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Abstract. This paper reviews our recent work addressing the role of both synaptic-input and
connectivity-architecture fluctuations in coarse-grained descriptions of integrate-and-fire (I&F') point-
neuron network models. Beginning with the most basic coarse-grained description, the all-to-all
coupled, mean-field model, which ignores all fluctuations, we add the effects of the two types of
fluctuations one at a time. To study the effects of synaptic-input fluctuations, we derive a kinetic-
theoretic description, first in the form of a Boltzmann equation in (2+1) dimensions, simplifying
that to an advection-diffusion equation, and finally reducing the dimension to a system of two (1+1)-
dimensional kinetic equations via the maximum entropy principle. In the limit of an infinitely-fast
conductance relaxation time, we derive a Fokker-Planck equation which captures the bifurcation
between a bistable, hysteretic operating regime of the network when the amount of synaptic-input
fluctuations is small, and a stable regime when the amount of fluctuations increases. To study the ef-
fects of complex neuronal-network architecture, we incorporate the network connectivity statistics in
the mean-field description, and investigate the dependence of these statistics on the statistical prop-
erties of the neuronal firing rates for three network examples with increasingly complex connectivity
architecture.

Key words. Integrate-and-fire neuronal network, kinetic theory, Fokker-Planck equation, mean-
driven limit.
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1. Introduction

Fluctuations of synaptic inputs, neuronal conductances, and voltages play an
important role in the functioning of neuronal networks, from determining individual
neurons’ spike times and firing rates to possibly being involved in the neural code [6,
29, 31, 32, 65, 70, 86,97, 99, 108, 117, 127, 130, 139, 140]. Although sufficiently strong
stimuli drive a neuronal network into the mean-driven operating regime, in which
its dynamics are determined primarily by the mean drive arising from the stimulus
and the network response, while the fluctuations in the spike trains arriving at the
individual neurons can be neglected, many networks in the brain are believed to
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function in the fluctuation-driven regime, in which synaptic-input fluctuations are
the primary cause of neuronal firings [6,70,86,117,127,139,140].

In addition to the input and activity fluctuations, neuronal firing patterns
also depend strongly on the underlying network architecture. Far from being
uniform, this architecture reflects complex connectivity schemes, which, while al-
ways statistical in nature, result in both regular and disordered feature-preference
maps [11, 12, 16, 39, 44, 60, 72, 103, 116, 129, 138, 142]. Statistical properties of the
network architectural connectivity, such as the probability distributions of the num-
bers of neurons’ pre- and postsynaptic neurons, are likely reflected in the network’s
functional properties such as neuronal voltage and firing rate distributions, i.e., in-
dicators of functional connectivity [45,52,58,92,102,125,126,137]. These indicators
are typically easier to measure over large scales in vivo, for example using functional
magnetic resonance imaging. In particular, such measurements have revealed a possi-
ble scale-free distribution, i.e., a distribution with power-law-shaped tails, of neuronal
activity correlations between pairs of small volumes in the brain [41,122], hinting at
the possibility that individual neuronal connections may follow similar laws.

While large-scale computational modeling that takes into account the dynamics
of every individual neuron in a neuronal network has made great strides in the last
decade or so [22,29,33,78,96,97,120,130,131,136], it still cannot begin to efficiently
describe the dynamics in even one large brain area, such as the entire primary visual
cortex. This is because of the large numbers of neurons and vast disparities of both
spatial and temporal scales involved in the network processing that takes place in such
areas. To be successful in the modeling of various brain area dynamics, one there-
fore frequently resorts to some degree of coarse-graining. A typical coarse-graining
procedure shares much in common with the derivation of the hydrodynamic equa-
tions from the Boltzmann kinetic theory of molecular dynamics [14,15]. It replaces
groups of neurons, so small that the neurons contained in them share similar prop-
erties and are uniformly connected yet sufficiently large that a statistical description
is applicable, by neuronal tissue patches whose dynamics reflects the average neu-
ronal response in the patch [31,32,95]. This type of coarse graining also naturally
follows from the laminar structure of the brain and the plethora of feature-preference
maps [11,12,16,39,44,60,72,103,116,129,138,142].

In addition to computational cost reduction and mathematical simplification,
coarse-grained models often furnish a conceptual advantage by providing simple de-
scriptions and explanations of mechanisms underlying the dynamical behavior of more
detailed point-neuron models. For example, a simple Fokker-Planck-type coarse-
grained model captures a bifurcation between stable, fluctuation-driven, and bistable,
mean-driven, network operating regimes, whose understanding has been suggested to
be of critical importance in properly tuning a network modeling orientation selectivity
in the primary visual cortex [31,65]. A yet more basic model has been able to account
for neuronal activity patterns in the primary visual cortex during drug-induced visual
hallucinations [17,18].

The two main directions in coarse-graining address either the firing rates alone
or else also the statistical properties of the relevant neuronal variables such as the
membrane potential and conductance. The firing-rate, or mean-field, models [10,17,
112,135,144, 145] are restricted to the mean-driven regime. The statistical models,
exemplified by the kinetic theory [1,4,8,24,31,32, 34, 36,48, 50, 55,62, 87-91, 95, 143]
or the field-theoretic approach [19-21,26-28,93,94], take synaptic-input fluctuations
into account, and therefore also provide a description for the network processing of
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weaker stimuli that takes place in the fluctuation-driven regime.

This paper reviews our recent results on the coarse-graining of, and especially our
kinetic-theoretic approach to, neuronal network dynamics, addressing both synaptic-
input and network-connectivity fluctuations [31, 32, 65,81, 95,99, 112-114]. We add
the effects of these fluctuations one-by-one to the idealized, mean-field network model
with all-to-all coupling, which accounts for no fluctuations at all and can be solved
exactly in the steady-state, yet provides the backbone structure for all more com-
plicated models [31,32,112]. We then add synaptic-input fluctuations and describe
a general method for obtaining a kinetic-theoretic description of integrate-and-fire
(I&F) coupled point-neuron models [31,32,95,99]. We focus on all-excitatory net-
works of simple cells; the treatment for networks also containing inhibitory neurons
and complex cells follows along the same lines [31,95]. We then discuss how, in the
fluctuation-driven regime, the effect of the fluctuations is adequately captured by a
simplified Fokker-Planck-type model [65,81]. We address adding complexity in the
network topology within the framework of the mean-field model, so as to separate its
effects from those of synaptic fluctuations [113,114]. For three example networks with
complex architecture, we find how the firing-rate statistics reflect the statistics of the
underlying network connectivity in the asymptotic limit of strong external driving.

In addressing the kinetic-theoretic approach to neuronal network dynamics, we
begin by using a nonequilibrium statistical physics framework to obtain a (2+1)-
dimensional Boltzmann-type kinetic equation for the probability density function of
the neuronal membrane potential and synaptic conductance [1,8,24, 31,32, 34, 36,48,
50,55,62,87-91,143]. We then show how the assumption of statistical independence
between the neuronal voltages and conductances, which we can make in the mean-
driven limit in which all the synaptic-input fluctuations vanish, leads to a mean-field
model [31,112]. This model is quite accurate in the mean-driven regime [65,81]. We
then highlight our important advancement, which was to further reduce the (241)-
dimensional Boltzmann-type kinetic equation to a set of two (14-1)-dimensional partial
differential kinetic equations in terms of the membrane potential alone [31,32, 95],
and thus both reduce computational costs and make the resulting equations more
amenable to theoretical analysis. This reduction is achieved via an appropriate closure
which follows from the maximum entropy principle [95].

In general, the kinetic equations must be solved numerically. Since the presence
of the firing rate in both their coefficients and boundary conditions as a consistency
parameter makes the resulting initial-boundary value problem highly nonlinear, it is a
non-trivial task to numerically evolve this system. We do not describe the numerical
method for solving the kinetic equations here, but instead refer the reader to our work
in [98].

A Fokker-Planck equation for the membrane-potential probability density alone
follows from the kinetic theory in the limit of very short neuronal conductance time-
scales [31,65,87], and can also be derived directly from the corresponding singular
limit of the I&F network. We discuss how this equation still takes into account
synaptic-input fluctuations, and continuously reduces to a mean-field equation when
these fluctuations vanish [31, 65, 81].

Just like the effects of synaptic-input fluctuations, we describe the effects of com-
plex network-connectivity architecture statistically. We use the graph-theory based
description of complex-network topology, which is well-developed and has already

found applications ranging from descriptions of the internet to descriptions of social
interactions and scientific collaborations [13,40,42,43,51,82,83,85,128,141]. The dif-
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ference between the theory of complex neuronal networks and the standard complex-
network theory is in that, unlike most social and technological networks, neuronal
networks must be described by directed graphs, and thus require an additional step in
their description. This step consists of deriving the statistics of the directed neuron-
to-neuron connections from their undirected counterparts [113,114]. For three ex-
ample networks, we incorporate these statistics into their mean-field description in
the high-conductance limit, in order to find the corresponding firing-rate statistics.
We solve the resulting linear systems explicitly, and then derive and compare the
firing-rate statistics of neurons grouped according to their architectural connectiv-
ity properties. In particular, we find that networks with a scale-free distribution of
the number of synaptic connections also give rise to a scale-free distribution of the
neuronal firing rates. Comparisons with numerical computations involving the in-
tact mean-field model, as well as direct numerical simulations of the corresponding
1&F model, both averaged over many realizations of the network with the prescribed
connectivity statistics, confirm our theoretical predictions.

The remainder of the paper is organized as follows. In Section 2.1, we de-
scribe the all-to-all coupled, excitatory I&F neuronal network for which we develop
the kinetic theory. In Section 2.2, we present a heuristic derivation of the (2+1)-
dimensional Boltzmann-type functional differential equation that is the basis of our
kinetic-theoretic argument, and derive its boundary conditions. In Section 2.3, we de-
rive the mean-field equations from the Boltzmann equation, solve them explicitly for
steady external drive, and discuss the properties of this explicit solution in the mean-
and fluctuation-driven regimes. In Section 2.4, we simplify the Boltzmann equa-
tion into an advection-diffusion equation, and then further reduce this equation to a
(141)-dimensional system of two kinetic equations via the maximal-entropy closure.
In Section 2.5 we derive the Fokker-Planck equation in the limit of short conduc-
tance times, and discuss how hysteretic behavior of the network firing rate emerges
as the synaptic-input fluctuations decrease. In Section 3.1, we derive a generalization
of the Boltzmann and mean-field equations to heterogeneously-coupled networks. In
Section 3.2, we discuss how in three networks with increasingly complex connectiv-
ity topology, the firing rate statistics depend on the network connectivity statistics.
In Section 3.3, we extend the mean-field and kinetic theories to spatially-extended
networks. Finally, in Section 4, we present a concluding discussion. A flowchart de-
picting the interdependence of the equations described in this paper is presented in
Appendix A.

2. Synaptic input fluctuations

We begin our discussion by addressing what role the fluctuations in the synap-
tic input play in the statistical description of neuronal network dynamics. After
deriving, in a heuristic manner, an exact Boltzmann differential-difference equation
describing the one-point statistics of the neuronal voltages and conductances in an
idealized, all-to-all coupled network, we present a detailed description of the limiting
case in which neither synaptic nor architectural-connectivity fluctuations are present
in the network. The mean-field equation describing this limiting case is solved exactly
and gives a complete statistical description of the idealized, fluctuationless network.
We then proceed to derive a kinetic-theoretic description of the network that takes
synaptic-input fluctuations into account. After simplifying the Boltzmann differential-
difference equation into an advection-diffusion equation using the diffusion approxima-
tion, we derive a kinetic-theoretic description of the neuronal voltage statistics alone
via the maximum-entropy principle. This description consists of two equations for the
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voltage probability density function (pdf) and the first moment of the conductance.
We show how the standard Fokker-Planck equation used to describe neuronal voltage
statistics when the conductance time-scale vanishes follows from the kinetic-theoretic
description. We finally discuss how the fluctuationless, mean-field description can be
derived as a limiting case of all of the above descriptions.

2.1. All-to-all coupled excitatory 1&F network. To first exclude any
effects of network-connectivity fluctuations, we begin by studying the dynamics of
an all-to-all coupled network. For clarity of presentation, and since the extension of
our techniques to networks containing inhibitory neurons is straightforward, we only
consider an excitatory network. The dynamics of such an all-to-all coupled, excitatory,
I&F neuronal network, consisting of N neurons is governed by the set of equations

av;
Tar
dGi:fGHZa(tftiHﬁzzp-« S(t—t,) (2.1b)
dt i - m N i inls .
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g

fori=1,...,N, where V;(t) is the membrane potential of the ith neuron in the network,
G, (t) is its excitatory conductance, 7 is the time scale of the membrane potential and o
of the excitatory conductance, §(-) is the Dirac delta function, f is the strength of the
external-drive spikes, S is the strength of coupling between neurons in the network,
e the excitatory reversal potential, and €, < ep is the leakage reversal potential. For
simplicity, €, is also taken to equal the reset potential, but the kinetic-theoretic ap-
proach presented here can also be carried out when these two potentials are different.
The variable p;;, describes the probability of synaptic release, which is modeled by a
Bernoulli process with release probability p. In other words, p;;, =1 with probability
p, and 0 with probability 1 —p.

