρ≤ρl and
EK <E(ρ)≤α, we define

A(ρ)= ℓ((ρl,α);(ρ,E(ρ)))+ℓ((F (ρ),E(ρ));(ρr,Er(ρ))),
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where Er(ρ) satisfies (ρr,Er(ρ))∈T (F (ρ),E(ρ)). Then (4.7) implies that

A′(ρ)<0, (6.108)

for (ρ,E(ρ))∈T (ρl,α) satisfying F−1(ρK)<ρ≤ρl. This proves (2b1).
For (ρ̄,E(ρ̄))∈T (ρl,α) satisfying F−1(ρK)<ρ̄≤ρc and EK <E(ρ)≤α, we define

B(ρ̄)= ℓ((ρl,α);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,−Er(F (ρ̄),E(ρ̄)))).

Due to (4.18), one can obtain

dB(ρ̄)

dρ̄
=

(

p
′(ρ̄)−

J2

ρ̄2

)

F (ρ̄)− ρ̄

ρ̄
·

{

1

(F (ρ̄)−b)E(ρ̄)
−

b

F (ρ̄)

[

1

(ρr−b)(−Er(F (ρ̄),E(ρ̄))

+

∫ q(ρ̄)

F (ρ̄)

dρ

(ρ−b)2E1(ρ,ρ̄)
+

∫ ρr

q(ρ̄)

dρ

(ρ−b)2E2(ρ,ρ̄)

]}

. (6.109)

Note that q(ρ̄), E1(ρ,ρ̄), E2(ρ,ρ̄) are the same as those in Lemma 4.4, and Ēr(ρ̄) in
(4.18) is the same as−Er(F (ρ̄),E(ρ̄)) here. Since F (ρ̄)<b, E(ρ̄)>0, Er(F (ρ̄),E(ρ̄))>
0, ρr<b, q(ρ̄)>F (ρ̄), E1(ρ,ρ̄)>0, q(ρ̄)>ρr, and E2(ρ,ρ̄)<0, it can be verified that

B′(ρ̄)>0, (6.110)

for (ρ̄,E(ρ̄))∈T (ρl,α) satisfying F−1(ρK)<ρ̄≤ρc. Moreover,

lim
ρ̄→F−1(ρc)+

ℓ((F (ρ̄),E(ρ̄));(ρr,−Er(F (ρ̄),E(ρ̄))))→+∞. (6.111)

This implies

lim
ρ→F−1(ρc)+

B(ρ̄)→+∞. (6.112)

(6.107) follows from (6.110) and (6.112). This proves (2b2).

Proof. Proof of (3a). If (6.99) holds, using Lemma 6.9 we can show that, by the
same argument as in the proof of (a) in Theorem 6.8, there exist two and only two
states (ρ∗1,E(ρ∗1))∈T (ρl,α) and (ρ∗2,E(ρ∗2))∈T (ρl,α) satisfying ρbwmin<ρ∗1<ρ̂<ρ∗2<
F−1(ρr), E(ρ̂)<E(ρ∗1)<0 and −E0

r <E(ρ∗2)<E(ρ̂) such that

L=Y(ρ∗1)=Y(ρ∗2). (6.113)

In this case, there are two shock locations, i.e., ℓ((ρl,α);(ρ
∗
1,E(ρ∗1))) and

ℓ((ρl,α);(ρ
∗
2,E(ρ∗2))).

