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SIMULATION OF FLUID–PARTICLES FLOWS: HEAVY PARTICLES,

FLOWING REGIME, AND ASYMPTOTIC-PRESERVING SCHEMES∗
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Abstract. We are interested in an Eulerian–Lagrangian model describing particulate flows.
The model under study consists of the Euler system and a Vlasov-Fokker-Planck equation coupled
through momentum and energy exchanges. This problem contains asymptotic regimes that make
the coupling terms stiff, and lead to a limiting model of purely hydrodynamic type. We design a
numerical scheme which is able to capture this asymptotic behavior without requiring prohibitive
stability conditions. The construction of this Asymptotic Preserving scheme relies on an implicit
discretization of the stiff terms which can be treated by efficient inversion methods. This method is
a natural coupling of a kinetic solver for the particles with a kinetic scheme for the hydrodynamic
Euler equations. Numerical experiments are conducted to study the performance of this scheme in
various asymptotic regimes.
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1. Introduction

This paper is devoted to the numerical simulation of certain two-phase flows,
where a disperse phase, which is a large set of “particles” that could be bubbles,
droplets, dusts, etc. interacts with a dense phase — the surrounding fluid. There
are many possible models for such flows. The microscopic models are based on fluid
equations defined on disjoint domains and coupled by time-varying interface boundary
conditions. The macroscopic (or “Eulerian–Eulerian”) models are based on coupled
fluid equations describing both phases and defined on a common domain, and these
models involve volume fraction and non-conservative terms [30]. The mesoscopic
models consist of coupled fluid and kinetic equations. We refer for instance to the
overview [19] for a presentation of the different approaches. In what follows we are
concerned with the so-called “Eulerian-Lagrangian” framework, or “mesoscopic” de-
scription where we adopt a statistical viewpoint for the disperse phase. It means that
the set of particles is described through a particle distribution function f(t,x,v) in
phase space; the integral

∫

Ω

f(t,x,v)dvdx
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represents the number of particles occupying at time t the volume Ω⊂R
N ×R

N of
the phase space, x being the position variable and v the velocity variable. The parti-
cle distribution function can be associated with the macroscopic quantities — those
observable by experiments — by taking the moments:











































the macroscopic density: n(t,x)=

∫

RN

f(t,x,v)dv,

the momentum: nV (t,x)=

∫

RN

v f(t,x,v)dv,

the total energy: EP (t,x)=
n

2
|V |2 +

1

2
NnΘP =

∫

RN

|v|2
2

f(t,x,v)dv,

the heat flux: q(t,x)=

∫

RN

v
|v|2
2

f(t,x,v)dv.

Here V is the averaged particle velocity, and ΘP the temperature of particles. The
fluid is described by its density ρ(t,x)≥0, its velocity u(t,x)∈R

N , and its total energy
E(t,x)≥0. For further purposes, we introduce the internal energy e, the pressure p,
and the temperature Θ defined by the relations

e=
p

(γ−1)ρ
≥0, p=ρΘ, E =e+

u2

2
,

where 1<γ≤ (N +2)/N is the adiabatic constant.
According to the hierarchy introduced by O’Rourke [42], we are interested in the

so–called “Thin Sprays” where the two phases interact through momentum and energy
exchanges, but the effect due to the volume fraction of the particles is neglected. The
leading effect that couples the evolution of the disperse and dense phases is due to drag
forces. In the system of PDEs we need to introduce a few more physical quantities:

• ρ
P

>0 and ρ
F

>0 stand for the typical mass densities of the particles and of
the fluid, respectively.

• Both phases are subject to an external potential Φ which deviates the trajec-
tories of the particles. The (real–valued) coefficients η

F
and η

P
account for

the fact that the external potential can act differently, both in orientation and
amplitude, on the two phases. A typical example is given by gravity/buoyancy
forces. In this case ∇xΦ=gez, with ez the unit downward vector, g is the
gravitational acceleration, and we set η

F
=1, η

P
=(1−ρ

F
/ρ

P
). Other relevant

examples are given by centrifugal forces or electric forces when considering
charged particles immersed in a neutral fluid.

• The Stokes number ε>0 is the ratio of the Stokes settling time (that is
2ρ

P
a2

9µ , with µ the dynamic viscosity of the fluid and a the typical radius of

the particles) over a certain time unit of observation. It characterizes the
strength of the drag exerted by the fluid on the particles.

We shall work on a simplified dimensionless version of the equations which govern
the system, reducing the number of physical parameters and focusing on the role of the
scaling parameter ε. The discussion of the scaling issues is detailed in the Appendix,
and we refer to [5, 7, 12, 13, 38] for thorough comments. On the one hand, the
evolution of the density f is determined by the Fokker-Planck equation

∂tf +v ·∇xf =
1

ε
Lu,Θf +η

P
∇xΦ ·∇vf, (1.1)
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where

Lu,Θf =Divv

(

(v−u)f +Θ∇vf
)

. (1.2)

On the other hand, the evolution of the fluid obeys the Euler system


























∂tρ+Divx(ρu)=0,

∂t(ρu)+Divx(ρu⊗u)+∇xp=
1

ε

ρ
P

ρ
F

F −η
F
ρ∇xΦ,

∂t(ρE)+Divx

(

(ρE +p)u
)

=
1

ε

ρ
P

ρ
F

E −η
F
ρu ·∇xΦ.

(1.3)

The Fokker-Planck operator Lu,Θ in (1.2) describes the following physical effects the
particles are subject to due to their environment:

• The drag force exerted by the surrounding fluid is supposed to be proportional
to the relative velocity (v−u);

• Diffusion with respect to the velocity variable arises due to the Brownian
motion, which involves the temperature Θ of the fluid [20, 21].

Many additional effects are simply disregarded, such as the added mass effect, the
interparticles collisions, or size variations due to coagulation and break–up phenom-
ena. Note that the viscosity of the fluid enters in the definition of the parameter ε
while viscous effects are neglected on the evolution of the fluid. This can be justified,
at least formally, by suitable scaling arguments. The disperse phase influences the
dense phase through the coupling terms F and E , which are defined by

Momentum Exchanges: F = −
∫

RN

v Lu,Θf dv =

∫

RN

(v−u)f dv =n(V −u),

Energy Exchanges: E = −
∫

RN

v2

2
Lu,Θf dv =

∫

RN

(v(v−u)−NΘ)f dv

= n(V −u) ·u+Nn(ΘP −Θ)+n|V −u|2

= n(V −u) ·V +Nn(ΘP −Θ).
(1.4)

The definition of the coupling terms F and E induces conservation properties. Let
us write the system satisfied by the moments of f , that is

∂tn+Divx(nV ) = 0,

∂t(nV )+DivxP+η
P
n∇xΦ = −1

ε
n(V −u),

∂tΥ+Divxq+η
P
nV ·∇xΦ = −n

ε

(

(V −u) ·V +N(ΘP −Θ)
)

= −1

ε
(2Υ−nV ·u−NnΘ),

with Υ=(nV 2 +NnΘP )/2 and P=
∫

RN v⊗vf dv. Combined with the fluid equations,
this leads to the following conservation laws:

∂t

(

ρu+
ρ

P

ρ
F

nV
)

+Div
(

ρu⊗u+p+
ρ

P

ρ
F

P

)

+
(

η
F
ρ+η

P

ρ
P

ρ
F

n
)

∇xΦ = 0,

∂t

(

ρE +
ρ

P

ρ
F

Υ
)

+Div
(

(ρE +p)u+
ρ

P

ρ
F

q
)

+
(

η
F
ρu+η

P

ρ
P

ρ
F

nV
)

·∇xΦ = 0.
(1.5)
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The total momentum and the total energy are conserved.
Besides the conservation of total momentum and energy, another key feature of

the model is the dissipation property that we describe now. To this end, we introduce
the “local Maxwellian”:

Mu,Θ(v) :=(2πΘ)−N/2 exp
(

− |v−u|2
2Θ

)

.

The crucial observation consists in rewriting

Lu,Θf =Θ Divv

(

Mu,Θ∇v

( f

Mu,Θ

))

.