As alluded to in the previous paragraph, the two delta-function trains in Equation
(2.1b) represent the spikes arriving from the external drive and other neurons in the
network, respectively. We assume that the ith neuron receives spikes from the external
input at times {tft}, which form an independent realization of the Poisson process
with rate v(¢). Each incoming external spike induces a jump of size f/c in the
conductance of the receiving neuron. At the spike-time ¢;,, when the ith neurons’s
voltage V;(t) crosses the firing threshold Vr, the voltage V;(t) is instantaneously reset
to the reset voltage ¢,, and spikes are sent to all other neurons in the network. These
spikes induce jumps of size S/No in the conductances of each of their postsynaptic
neurons. Note that physiology implies the inequality €, < Vp <ep. We assume that
the generation and transmission of the network spikes is instantaneous, i.e., there is
no refractory period. The factor 1/N ensures a finite network firing rate Nm(¢) in
the limit of N — oo. Here, m(t) is the population-averaged firing rate per neuron in
the network.

While the output spike-train of a fixed neuron in general does not obey Poisson
statistics, the spike train obtained from the summed output of all neurons in the
network does obey these statistics asymptotically for large network size N, provided
we assume that each neuron fires at a very low rate and its spike times are statistically
independent from one-another [37]. We will therefore assume that the summed input
spike train from all other neurons to the ith neuron is Poisson with rate pNm(t),
where pN is the effective number of neurons coupled to the ith neuron, in other
words, the effective network size in the all-to-all coupled network.
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We remark that we consider the all-to-all network connectivity here only for the
ease of discussion; the derivation can be generalized to to more general types of
network connectivity, as we will see in Section 3.

2.2. The Boltzmann equation. To study the one-point statistical behavior
of the network (2.1), we construct a statistical ensemble of its identical copies differing
only in their initial voltages V;(0) and conductances G;(0), i=1,...,N, and their
inputs. Each input is an independent set of N independent realizations of the Poisson
spike train with the same rate v(t), with each realization feeding a different neuron.
We are interested in the probability of finding a neuron whose voltage lies in the
interval (v,v4dv) and whose conductance lies in the interval (g,g+dg) at time ¢,
described in terms of the corresponding probability density as p(v,g,t)dvdg.

Here, we present a heuristic derivation of the equation governing the evolution of
the probability density p(v,g,t). At time ¢, in the (v,g)-phase space, the probability
of a given neuron’s voltage and conductance to reside in the infinitesimal rectangle
whose sides are the intervals (v,v+dv) and (g,9+dg), respectively, is p(v,g,t)dvdg.
During the time interval (¢,¢+dt), this probability changes due to

(i) the streaming of the phase points through the boundaries of this rectangle under
the smooth dynamics of Equation (2.1) in the absence of any spikes;

(ii) the conductance jumps induced by the external and network spikes, described
by the trains of Dirac delta functions in Equation (2.1b).

As seen from Equation (2.1), the smooth streaming in the v-direction through
the sides of the rectangle at v and v+ dv contributes the change

_ [(W—Tsr> Ly (U—TEE>:| p(o.g.0)dgdt

+ {(W) +g (W)} p(v+dv,g,t)dgdt. (2.2a)

Note that we have neglected the variations of the density p in the conductance g over
two sides at v and v+dv, since their contributions to the probability change are of
higher order. Likewise, the smooth streaming in the g-direction through the sides of
the rectangle at g and g+ dg contributes the change

—gp(v,g,t)dvdt—l—wp(v,g—i—dg,t)dvdt, (2.2b)
g g

where, again, we have neglected the variations in v over these two sides.
The jumps due to the external spikes contribute the abrupt change

o (s~ ) -t s 20

at the time-rate v(t). Likewise, the jumps due to the network spikes contribute the
change

S
[p (v,g—pNU,t) —p(vuq,t)} dvdgdt (2.2d)

at the time-rate equal to the network firing-rate, pNm(t). In this formula, S=pS.
It is here that we need the assumption that the spike trains arriving at any given
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neuron obey the Poisson statistics. In particular, the probability of a spike arrival
causing a jump in the density p(v,g,t) over the time dt is v(t)dt and pNm(t)dt for
external-drive and network spikes, respectively.

The overall change of p(v,g,t) during the time interval (¢,t+dt), dp(v,g,t)dvdg,
equals the sum of all the terms in the expressions (2.2), with the last two terms
multiplied by the appropriate time-rates. Dividing the equation obtained in this way
by dvdgdt, and letting dv—0, dg—0 and dt— 0, we thus arrive at the following
Boltzmann equation governing the evolution of the probability density p=p(v,g,t):

atpzav{[(vjr>+g<v_TEE>}p}+ag(§p) (2.32)

+v(t) {P (v,g—gt) —p(v,gi)} (2.3b)

tomt) o (ng-—2ot) = p(w.9.0)] (2.30)

valid for &, <v < Vp and 0 < g <oo. From the above discussion it follows that the first
two terms (2.3a) in Equation (2.3) describe the streaming dynamics of the neurons
without receiving any spikes, while the third and fourth terms, (2.3b) and (2.3c),
describe the conductance jumps of the neurons at the times they have received external
input spikes and spikes from other neurons in the network, respectively.

Note that the derivation of Equation (2.3) was carried out entirely in the (v,g)
phase-space of a single neuron, and the influence of other neurons was only taken into
account through the factor pNm(t) in the term (2.3c). This should be clear as we
assume all the neurons to be statistically equivalent, and their only interaction to take
place through spikes. Note also that the Boltzmann Equation (2.3) is not exact, due
to the summed input from all the neurons in the network being only approximately
Poisson, and thus the term (2.3c) is valid only in an asymptotic sense. A more
mathematically rigorous derivation of the Boltzmann Equation (2.3) is given in the
appendix of [31].

The Boltzmann Equation (2.3) can be written in the conservation-of-probability
from,

Orp+ 0y Jy (g,0) + g0 (g,v) =0, (2.4)

with the corresponding membrane-potential and conductance probability fluxes

wva)=-|(“5) 19 () ot (2.50)

g

Ja(0.9) =2 p(0.9) 4 v(t) / p(v,h) dh
o g—f/o

+pNm(t) / p(v,h)dh, (2.5b)
9—S/pNo

respectively.

To derive the boundary conditions for Equation (2.3), we recall from Section 2.1
that once a neuron’s voltage crosses the threshold Vr it is instantaneously reset to
€r, while the value of the conductance remains unchanged. Mathematically, this fact
corresponds to the condition

JV(VTvg):JV(Erag)a (26&)
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for 0 < g < oo. In addition, since no neuronal conductance ever becomes negative, we
must have

p(v,g<0)=0. (2.6b)

Likewise, since no neuronal conductance ever becomes infinite, the density p(v,g)
must vanish at large infinite conductance values,

p(v,g—00) =0, (2.6¢)

sufficiently rapidly, together with all its derivatives, for &, <v < Vp. Equations (2.6a),
(2.6b), and (2.6¢) constitute the boundary conditions for the Boltzmann Equation
(2.3).

To obtain a self-consistent kinetic description of the dynamics exhibited by the
I&F system (2.1), we finally need to determine the evolution of the population-
averaged firing rate, m(¢). This rate is given by the total probability flux across
the threshold regardless of the conductance values, i.e.,

m(t)z/oc><> Jv (Vr,g,t)dg

— [ ) o (P ) |ovrgnan. o)

Once the solution for the probability density p(v,g,t) is known, we can determine
the firing rate m(t) via Equation (2.6d). On the other hand, Equation (2.3) contains
the firing rate m(t) as a multiplicative parameter. Since the firing rate m(t), in turn,
depends on the boundary value of p(Vr,g,t) through Equation (2.6d), the boundary-
value problem specified by Equation (2.3) and the boundary conditions (2.6) is clearly
nonlinear.

2.3. The mean-driven limit.  The simplest, most highly idealized model of
neuronal network dynamics ignores both its network-architecture and synaptic-input
fluctuations. In all-to-all connected networks, which we have been studying so far,
we have already excluded all the network-architecture fluctuations. To also exclude
the synaptic-input fluctuations, we now study the limit in which the mean of the
synaptic input drives the network neurons to fire, while the effect of the synaptic-
input fluctuations is negligible. This limit is referred to as the mean-driven limit.
Intuitively, one would expect the network to operate in this limit when each neuron
receives a large number of spikes from both the external and network drive, each of
which only induces a very small conductance change. If we restrict our interest to
bounded neuronal firing rates, this limit also implies large network size. Consequently,
in this limit, we must let

f—0, N—ooo, v(t)—oo, [fr(t)=0(1), (2.7)

with the last condition imposed so that the mean synaptic input remains finite.

2.3.1. Closure in the mean-driven limit. As seen directly from the net-
work (2.1) and conditions (2.7), in the mean-driven limit, the conductance is the same
for all neurons, i.e., the effect of the second term fzﬂé(t—ti) in Equation (2.1b)
is equivalent to a smooth input fv(t), whereas the third term, which signifies the
network interaction in Equation (2.1b), is equivalent to a smooth input Sm(t) to a
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neuron from all other neurons in the network, with the corresponding fluctuations
scaled away at the rate 1/v/N.

Under these smooth, fluctuation-free conductance inputs, if the external drive is
sufficiently strong, Equations (2.1) imply that the neuronal voltages quickly increase
from the reset &, to the threshold Vi after which the neurons fire. This observa-
tion suggests that, statistically, the value of a neuron’s conductance provides little
information about the value of its voltage in this limit. The reason is that, in this
limiting regime and under strong drive, conductance values are typically high, and so
relatively small conductance fluctuations exert little influence on voltage dynamics.
One should thus expect in the mean-driven limit that the dynamics of conductance
and voltage are uncorrelated. Consequently, we can reasonably assume the dynamics
of the neuronal conductances and voltages to be statistically independent,

p(v,g.t)=p (v,t)p' (g,1). (2.8)

Denoting the average conductance by

(9) (1) = / " g0 (g.1)dg, (2.9)

and integrating the Boltzmann Equation (2.3) over the conductance g, together with
the boundary condition (2.6¢), we find the equation

o) =0,{|(*Z) + 0 ()] o0} (2.10a)

Likewise, multiplying Equation (2.3) by the conductance g and then integrating it
over both the voltage and conductance, together with the flux boundary condition
(2.6a), we find the equation

L lg=—l(g)~3(0)], (210b)
where
g(t)=fv(t)+Sm(t) (2.11)

is the mean synaptic input to a neuron. Note that Equation (2.10a) can be written
in the conservation form 9;p(") (v,t) 4 ,jv (v,t) =0, with the probability flux

o= | (5 ) i (5 |0 (212)

Equations (2.10) are closed with respect to p(*) (v,t) and (g)(¢): Equation (2.10a)
is a (1+1)-dimensional PDE that describes the evolution of the voltage pdf p(*) (v,t),
whereas Equation (2.10b) describes the evolution of the average conductance (g) (¢).
The boundary conditions (2.6a) and (2.6d) for the Boltzmann equation now yield the
sole boundary condition

Jv(er)=jv(Vr)=m(t) (2.13)

needed for the system (2.10).
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2.3.2. Explicit solution in the stationary case. In the time-homogeneous
case of the mean-driven limit, i.e., the case in which the Poisson rate v of the external
input does not vary with time, the system (2.10) simplifies to the point that the
resulting problem can be solved exactly. Specifically, since the steady solution of
Equation (2.10b) is clearly (g) =g, an integration of the time-independent version of
Equation (2.10a), together with Equation (2.13), yields the equation

©) () = — m 2.14
pPv) (v—e)+(w—eg)g’ (2.14)
which holds for e, <v < V7.
For superthreshold values of the mean synaptic input, g > go, with
VT — &
go—= — 2.15
90 cp— VT ) ( )
from the normalization condition
Vr
/ P (v)dv=1 (2.16)
€

r

and the fact that the denominator in Equation (2.14) must be negative to ensure
p") (v) >0, we find the equation

1+g
g({fr *5E)
(Vr—&,)+g(Vr —€g)

(2.17a)

m =

Tlog

Although an explicit input-output relation m(fv) between the firing rate m and
the external-drive strength fr cannot be calculated from Equation (2.17a), an exact
parametrization of the gain curve representing it can be obtained in terms of the
parameter g. This parametrization consists of Equation (2.17a) and the equation

S(1+39)
g(er—€p)
(Vr—e&;)+g(Vr —eg)

fr=g— , (2.17b)

Tlog

which follows immediately from the definition (2.11) [65]. In particular, for every
g> 4o, Equations (2.17) give the value of the firing rate m corresponding to the
appropriate value of the input frv.