Proof. Proof of (3b). Similar to the proof of (3c) in Theorem 6.8, it follows from
Lemma 6.9 that there exist two states (ρ̄∗1,E(ρ̄∗1))∈T (ρl,α) and (ρ̄∗2,E(ρ̄∗2))∈T (ρl,α)
satisfying ρbwmin<ρ̄∗1<F−1(ρc)<ρ̄∗2<F−1(ρr), 0≤E(ρ̄∗1)<Ec and −E0

r ≤E(ρ̄∗2)≤0,
such that

L=Z(ρ∗1)=Y(ρ∗2),

which completes the proof of (3b).
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6.3. The case when (ρl,α) is inside subsonic part of the trajectory pass-
ing through (b,0). In this case, (ρl,α) satisfies:

1

2
α2−H(ρl)<−H(b), 0<ρl<ρs. (6.114)

The curve

1

2
E2−H(ρ)=

1

2
α2−H(ρl), (6.115)

which is the trajectory passing through (ρl,α), intersects the line E=0 at (ρinmin,0)
and (ρmax,0) satisfying

H(ρinmin)=H(ρmax)=H(ρl)−
1

2
α2, ρinmin<ρs<ρmax. (6.116)

The curve (6.115) is a closed curve, lying inside the critical trajectory through (b,0).
The shock curve S(ρl,α) lies inside the subsonic part of the curve (6.115), by Lemma
6.2 (see Figure 14).

It is follows easily from the phase portrait that

Theorem 6.11. Case for ρr>ρmax.

Suppose that (ρl,α) satisfies (6.114). If ρr>ρmax, then the boundary value prob-
lem (1.7) and (1.8) does not have a solution for any L (see Figure 14).

Next, we turn to the case when F (ρinmin)<ρr<ρmax. In this case, the trajectory
though the point (F (ρinmin),0) satisfying

1
2E

2−H(ρ)=−H(ρinmin) intersects the shock
curve S(ρl,α) at two pints, denoted by (ρK ,EK) and (ρK ,−EK) with EK >0 (see
Figure 15). Then the following theorem holds.

Theorem 6.12. Case for F (ρinmin)<ρr<ρmax.

Assume that (ρl,α) satisfies (6.114). Then it holds that
(1) If α>EK , then
(1a) For

L<ℓ((F (ρl),α);(ρr,E
α
r )),

where Eα
r is determined by (ρr,E

α
r )∈T (F (ρl),α) satisfying E

α
r >0, the boundary value

problem (1.7) and (1.8) does not have a solution with a single transonic shock;
(1b) For

ℓ((F (ρl),α);(ρr,E
α
r ))≤L≤ ℓ((ρl),α);(F

−1(ρK),EK))+ℓ((ρK ,EK);(ρr,0)), (6.117)

there exists a unique state (ρ∗,E(ρ∗))∈T (ρl,α) satisfying F−1(ρK)≤ρ∗≤ρl and
EK ≤E(ρ∗)≤α such that

L= ℓ((ρl,α);(ρ
∗,E(ρ∗)))+ℓ((F (ρ∗),E(ρ∗),(ρr,E

∗
r ))), (6.118)

where E∗
r satisfies (ρr,E

∗
r )∈T (F (ρ∗),E(ρ∗)) and E∗

r ≥0;
(1c) In the case that

ℓ((ρl,α);(F
−1(ρK),EK))+ℓ((ρK ,EK);(ρr,0))≤L≤ ℓ((F (ρl),α);(ρr,−Eα

r )), (6.119)

where Eα
r is determined as in 1a), there exists a unique state (ρ∗,E(ρ∗))∈T (ρl,α)

satisfying F−1(ρK)≤ρ∗≤ρl and EK ≤E(ρ∗)≤α such that

L= ℓ((ρl,α);(ρ
∗,E(ρ∗)))+ℓ((F (ρ∗),E(ρ∗));(ρr,−E∗

r )), (6.120)
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where E∗
r satisfies (ρr,E

∗
r )∈T (F (ρ∗),E(ρ∗)) and E∗

r ≥0.
(2) If α<EK , the boundary value problem (1.7) and (1.8) does not have solutions
with a single transonic shock.

The proof of this theorem is similar to those in Subsection 6.2, so we omit it.
The case ρs<ρr<F (ρinmin) can be handled in a similar way as for the case of

F (ρinmin)<ρr<ρmax. So we omit the details of the treatments.