We consider the fluid–entropy S(t,x) defined by the relation

S :=− 1

γ−1
ln
(

pρ−γ
)

=− 1

γ−1
ln
( Θ

ργ−1

)

.

Then, as already remarked in [5], the total energy is conserved and the total entropy
is dissipated since

d

dt

(

ρ
F

∫

RN

ρ
(

E +η
F
Φ
)

dx+ρ
P

∫

RN

∫

RN

(

v2

2
+η

P
Φ

)

f dvdx
)

=0 (1.6)

and

d

dt

(

ρ
F

∫

RN

ρSdx+ρ
P

∫

RN

∫

RN

f ln(f)dvdx
)

= −ρ
P

ε

(∫

RN

∫

RN

∣

∣

∣

√
Θ
∇vf√

f
+

v−V√
Θ

√

f
∣

∣

∣

2

dvdx+

∫

RN

∫

RN

f
|V −u|2

Θ
dvdx

)

≤ 0.

(1.7)

Here the problem is defined in the whole space, but similar manipulations hold when
considering standard reflection laws for the particles and boundary conditions for the
fluid; see [12]. Note that the dissipation terms in (1.7) vanish when

u=V and f(t,x,v)=
n(t,x)

(

2πΘ(t,x)
)N/2

exp
(

− |v−V (t,x)|2
2Θ(t,x)

)

.

For such an equilibrium, the temperatures of the two phases equilibrate, Θ=ΘP , and
they have a common macroscopic velocity.

We are interested in the situation where the parameter ε can become small. In
this regime, the conservation and dissipation properties detailed above are the basis to
describe the asymptotic behavior of the model. In the next Section we shall formally
describe the asymptotic behavior of the solutions for ε≪1. In this regime, the oper-
ator Lu,Θ and the coupling terms are stiff, and one can expect the relaxation effect
that prescribes the form of the particle distribution function, and as a consequence
one arrives at a set of macroscopic equations to describe the particles–fluid mixture.
In Section 3 we design a numerical scheme able to treat the stiffness of the problem
efficiently. This scheme belongs to the class of the so-called Asymptotic-Preserving
(AP) schemes because it is able to capture the correct asymptotic behavior without
suffering the prohibitive scaling-parameter-dependent numerical constraints; see [31]
and for recent overviews [24, 32]. In order to define a scheme for the coupled system
we find it convenient to discretize the Euler equations by using the Kinetic schemes
[15, 16, 17, 44, 45, 46]. We finally conduct numerical simulations in Section 4, and
numerically study some relevant variations of the model.
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2. The hydrodynamic regimes

For Equation (1.1), as ε→0, the Fokker-Planck operator vanishes, which yields

f(t,x,v)≃ n(t,x)

(2πΘ)N/2
exp

(

− |v−u(t,x)|2
2Θ(t,x)

)

. (2.1)

This ansatz is in agreement with the dissipation estimate (1.7). One can now find
the limiting equations satisfied by ρ, u, Θ, and n. To this end we go back to the
conservation laws (1.5). The ansatz (2.1) yields nV ≃nu, ΘP ≃Θ, P≃nu⊗u+nΘI,
and q≃ (nu2 +(N +2)nΘ)/2. Therefore one arrives at the following limit system:

∂tρ+Divx(ρu) = 0,

∂tn+Divx(nu) = 0,

∂t

((

ρ+
ρ

P

ρ
F

n
)

u
)

+Divx

((

ρ+
ρ

P

ρ
F

n
)

u⊗u+p+
ρ

P

ρ
F

nΘ
)

+
(

η
F
ρ+η

P

ρ
P

ρ
F

n
)

∇xΦ = 0,

∂t

((

ρ+
ρ

P

ρ
F

n
)u2

2
+

ρΘ

γ−1
+

ρ
P

ρ
F

N

2
nΘ
)

+Divx

([(

ρ+
ρ

P

ρ
F

n
)u2

2
+

γ

γ−1
ρΘ+

ρ
P

ρ
F

N +2

2
nΘ
]

u
)

+
(

η
F
ρ+η

P

ρ
P

ρ
F

n
)

u ·∇xΦ = 0.

(2.2)
The system can be seen as the Euler system for the composite density ρ+

ρ
P

ρ
F

n, the

composite pressure
(

γ
γ−1ρ+ N+2

2

ρ
P

ρ
F

n
)

Θ, the common velocity u, and temperature Θ,

plus an additional mass conservation equation for ρ (or n).
The mathematical analysis of such fluid–kinetic systems is highly challenging.

The difficulty lies on the nonlinear coupling of PDEs of different nature. Different
models for the fluid (compressible or incompressible, viscous or inviscid, etc.) intro-
duce different levels of difficulty. A first attempt was to prove the local existence of
smooth solutions; see [3, 38] for the analysis of the Euler-Vlasov systems. Another
approach concerning classical solutions restricts to solutions close to the equilibrium
by using perturbation techniques and energy estimates [28, 11]. The global existence
of weak solutions has been investigated, mainly considering viscous flows, by using
fixed point and/or compactness arguments. A crucial step of these proofs relies on
the construction of suitable approximations preserving the dissipation properties of
the system [29, 39, 40, 6]. Identification of relevant scaling and discussion of asymp-
totic problems appeared in [10, 26, 27, 40, 12, 5, 38]; see also [14] for the analysis of
fine properties of the limit hydrodynamic systems. These problems are motivated by
combustion theory [42, 53] with applications for the design of performing engines [22]
or rocket propulsors [36]. The equations also arise in the modeling of atmospheric
pollution [50, 52], sedimentation processes [4, 8], rain formation [23], or dispersion of
volcanic columns [43]. It is also worth mentioning the applications in the description
of biomedical sprays [2, 41]. In what follows, we are concerned with the design of an
efficient numerical scheme which is specifically suitable for the asymptotic regime of
small ε’s in (1.1)–(1.3).

3. An AP scheme for the flowing regime

A standard numerical scheme for the system (1.1)–(1.3) faces some difficulties,
and becomes inefficient in the regime 0<ε≪1. The main numerical issues include:

a) The presence of stiff terms leads to the increase of computational cost due to
numerical stability constraints;
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b) The scheme is required to recover, as ε goes to 0, the behavior of the solutions
of the limit Equations (2.2) with ε-independent mesh sizes and time steps;

c) The system couples kinetic and hydrodynamic equations;

d) The system has remarkable conservation and dissipation properties that, ide-
ally, should be preserved at the discrete level.

These questions were already addressed in [13], for isentropic flows, where split-
ting methods are introduced: the kinetic equation is solved first, the hydrodynamic
fields being fixed during this time step; then, (ρ,u,Θ) are updated by using an anti-
diffusive scheme for the Euler system (see [18, 34, 35]) with source terms defined
using the new values of the particle distribution function. This strategy is very effi-
cient when dealing with another scaling — the so-called “Bubbling Regime” — of the
equation which yields a diffusion equation for the particle density; see also [7] for the
discussion of energy exchanges. In [13] the splitting method has been adapted to the
present scaling. Here we propose a different approach to treat the Flowing Regime:
the method we propose combines the AP approach and kinetic schemes for the hy-
drodynamic equations. It contains a very efficient implementation of the implicit stiff
terms, and with the desired AP properties in the small ε regimes.

3.1. The time discretization – first order. First, the stiff source terms will
be discretized implicitly in order to allow ε-independent time steps. Let ∆t>0 be the
time step, and Uk denote the numerical approximation of a general quantity U(tk),
where tk =k∆t. The first step of the algorithm consists in updating the macroscopic
unknowns n, ρ, u, V, Θ, Υ. We start with the uncoupled relations

1

∆t
(nk+1−nk) = −

∫

RN

v ·∇xfk dv =−∇x ·(nkV k),

1

∆t
(ρk+1−ρk) = −∇x ·(ρkuk),

which determines the densities nk+1 and ρk+1. Then, the velocities uk+1 and V k+1

are obtained by solving the system

nk+1V k+1−nkV k

∆t
= −

∫

RN

v v ·∇xfk dv−η
P
nk∇xΦ− nk+1

ε
(V k+1−uk+1),

ρk+1uk+1−ρkuk

∆t
= −Divx(ρkuk⊗uk +ρkΘk)−η

F
ρk∇xΦ+

ρ
P

ρ
F

nk+1

ε
(V k+1−uk+1).