2.3.3. Mean- and fluctuation-driven regimes. In the stationary case
with no synaptic-input fluctuations, the m — fv gain curve must consist of two parts,
corresponding to two network operating regimes, as shown in Figure 2.1. First, in the
case §< o, with gy as in Equation (2.15), we derive directly from the system (2.1)
that all the neuronal membrane potentials approach the equilibrium value

v=Vg="11TF (2.18)

which is known as the effective reversal potential. Therefore, for large times t,

P () =68 (v—Vs). (2.19)



D. CAI, L. TAO, M. S. SHKARAYEV, A. V. RANGAN, D. W. MCLAUGHLIN, AND G. KOVACIC 317

The inequality g < go immediately implies that Vg < Vr in this regime, so that all the
neuronal voltages are concentrated at one subthreshold value and no neuron fires.
Thus the firing rate m vanishes.

The first part of the gain curve therefore consists of the straight-line segment
m=0 stretching between the external-drive values fr=0 and fr=gy. This part
corresponds to the fluctuation-driven regime, in which the neuronal firings are entirely
driven by the voltage fluctuations that result from the synaptic-input fluctuations. As
expected, since it operates in the limit of vanishing fluctuations, the network ceases
to fire in this regime altogether.

In the mean-driven regime, §> gy, the discussion in the previous section re-
flects the fact that the network fires at a nonvanishing rate, expressed through the
parametrization (2.17), and represented by the second, nontrivial, part of the gain
curve. Unless the network is uncoupled, S =0, the graph of m versus fv begins at the
point (fv,m)=(go,0), proceeding backwards in fv, with the initial derivative —1/S.
For large values of g (and so large external-drive strength fv, firing rate m, or both),
every gain curve asymptotes towards its own straight line

_ Jr+1-go/In(14go)

n(l+g0)-S (220

For sufficiently weak coupling, S < 7In(1+ go), the gain curve turns around in a saddle-
node bifurcation, and thus passes through a bistability interval that begins at the
saddle-node bifurcation point and ends at the driving threshold fv=ggy. For strong
coupling, S>7In(1+go), the gain curve has a negative slope everywhere and termi-
nates with a nonzero firing rate m at fr=0. In this latter case, the coupling is too
strong for the network (2.1) to reach a stable stationary operating state. This scenario
is illustrated in the left panel in Figure 2.1.

507 60, .

R _ mean-field
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Fic. 2.1. Left: Gain curves of the mean-field model, plotted using the exact parametrization
(2.17). The coupling constant S increases from the right to the left curve, starting with S=0 along
the rightmost curve. The second curve from the left has a vertical asymptote. Right: Gain curves
of the I&F system (2.1) compared to the corresponding mean-field gain curve (2.17). The external
spike strength f decreases and network size N increases from the left to the right curve, effectively
decreasing the amount of synaptic-input fluctuations. [Reproduced with permission from Ref. [65],
(Copyright 2009, by APS).]

As can be seen from the right panel in Figure 2.1, the numerically-computed
gain curves of the full I&F system (2.1) approach the mean-field gain curve (2.17)
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at sufficient values of the external drive fr in the limit of small conductance-jump
sizes and large network size. More surprisingly, in the limit of large external drive
fv— o0, the true gain curves converge onto the mean-field gain curve regardless of the
conductance-jump size. On the other hand, the mean-driven limit is evidently insuf-
ficient to yield detailed information about the network firing rate in the fluctuation-
driven regime. The full kinetic equations, as derived below, or at least a different
further approximation, must be used to obtain this information instead. One such
further approximation, discussed in Section 2.5, is given by a Fokker-Planck equation.
Finally, as we will see in what follows, bistability is only present for small values of
synaptic-input fluctuations, and disappears as they increase [65,81,130].

We should remark that in both regimes, the steady conductance distribution is
centered sharply around its mean value,

p(g9)=5(9-9), (2.21)

which is in accordance with the absence of conductance fluctuations in the steady
case of the mean-driven limit.

2.4. Kinetic theory. In the regime of moderate and especially low synap-
tic input, the mean-field model is obviously inadequate to capture the details of the
neuronal gain curves even in the case of very small synaptic-input fluctuations, as ev-
ident from the right panel in Figure 2.1. Clearly, as the amount of these fluctuations
increases, the assumption (2.8) of statistical independence between the neuronal volt-
ages and conductances grows progressively less accurate, and a different approximate
description must be found. We review one such description, furnished by the kinetic
theory, in this section.

2.4.1. Diffusion Approximation. To simplify the analysis of the (2+1)-
dimensional partial-differential /functional Boltzmann Equation (2.3) and uncover the
meaning of its solutions for the dynamics of the network (2.1), we now invoke a small-
jump approximation and simplify Equation (2.3) to become a (2+ 1)-dimensional,
nonlinear advection-diffusion equation. Further on, in Section 2.4.4, we will describe
a reduction of the dynamics in two dimensions, (v,g), to dynamics in only one dimen-
sion, v, via the maximum entropy principle.

We should point out that the diffusion approximation is not necessary for deriving
our main result, the kinetic Equations (2.37) in Section 2.4.4. We use it for the
derivation presented here for two reasons: the first reason is that this is how we
initially found the closure (2.36) leading to Equation (2.37), and the second reason is
that the explicit description of the steady conductance statistics, given in Section 2.4.2,
leads directly to the intuitive derivation of the closure (2.36) via the maximum entropy
principle in Section 2.4.4.

The neuronal conductance jump terms, (2.3b) and (2.3¢) in Equation (2.3),
complicate the analysis of this equation. Recall that the sizes of these jumps are
S/pNo for a jump induced by a spike from another neuron, and f/o for a jump
induced by a spike from the external input, respectively. Assuming these jumps to be
small, we Taylor-expand the terms (2.3b) and (2.3¢) to second order and obtain the
advection-diffusion equation

(S ) Y CI e
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with g(t) as in Equation (2.11) and
2 L1 S?
o, (t)= 55 f V(t)+me(t) , (2.23)
valid for ¢, <v < Vp and —oco < g < 0.

The extension of the conductance range to negative values is a consequence of this
diffusion approximation; under this approximation, upward jumps in conductance at
spike times are replaced by the appropriate upwards drift and also diffusion. The lat-
ter pushes conductances upwards, but downwards as well, and so they may cross into
the g <0 region. Thus, the smallness but not necessarily vanishing of the conductance
pdf, p(v,g), for negative conductance values is in accordance with the diffusion ap-
proximation. An excessive amount of negative conductances in the solution signifies
a breakdown of the applicability of the diffusion approximation (Cf. Ref. [99]).

Note that the coefficient og(t) describes the amount of synaptic-input fluctua-
tions arriving at a network neuron. Note also that the ratio between the mean of the
synaptic input and its fluctuations is controlled by the ratios f/o and S/pNo, i.e., the
conductance jump sizes. Thus, the advection-diffusion Equation (2.22) is valid pre-
cisely in the regime when ag(t) < g(t), which is when the synaptic-input fluctuations
are small compared to its mean.

Equation (2.22) can still be written in the probability conservation form (2.4),
with the membrane-potential flux still given by Equation (2.5a), and conductance
probability flux now given by the equation

0.2
Je(v,g)=— %(gfé(t))p(v,gH o)

Dyp(v.9) |- (2.24)

The voltage-flux boundary condition (2.6a) remains valid under the diffusion ap-
proximation, while the conductance boundary conditions (2.6b) and (2.6¢) are best
captured by the requirements that

p(v,9—+00) =0, (2.25)

together with all its derivatives, and that p(v,g <0) must be small, valid for &, <v <
Vr.

The equation pair (2.6a) and (2.25) constitutes the boundary conditions for the
advection-diffusion Equation (2.22). The evolution of the firing rate is still determined
by the self-consistency condition (2.6d). The requirement that p(v,g<0)<1 is an
integral part of the diffusion approximation.

Since Equation (2.22) is a nonlinear (2+ 1)-dimensional partial differential equa-
tion, we should be able to reduce computational cost if its dynamics can be reduced to
a (14 1)-dimensional effective dynamics. To describe this effective dynamics, in Sec-
tion 2.4.4, we derive a system of (1+ 1)-dimensional kinetic equations using a closure
based on the maximum-entropy principle.

2.4.2. Dynamics of conductances. The dynamics of the conductances alone
can be isolated from the membrane potential dynamics by projecting out the variable
v from Equation (2.22). Thus, for the conductance probability density function,

Vr
P9 (g) =/ p(v,9)dv, (226)

r
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we derive the Fokker-Planck equation

d:p 9 (g) =0, l(gg(t))p(g)(g)qL ag(t)

9gp'? (9)] , (2.27)

valid for —oco < g < 00, by integrating Equation (2.22) over v and using the flux condi-
tion (2.6a) at the boundary. Equation (2.27) can again be written in the conservation
form, 9;p(9) (g,t)+0Jc(g,t) =0, with the flux

Ja(g)=— [(g_g(t))p(g) (9)+ UgT(t)agp(g) (9)] :

g

The boundary conditions (2.25) give two boundary conditions for Equation (2.27).
The requirement that p(9)(g <0) should be small must also be satisfied.

For time-homogeneous input, when v, and so g and 03, are constant, the time-
independent solution of Equation (2.27) is given by the Gaussian

1 1
(9) — R U
pey (9) Nor exp[ 203(9 9) ] (2.28)

with the mean § and the variance o given by Equations (2.11) and (2.23), provided
g> 04, which is one of the validity conditions for the diffusion approximation, as
discussed in Section 2.4.1. Since Equation (2.27) shows that the time-scale for the
evolution of pl9)(g) is o (for sufficiently small o), the solution starting with any initial
condition of p(9) (g) will rapidly converge to the approximate form in Equation (2.28).

For time-dependent g(t) and Ug(t), if their time-scale is much slower than o, then,
in the limit of 0 — 0, the true density p(9) (g,t) becomes slaved to the time-invariant
solution approximated by Equation (2.28). This is generally the case for AMPA
conductances, which change on a much faster scale than the typical time-scales of the
stimuli [63].

2.4.3. Dynamics of membrane potentials.  To project out the variable g
from Equation (2.22) is considerably more involved than to project out the variable v.
In fact, in the process, we are led to an infinite hierarchy of (1+ 1)-dimensional partial
differential equations for the conditional conductance moments, which we must then
reduce to a finite set using an appropriate closure. We derive the infinite hierarchy in
the present section and leave the closure for the next section.

We begin by deriving the equations for the conditional conductance moments

wo(v)=1, ,u”(v):/ g"p(glv)dg, n=1,2,3,..., (2.29a)
where
plglr) =229, (2.290)
pL)(v)
with

o= [ " pv.g)dg. (2.200)
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Note that we are integrating over both positive and negative conductance values in
accordance with the diffusion approximation, as explained in Section 2.4.1.
First, integrating Equation (2.22) over g yields the equation for the voltage prob-

ability density,
o 0)=0,{ | () i) ()00} (2.30)

Next, multiplying Equation (2.22) by ¢ and integrating over g yields the equation for
the first conditional conductance moment,
@) 1 ()] o)
O [ ()™ ()] === 11 () = 5(®)] " (v)

g

40, | (25 )i 0)

40, | (5 ) ) )] (2.31a)

where we have used Equation (2.24) and the boundary conditions (2.25) for p(v,g)
and all its derivatives. Likewise, for general n>2, multiplying Equation (2.22) by
g™ and integrating over g yields the equations for the higher conditional conductance
moments,

) n SN o3 (t) )
00 [ )9 ()] =~ [t ) — 1 ()] )+ 01— ) T2 o) )

0. (=2 ) a1 0)]

+0u[ (2 a0 o) (2:31b)

+

We can simplify Equations (2.31) using Equation (2.30). In particular, we restate
Equation (2.31a) in the form

O v) =~ (0) =g + | (5 ) +1a0) (2 ) | o 0)

+ p(v}(v) Do KU —::;) (12 (v) = i3 (v)] p (v)} : (2.32a)

and Equation (2.31b) in the form

ot ()= 2 0~ 0] + DO
(5 i) () | uate)

1 v— v
+p(v>(v>8”K :E>[“”“(”)‘“n(wm(v)]p(><v>- (2.32b)

Equations (2.30) and (2.32) give the infinite hierarchy of (1+ 1)-dimensional par-
tial differential equations for the voltage probability density p(“)(v) and the condi-
tional conductance moments p,(v), n=1,2,3,..., referred to at the beginning of this
section. Truncating this hierarchy by using an appropriate closure will be the task of
the next section.
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2.4.4. Closure via the maximum entropy principle. Equations (2.30)
and (2.32) imply that the evolution of the voltage probability density function p(*)(v)
depends on the first conditional moment g4 (v), the evolution of p;(v) depends on
the second conditional moment ps(v), and so on. The desired dimension reduction
of Equation (2.22) to a (14 1)-dimensional system is accomplished by closing this
infinite hierarchy of equations (2.30) and (2.32) at a finite order in such a way that
the truncated dynamics still capture the essential behavior of the I&F system (2.1).