7. Appendix We prove Lemmas 6.3 and 6.5 in this appendix.
Proof of Lemma 6.3.
Proof. We prove (6.45) first. Note that

Y (ρ̄)= ℓ((ρl,α);(ρ
out
min,0))+X(ρ̄), (7.1)

where

X(ρ̄)= ℓ((ρoutmin,0);(ρ̄,E(ρ̄)))+ℓ((F (ρ̄),E(ρ̄));(ρr,−Er(ρ̄))),

for ρ̄∈ [F−1(ρ1r),F
−1(ρr)). So

Y ′(ρ̄)=X ′(ρ̄).

Applying (4.7) in Lemma 4.3 leads to

Y ′(F−1(ρr))=X ′(F−1(ρr))

=

(

p′(F−1(ρr))−
J2

(F−1(ρr))2

)(

1

F−1(ρr)
−

1

ρr

)

1

E(F−1(ρr))
.

Since E(F−1(ρr))<0, p′(F−1(ρr))−
J2

(F−1(ρr))2
<0 and F−1(ρr)<ρr,

Y ′(F−1(ρr))>0. (7.2)

Again, by (4.7), one has

Y ′(F−1(ρ1r))

=X ′(F−1(ρ1r))

=

(

p′(F−1(ρ1r))−
J2

(F−1(ρ1r))
2

)(

1

F−1(ρ1r)
−

1

ρ1r

)

Q(F−1(ρ1r)), (7.3)

where

Q(F−1(ρ1r))=
1

E(F−1(ρ1r))
+b

∫ ρr

ρ1
r

p′(t)− J2

t2

tE3(F−1(ρ1r),t)
dt, (7.4)

E(F−1(ρ1r),t)=−
√

E2(F−1(ρ1r))+2(H(t)−H(ρ1r)), ρr≤ t≤ρ1r.

Note that

−∞<E(F−1(ρ1r))<0. (7.5)

We now claim that

∫ ρr

ρ1
r

p′(t)− J2

t2

tE3(F−1(ρ1r),t)
dt=+∞. (7.6)
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This can be shown as follows. Let

g(t)=E2(F−1(ρ1r),t), ρr≤ t≤ρ1r.

Then

1

2
g(t)−H(t)=

1

2
E2(F−1(ρ1r))−H(ρ1r), ρr≤ t≤ρ1r.

Therefore,

g′(t)=2H ′(t)=2

(

1−
b

t

)(

p′(t)−
J2

t2

)

, ρr≤ t≤ρ1r.

Since ρ1r >ρr>b>ρs, there exist positive constants C1 and C2 such that

C1≤g′(t)≤C2, ρr≤ t≤ρ1r. (7.7)

Since g(ρr)=0, it holds that

g(t)=O(|t−ρr|)

for small |t−ρr|. This implies that

E(F−1(ρ1r),t)=O(|t−ρr|
1/2)

for small |t−ρr|. (7.6) now follows since ρ1r >ρr and E(F−1(ρ1r),t)<0 for ρr≤ t≤ρ1r.
As a consequence of (7.3)-(7.6), one has

Y ′(F−1(ρ1r))=−∞. (7.8)

In view of (7.2) and (7.8), Y ′(ρ̄) changes the sign in the interval [F−1(ρ1r),F
−1(ρr)].

Since

signQ(ρ̄)=−signX ′(ρ̄)=−signY ′(ρ̄)

for ρ̄∈ [F−1(ρ1r),F
−1(ρr)] (where Q(ρ̄) is defined in (4.10)), Q(ρ̄) changes the sign in

the interval [F−1(ρ1r),F
−1(ρr)]. Suppose that

Q(ρ̂)=X ′(ρ̂)=Y ′(ρ̂)=0, (7.9)

for some ρ̂∈ [F−1(ρ1r),F
−1(ρr)]. By (4.7) and (4.10), one gets

Q(ρ̂)=
1

E(ρ̂)
+b

∫ ρr

F (ρ̂)

p′(t)− J2

t2

tE3(ρ̂,t)
dt=0. (7.10)