Note that nk+1 has already been determined, and this step reduces to invert N 2×2
linear systems for each component of V k+1 and uk+1, which can be inverted analyti-
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cally. Finally, the temperature Θ and the energy Υ are updated with the system

1

∆t
(Υk+1−Υk)

= −
∫

v2

2
v ·∇xfk dv−η

P
nkV k ·∇xΦ

−1

ε
(2Υk+1−nk+1V k+1 ·uk+1−Nnk+1Θk+1),

1

∆t

(ρk+1|uk+1|2−ρk|uk|2
2

+
ρk+1Θk+1−ρkΘk

γ−1

)

= −Divx

((ρk|uk|2
2

+
γ

γ−1
ρkΘk

)

uk
)

−η
F
ρkuk ·∇xΦ

+
1

ε

ρ
P

ρ
F

(2Υk+1−nk+1V k+1 ·uk+1−Nnk+1Θk+1).

Since nk+1, uk+1, V k+1 are already known, this step reduces to invert a 2×2 linear
system for Υk+1 and Θk+1, which can (again) be done analytically. Having these
quantities at hand, one can update the Maxwellian, Mk+1(v)=Muk+1,Θk+1(v). The
second step updates the particle distribution function by

1

∆t
(fk+1−fk)=−(v ·∇xfk−η

P
∇xΦ ·∇vfk)+

Θk+1

ε
Divv

(

Mk+1∇v

( fk+1

Mk+1

))

.

Let us postpone for a while the question of inverting the Fokker–Planck operator, and
begin with a discussion on space and velocity discretizations.

3.2. The time discretization – second order. We can extend the time
discretization to second order. We replace the time discretization 1

∆t ((·)k+1−(·)k)
by a BDF type second order discretization 1

2∆t (3(·)k+1−4(·)k +(·)k−1). The explicit
terms (·)k are replaced by (2(·)k−(·)k−1). The stiff parts are still formulated implicitly
as (·)k+1. We now give the algorithm in detail.

Again we update first the macroscopic unknowns n, ρ, u, V, Θ, Υ. We start with

3nk+1−4nk +nk−1

2∆t
= −

∫

RN

v ·∇x(2fk−fk−1)dv =−∇x ·(2nkV k−nk−1V k−1),

3ρk+1−4ρk +ρk−1

2∆t
= −∇x ·(2ρkuk−ρk−1uk−1),

which determine the densities nk+1 and ρk+1. Then, the velocities uk+1 and V k+1

are obtained by solving the system

1

∆2t
(3nk+1V k+1−4nkV k +nk−1V k−1)

= −nk+1

ε
(V k+1−uk+1)−

∫

RN

v v ·∇x(2fk−fk−1)dv−η
P
(2nk−nk−1)∇xΦ,

1

∆2t
(3ρk+1uk+1−4ρkuk +ρk−1uk−1)

=
ρ

P

ρ
F

nk+1

ε
(V k+1−uk+1)−η

F
(2ρk−ρk−1)∇xΦ

−Divx(2(ρkuk⊗uk +ρkΘk)−(ρk−1uk−1⊗uk−1 +ρk−1Θk−1)).
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Finally, the temperature Θ and the energy Υ are updated with the system

1

∆2t
(3Υk+1−4Υk +Υk−1)

= −
∫

v2

2
v ·∇x(2fk−fk−1)dv

−η
P
(2nkV k−nk−1V k−1) ·∇xΦ− 1

ε
(2Υk+1−nk+1V k+1 ·uk+1−Nnk+1Θk+1),

1

∆2t

(3ρk+1|uk+1|2−4ρk|uk|2 +ρk−1|uk−1|2
2

+
3ρk+1Θk+1−4ρkΘk +ρk−1Θk−1

γ−1

)

= −Divx

{

2
(ρk|uk|2

2
+

γ

γ−1
ρkΘk

)

uk−
(ρk−1|uk−1|2

2
+

γ

γ−1
ρk−1Θk−1

)

uk−1

}

−η
F
(2ρkuk−ρk−1uk−1) ·∇xΦ+

1

ε

ρ
P

ρ
F

(2Υk+1−nk+1V k+1 ·uk+1−Nnk+1Θk+1).

Having these quantities at hand, one can update the Maxwellian, Mk+1(v)=
Muk+1,Θk+1(v). The second step updates the particle distribution function by

1

2∆t
(3fk+1−4fk +fk−1)

=−(v ·∇x−η
P
∇xΦ ·∇v)(2fk−fk−1)+

Θk+1

ε
Divv

(

Mk+1∇v

( fk+1

Mk+1

))

.

In the following sections, we will focus (for simplicity) on the detailed discretiza-
tion for the first order scheme. However, the second order scheme can be treated in a
similar way.

3.3. Space and velocity discretizations. The convection terms can be
treated, as in [13], by coupling the upwind scheme in space and the center difference
scheme in velocity discretizations, respectively, for the kinetic equation with an anti-
diffusive scheme of Finite Volume type [18, 34, 35] for the Euler system. However,
we find it convenient to approximate the fluid equations by kinetic schemes. This
family of schemes mimics, at the discrete level, the derivation of fluid equations from
a kinetic equation through the small mean free path limit; see [15, 16, 17, 44, 45, 46].
It is particularly well-suited to our model since the approximation of the microscopic
and macroscopic equations will be based on the same discretization. Consequently,
we will obtain for ε=0 a natural kinetic scheme for the system (2.2).

The idea consists in interpreting U =(ρ,ρu,ρE) as the zeroth, first, and second or-
der moments of a particle distribution function G(t,x,v) subject to a strong relaxation.
For the monoatomic case, that is for γ =(N +2)/N and thus ρE =ρ(|u|2 +NΘ)/2, the
Euler system

∂tU +∇x





ρu
ρu2 +ρΘ

ρ
(

|u|2 +(N +2)Θ
)

u/2



= F̄−η
F





0
ρ
ρu



∂xΦ, (3.1)

with a force field F̄=
∫

RN Fdv, can be derived from the limit for λ≫1 of the following
BGK equation:

(∂t +v∇x−η
F
∂xΦ∇v)G=F+λ(M [G]−G),
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with

M [G]=
ρG

(2πΘG)N/2
exp

(

− |v−uG|2
2ΘG

)

,





ρG

ρGuG

ρG|uG|2 +NρGΘG



=

∫

RN





1
v
v2



Gdv =

∫

RN





1
v
v2



M [G]dv.

We refer for instance to [9, 48] for results and comments on the analysis of this small
mean free path regime. It leads to the following construction for solving (3.1), which
is based on a time splitting of the BGK equation:

• Define G⋆ from the transport equation

1

∆t
(G⋆−Gk)+v ·∇xGk−η

F
∇xΦ ·∇vGk =F

k+1;

• Project the solution to the equilibrium state

Gk+1 =M [G⋆].

For describing a more general state law, one needs a coupled system of kinetic equa-
tions defined as follows:

(∂t +v ·∇x−η
F
∇xΦ ·∇v)G1 =F+λ(M −G1),

∂tG2 +v ·∇xG2 =λ(N −G2),

with λ≫1. A possible definition of M and N that generalizes the Maxwellian
distribution is

M (v)=
ρ

(2πΘ)N/2
exp

(

− |v−u|2
2Θ

)

,

N (v)=
2−N(γ−1)

2(γ−1)

ρΘ

(2πΘ)N/2
exp

(

− |v−u|2
2Θ

)

,

where the macroscopic quantities are given by









ρ
ρu

ρ|u|2
2

+
ρΘ

(γ−1)









=

∫

RN







G1

vG1

v2

2
G1 +G2






dv =

∫

RN







M

vM

v2

2
M +N






dv.