We postulate a closure based on the maximum entropy principle, and close Equa-
tion (2.32a) by approximating the second conditional moment po(v) as a function of
the first conditional moment g4 (v). In the steady state, when g and U’; are constants,
the entropy

sti=- ] plalotog 28 gy (2.33)

oo P (g
where p((;z) (g) is the steady solution (2.28) of Equation (2.27), is maximized subject
to the natural constraints

0 [ plolvydg=1,

— 00

(i) /Oo gp(glv)dg =1 (v).

— 00
Intuitively, one would anticipate the entropy S[p] in Equation (2.33) to be max-
imized for the following reason: as discussed in Section 2.4.2, when the diffusion ap-
proximation holds and for sufficiently short conductance time-scale o, the conductance
probability density rapidly relaxes towards the equilibrium density p(e'z) (g) regardless
of the membrane-potential values. Therefore, we should expect that the conditional

distribution p(g|v) will rather closely follow the shape of the equilibrium distribution

pgg) (g9) along the actual trajectory of the network, indicating that the entropy S|p]

should be maximal along this trajectory. We remark that similar maximum-entropy
principles have been employed to find approximate solutions in fluid mechanics [2,71].
The above constrained entropy maximization yields the solution

p(g|v) = peq(g) exp[—Ao(v) — A1 (v)g],

where A\g(v), and A; (v) are the corresponding Lagrange multipliers. Solving the con-
straints (i) and (ii) shows that the entropy attains its maximum at the function of
the form

o1 lg—m @)
P(gv)—mggeXP{—%‘g}» (2.34)

with g (v) =g— A1 (v)o?.

evaluate the equation ,ug(v):ffooogQﬁ(gW)dg and thus express the second moment
p2(v) in terms of the first moment p;(v). In this way, we derive the closure condition

We then use this entropy-maximizing solution p(g|v) to

12(v) = 13 (v) + 2. (2.35)

In the time-dependent situation, the closure in Equation (2.35) can be extended
to the case when the external input rate v(t) varies slowly compared to the time-
scale determined by the conductance decay constant o. In this case, as discussed in
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Section (2.4.2), the conductance dynamics will rapidly relax to the quasi-stationary
distribution (2.28). Therefore, we can postulate again the same closure as in Equation
(2.35),

:U'2<'th)::u%(vat)+0§(t)v (2.36)

to capture the time-dependent dynamics.

Under the closure (2.36), Equations (2.30) and (2.31a) become closed with respect
to the density p(*) (v) and first moment g, (v), and we arrive at the (14 1)-dimensional
kinetic equations governing the coupled excitatory neuronal networks:

o 0)=0,{ | (*Z )+ ()| o0}, (2.372)

D L A IO (=22)500)

o P (v) " T

H(5) ) (5 | oo (2.370)

Note that Equation (2.37a) can be written in the flux form 9;p*) (v) + 38, Jv (v,t) =0,
with the probability flux

Foto)==| (55 ) o) (U2 ) |00 (2.38)

Using the definitions (2.29), we find that the flux Jy (v,t) equals the g-integral of the
flux Jy (v,g,t) in Equation (2.5a), i.e.,

Jv (v,lt):/oo Jv(v,g,t)dg. (2.39)

— 00

We remark that, mathematically, a closure is frequently related to coarse-graining,
in particular, to the question whether there exists a scale below which the dynamics is
either sufficiently smooth and featureless by itself or else can be averaged out. In [32],
the closure (2.36) was postulated from this coarse-graining viewpoint, in particular,
by assuming the conditional variance $2(v) = pa(v) — 12 (v) to be a sufficiently slowly
varying function of the membrane potential v.

2.4.5. Boundary conditions. The boundary conditions for the kinetic Equa-
tion (2.37) can be derived from the boundary condition (2.6a) for the voltage probabil-
ity flux Jy (v,g) in Equation (2.5a) and the closure (2.36), in particular, by considering
the boundary values at v=¢, and v="Vr of the g-integral and moments of Jy (v,g).

First, integrating Jy (v,g) over the g-range and using Equations (2.6d) and (2.39),
we find

Jv (Vr,t)=Tv (er,t) =m(t), (2.40)

i.e., the population-averaged firing rate per neuron, m(t), must equal the total volt-
age flux, Jy in Equation (2.38), at the threshold and reset. This condition can be
rewritten using Equation (2.38) as

(Ve —er)+ (Ve —ep) i (V)] oY) (Ve) = (er —ep) pa (e7) o) () = —rm(t). (2.41a)



324 FLUCTUATIONS IN COARSE-GRAINED DESCRIPTIONS OF NEURONAL NETWORKS

70 3

60+

o
3
» 50r
£
o
2 40}
o —
g s
g% 73 N
i >
201
]
. o |&F
10} . == Kinetic Theory
s = =Fokker-Planck
5 . « « Mean-Driven Limit
0g 5 50 o

0 0.2 0.4 0.6 0.8 1

Input Strength, fv(sec™) Membrane Potential, V

FiG. 2.2. Comparison between the predictions of the kinetic theory (2.37) and full numerical
simulations of the I&F network (2.1). Left: The average population firing rate per neuron, m, as a
function of the average external-input conductance fv for the full simulations (solid), kinetic theory
(dashed), Fokker-Planck equation (dash-dotted), and the mean-field theory (dotted). Right: The
membrane potential distribution p(”>(v). The solid curve represents the results of the I68F network
stmulation and the circles the kinetic theory. [Reproduced with permission from Ref. [82], (Copyright
2004, by National Academy of Sciences, USA).]

Furthermore, for the first g-moment of the flux Jy (v,g),
n(v) =/ g9Jv (v,g)dg,
—0o0
using the closure (2.36), we derive the expression

mwmmwmum(ﬁC’”)MWM

T

for which the boundary condition (2.6a) implies the periodic boundary condition

U(VT) = 7’(57“)7

ie.,

Vi —
%d%ﬁm@@—ﬁ(TT%)WWW)

T

Er—€
=Jv (e t)pa (er) =0 (E> P ().
Using Equation (2.40), we hence derive the second boundary condition,
rm(t) [ (Vo) = (er)] =0 [(VT —en)p) (V) = (e, —ep) o™ (er) (2.41b)

for the kinetic Equations (2.37). We have thus found that Equations (2.41) constitute
the nonlinear boundary conditions for the kinetic Equations (2.37).

As can be seen from Figures 2.2 and 2.3, the kinetic Equation (2.37), derived
under the closure (2.36), and their nonlinear boundary conditions (2.41), capture
the one-point statistical properties of the I&F neuronal network (2.1) dynamics very
well for both steady and time-dependent external-driving Poisson rates. Moreover,
solving these equations is ~10* to 10° times faster than using direct I&F dynamics
simulations to obtain the firing rates computationally [31,32,96].
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Fic. 2.3. Dynamical accuracy of the kinetic theory in fluctuation-driven dynamics for a
network (2.1) of purely excitatory I6F neurons driven by the time-varying input rate v(t)=
vaexp [wsin(2wt/s+ (2mt/s)?)]. Left: The firing rate m(t). Thin solid line: simulation result aver-
aged over an ensemble of 104 identically structured networks. The upper and lower boundaries of
the gray area mark the values one-standard deviation away from the mean. Thick solid line: Kinetic
theory (2.37). Dashed line: Mean-driven limit (2.10); Right: An instantaneous probability density
function of the membrane potential. The upper and lower boundaries of the gray area mark the val-
ues one-standard deviation away from the mean, measured from the ensemble of the 10* networks.
Thick solid line: Kinetic theory (2.87). [Reproduced with permission from Ref. [31], (Copyright
2006, by International Press).]

2.4.6. Mean-driven limit of the kinetic equations. We now show that
the mean-field system (2.10) follows from the kinetic Equation (2.37) in the limit
of vanishing synaptic-input fluctuations, o4 — 0, under the assumption (2.8). In
particular, under this assumption, Equations (2.29) and (2.9) imply that p;(v)=
(g), so that Equations (2.10) follow after letting o, — 0 in Equation (2.37b). The
developments of the rest of Section 2.3 now follow immediately. Note that the mean-
field system (2.10) was derived from a more general framework, i.e., without the
diffusion approximation, and as we will see in the next section, one can do the same
for a slight generalization of the system of kinetic Equation (2.37).

For small values of synaptic-input fluctuations, o, < g, the comparison in Fig-
ure 2.2 of the approximate gain curve (2.17) with the corresponding numerical so-
lutions of the kinetic Equation (2.37) and also the I&F system (2.1) shows good
agreement along the upper, stable branch of this curve, that is, in the mean-driven
regime. Recall that from Equation (2.23), it follows that o, < g is equivalent to small
conductance jumps, f/o and S/pNo, for which the diffusion approximation (2.22)
is valid. Note, in Figure 2.3, that the mean-field Equation (2.10) misrepresents low
firing rates as vanishing.

2.4.7. Generalizations of the kinetic equations. As mentioned in Sec-
tion 2.4.1, a slight generalization of the kinetic Equation (2.37) can be derived directly
from the Boltzmann Equation (2.3) without resorting to the diffusion approximation
(2.22). In particular, as shown in [69], a hierarchy of conditional moment equations
very similar to Equations (2.30) and (2.32), as presented in Section 2.4.3, can be
derived straight from the Boltzmann Equation (2.3). The closure (2.36) must be
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replaced by the closure

pa(v,t) = pif (0,) = (g (1) = [(9) ()], (2.42)

i.e., the substitution of the unconditional conductance variance for its conditional
variance. In the resulting system of kinetic equations analogous to Equation (2.37),
the mean and variance of the synaptic input, g(¢) and ag(t), must also be replaced

by the mean neuronal conductance, (¢)(t), and its variance, (g2)(¢)—[(g)(¢)]°>. The
dynamics of (g)(t) are described by Equation (2.11). To find the dynamics of (g2)(t),
one proceeds in a manner similar to that presented in Section 2.4.2 to eliminate the
voltages from Equation (2.3) and then derive a closed equation for (g2)(t) from the
resulting differential-difference equation. The final equation for the second moment

(9) (1) s
d 2 2 2 — 2
S === (")~ 9 a(t)—2(1)]. (2.43)

The kinetic Equations (2.37) remain valid approximately at time-scales larger than
O(o), the conductance time scale. In particular, Equations (2.11) and (2.43) imply
that, for time-independent external drive, the mean and variance of the conductances
relax to the mean and variance of the synaptic input, g and 037 respectively, so that
Equations (2.37) become the exact limit of the more general kinetic equations in this
case.

Extension of the kinetic theory, described in the previous sections, to networks
that include both excitatory and inhibitory neurons, as well as simple and complex
cells, presents few conceptual obstacles, and is outlined in [31,95]. When includ-
ing two types of receptors that bind the same neurotransmitter, such as AMPA and
NMDA, but respond on different time-scales, it is important to keep in mind the
fact that these receptors are activated by (parts of) the same spike train [99]. This
leads to correlations in the postsynaptic conductances, which are expressed by mixed
second-derivative terms in the drift-diffusion equation analogous to Equation (2.22).
In addition, for sufficiently disparate conductance time scales, the analog of the clo-
sure (2.42) must be used instead of (2.36), and equations analogous to the evolution
equations for the conductance moments, (2.11) and (2.43), must be added to the three
kinetic partial differential equations. Further extensions include the incorporation of
a refraction period and higher-order conductance kinetics.