This, together with (4.10), gives

Q′(ρ̂)

p′(ρ̂)− J2

ρ̂2

=
1

E3(ρ̂)

(

b

ρ̂
−

b

F (ρ̂)
−1

)

+3b2
(

1

ρ̂
−

1

F (ρ̂)

)
∫ ρr

F (ρ̂)

p′(t)− J2

t2

tE5(ρ̂,t)
dt

=b2
(

1

ρ̂
−

1

F (ρ̂)

)
∫ ρr

F (ρ̂)

p′(t)− J2

t2

tE3(ρ̂,t)

(

3

E2(ρ̂,t)
−

1

E2(ρ̂)

)

dt−
1

E3(ρ̂)
. (7.11)
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Since ρr<F (ρ̂), E2(ρ̂,t)<E2(ρ̂) for ρr≤ t<F (ρ̂), E(ρ̂)<0, F (ρ̂)>ρ̂ and p′(ρ̂)− J2

ρ̂2 <

0 (ρ̂<ρs), (7.11) implies

Q′(ρ̂)<0.

It follows from (7.2), (7.8), and (4.7) that

Q(F−1(ρr))<0, Q(F−1(ρ1r))=+∞, Q′(ρ̂)<0 as Q(ρ̂)=0 for ρ̂∈ [F−1(ρ1r),F
−1(ρr)].

Therefore, Q(ρ̄) only changes the sign once for ρ̄∈ [F−1(ρ1r),F
−1(ρr)] at ρ̄= ρ̂ where

Q(ρ̂)=0. Hence, we conclude that

Q(F−1(ρ1r))=+∞,











Q(ρ̄)>0 as F−1(ρ1r)<ρ̄< ρ̂,

Q(ρ̂)=0,

Q(ρ̄)<0 as ρ̂< ρ̄≤ ρ̂, F−1(ρr).

This proves (6.45) and (6.46) in view of (4.7). Proof of Lemma 6.5.

Proof. We will show only

lim
ρ̄→ρc+

µ′(ρ̄)=−∞

in (6.53). The rest of the proof is almost the same as that for Lemma 6.3.
For any ρ̄∈ (F−1(ρc),F

−1(ρr)), (4.7) and (4.8) imply that

µ′(ρ̄)=

(

p′(ρ̄)−
J2

ρ̄2

)(

1

ρ̄
−

1

F (ρ̄)

)

Q(ρ̄),

where

Q(ρ̄)=
1

E(ρ̄)
+b

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt,

with −Er<E(ρ̄)<−Ec. The meaning of E(ρ̄,t) is given in (4.9). We now show that

lim
ρ̄→F−1(ρc)+

Q(ρ̄)=+∞.

This is equivalent to

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt=+∞. (7.12)

Since E(ρ̄,t)<0, p′(t)− J2

t2 >0, and F (ρ̄)>b>ρr for F−1(ρc)<ρ̄<F−1(ρr), ρr≤ t≤
F (ρ̄), it holds that

∫ ρr

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt≥

∫ b

F (ρ̄)

p′(t)− J2

t2

tE3(ρ̄,t)
dt. (7.13)

Let

g(ρ̄,t)=E2(ρ̄,t), for b≤ t≤F (ρ̄).

Then we have
1

2
g(ρ̄,t)−H(t)=C(ρ̄),
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where C(ρ̄) is a quantity depending only on ρ̄ but not on t. Therefore,

∂g(ρ̄,t)

∂t
=2H ′(t)=2

(

1−
b

t

)(

p′(t)−
J2

t2

)

.
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Thus

∂g(ρ̄,t)

∂t
|t=b=0. (7.14)

On the other hand,

lim
ρ̄→F−1(ρc)+, t→b+

g(ρ̄,t)=0. (7.15)

It follows from (7.14) and (7.15) that

g(ρ̄,t)=o(|t−b|) (7.16)

as |t−b| is small. Thus, (7.12) follows from (7.13) and (7.16).
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