The scheme for the polytropic Euler system is now constructed as follows:

• Define G⋆
1 from the transport equation

1

∆t
(G⋆

1−Gk
1)+v ·∇xGk

1 −η
F
∇xΦ ·∇vGk

1 =F
k+1,

and G⋆
2 from

1

∆t
(G⋆

2−Gk
2)+v ·∇xGk

2 =0;
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• Project the solution to the equilibrium state

Gk+1
1 =M , Gk+1

2 =N ,

with macroscopic quantities defined by moments of G⋆
1 and G⋆

2.
Of course this construction is fictitious since in the implementation of kinetic schemes
one only uses the macroscopic variables defined in the physical space, which are ob-
tained by taking moments on the above procedures rather than the variable v or the
microscopic quantities Gj . We refer to [15, 44], [45, Sections 1.7–1.10 & Section 8],
or [25, Chapter III–Section 7] for a detailed introduction to kinetic schemes. The
choice of equilibrium states based on the Maxwellian might look natural in view of
the derivation of the Euler system from kinetic equations in the small mean free path
regime [9, 48]. In particular, for the monoatomic case it leads to an elegant formula in
the scheme for the coupled fluid/particles limit system; see (3.6) below. However, for
numerical purposes other definitions of M and N are possible. In particular, dealing
with compactly supported functions makes stability issues clear; see [44, Theorem
3], [25, Proposition 7.3 & Theorem 7.2], and [45, Sections 1.7–1.10 & Section 8, sp.
Theorem 8.3.1]. For instance, for the monoatomic case γ =(N +2)/N (δ =0) one can
use the following compactly-supported function:

M [G]=
1

meas(BN )

ρ
(

(N +2)Θ)
)N/2

1|v−u|≤
√

(N+2)Θ

(note that in dimension one, the monoatomic case corresponds to γ =3). The numer-
ical fluxes obtained this way coincide with Van Leer’s fluxes [25, Example 7.2].

Let us restrict the presentation of the space and velocity discretizations to the
one-dimension framework. We consider a meshing of the domain, say (−L,L),
with J points separated by the step ∆x. The velocity is truncated to the domain
(−VMax,+VMax), discretized with a symmetric set of velocities (v1,...,v2M ), with
step ∆v. We denote by fk

j,m the numerical approximation of a microscopic quan-
tity f(k∆t,xj ,vm) and denote by

〈

f
〉k

j
:=

∆v

2

(

fk
j,1 +fk

j,2M +2
2M−1
∑

m=2

fk
j,m

)

the approximation of the velocity average by the trapezoidal rule. This formula is
chosen to ensure that the even moments of the odd functions with respect to v vanish;
see [13]. For the sake of simplicity, we consider the simplest upwind discretization of
the advection operator v∂x:

v∂xf(k∆t,xj ,vm) is approximated by

vDx[f ]kj,m =
1

2∆x

(

(vm + |vm|)(fk
j,m−fk

j−1,m)+(vm−|vm|)(fk
j+1,m−fk

j,m)
)

.

More elaborate versions of the kinetic scheme can be used that reach second order
accuracy and incorporate a slope limiter to suppress numerical oscillations across
shocks, see [25, Section 7.3.4] and [44, Sections 2.2 & 4.2]. For the external force
term, we can adopt a centered approximation of the v-derivative which yields (see
[13])

∂xΦ∂vf(k∆t,xj ,vm) is approximated by

vDx[Φ]kj,m
1

vm
Dv[f ]kj,m =vDx[Φ]kj,m

1

vm

fk
j,m+1−fk

j,m−1

2∆v
.
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When the amplitude of the potential remains moderate compared to 1/ε it does not
affect the stability of the scheme since the velocity diffusion term is treated implicitly
in the Fokker–Planck operator. When the external force becomes large, upwinding
must be preferred; for instance

∂xΦ∂vf(k∆t,xj ,vm) is approximated by

1

2∆v

(

(∂xΦj −|∂xΦj |)(fk
j,m−fk

j,m−1)+(∂xΦj + |∂xΦj |)(fk
j,m+1−fk

j,m)
)

.

Remark 3.1. In numerical simulation we are applying the following second order
finite volume scheme on the external force term (in fact the x derivative term is solved
by the same scheme):

∂xΦ∂vf(k∆t,xj ,vm) is approximated by

1

2∆v

(

(∂xΦj −|∂xΦj |)(F+
j,m+1/2−F+

j,m−1/2)+(∂xΦj + |∂xΦj |)(F−
j,m+1/2−F−

j,m−1/2)
)

,

with

F+
j,m+1/2 = fj,m +σj,m

fj,m+1−fj,m

2 ,

F−
j,m+1/2 = fj,m+1−σj,m+1

fj,m+1−fj,m

2 ,

and

σj,m =φ

(

fj,m−fj,m−1

fj,m+1−fj,m

)

,

where the limiter function φ(Θ) is, for example, the van Leer limiter

φ(Θ)=
Θ+ |Θ|
1+ |Θ|

or the minmod limiter

φ(Θ)=max{0,min{1,Θ}}.

This discretization imposes a stability constraint, |∂xΦ|∆t
∆v ≤ 1

2 , in addition to the con-
straint due to spatial discretization of v∂xf .

Finally, given discrete density, velocity, and temperature (ρk
j ,uk

j ,Θk
j ), denote

Mk
j,m :=

1
√

2πΘk
j

exp
(

−
|vm−uk

j |2
2Θk

j

)

,

M k
j,m :=

ρk
j

√

2πΘk
j

exp
(

−
|vm−uk

j |2
2Θk

j

)

,

N k
j,m :=

2−(γ−1)

2(γ−1)

ρk
j Θk

j
√

2πΘk
j

exp
(

−
|vm−uk

j |2
2Θk

j

)

,

and L fk
j,m the corresponding approximation of Lu,Θf at (k∆t,xj ,vm). The precise

form of this approximation will be detailed in the next section. Then the fully dis-
cretized form of the algorithm reads as follows:
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• Step 1. Updating the macroscopic quantities: Find
(ρk+1

j ,nk+1
j ,uk+1,V k+1

j ,Θk+1
j ,Υk+1

j ) which solve

1

∆t
(nk+1

j −nk
j ) = −

〈

vDx[f ]
〉k

j
,

1

∆t
(ρk+1

j −ρk
j ) = −

〈

vDx[M ]
〉k

j
,

1

∆t
(nk+1

j V k+1
j −nk

j V k
j ) = −

〈

v vDx[f ]
〉k

j
+η

P

〈

vDx[Φ] Dv[f ]
〉k

j

−
nk+1

j

ε
(V k+1

j −uk+1
j ),

1

∆t
(ρk+1

j uk+1
j −ρk

j uk
j ) = −

〈

v vDx[M ]
〉k

j
+η

F

〈

vDx[Φ] Dv[M ]
〉k

j

+
ρ

P

ρ
F

nk+1
j

ε
(V k+1

j −uk+1
j ),

1

∆t
(Υk+1

j −Υk
j ) = −

〈v2

2
vDx[f ]

〉k

j
+η

P

〈

vDx[Φ]
v

2
Dv[f ]

〉k

j

−1

ε
(2Υk+1

j −nk+1
j V k+1

j ·uk+1
j −nk+1

j Θk+1
j ),

1

∆t

(

Ek+1
j −Ek

j

)

= −
〈v2

2
vDx[M ]

〉k

j
−
〈

vDx[N ]
〉k

j

+η
F

〈

vDx[Φ]
v

2
Dv[M ]

〉k

j

+
1

ε

ρ
P

ρ
F

(2Υk+1
j −nk+1

j V k+1
j ·uk+1

j −nk+1
j Θk+1

j ),

(3.2)

with Ek
j :=

|uk
j |2
2

+
Θk

j

γ−1
;

• Step 2. Updating the particle distribution function. The first step allows to
define Mk+1

j,m . Then, we define fn+1
j,m as the solution of

1

∆t
(fk+1

j,m −fk
j,m)=−vDx[f ]kj,m +η

P
vDx[Φ]kj,m

1

v
Dv[f ]kj,m +

1

ε
L fk+1

j,m . (3.3)

It requires the inversion of the operator (1− ∆t
ε L ) that will be discussed in

the next subsection. We finish the time step by setting

nk+1
j =

〈

f
〉k+1

j
, nk+1

j V k+1
j =

〈

vf
〉k+1

j
, Υk+1

j =
1

2

〈

v2f
〉k+1

j
.