2.5. Fokker-Planck description of neuronal network dynamics. A
number of neuroscience studies address statistical properties of neuronal network dy-
namics using the Fokker-Planck Equation [1,23-25,65,81,105]. These studies typically
assume that the neuronal conductances can be described as white noise, and conse-
quently the neuronal voltages as an Ornstein-Uhlenbeck-like process [49]. Here, we
discuss our recent work on the bifurcations of steady-state gain curves as described
by the Fokker-Planck Equation [65], as well as the mutual interconnections among
the kinetic-theoretic, Fokker-Planck, and mean-field descriptions. In particular, we
discuss how the Fokker-Planck description captures the voltage pdfs and gain curves
in the fluctuation-driven regime quite well, while it is in fact less accurate in the
mean-driven regime than the simpler mean-field limit.

2.5.1. Fokker-Planck description in the case of vanishing conductance
time scale. In the limit of infinitely-fast conductance time-scale, ¢ — 0, Equa-
tion (2.1b) shows that the neuronal conductances are slaved to the synaptic input.
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Therefore, the ith neuron’s conductance becomes

- S
Gi(t)=1D_8(t—t},)+ N DO piud (t—t,)
Iz JFEL M
where, as in Section 2.1, tft are the spike-times of the external input to the ith neuron,
t;,, the spike-times of the network neurons, and p;;, the Bernoulli random variable de-
scribing the synaptic release probability. Equation (2.1a) for the ith neuronal voltage

in this limit thus reduces to the form

P = (Vime)- f;fs(t—tiﬁJiZZpiju5<t—tju) (Vimer),  (244)

J#L p

for t=1,...,N. The spiking and reset mechanism operates as for the original net-
work (2.1).

In-between spikes, the ith neuron’s voltage in Equation (2.44) decays towards
reset, while at each time of a received spike it jumps. Its values immediately before
and after the jump are easily seen to be connected by the relations

Vi(rh)=(1=T)Vi(r;;)+Tep, T=1—e//" (2.45a)
in the case of an external-input spike, and
Vi(th) = (1=S)Vi(ty) +Sep, S=1—e 3/PN7 (2.45b)

in the case of a network-neuron spike, provided that %(TZ-‘;),V;(tZl)<VT, respec-
tively [31,87]. Here, as in Section 2.2, S is defined as S =pS, where p is the synaptic
release probability.

The limiting system (2.44) exhibits a peculiar type of dynamical behavior due
to its instantaneous conductance scale. In particular, since a neuron’s voltage can
only rise when it receives a spike, neurons must fire in instantaneous cascades. Each
cascade starts with an external-driving spike to a network neuron, which makes this
neuron’s voltage jump over the firing threshold, V. The resulting spike makes the
voltages of other neurons in the network jump, pushing those that were high enough
over Vp and thus making the corresponding neurons fire. This process continues until
all the neurons with sufficiently high voltages have fired. For sufficiently high coupling
strengths, such cascades may exhaust the entire network and result in periodic “total
firing events” [80,81]. For the network to instead maintain an asynchronous firing
regime, such that the total network spike output can be assumed as a Poisson spike
train and that this train is approximately independent of the external-drive spike
trains driving the individual network neurons, we must again assume high external-
input Poisson rate, v(t) > 1/7, large network size, N> 1, and small spike strength,
f/7,S/pNT< 1. These assumptions are similar to those that lead to the diffusion
approximation in Section 2.4.

A derivation analogous to that presented in Section 2.2 leads to the Boltzmann
equation for the neuronal-voltage pdf, p(*)(v,t), corresponding to the network (2.44),
which is

9, (v,1) =0, K”‘:) p(”)(v,t):| o) L ir o) (“ —Tep ,t> _ p<v>(v,t)}

1-T

1 v—XE
N (v) Et)—p® 2.4
+ pm(t)[lzp ( S ,t) P (v,t)]| (2.46)
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with the coefficients I and ¥ as in Equations (2.45a) and (2.45b).
Equation (2.46) can again be written in the form of probability conservation,
Oip(v,t) + 0, JY (v,t) =0, with the probability flux

Jb (v,t)=— <”T’3T) P (0,8) +v(t) / P (u,t) du

+Npm(t)/ P (u,t) du. (2.47)

Here, the first term on the right-hand side describes the flux due to the smooth
streaming of phase points under the relaxation dynamics in Equation (2.44), and the
last two the flux due to the voltage jumps induced by the external-input and network
spikes.

The first term in Equation (2.47) is clearly nonpositive, signifying downwards
relaxation of the neuronal voltages. At the firing threshold, Vi, this relaxation cannot
take place since any neuron’s voltage that crosses Vp is immediately returned to the
reset €,, and so the term describing it must vanish. The only way in which this can
happen is if

pt (Vip,t) =0, (2.48)

which gives one boundary condition for Equation (2.44). Equating the probability
flux across the reset, €., and threshold, Vi, with the firing rate,

m(t) Zbe/ (ET7t) :J‘b/ (VT7t)

() / O () dus Npmit) /

Vrp-Tep Vr—Xep
1-T 1-X

Vr
P (u,t) du, (2.49)

gives the second boundary condition.

Assuming small jumps, f/7,5/Np< 1, we Taylor-expand the right-hand side of
the Boltzmann Equation (2.44), i.e., make the diffusion approximation, to find the
Fokker-Planck equation

9 () =0, { (57) 0 (=)o) +q2<t>“"f’f)28vp<”><v>}

(2.50)
where
() =3(t)+4*(1), (2.51a)
with g(t) as in Equation (2.11) and
2y= L[ + Zom
0= | Prio+ Sgmo)]. (2:511)

The corresponding probability flux is

s = (255 ) a0 (S5 | _e P 0w, (@5

T T
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and the boundary conditions are (2.48) and

JIP (e t) = JIP (Vo t) =mi(t). (2.53)
Note that, formally,
2
t
¢ (t) = 7% (") : (2.54)
T

with 03 (t) measuring the amount of synaptic-input fluctuations, as defined in Equa-
tion (2.23). Note also that the above diffusion approximation leading to the Fokker-
Planck Equation (2.50) is valid when

¢ (t) < g(t), (2.55)
which is the small-fluctuation regime of Equation (2.50).

2.5.2. Fokker-Planck description as a limit of the kinetic theory.
As we have seen in the previous section, the limit ¢ — 0 is highly singular for the
I&F network (2.1), as the conductances in Equation (2.1b) become a train of delta
spikes, and the neuronal membrane potentials jump instead of the conductances upon
receiving a spike. Nevertheless, we now show that the Fokker-Planck Equation (2.50)
for p(”)(v), the probability density of the membrane potentials alone, can be derived
from the kinetic Equation (2.37) in this limit in a smooth fashion.

The crucial point in this derivation is the observation that

wo3() =i (1)~ [Pl + 3m(o)] ~O0)
9 2 Np

even for 0 — 0. Therefore, Equation (2.37b) in this limit reduces to

o002 ool [v—¢
=g(t)+—2 I (——E) 0,0 (v), 2.56
(o) =g(0+ 722+ 0 (D2 ) 5,0 0) (2.56)
and inserting Equation (2.56) into Equation (2.37a), together with Equation (2.54),
yields the Fokker-Planck Equation (2.50). The o — 0 limit of the boundary conditions
(2.41a) and (2.41b) implies the boundary conditions (2.53) and

(Ve —ep)p™ (Vi) =(er —ep) p™ (e1) (2.57)

for the Fokker-Planck Equation (2.50).

Note that the boundary condition (2.57) is different from the condition (2.48),
which we have derived directly from the limiting network Equation (2.44) as o —0.
The two different boundary conditions, (2.57) and (2.48), reflect the non-commuting
of two different limits: vanishing synaptic-input fluctuations and vanishing conduc-
tance time-scale. In most cases, these two boundary conditions produce very similar
solutions, so that for modeling qualitative statistical behavior either boundary condi-
tion can be used, as shown in Figure 2.4.

Note also that the conductance jumps even near the o — 0 limit are never small, so
the conductance-diffusion approximation leading to the advection-diffusion Equation
(2.22), as well as Equation (2.22) itself, lose their meaning. The smooth reduction of
the kinetic Equation (2.37) to the Fokker-Planck Equation (2.50) thus appears to be
a consequence of the fact, described in Section 2.4.7, that the conductance diffusion
approximation is not needed in the derivation of the kinetic equations.
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Fic. 2.4. Comparison of voltage pdfs satisfying the Fokker-Planck Equation (2.50) with the
boundary conditions (2.48) (solid gray line, red online) and (2.57) (dashed line). [Reproduced with
permission from Ref. [31], (Copyright 2006, by International Press).]

2.5.3. Steady solution of the Fokker-Planck equation. In the steady
case, we can integrate the Fokker-Planck Equation (2.50) in v and, using the flux
boundary condition (2.53), obtain the first-order, linear differential equation

[(v—er)+7(W=ep)]p" () +¢* (v—5)0p" (v) = —Tm (2.58)

with 7 and ¢? as in Equation (2.51). Either of the boundary conditions, (2.48) or
(2.57), can remain as the sole boundary condition of Equation (2.58).
To solve Equation (2.58), it is best to use the new independent variable
o EE —E&r

= 2.59
o=, (2.59)

and the new dependent variable o(z), defined through the equation
2
() () = M 2.60
P =22, (260)

Note that the transformation (2.59) maps the reset potential v=¢, into =1 and the
firing threshold v="Vr into x =1+gy, with gy as defined in Equation (2.15). Note
also that the new pdf o(x) was chosen so that the equation o(x)dz=p(v)dv holds.

Equation (2.58) under these variable changes becomes
¢*z*¢ +a(z+¢*~1-g)o=—mr, (2.61)

where the prime denotes differentiation upon z.
The boundary condition (2.48) becomes

o(1+go)=0, (2.62)
the boundary condition (2.48) becomes

o(1)=(1+go)o(1+go), (2.63)

and the normalization condition (2.16) becomes

1+3g0
/1 o(x)dz=1. (2.64)
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The exact solution of Equation (2.61), satisfying the condition (2.62), is given by
1+g
o(z) = oo(x) = mTT 2(+9)/* =1 —x/q® / Y (H9) /0P 1 3/ g (2.65)
q x

Using Equation (2.65), we find the solution of Equation (2.61) satisfying the condition
(2.63) to be

o0(1)om(z)
1+go)or (14 go) —or(1)’

o(z) = 0o(x) + ( (2.66)

where
QH(I):$(1+g)/q27167I/q2. (2.67)

The m— fr gain curves are found from the nonlinear equation obtained using the
normalization condition (2.64) and the definitions (2.11) and (2.51b) of the coefficients
g and ¢?, respectively. Because the voltage pdfs and gain curves produced by the
solutions (2.65) and (2.66) are quite similar (Cf. Figure 2.4), we from now on focus
only on those corresponding to (2.65).
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FiG. 2.5. Fokker-Planck gain curves representing the dependence of the firing rate m on the
external-drive strength fv. Left: The external spike strength f decreases and network size N in-
creases from the left to the right curve, effectively decreasing the amount of synaptic-inputs fluctua-
tions to zero. The strength f is too large along the left three curves for the diffusion approximation,
and so the Fokker-Planck Equation (2.50) ceases to be valid. Right and Middle: Voltage pdfs and
their locations along a gain curve. Note the shape change from bell-shaped in the fluctuation-driven
regime to increasing, except near v= "V, in the mean-driven regime. [Reproduced with permission
from Ref. [65], (Copyright 2009, by APS).]

As we can see from the left panel in Figure 2.5, in the limit of small fluctuations,
f<1and N>>1, the gain curve obtained from the Fokker-Planck Equation (2.50) is
well approximated by its mean-field limit, except near the smoothed-out corner close
to the point (fv,m)=(go,0), and also exhibits bistability. For increasing fluctuation
values, the interval of bistability becomes narrower and eventually disappears. More-
over, the gain curves appear to approach linear asymptotes at large external-drive
strengths fv, while for small fr, they appear to decay rapidly. The right two pan-
els of Figure 2.5 indicate the shape changes of the voltage pdf, p(*)(v), between the
fluctuation- and mean-driven regimes. As we will see in the next section, in these two
regimes, both the voltage pdfs and gain curves can be approximated by elementary
functions away from the bistability region.
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2.5.4. Mean-field limit of the Fokker-Planck solutions. To find how the
steady solutions of the Fokker-Planck Equation (2.50) limit onto the corresponding
steady solutions of the mean-field Equation (2.10), we recall that Equation (2.50) is
only valid in the small-fluctuation limit, ¢®> < g, imposed by the diffusion approxima-
tion. In the limit ¢? — 0, the derivative term in the steady Fokker-Planck ordinary
differential Equation (2.58) vanishes, and so this equation immediately reduces to the
mean-field voltage pdf in Equation (2.14), provided the firing rate m does not vanish.
If the firing rate m does vanish, the same limit gives p(*)(v) =0 pointwise for all volt-
age values; this contradicts the fact that p(*) (v) is a pdf and thus normalizes to unity.
Therefore, one should expect the delta-function solution (2.19) in this limit, which
we confirm below. We should remark that the time-dependent Fokker-Planck Equa-
tion (2.50) does not limit onto the full time-dependent mean-field system (2.10), but
instead a reduced system with Equation (2.10b) replaced by the asymptotic mean-
conductance value (g)(t)=g(t). This is in agreement with the o —0 limit of the
vanishing conductance time-scale.

To better understand the ¢? — 0 limit of the solutions of the steady Fokker-Planck
Equation (2.58), we follow the asymptotic analysis carried out in [65]. This analysis
must be somewhat subtle because the limit ¢* — 0 is singular for the Equation (2.58).
Therefore, as in [65], we use the result of [132] to expand the probability density oo (z)
in Equation (2.65) in terms of the small ratio ¢?/(1+g) as

mr {eXp <<1+g> [n2<1+go>—n2<m>]>
zq

2q?

2 (n(+g) [1+g g q

1+§D< q 2 >_(1+§)U(1+§0)+§0§]

2 n(x) [1+g\ q q

1+9D< V72 ) (1+§)n(ﬂc)+w1§”' (2.68)

where

n(w)Zsign(x—l—g)\/2 (Lig_l_lnlig)’ (2.69)

and D(-) stands for the Dawson integral

D(z)= 6*22/ eV’ dy. (2.70)
0

The two-term asymptotic expansion (2.68) is uniform in z, g, and q.

In the small-fluctuation limit ¢>< g and away from the mean-input value g=
Jo, which corresponds to the corner of the mean-field gain curve in Figure 2.1, the
approximation (2.68) can be further simplified using the asymptotic relation

D(2)~1/22+0(1/2%). (2.71)

In particular, in the fluctuation- and mean-driven regimes, the approximation (2.68)
simplifies to the point that we can obtain explicit expressions for the local portions
of the gain curves there. We discuss these simplifications next.
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Fluctuation-Driven Regime: In this regime, g<go (Vs <Vr, cf. Equation
(2.18)). It is easy to analyze the function n?(z) using Equation (2.69) and conclude
that it has a minimum at x =1+ g <1+ gg. Therefore, using Equation (2.71), we find
that, in Equation (2.68), the appropriate leading-order term in the expansion of the
density go(x) in terms of the parameter ¢*/(1+g) is expressed as

o mr o (AronUrg)Y o (@—1-9)
©O~ T @) p( 2 > p( 2q2(1+g))' 72

This formula has a relative error of O(¢?/(1+g)) near z =1+ g, and is exponentially
accurate everywhere else.
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Fic. 2.6. Left: Comparison between a Fokker-Planck gain curve and its approximations in
the fluctuation-driven and mean-driven regimes, given by Equations (2.75) and (2.17), respectively.
Middle: Comparison between a Fokker-Planck voltage pdf and its Gaussian approzimation (2.76) in
the fluctuation-driven regime. Right: Comparison between a Fokker-Planck voltage pdf and its mean-
field approzimation with a boundary layer at v=Vr, given by Equation (2.78), in the mean-driven
regime. [Reproduced with permission from Ref. [65], (Copyright 2009, by APS).]

Using the normalization condition (2.64), we integrate Equation (2.72) to find

g
1+erf (2(1+§)q>1 ~1, (2.73)

where erf(-) denotes the error function erf(z)=(2//7) foze_t2 dt, which implies that
the firing rate m is exponentially small in ¢?/(1+ ), and so, asymptotically,

mrq (14+9)n*(1+go) T
go—gexp( ) 2(

2q¢> 1+9)

2
_ 2 fv
~ ~ — 2.74
g~ fr, o (2.74)
This implies that the network dynamics in the fluctuation-driven regime are essentially
feedforward.
Away from the external drive values fr=0 and fr=gy, Equations (2.73) and
(2.74) imply the leading-order behavior for the firing rate to be

- 1+ fv or 1+ o )
m~(go— fv) p—w exp{f2y [(1 + fv) (1+ln 15 fv —1—go| ¢, (2.75)
which, in turn, together with Equations (2.59), (2.72), and (2.74), gives for the voltage
pdf, p(*)(v), the expression

r(1+fr)3 1 exp[_7(1+fv)3<v—vs)2

rf?v eg—e, f2v EE—¢&r

p® () ~ , (2.76)
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where Equation (2.18) implies

5r+fVEE

VN
s 1+ fv

(2.77)

In the left and middle panels of Figure 2.6, we show a comparison between the
gain curve computed from Equation (2.75) and that shown in the middle panel of
Figure 2.5, which shows good agreement throughout the fluctuation-driven regime.
This agreement also extends to the shapes of the respective voltage pdfs even close
to the boundary of the fluctuation-driven regime, as displayed in the middle panel of
Figure 2.6. In the limit of vanishing synaptic-input fluctuations, f — 0 with fv=0(1),
the Gaussian in Equation (2.76) becomes the delta function, p(*)(v) — (v —Vs), in
agreement with Equation (2.19).

Mean-Driven Regime: In this regime, g > go (Vs > Vr, cf. Equation (2.18)), and
the function n%(z) (cf. Equation (2.69)) decreases monotonically for 1<z <1+ gp.
Using Equation (2.71), we find that, in Equation (2.68), the leading-order term in the
expansion of gg(z) in terms of ¢?/(1+g) is thus given as

0~ 1o [ () ]|

corresponding to the voltage pdf

O ()T ) exp (-9 )
) (1+39)(Vs—v) {1 p( P(en—Vr) )]7 (2.78)

which, in light of Equation (2.18), is the same as the voltage pdf in Equation (2.14),
with the exception of an O(q?/(1+g))-size boundary layer close to the threshold
v="Vp. The difference stems from the boundary condition (2.48), which is dropped in
the mean-driven limit. Normalization (2.16) implies that the leading-order behavior
of the gain curves is again described by the mean-field parametrization (2.17).

In the left and right panels of Figure 2.6, we display a comparison between the
mean-driven gain curve computed using Equation (2.17) and again the gain curve
shown in the middle panel of Figure 2.5. One can observe good agreement throughout
the mean-driven regime. The shapes of the respective voltage pdfs also agree very well
even close to the boundary of the mean-driven regime, as shown in the right panel of
Figure 2.6.

2.5.5. Validity of the Fokker-Planck description. To assess the va-
lidity of the approximate steady Fokker-Planck solutions, discussed in the previ-
ous two sections, we compare them with the results of direct numerical simula-
tions of the I&F system (2.1) [65]. (In fact, in our simulations, the conduc-
tances have both finite decay and rise times, so that the decaying exponential so-
lutions of Equation (2.1b) are replaced by the alpha-curve-type functions G(t)=
0(t) [exp(—t/oq) —exp(—t/o,)]/(ca—0r), were O(t) is the Heaviside function, i.e.,
O(t)=1 for t>0 and 0 otherwise, and o4 stands for the o in Equation (2.1b). The
chosen time-scales were o, =0.1 and 04=0.2 milliseconds.)

As shown in the left panel of Figure 2.7, the approximation of the gain curves
improves with decreasing size of the synaptic-input fluctuations (i.e., the size of the
external-spike strength f). Nevertheless, the approximation does not appear ever
to be uniform, as the computed and theoretical gain curves clearly diverge away
from one another for increasing external driving strength, fv > go, and only converge
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Fia. 2.7. Left: Comparison between Fokker-Planck gain curves and those computed via nu-
merical simulations. The external spike strength f decreases and network size N increases from
the left to the right curve, effectively decreasing the amount of synaptic-inputs fluctuations, going
through the same values as in the right panel in Figure 2.1. Note the incorrect asymptotic slopes
of the Fokker-Planck gain curves, which imply a non-uniform approzimation. Middle and Right:
Comparison between Fokker-Planck voltage pdfs and those computed via numerical simulations for
a small amount of fluctuations in the fluctuation-and mean-driven regimes, respectively. Left Inset:
The increasing heights of the locations along the gain curve correspond to the decreasing peak heights
of the pdfs. Right Inset: The voltage pdfs obtained from simulations do not satisfy the boundary
condition (2.48) due to finite rise and decay times of the conductances. [Reproduced with permission
from Ref. [65], (Copyright 2009, by APS).]

towards one-another uniformly in finite intervals of fv. This discrepancy seems to
be due to the failure of the diffusion approximation leading to the Fokker-Planck
equation. We should remark that, since the kinetic equations do not rely on the
diffusion approximation, we conjecture that the gain curves obtained using them
should not suffer from the same deficiency. We have developed an asymptotic theory
confirming this conjecture, which will be presented elsewhere.

The right two panels of Figure 2.7 show that, for small values of synaptic-input
fluctuations, the computed and theoretical voltage pdfs agree very well, except in a
boundary layer near the firing threshold Vp. This minor discrepancy arises due to
the finite conductance time-scale ¢ in the simulations, in particular, this scale being
still relatively large as compared to the size of the synaptic-input fluctuations, which
contradicts the assumption that o — 0 for which the boundary condition (2.48) of the
Fokker-Planck description is valid [65].

We should remark that, to compute the gain curve corresponding to the smallest
value of the synaptic-input fluctuations, we had to include random synaptic delays in
the simulation, to break the tendency of the network to begin oscillating [65]. These
delays do not alter the steady voltage pdfs or gain curves in our statistical description
of the asynchronous dynamical regime of the network. The network oscillations tend to
appear in the regime of small fluctuations and short excitatory conductance time-scale.
In the limit of an infinitely fast conductance time-scale, these oscillations manifest
themselves as firing cascades, during which the model neurons all fire at once at
roughly periodic intervals [80, 81], and are a stochastic equivalent of the classical
synchronization phenomenon described in [79]. Similar oscillations in the case of a
finite excitatory conductance time-scale were studied in [53].

2.5.6. Bistability and neuronal orientation selectivity. = The bistability
of the firing rates, discussed in Sec 2.5.3, which can be observed in the mean-field gain
curves (2.17) and in the small-fluctuation regime of the Fokker-Planck Equation (2.50),
manifests itself as a hysteresis that can be observed in simulations. In particular, if
we slowly ramp the external-driving strength fv first up and then down through the
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bistability interval [130], we will make the network firing rate trace out first the bottom
and then the top stable branches of the gain curve, and jump to the remaining stable
branch of the gain curve close to each of the saddle-node bifurcation points at which
one stable branch disappears. An example hysteresis loop for the small-fluctuation
regime is presented in the left panel of Figure 2.8.
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Fic. 2.8. Left: Bistability in Fokker-Planck and mean-field gain curves, and hysteresis computed
in numerical simulations by slowly ramping the external-drive strength, fv, up and down, for the I&F
network (2.1) of effective size pN =500. Middle: Bifurcation to hysteresis in a sparsely-connected
network of excitatory and inhibitory, simple and complex cells. The amount of fluctuations is related
to the sparsity of the network connections. Right: Simulation results for a large-scale computational
model of the primary visual cortex show that neither simple (dashed line) nor complex (solid line)
cells exhibit hysteresis for small effective network size, pN, i.e., in the fluctuation-driven regime,
as depicted in the left panel. Complex cells exhibit hysteresis for large effective network size, pN,
i.e., in the mean-driven regime, as depicted in the right panel. (Cf. the main text of Section 2.5.6
and [130] for a detailed explanation.) [Reproduced with permission from Ref. [65], (Copyright 2009,
by APS).][Reproduced with permission from Ref. [130], (Copyright 2006, by National Academy of
Sciences, USA).]

Identifying hysteretic behavior played a significant role in properly tuning a large-
scale computational model of orientation-selective neurons in the primary visual cor-
tex [100, 101, 130]. For small amounts of synaptic-input fluctuations in this model,
slowly ramping the stimulus contrast, and therefore the external driving strength,
up and down produces hysteretic behavior in complex cells, i.e., those neurons which
receive their synaptic input primarily or entirely from other network neurons. This
behavior manifests itself as a positive statistical difference, ANgpikes, between the
numbers of neuronal spikes during the down-ramping and up-ramping of the stimulus
contrast. It is less pronounced for simple cells, i.e., those neurons which receive their
synaptic input primarily or entirely from the external drive, and disappears when the
amount of fluctuations increases. This amount is determined by the effective number
of synaptic connections per neuron, which in turn is determined by the degree of
network sparsity, in other words, the probability of a synaptic connection existing be-
tween a pair of neurons. Sparser networks with fewer synaptic connections experience
more input fluctuations, and so operate in the fluctuation-driven regime, while those
with more synaptic connections operate in the mean-driven regime.