Remark 3.2. For the boundary condition, we apply the specular reflection law for
the particles. For the discrete unknown, the law reads

fk
0,2M+1−m =fk

1,m, fk
J+1,m =fk

J,2M+1−m.

For the hydrodynamic unknowns, we use the so-called “wall boundary condition”
which are imposed through ghost cells

(

ρk
0 ,uk

0 ,Θk
0

)

=
(

ρk
1 ,−uk

1 ,Θk
1

)

,
(

ρk
J+1,u

k
J+1,Θ

k
J+1

)

=
(

ρk
J ,−uk

J ,Θk
J

)

.
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We refer for instance to [1] for discussion of numerical boundary conditions for kinetic
schemes.

Remark 3.3. In many situations ∂xΦ=Ψ has a simple expression. For instance it is
merely constant for gravity–driven flows. Then, the external force terms in (3.2) are
replaced by η

P
nk

j Ψj , η
P
nk

j V k
j Ψj , η

F
ρk

j Ψj , η
F
ρk

j uk
j Ψj .

3.4. Treatment of the Fokker-Planck operator. We follow the method
introduced in [33]. Given u and Θ, it is convenient to write

Lu,Θf =Θ
√

Mu,Θ L̃u,Θh,

with

h=
f

√

Mu,Θ

, L̃u,Θh=
1

√

Mu,Θ

Divv

(

Mu,Θ∇v

( h√
Mu,Θ

))

.

The advantage of this change of unknown lies on the symmetry property

∫

RN

L̃u,Θh gdv =

∫

RN

h L̃u,Θgdv.

Accordingly, we set

hj,m =
fk+1

j,m
√

Mk+1
j,m

, L fk+1
j,m =Θk+1

j

√

Mk+1
j,m L̃ hj,m,

where the discrete operator L̃ will be symmetric — allowing the inversion of the
implicit term by the effective Conjugate Gradient algorithm. Therefore, Step 2 of the
first order scheme in Section 3.1 can be recast as follows:

• Solve the linear system

(

1− ∆t

ε
Θk+1

j L̃
)

hj,m =
fk

j,m−∆t
(

vDx[f ]kj,m−η
P
vDx[Φ]kj,m

1

v
Dv[f ]k

)

√

Mk+1
j,m

;

• Set fk+1
j,m =hj,m

√

Mk+1
j,m .

In the one–dimension setting, the discrete operator L̃ is defined as follows (see [33]):

L̃ hj,m =
1

∆v2

(

hj,m+1−

√

Mk+1
j,m+1 +

√

Mk+1
j,m−1

√

Mk+1
j,m

hj,m +hj,m−1

)

(3.4)

which indeed leads to a symmetric matrix. Observe that L̃
(
√

Mk+1
)

j,m
=0.

Lemma 3.4. Consider the discrete operator (3.4) with the Neumann-like conditions

√

Mj,1(hj,0−hj,2)+hj,1(
√

Mj,2−
√

Mj,0) = 0,
√

Mj,2M (hj,2M−1−hj,2M+1)+hj,2M (
√

Mj,2M+1−
√

Mj,2M−1) = 0.
(3.5)
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This operator is mass–conserving in the sense that

〈
√

ML̃ h
〉

=0,

and entropy–decaying in the sense that

〈
√

ML̃ h ln
(

h/
√

M
)〉

≤0.

Remark 3.5. Note that the definition of the ghost points with respect to the velocity
variable depends on the discrete integration rule: if the rectangle rule is used then
one should replace (3.5) by

hj,0√
Mj,0

=
hj,1√
Mj,1

and
hj,2M+1√
Mj,2M+1

=
hj,2M√
Mj,2M

. The definition

looks like an approximation of the Neumann–like boundary condition M∂v(
h√
M

)=

0=M∂v(f/M).

Proof. The key argument relies on the observation

√
Mm

(

hm+1−
√

Mm+1 +
√

Mm−1√
Mm

hm +hm−1

)

=
√

Mm+1Mm

(

hm+1
√

Mm+1

− hm√
Mm

)

−
√

MmMm−1

(

hm√
Mm

− hm−1
√

Mm−1

)

.

The proof is concluded by summation by parts.

3.5. Properties of the scheme. (Asymptotic Preserving) We can study the
limit of the scheme as ε goes to 0. First, Step 2 forces fk+1

j,m to coincide with the

discrete Maxwellian nk+1
j Mk+1

j,m . Then, adding the two momentum equations and the
two energy equations and replacing f by the Maxwellian in (3.2), we obtain

1

∆t
(nk+1

j −nk
j )

= −
〈

vDx[nM ]
〉k

j
,

1

∆t
(ρk+1

j −ρk
j )

= −
〈

vDx[M ]
〉k

j
,

1

∆t

((

ρk+1
j +

ρ
P

ρ
F

nk+1
j

)

uk+1
j −

(

ρk
j +

ρ
P

ρ
F

nk
j

)

uk
j

)

= −
〈

v vDx

[

M +
ρ

P

ρ
F

nM
]〉k

j
+η

P

〈

vDx[Φ]
1

v
Dv

[

η
F
M +η

P

ρ
P

ρ
F

nM
]〉k

j

1

2∆t







(

ρk+1
j +

ρ
P

ρ
F

nk+1
j

)

|uk+1
j |2−

(

ρk
j +

ρ
P

ρ
F

nk
j

)

|uk
j |2

2

+
ρk+1

j Θk+1
j −ρk

j Θk
j

γ−1
+

ρ
P

ρ
F

nk+1
j Θk+1

j −nk
j Θk

j

2

)

= −
〈v2

2
vDx

[

M +
ρ

P

ρ
F

nM
]〉k

j
+
〈

vDx[N ]
〉k

j

〈

vDx[Φ]
v

2
Dv

[

η
F
M +η

F

ρ
P

ρ
F

nM
]〉k

j
.

(3.6)
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This is exactly a kinetic scheme for the limit system (2.2). Note that this expression
simplifies in the monoatomic case when we use the Maxwellian ρk

j Mk
j,m as distribution

M k
j,m.

(Well-Balance) It turns out that stationary solutions are defined by

fS(x,v)=ZP exp
(

− v2

2Θ
− η

P
Φ(x)

Θ

)

,

ρS(x)=ZF exp
(

− η
F
Φ(x)

Θ

)

, u(x)=0, Θ>0 (constant),

with ZF and ZP normalizing constants. For instance one can set

ZP =
MP

ρ
P
(2πΘ)N/2

(

∫

e−η
P

Φ(x)/Θdx
)−1

, ZF =
MF

ρ
F

(

∫

e−η
F

Φ(x)/Θdx
)−1

,

where MP and MF correspond to the masses of the disperse and the dense phases
respectively. The stationary solutions can be expected to be natural candidates for
describing the large time behavior of the solutions, with the parameters MF , MP ,
and Θ determined by the conservation relations

MP =ρ
P

∫

f(0,x,v)dvdx, MF =ρ
F

∫

ρ(0,x)dx,

together with

ρ
P

∫

(v2

2
+η

P
Φ(x)

)

fS(x,v)dvdx+ρ
F

∫

( Θ

γ−1
+η

F
Φ(x)

)

ρS(x)dx=E0,

where E0 stands for the total energy given by

E0 =ρ
P

∫∫

(v2

2
+η

P
Φ(x)

)

f(0,x,v)dvdx

+ρ
F

∫

( |u(0,x)|2
2

+
Θ(0,x)

γ−1
+η

F
Φ(x)

)

ρ(0,x)dx.