A model of intermediate complexity clearly exhibits a similar type of hysteretic
behavior [100,101,130]. In this model, 50% of the neurons are simple cells which
receive external Poisson spike-train drive, all with identical rate v and spike strength
f. The other 50% of the neurons are complex cells, which only receive synaptic input
from other network neurons; the coupling coefficients are chosen so that the average
amount of excitation each neuron receives is approximately the same. All the neurons
receive strong inhibition from the inhibitory neurons in the network. The network
couplings are sparse, with p denoting the probability of the existence of a connec-
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tion between a pair of neurons, and thus p/N giving the effective network size, where
N is the number of neurons in the network. The size pN controls the amount of
synaptic-input fluctuations in the network; the larger the size, the fewer fluctuations.
The bifurcation diagram in the middle panel of Figure 2.8 shows hysteretic behav-
ior similar to that exhibited by an all-excitatory network depicted in the left panel
for sufficiently few synaptic-input fluctuations. This diagram also presents a bifurca-
tion scenario identical to that exhibited by the steady solutions of the Fokker-Planck
Equation (2.50), depicted in Figure 2.5, i.e., the gradual removal of bistability when
the amount of synaptic-input fluctuations increases.

Experimentally, it was shown that cortical neurons’ degree of orientation selec-
tivity is independent of the stimulus contrast, and that this prompts the network to
operate in a high-gain regime, as close to the transition to bistability as possible, but
that no bistable behavior of simple or complex cells has been observed in the input
layer of the primary visual cortex [3,5,46,47,107,110,111,119]. The constraints laid
out by this fluctuation-controlled criticality scenario allows us to tune the large-scale
model network so that it operates in the regime just below the critical transition
point to bistability [100,101,130], whose existence and properties are well understood
through our kinetic-theoretic coarse-graining approach. In other words, the simple
steady solutions of the Fokker-Planck Equation (2.50) appear sufficient to capture
the mechanism underlying the hysteresis present in the large-scale cortical model and
pinpoint where its operating regime should be to best reproduce the experimental
facts.

3. Network connectivity fluctuations

In the true networks of neurons in the brain, the neurons are not coupled uniformly
in an all-to-all fashion. Their connectivity architecture instead tends to be sparse [9,
73-76,118,133,134] and heterogeneous, with the numbers of synapses on any given
neuron and the existence of a synaptic connection between any given pair of neurons
fluctuating widely, yet with well identifiable statistical properties giving rise to both
regular and disordered feature-preference maps on the scales spanning from a few
tenths of a millimeter to several millimeters [11,12, 16, 39, 44, 60, 72, 103, 116, 129,
138, 142]. To best isolate the effects of such network-connectivity fluctuations, we
study them separately from the synaptic-input fluctuations and therefore within the
framework of the mean-field model.

In this section, we first discuss how to generalize the description of I&F networks
from all-to-all coupled, as in Equation (2.1), to heterogeneous coupling architecture,
and follow by deriving the corresponding generalizations of the Boltzmann Equation
(2.3) and the mean-field system (2.10). We then use a high-conductance version of the
mean-field system to derive explicit expressions describing the neuronal firing rates
deep in the mean-drive regime, where the synaptic-input fluctuations can be ignored,
and study how the statistics of these firing rates depend on the underlying complex
network topology.

3.1. Heterogeneously coupled integrate-and-fire networks. The I&F
system (2.1) can easily be generalized to networks with complex architecture. In
such networks, the uniform coupling of Equation (2.1) may be replaced by pairwise
coupling coefficients a;; determined by the network topology, and the index 7 typically
does not merely count neurons, but is also used to label some of their properties, such
as the number of their pre- and postsynaptic connections or their cortical location.
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The resulting system becomes

= (Vimer) = Gi(Vimex), (3.1a)
o :—GH—fZé(t—t#)+szaﬁpim5(t—tw)7 (3.1b)
H J#L B

where ¢(IV) is some increasing function of the network size N which is related to the
effective network connectivity and ensures finite firing rates in the large-network limit,
N — 00. Determining the form of the function ¢(N) is typically not trivial, and is part
of the problem of determining a proper statistical description of the network (3.1).
We still assume that the Poisson rate of the external-drive spike-train arriving at each
network neuron is the same.

3.1.1. Boltzmann and advection-diffusion equations for a complex net-
work. From now on, we discuss model neuronal networks with complex con-
nectivity topology but identical coupling strengths between pairs of neurons, which
corresponds to the assumption that two neurons are either connected by one synapse
or none. In this case, each of the coupling coefficients a;; in Equation (3.1) equals
either 1 or 0.

An important quantity one has to take into account in networks with complex
connectivity topology, and thus include its dependence in the index 7 in Equation (3.1),
is the incoming connectivity degree of the neurons in the network, i.e., the number
of neurons which synapse onto a given neuron. Since the entire network spike train
arriving at a neuron is the sum of the spike trains arriving from each of its presynaptic
neurons, one should expect this neuron’s incoming degree to be closely connected to
its firing rate. Therefore, we partition the network into groups of neurons with like
incoming connectivity degrees, and study the coupled dynamics of the neurons that
belong to these groups. Since, typically, the incoming degree, k, of neurons is only
known statistically, we study its probability distribution, P, (k). We refer to neurons
with incoming degree k as k-neurons. We also need to include information concerning
the distribution of the types of synapses present in the network, which is described by
the probability T'(n, k) of finding a synapse originating at an n-neuron and terminating
at a k-neuron. The function T'(n,k) is alternatively known as the degree-correlation
function [40,84].

A simple counting argument gives the relationship between the distributions
Py (k) and T'(n,k) as

N—1
> T(n,k)= kpiu(k)7 (3.2)
n=0
where
N—1
=3 kPu(k) (3.3)
n=0

stands for the mean incoming degree of the neurons in the network. Likewise, we
find the conditional probability P(n|k) of a synapse to originate at an n-neuron if we
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know that it terminates at a k-neuron to be

P(nlk)={ Fn(k) (3.4)
0, k=0.

In view of this formula, we will use the convention T'(n,k)/kPy(k)=0 for k=0 in all
our further derivations.

A slight generalization of the derivation presented in Section 2.2 yields the system
of Boltzmann differential-difference equations governing the evolution of the joint
voltage-conductance probability density pg (v,g,t) of a typical k-neuron. This system,
analogous to Equation (2.3), reads

anea{[(2) s (25 )20

+u(t) [pk (v,g — it) — Pk (v,g,t)]

+pkﬂk(t) [pk (U’g_zmgf(l\f)7t> — Pk (’U,g,t):| ) (35)
where
N-1 N-1
u(t) =" P(n|k)m, = kpﬂ(k) 3" T(n,kym, (3.6)
n=0 v n=0

is the average input received by a k-neuron from other neurons, P(n|k) is the condi-
tional probability defined in Equation (3.4), S=pS, with p being the synaptic release
probability, and ¢(N) the scaling factor used in Equation (3.1).

The voltage and conductance probability fluxes Ji v (v,g,t) and Ji g(v,g,t), de-
fined by analogy with Equation (2.5), allow us to rewrite the system (3.5) in the
conservation form

atpk(vugat) +a’qu,V(v7g7t> +89Jk,G(Uag7t) =0. (37)

The boundary conditions analogous to Equation (2.6) are

Jev (Vr,g,t) = Jiv (€r,9,1), (3.8a)
for 0< g < o0,
pr(v,9<0,t)=0, (3.8b)
and
pr(v,g—00,t) =0, (3.8¢)

sufficiently rapidly, together with all their derivatives, the latter two conditions valid
for e, <v < Vp. The firing rate condition (2.6d) is replaced by the set of conditions

mk(t):/ Jk,V(VTagat)dg
0

=—/OOO [(VTT_ET> +9<VT;EE>}pk(VT79,t)d9- (3.8d)
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Equations (3.5), together with the boundary conditions (3.8a), (3.8b), and (3.8¢),
and the nonlinear self-consistency conditions (3.8d), render a complete Boltzmann-
type kinetic description of the neuronal network (3.1) as an infinite system of partial
differential equations for the densities pi(v,g,t). These equations are all coupled
nonlinearly because the multiplicative coefficients u(t), defined in Equation (3.6),
couple all the firing rates obtained from the boundary terms in Equation (3.8d).

If we assume the jumps a neuron’s conductance makes upon receiving a spike to be
small, we can Taylor-expand the corresponding jump terms, described on the second
and third lines of Equation (3.5), to second order, and derive the advection-diffusion
equation

ome=0.{[(“2) +a () 40, L 0-mnm+ B0 o

g

where

_ S
gr(t)=fv(t)+ Wkﬂk(t) (3.10a)

is the mean synaptic input to a k-neuron, and

Q2

Uiﬁ)==§% fPu(t)+ 5 kpx(t) (3.10b)

plo(N)]
represents this neuron’s variance of synaptic input fluctuations.

3.1.2. Mean-field Approximation. To address the effects of complex net-
work architecture on the neuronal firing rates, it suffices to begin with considering
the fluctuationless operating regime of the network (3.1), in which the synaptic-input
fluctuations of any neuron become negligible as compared to its mean synaptic input.
In other words, in a complex network, we consider the case in which o2 (t)/gx(t) — 0
for the quantities in Equation (3.10) and all neuronal incoming degrees k. As in
Section 2.3, after assuming the conductance and voltage pdfs of all k-neurons to be
statistically independent [31],

pe(0,9,) = pi”) (0,)p47 (g,1), (3.11)

we find the coupled system of mean-field equations, analogous to Equation (2.10),
expressed as

ol =0 { | (125 + oo ()| o | (3.124)

%@M@=—%Mﬂ®—%um (3.12b)

where
(ghu(t) = / 009 (g,)dg
0

is the expected conductance value of a k-neuron, and gx(t) is the mean synaptic
input to a k-neuron, defined above in Equation (3.10a). The analog of the boundary
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conditions (2.13) is the set of conditions
EE—E&r v
(0= ) () A et
Vr—e, Vr—e¢ v
— (=) v (T 0w ey

For time-independent external drive, Equation (3.12b) relaxes to the solution
(9)k, = gr. After one integration, Equation (3.12a) then gives the expression for the
voltage pdf of k-neurons as

(v) _ TMmy
P (U)_ (’U—‘/r)—ng(U—VE) (314)

The normalization condition (2.16) for the voltage pdf p,(:) (v) finally yields the implicit

equation for the firing rate my,

1+ gk
gr(er—€g)
Vr—e+g.(Vr —¢cE)

Tmg =

(3.15)

log

Here the mean synaptic input g in Equation (3.10a) and the firing rate my of the
k-neurons are related via Equation (3.6), which also couples all the firing rates my.

3.1.3. High-conductance limit in the mean-driven regime. Since we
are interested in isolating the effects of complex network topology on the firing rates of
different network neurons, and want to eliminate any interference from synaptic-input
fluctuations, we focus our study on the firing-rate behavior deep in the mean-driven
regime. In particular, we consider the high-conductance limit in which the average
synaptic input of the k-neurons, g, is strong, gi>>go, where gy is defined as in
Equation (2.15). We can then Taylor-expand the right-hand side of Equation (3.15)
in terms of the small quantity 1/gk, and keep only the terms of O(1) or larger, to
obtain the following linear asymptotic approximation of the original system (3.15):

S Nlqas 90
TmyIn(1+go) =14 g (11 70)
g 1S Pl
= fu+l1— °o 4 T(n,k)m,. 3.16
Y g0 T pa @) By 2 TR (3.10)

System (3.16) is the complex-network analog of the asymptote (2.20).

3.2. Dependence of the firing rate on the network architecture. For
three representative networks with connectivity architectures of increasing complexity,
we now use the high-conductance limit of the mean-field Equation (3.16) to derive
explicit asymptotic expressions for the firing rates my of the k-neurons deep in the
mean-driven regime. We use these expressions to study how the rates m; depend on
the underlying features of the network topology. We also study the same dependence
for the mean firing rate,

N-1

m= kapin(k)a (317)

k=0

of all the neurons in the network.
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3.2.1. Uncorrelated network. In an uncorrelated network, the conditional
probability P(n|k) of a synapse to originate at an n-neuron, provided we know that
it terminates at a k-neuron, must be independent of the index k of the postsynaptic
neuron. Formula (3.4) and counting of synapses then immediately imply that, for such
networks, the edge-type distribution can be expressed in terms of the corresponding
incoming-degree distributions as a product in the form

T(n,k) =kPy,(k)nPy(n)/u?. (3.18)

Uncorrelated networks include random networks of Erdés-Rényi type [42,43,51],
as well as random scale-free networks [35,40]. Recall that scale-free networks are
defined as those with a power-law asymptotic behavior of the incoming degree dis-
tribution, Pp(n)~n~". Particularly interesting are scale-free networks for which
2<~y<3. In such networks, the mean, p, of the distribution P,,(n) remains finite,
while its second moment,

N-1
(n*)n=>_n’Pu(n), (3.19)
n=0

as computed from Equation (3.17), diverges as the size of the network, N, increases.