E0 can be recast as

MP

(

NΘ+PP (Θ)
)

+MF

( Θ

γ−1
+PF (Θ)

)

=E0, (3.7)

where PP and PF depend on the potential Φ:

PP =

∫

η
P
Φ(x)e−η

P
Φ(x)/Θdx

∫

e−η
P

Φ(x)/Θdx

, PF =

∫

η
F
Φ(x)e−η

F
Φ(x)/Θdx

∫

e−η
F

Φ(x)/Θdx

.

Observe that

d

dΘ
P(Θ)

=
1

(

Θ

∫

e−η
P

Φ(x)/Θdx
)2

×
(∫

∣

∣η
P
Φ(x)

∣

∣

2
e−η

P
Φ(x)/Θdx

∫

e−η
P

Φ(x)/Θdx−
(

∫

η
P
Φ(x)e−η

P
Φ(x)/Θdx

)2
)
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is non–negative as a consequence of the Cauchy-Schwarz inequality. Therefore (3.7)
uniquely defines Θ≥0 for any E0≥0. Modulus O(∆x) and O(∆v) errors in the
stationary solutions are preserved by the scheme. If the center difference is used for
the external force term, the velocity error becomes of order O(∆v2) and only involves
odd terms with respect to v, so that its velocity average vanishes [13].

4. Numerical simulations

We perform numerical simulation in the one dimension framework, bearing in
mind the example of gravity driven flows. We always use the second order

scheme described in Section 3.2. The spacial domain is the slab [0,1], where x is
thought of as a “vertical” variable (with x=0 corresponding to the bottom and x=1
to the top). The velocity variable lies in the truncated domain v∈ [−VMax,VMax], and
for the simulation we set VMax =6. In our numerical experiments, the units are chosen
such that the gravity constant is g =1 for the sake of simplicity. The initial particle
distribution function has the form

f(0,x,v)=
n(0,x)

√

2πΘP (0,x)
exp

(

−|v−V (0,x)|2
2ΘP (0,x)

)

. (4.1)

Notice that this distribution is not at equilibrium as far as V (0,x) 6=u(0,x), or
ΘP (0,x) 6=Θ(0,x), with u(0,x) and Θ(0,x) the initial velocity and temperature fields
of the fluid, respectively. Finally, the numerical parameters are ∆t=0.4 ∆x

VMax
. This

choice guarantees the stability of the simulation.

4.1. Energy conservation and entropy dissipation. To start with, we
check the ability of the scheme in preserving mass, energy, and in dissipating entropy,
according to (1.6) and (1.7). For the simulation we present, we initially consider a
homogeneous fluid at rest:

ρ(0,x)=1, u(0,x)=0, Θ(0,x)=1. (4.2)

The distribution of particles is given by (4.1) with

n(0,x)=0.5+exp(−80(x−0.5)2), V (0,x)=0, ΘP (0,x)=1. (4.3)

We set ε=0.1 and ρ
P
/ρ

F
=100 while the adiabatic constant is γ =1.4. The results

to be discussed do not significantly change when these parameters vary. Although
we will not provide a figure here, owing to the treatment of the boundary condition,
the total mass of both phases is (numerically) exactly conserved. Figure 4.1(a) shows
the time evolution up to the final time T =10 of the total energy, which is a discrete
version of (1.6). The discrete energy is not exactly conserved, but by varying the mesh
size one can observe that the error remains of order O(∆x2). This discrepancy can
be explained by the influence of the boundary terms that remain when performing
the discrete integration by parts in the energy balance.

Next we study the evolution of the entropy. The discretized entropy at time tn is
defined by

Hn :=ρ
F

∫

R

ρnSndx+ρ
P

∫

R

∫

R

fn ln(fn)dvdx,

where the numerical integration is done by the trapezoidal rule for v and the rectangle

rule for x. In Figure 4.1(b) we compare the discrete time derivative Hn+1−Hn

∆t (solid
line) and the dissipation term, which is a discrete analog of the right hand side of (1.7)
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(dashed line). More precisely, the discretized dissipation term is computed based on
the equivalent form

d

dt
H =−ρ

P

ε

(∫

RN

∫

RN

Θ

f

∣

∣

∣
MV,Θ∇v

f

MV,Θ

∣

∣

∣

2

dvdx+

∫

RN

∫

RN

f
|V −u|2

Θ
dvdx

)

. (4.4)

Their evolutions have the same qualitative features. In particular, it is remarkable

that Hn+1−Hn

∆t remains negative, establishing a numerical evidence of the decay of
entropy.

We consider the evolution of the (macroscopic) kinetic energy of the two phases

KF =ρ
F

∫

R

ρu2dx, KP =ρ
P

∫

R

nV 2dx.

The numerical simulation shows that both quantities are decaying, with oscillations
presenting a very similar shape, which suggests that the solutions are approaching
some stationary state. This is confirmed by Figure 4.2 where we compare the solution
at time T =20 with the stationary solution having the same mass and energy. We take
ρ

P
/ρ

F
=100 and ρ

P
/ρ

F
=0.5, which give different monotonicities in the density profile

of particles in stationary solution. The agreement is quite good, with discrepancies
that can be explained either by a final time not large enough or by the defect in the
energy conservation.

We repeat this simulation with ε=10−5. The results, which are shown in Figure
4.3, are quite similar to the ε=0.1 case. The total energy is conserved with an error
of O(∆x2). The entropy dissipation is preserved. The kinetic energy decays with a
slower rate.

4.2. Influence of the external force. Now we study the influence of the
external force. We remind that for the case of gravity–driven flows, we have η

F
=1

and η
P

=1−ρ
F
/ρ

P
. Therefore the sign of η

P
determines whether the movement of

particles is gravity dominated (corresponding to the “+” sign), or buoyancy dominated
(corresponding to the “−” sign).

At first, we investigate the standard model where ρ
P

and ρ
F

are constants corre-
sponding to the mass density of the particles and a typical mass density of the fluid,
respectively. We vary the ratio ρ

P
/ρ

F
. The simulation is performed with the uniform

initial data (4.2) for the fluid, while the particles are initially at rest, concentrated at
the center of the domain:

n(0,x)=1[0.3,0.7](x), V (0,x)=0, ΘP (0,x)=1.

The numerical profiles of the hydrodynamic unknowns at final time T =0.4 are shown
in Figure 4.4, with different values of ρ

P
/ρ

F
. We take ε=1 and γ =1.4 on the grid

Nx =50, Nv =32.
Since the fluid is only subject to gravity, the fluid always moves downwards and its

density near the bottom (x=0) is always higher. By contrast, the particle’s reparti-
tion depends on the relative value of ρ

P
/ρ

F
compared to 1. The movement of particles

is dominated by buoyancy when ρ
P
/ρ

F
<1; Figure 4.4(a) shows that particles con-

centrate near the top. When ρ
P
/ρ

F
tends to 1, the gravity balances the buoyancy

and the particles move freely. Due to the interaction with the fluid, the downward
direction is more prominent in the movement of particles, as shown in Figure 4.4(b).

When we consider heavy particles, i.e. ρ
P
/ρ

F
>1, both phases are dominated by

gravity (as in Figure 4.4(c)(d)) and the two densities are higher at the bottom as
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Fig. 4.1. Time evolution of the total energy, total entropy, and the kinetic energy of the two
phases, with ε=0.1. Here γ =1.4, ρ

P
/ρ

F
=100, Nx =500, Nv =64.

time becomes large. It is also worth remarking that particles act like a wall for the
fluid, resulting in a clear separation of the domain; this is particularly sensible at the
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=0.5.

Fig. 4.2. Comparison of the solution (dashed lines) at final time T =20 to the stationary
solution (solid lines) having the same mass and energy, with different ρ

P
/ρ

F
. Here γ =1.4, ε=0.1,

Nx =500, Nv =32.

beginning of the simulation when a large amount of particles is located at the center
of the domain. We also point out that the scheme is able to handle cases with high
density ratio, i.e. particles much heavier than the fluid.

It might be questionable to consider a constant reference fluid density in the
expression of the buoyancy force because the model varies the fluid density and might
create zones of low (resp. high) density. Therefore we perform a couple of simulations
by changing ρ

F
to ρ

F
×ρ(t,x) in the definition of the buoyancy force. Note however

that such a model induces severe technical issues; in particular, in this case the force
acting on the particles cannot be derived from a potential and the energy balance
becomes unclear. Nevertheless, the simulation brings out some interesting phenomena.
We set the initial density of the fluid to be a piecewise constant, so that the motion
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Fig. 4.3. Time evolution of the total energy, total entropy, and the kinetic energy of the two
phases, with ε=10−5. Here γ =1.4, ρ

P
/ρ

F
=100, Nx =500, Nv =64.

of particles are gravity driven in some domains and buoyancy driven in the others:

ρ(0,x)= 1
4 + 3

21x<1/2, u(0,x)=0, Θ(0,x)=1,

n(0,x)=1, V (0,x)=0, ΘP (0,x)=1.
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Fig. 4.4. Macroscopic profiles for the fluid (up) and the particles (down) at T =0.4, with
different ρ

P
/ρ

F
. Here γ =1.4, ε=1.

We take ε=1, γ =1.4 on the grid Nx =50, Nv =32. The profiles of the macroscopic
quantities at T =0.2 are shown in Figure 4.5, which compares the standard model
with a constant reference fluid density (solid lines) and the case that takes density
variation into account (dots). The motion of the fluid does not change too much, but
the particles move differently, with a clear tendency towards the interface x= 1

2 .

4.3. Asymptotic preserving properties: vanishing Stokes number. In
this section we investigate the behavior of the numerical solution as the parameter ε
goes to 0. We take γ =1.4,

ρ
P

ρ
F

=100. The initial data is defined as in (4.2) and (4.1),

with

n(0,x)=0.5+exp(−80(x−0.5)2), V (0,x)=exp(−80(x−0.5)2), ΘP (0,x)=1.

We perform simulations with different Stokes number ε, on the same grid Nx =50,
Nv =64. The results at T =0.3 are displayed in Figure 4.6. As ε gets smaller, the
effects of friction between the two different phases become more and more prominent.
The buoyancy effect is dominated by the friction in the case ε=10−4. We observe the
(fast) equilibrium of the velocities u=V and temperatures Θ=ΘP , as expected from
the entropy dissipation and the formal derivation. In order to quantitatively evaluate
this effect, we introduce the ℓ1 distance between the particle distribution f and the
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Fig. 4.5. Macroscopic profiles for the fluid (up) and the particles (down) at T =0.2: comparison
of the model with constant and variable coefficients in the buoyancy force. The solid lines show the
results when ρ

F
is constant, with ρ

P
/ρ

F
=0.9. The dots show the results with x-dependent ρ

F
, given

by the density of fluid. Here γ =1.4, ε=1.

equilibrium nMu,Θ,

dist(t)=‖f(t,x,v)−nMu,Θ(t,x,v)||1. (4.5)

The time evolution of dist(t) for different values of ε is shown in Figure 4.7. As ε→0,
it shows numerical evidence that fk−nkMuk,Θk =O(ε), for k≥1, which confirms the
relaxation effects we conjectured on the formal ground and the AP property of the
scheme. In particular, the scheme does not encounter stability difficulties for small ε’s;
it still works perfectly under stability conditions determined only by the convection
terms.

4.4. Temperature dependent viscosity. It makes sense to consider the
case where the viscosity µ depends on the temperature of the flows. In particular,
Sutherland [51] proposed the formula

µ=µ0

(

Θ

Θ0

)3/2
Θ0 +S

Θ+S
,

where µ0 is a reference viscosity, Θ0 is a reference temperature, and S is an effective
temperature, called the Sutherland constant, which is characteristic of the considered

fluid. Accordingly, the Fokker–Planck term 1
εLu,Θf is replaced by µ(Θ)

ε Lu,Θf . For
the sake of simplicity we take µ0 =1, T0 =1, and S =0.5. If the stiff term is treated
fully implicitly, one is led to a nonlinear system involving µ(Θk+1) for determining
the hydrodynamic quantities in the first step of the algorithm. A Newton’s algorithm
is needed, which can impact the performance of the code. We avoid this difficulty by
using a semi-implicit formula where the viscosity is set to µ(Θk) (for the first order
scheme) or µ(2Θk−Θk−1) (for the second order scheme) instead.

We work with the following initial data:

ρ(0,x)=1, u(0,x)=0, Θ(0,x)=0.2+9 1[0.5,0.6],

n(0,x)=1, V (0,x)=0, ΘP (0,x)=1,
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Fig. 4.6. Macroscopic profiles for the fluid (up) and the particles (down) at T =0.3, with

different ε. Here γ =1.4,
ρ
P

ρ
F

=100.

with ε=1, γ =1.4, and ρ
P
/ρ

F
=5 on the grid Nx =50, Nv =32. Figure 4.8 shows

the profiles of the macroscopic variables at time T =0.2. The dots show the results
derived by using the Sutherland viscosity, while the solid lines correspond to the
constant viscosity case. The effect of this modification is sensible on the evolution
of the temperatures; it seems that the energy exchange is stronger with Sutherland’s
viscosity. In this case the particles get more energy from the fluid.

4.5. Effects of the state law and different kinetic approximations. We
finally check the ability of the scheme to deal with general γ−state laws. As detailed
above, these laws modify the expression of the numerical fluxes for hydrodynamics, as
defined by the kinetic scheme. We take ρ

P
/ρ

F
=100, ε=1. The initial data are taken
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as in (4.2) and (4.3). The results at T =20 are shown in Figure 4.9. The qualitative
behavior of the solutions is not significantly changed. Note in particular that we
do not observe the variety of shapes for large time asymptotics as it occurs in the
isentropic case (see [12, 13]); all solutions seem to have the same stationary solution
as the asymptotic profile. The only difference is in the value of the temperature Θ.
This is due to the fact that the energy of fluid differs with different γ, even with the
same initial data ρ, u, and Θ.

We also mention that the choice of the equilibrium to be used in the definition
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of the kinetic scheme does not influence the simulation, at least in the situations we
have tried.
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Fig. 4.9. Macroscopic profiles for the fluid (up) and the particles (down) at T =20, with

different γ. Here ε=1,
ρ
P
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=100, Nx =500, Nv =32.

Conclusion. We have introduced a new numerical scheme for simulating a sys-
tem coupling the Vlasov–Fokker–Planck Equation to the Euler system through drag
force, momentum, and energy exchanges. In particular, the scheme is Asymptotic
Preserving in the regime of small Stokes numbers, which drives the system towards a
set of purely hydrodynamic equations. The method is based on the implicit treatment
of the potentially stiff terms and relies on the possibility of updating the macroscopic
unknowns by solving simple linear systems. The use of a kinetic scheme for solving
the hydrodynamic equations turns out to be very appropriate because the scheme
for the complete problem naturally becomes an extended kinetic scheme for the limit
system as the scaling parameter becomes small. Based on numerical evidence, the
scheme also exhibits mass conservation, entropy dissipation, and up to mesh depen-
dent error terms, energy conservation, and the well-balanced property. Furthermore,
the scheme can easily incorporate relevant generalizations of the basic model like
considering general state laws or temperature–dependent viscosities.

Appendix: Scaling issues. Let us detail precisely the scaling issues and the
physical meaning of the asymptotic regime we are interested in. To this end, let
us go back to the equations written with dimensional quantities. For the sake of
concreteness, we restrict the discussion to the three-dimensional case. As usual, ρ(t,x)
is the mass density of the fluid and u(t,x) the velocity field. The internal energy is
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defined by means of the temperature Θ(t,x) as follows:

RsΘ

γ−1
,

with γ >1 the adiabatic constant of the fluid and Rs its specific constant, given by
Rs =R/MF =kN /MF , with R the perfect gas constant, k the Boltzmann constant,
N the Avogadro number, and MF the molar mass of the fluid. The particles are
described by the quantity f(t,x,v) such that f(t,x,v)dvdx is the probability of finding
particles in the domain of the phase space centered at (x,v) with volume dvdx.
Accordingly,

4πa3

3

∫

f dv

corresponds to the volume fraction occupied by the particles. Multiplying this quan-
tity by ρ

P
, the mass density of the particles, we get the mass fraction of the particles.

For future use, it is convenient to define the mass of a given particle with radius a:

m
P

=
4

3
πa3ρ

P
.

Particles are subject to the Brownian motion, which induces in the equation a diffusion
term with respect to the velocity variable. The diffusion coefficient is given by the
Einstein formula [21]

9µ

2ρ
P
a2

kΘ

m
P

,

where µ is the dynamic viscosity of the surrounding fluid. The forces acting on the
particles split into

• An external force, embodied into the potential Φ and characterized by a
certain (real valued) dimensionless coefficient η

P
;

• The drag force exerted by the fluid on the particles. Here we assume it is
simply given by the Stokes law, and so is a linear expression of the relative
velocity

6πµa (v−u).

The Stokes settling time τ is defined by

1

τ
=

6πµa

m
P

=
9µ

2a2ρ
P

.

We introduce the operator

Lu,Γf :=∇v ·
(

(v−u)f +Γ∇vf
)

.
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Finally, the fluid–particle mixture is described by the following system of PDEs:







































































∂tf +v ·∇xf −η
P
∇xΦ ·∇vf =

9µ

2ρ
P
a2

Lu,kΘ/m
P

f,

∂tρ+∇x ·(ρu) = 0,

∂t(ρu)+Divx ·(ρu⊗u)+∇x(RsρΘ) = 6πµa

∫

vLu,kΘ/m
P

f dv

−η
F
ρ∇xΦ,

∂t

(

ρ
(u2

2
+

RsΘ

γ−1

))

+∇x ·
(

ρu
(u2

2
+

γRsΘ

γ−1

))

= 6πµa

∫

v2

2
Lu,kΘ/m

P
f dv

−η
F
ρu∇xΦ.

(A.1)

We are going to write (A.1) in dimensionless form. To this end, we introduce time
and length scales of observation, denoted by T and L respectively. Using a typical
mass density ρ

F
for the fluid, a typical velocity U, and a typical temperature Θ̄ of the

flow, the dimensionless variables and unknowns can be defined as follows:

t′ = t/T, x′ =x/L,

ρ′(t′,x′)=
ρ(t,x)

ρ
F

, u′(t′,x′)=
u(t,x)

U
,

Θ′(t′,x′)=
Θ(t,x)

Θ̄
.

For the particles, set

V :=

√

3kΘ̄

4πa3ρ
F

,

the thermal velocity and consider a typical volume fraction 0<φ̄<1. Then, define
the dimensionless particle distribution function as follows

f ′(t′,x′,v′)=
4πa3V3

3φ̄
f(t,x,v).

(Therefore φ̄L3 gives the volume occupied by the particles in the reference volume.)
Finally, one needs a dimensionless version of the external potential, given by

Φ′(x′)=
Φ(x)

Φ̄
.
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Using these definitions, (A.1) becomes

∂t′f
′+

VT

L
v′ ·∇x′f ′− Φ̄T

LV
η

P
∇x′Φ′ ·∇v′f ′

=
T

τ
LUu′/V,Θ′f ′,

∂t′ρ
′+

UT

L
∇x′ ·(ρ′u′)

= 0,

∂t′(ρ
′u′)+

UT

L
Divx′ ·(ρ′u′⊗u′)+RsΘ̄

T

LU
∇x′(ρ′Θ′)

= φ̄
ρ

P

ρ
F

T

τ

V

U

∫

v′LUu′/V,Θ′f ′dv′− TΦ̄

UL
η

F
ρ′∇x′Φ′,

∂t′

(

ρ′
( |u′|2

2
+

RsΘ̄

U2

Θ′

γ−1

))

+
TU

L
∇x′ ·

(

ρ′u′
( |u′|2

2
+

RsΘ̄

U2

γΘ′

γ−1

))

= φ̄
ρ

P

ρ
F

T

τ

(V

U

)2
∫ |v′|2

2
LUu/V,Θ′f ′dv′− TΦ̄

UL
η

F
ρ′u′∇x′Φ′.

(A.2)

We realize that the system is driven by the following set of dimensionless parameters:

• The ratio of the typical velocity and the thermal velocity over the reference
velocity L/T:

U
T

L
, V

T

L
;

• The ratio of the Stokes settling time τ =
2ρ

P
a2

9µ , which characterizes the drag
effects, over the time unit

ε=
τ

T
;

• A coefficient characterizing the strength of the acceleration induced by the

external potential Φ̄T2

L2 ;

• The mass ratio N

MF

4πa3ρ
P

3 , which appears in the formula

RsΘ̄

U2
=
(V

U

)2 Rs 4πa3ρ
P

3 k
,

bearing in mind Rs =kN /MF .
The regime we are interested is based on the following assumptions:

a) The ratios UT
L , VT

L , RsΘ̄
U2 , Φ̄T2

L2 , φ̄
ρ

P

ρ
F

are supposed to be of the same order of

magnitude;

b) The Stokes settling time is small compared to the time of observation; 0<
ε≪1 is much smaller than the other parameters within the system.

For the sake of simplicity, we have simply set to unity the parameters defined by a),
but keeping

ρ
P

ρ
F

as a relevant free parameter, and we consider the regime where ε goes

to 0.
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The modeling can be motivated by the formation of soot during certain combus-
tion processes. Soot is made of pure carbon clusters, with most in the sub-micrometer
range of 100 nanometers referred to as ultrafine particles (PM0.1 in related nomen-
clatura). Such very tiny particles constitute the most important aerosol species in
the air (up to 80 % of the urban aerosol) and they are a major concern for res-
piratory exposure and health because of their ability to penetrate deep within the
lung. Diesel exhaust is a common example of a source of such particles [47]. An-
other example comes from the composition of volcanic plumes, a typical signature
affecting both the concentration of coarse (larger than 1µm) and ultrafine particles
[49]. In a different context, involving a different range of velocity and temperature,
we can mention the formation of ocean sprays, which has been reported to play a
role in the dynamics of cyclones [37]. Therefore, let us motivate the scaling with the
following set of parameters: for soot formation we consider ultrafine particles with
typical size a=5×10−8 m. and with mass density ρ

P
=103 kg m−3. The typical tem-

perature of the device is Θ̄=1000 K. Then, considering the physical properties of
air, we get MF =2.9×10−2 kg mol−1, ρ

F
=3.5×10−1 kg m−3, and for the viscosity

µ=4.15×10−5 kg m−1s−1. A relevant velocity is given by U=100 m s−1; hence, we
choose L=10−1 m and T=10−3 s (the use of the compressible Euler equations makes
sense due to the fact that the Mach number is of order unity and the Reynolds number
is of order 7×104 and the particulate Reynolds number is of order 4×10−2, so that

the Stokes law can be applied). The relaxation time is 2
9ρ

P

a2

µ =1.3×10−8 s, which

is indeed small compared to T. The thermal velocity satisfies V2 =2.6×10−2 m s−1.
Note that it produces a quite small value of the ratio V/U, of order 10−3. By the
way, this is also the order of magnitude of the acceleration term Φ̄T2/L2 due to grav-

ity. Finally, we obtain N

MF

4πa3ρ
P

3 =107 kg, so that RsΘ̄/U2 =26. We will further
investigate such realistic flows by using our numerical methods elsewhere.
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Parma, to appear, June 2010.

[33] S. Jin and B. Yan, A class of asymmptotic-preserving schemes for the Fokker-Planck-Landau
equation, J. Comput. Phys., 230, 6420–6437, 2011.

[34] F. Lagoutière, A non-dissipative entropic scheme for convex scalar equations via discontinuous
cell-reconstruction, C.R. Math. Acad. Sci. Paris, 338(7), 549–554, 2004.

[35] F. Lagoutière, Non-dissipative entropy satisfying discontinuous reconstruction schemes for hy-
perbolic conservation laws, Technical report, Univ. Paris–Sud, 2010.
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