A guess that the firing rate my, of the k-neurons is a linear function of the neuronal
incoming degree k£ when Equation (3.18) holds leads to the solution of Equation (3.16)
given by

v (eI V(M
In(1+ go) (f +1 1n(1+§0))(1+1/\<n2>1v/u>’ (3.20)

my =

where

N S
~ pd(N)In(1+5o)

is the rescaled coupling coefficient. As mentioned above, this solution approximates
the firing rate my asymptotically deep in the mean-driven regime [113].

Equation (3.20) implies linear dependence of the firing rate my on both the driving
strength, fv, and the incoming degree of the neuron, k. Note that all the m — fv gain
curves become singular at A= y/(n?) x5, when their slopes become infinite. In the limit
of large network size N, the scaling factor ¢(IN) in the rescaled coupling coeffcient A
must equal the ratio of the first and second moments, u/(n?)y, of the node-degree
distribution, P, (n), for there to be a finite interval of the coupling coefficients S for
which the firing rates my are finite. Under this scaling, the network-averaged firing
rate

(3.21)

N R e
m_ln(1+g0) (f +1 ln(1+§0)> (1+ 1>\<n2>N//J> (322)

also remains finite as NV — oo because (n?)y > u?.

3.2.2. Unidirectional scale-free network. In the network we discuss in
this section, the neurons have their incoming degrees distributed according to a scale-
free law, i.e., the distribution has power-law tails, while each neuron only sends spikes
to one postsynaptic neuron [113,114]. The network grows in stages, beginning with



D. CAI, L. TAO, M. S. SHKARAYEV, A. V. RANGAN, D. W. MCLAUGHLIN, AND G. KOVACIC 343
one synaptic connection between a pair of neurons. At every stage, a single new
presynaptic neuron is connected to a specific existing postsynaptic neuron in the
network. The probability for the new neuron to be connected to an old network
neuron is proportional to the old neuron’s incoming degree [66].

The incoming-degree and edge-type distributions of the network neurons are ex-
pressed as

4
(k+1)(k+2)(k+3)’

Pan(k) = (3.23)

and

4k 1 3
+ ;
(n+1)(n+k+2)(n+k+3)(n+k+4) In+2 n+k+1

T(n,k)= (3.24)

respectively [66,114]. Note that the distribution (3.23) behaves as a power law when
the neuronal incoming degree k is large. One can easily show that the mean incoming
degree satisfies =1 and that the incoming-degree variance satisfies (n2?)y ~InN.
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Fic. 3.1. Unidirectional scale-free network discussed in Section 3.2.2. Left: Power-law asymp-
totic behavior of the firing rate my and its dependence on the driving strength fv and coupling
strength X\. The two parallel curves share the same value of \. The middle and bottom curves share
the same value of fv. Inset: The v versus A dependence as expressed by Equation (3.26) (black line)
and deduced from full numerical simulations (gray squares, green online). Right: Two histograms of
firing rates, computed numerically from network ensembles (squares and diamonds), and the firing-
rate distribution P(m) predicted using Equation (8.34) below (black solid line). [Reproduced with
permassion from Ref. [114], (Copyright 2009, by Europhysics Letters Association).]

For large neuronal incoming degree, k>>1, and infinite size of the network, N —
oo, we find that the firing rate my depends on the neuronal incoming degree k as a
power-law. Assuming the form of the solution of Equation (3.16) as

my ~ BE7, k>1, (3.25)

replacing summation with integration, evaluating an integral using residues, expand-
ing in a series at large values of k, and collecting the leading-order terms [113], we
find that the exponent v and the network coupling coefficient A in Equation (3.21)
are related via the equation

2sin(7y)

EEETCEPICEs )

(3.26)
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For both sides of Equation (3.16) to remain finite, the exponent v must satisfy the
inequality v <4, and because the network coupling A is nonnegative, v must satisfy
~v>1. These two requirements leave us with two possible branches of the ~ versus
A dependence as expressed by Equation (3.26), as shown in Figure 3.1. Numerical
simulations of the corresponding I&F network (3.1) indicate that the lower branch is
stable [113,114]. Note that the scaling factor ¢(N) in the coupling constant A can be
of O(1), and the network will still maintain finite firing rates in the large-size limit,
N — o0.

The mean firing rate, m, can be found exactly using Equation (3.17) and the fact
that every neuron’s outgoing node-degree, i.e., the number of synapses originating
at this neuron, equals 1 by construction. The probability ij;olT(n,k) of finding a
synapse originating at an n-neuron is thus equal to the probability Py(n) of finding
an n-neuron, and so using Equations (3.16) and (3.17) we can derive that

m=

R p— ) ! (3.27)

1
In(1+go) ( In(1+go) ) 1—pA

Note that the mean network firing rate m develops a singularity at A=1, while the
individual firing rates mj remain bounded.

3.2.3. Scale-free network. We finally derive the asymptotic firing rates for a
degree-correlated neuronal network with scale-free distributions of both incoming and
outgoing degrees [113]. Since neuronal networks are directed, we construct this scale-
free network in two steps: we first construct the corresponding undirected network
following the algorithm described in [61], and then randomly assign a direction to each
of its undirected edges. The undirected network of [61] grows in stages: its first stage
is an all-to-all connected network consisting of £ nodes, which are said to be active.
At each subsequent stage of the network growth, a new active node is first attached
to every active node via an undirected edge, and then an active node is deactivated
with the probability ~1/n, where n is its current total degree, i.e., the number of all
undirected edges emanating from it. A direction is assigned randomly to every edge,
with probability 1/2.

For the resulting directed network, if the initial number of active nodes, ¢, is large,
£>>1, the incoming-degree and edge-type distributions are well-approximated by the
expressions

P(k) = % (3.28)
T(n,k) = W(mk—o (3.29)

for the incoming-degree values of k,n>¢/2, and vanish rapidly for k,n <¢/2, so that
we approximate them as vanishing exactly there [113]. The incoming-degree distri-
bution of this network is obviously scale-free. Up to terms that decay with growing
network size N > 1, this network’s first and second incoming-degree moments are

2
p=>4, <n2>N:%ln%, (3.30)

the first of which is indeed bounded, and the second is logarithmically increasing with
network size N.
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Fic. 3.2. Gain curves for the scale-free network discussed in Section 3.2.3. Left: Gain curve
obtained from Equation (3.32) describes the dependence of the mean network firing rate m on the
external-drive strength fv on average for an ensemble of networks. Right: Equation (3.31) with
the variance of the neuronal incoming-degree distribution replaced by the variance of the neuronal
incoming-degrees in a given network realization describes the dependence of the mean network firing
rate m on the external-drive strength fv in that realization.

We again guess the solution for the average firing rate, my, of a k-neuron to be
linear in its incoming degree, k, and find

B 1 9o
mkhl(1+go)(fy+11n(1+go)) (”

Equation (3.31) shows that the slope of the gain curve is linear in both the driving
strength, fv, and the incoming-degree of the neurons, k, and becomes infinite at the
coupling value A= (+/p2 +40%) /2 for all values of k simultaneously, exactly as for
the uncorrelated network in Section 3.2.1. The scaling factor ¢(NN) in the coupling

parameter A in Equation (3.21) must be chosen of O(l/(n2>%2) in order for an

A+ A\202
AN ) (3.31)

1—Ap—A%0%,

interval of parameters S to exist for which there is a stable steady state in the large-
network limit, N — oco. Averaging Equation (3.31) over the neuronal incoming degree
k using Equation (3.17), we find the mean network firing rate

fr+1—

m=

9o 1
.32
ln(1+§0)> 1—Ap—X20%’ (3.32)

i
In(1+go)
which remains bounded for the same values of the coupling parameter S as the indi-
vidual firing rates my, in Equation (3.31) as the network size increases, N — oo.

Direct numerical Monte-Carlo simulations of Equation (3.1) confirm the validity
of the mean-firing-rate formula in Equation (3.32) on average, for an ensemble of
many networks. They also show that Equation (3.32) describes the mean gain curve
of an individual network realization, provided the node-degree variance o of the dis-
tribution Py, (n) is replaced by the value of the node-degree variance of this particular
realization. Likewise, Equation (3.31) accurately describes the average firing rate,
my, of the k-neurons in an ensemble of many networks. Moreover, Equation (3.31)
also provides an accurate description of the average firing rate, my, of the k-neurons
in a specific network realization, provided the incoming-degree variance 0% of Py, (n)
is again replaced by the realization variance.
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3.2.4. Firing-rate distribution. To find the probability distribution of the
neuronal firing rates, we use the chain rule to find

dk

P(m) = Pu (k)

(3.33)
where P, (k) is the corresponding neuronal incoming-degree distribution. The neu-
ronal incoming-degree, k, in Equation (3.33) must be expressed in terms of the firing
rate by inverting the expression m=my.

For the unidirectional scale-free network of Section 3.2.2, we use Equations (3.23)
and (3.33) to find the firing-rate distribution tail,

P(m)ocm™2/771, (3.34)

valid for high firing-rates. Likewise, Equations (3.31) and (3.33) imply that the scale-
free distribution of Section 3.2.3 asymptotically gives rise to the firing-rate distribution
tail

P(m)~ (fy+1— 90 ex (3.35)

In(1 +§o)> 2[In(1+go))* (1— A —Ao%)2m3’

with g and 0%, as in Equation (3.30), and again valid for high firing-rates. Both
distribution tails in Equations (3.34) and (3.35) are power laws.

3.3. Spatially extended networks. To describe spatially extended net-
works, we generalize our kinetic theory to cover Equation (3.1) by including interac-
tions among the appropriate coarse-grained tissue patches created by a spatial coarse-
graining procedure. When the coupling coefficients a;; only depend on the distance
|i —j], the coupling among such coarse-grained patches is accomplished by generaliz-
ing the mean synaptic input g(¢) and synaptic-input fluctuations 03 (t) in Equations
(2.11) and (2.23) as

§(t;x):fu(t;x)JrS/a(xfx’)m(t;x’)dx'7 (3.36a)
a?(t;x):% [fQV(t;x)—i—]iv/aQ(x—X')m(t;x’)dx’ , (3.36b)

where x denotes the coarse-grained coordinate labeling a tissue patch and a(x) de-
scribes the smoothed network coupling aj;_j. These generalized §(t) and o2(t) are
substituted in Equation (2.37) to obtain a coupled set of integro-differential kinetic
equations for the voltage probability density p(”)(v,t;x) and first conditional moment
11 (v,t;x). The same argument applies for the extension of the mean-field model, as
well.

4. Conclusions and discussion

Kinetic theory provides an accurate and efficient population-based coarse-graining
method for describing neuronal network dynamics [31,32,98]. While the coarse-
graining assumption underlying the kinetic theory is that of a large network, N >>1,
so that a statistical description is meaningful, in practice, even for networks of size
N =0(10) the kinetic theory captures large-fluctuation effects accurately and effi-
ciently. As shown in Figures 2.2 and 2.3, the kinetic theory approximates full dy-
namical simulation results of the corresponding 1&F networks accurately both for
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stationary and time-dependent Poisson rates of the external drive, and both in the
fluctuation- and mean-driven regimes. The computational savings afforded by simu-
lating the kinetic equations instead of a large, I&F, point-neuron model are significant,
and arise from two sources: the first is the statistical nature of the kinetic equations,
which eliminates the need for simulating large network ensembles, or equivalently, one
network for long times, in order to collect statistically accurate results. The second
is the dimension reduction achieved by our closure, which typically reduces compu-
tation time by 4 to 6 orders of magnitude within the accuracy of three significant
digits [31,32,98].

In addition to dramatically reducing the computational costs as compared to
direct simulations of point-neuron networks, the kinetic theory and its further reduc-
tions also provide a powerful theoretical tool for the analysis of neuronal network
dynamics. For example, as we have seen in Section 2.3.3, using the mean-field the-
ory alone, one can already explain the presence of bistability in certain dynamical
regimes of neuronal networks. As shown in Section 2.5.3, using the kinetic theory or
its Fokker-Planck reduction, one can explain the gradual removal of this bistability
when the amount of synaptic-input fluctuations increases [65]. As we have seen in
Section 2.5.6, the corresponding bifurcation scenario of fluctuation-controlled critical-
ity appears to be an important ingredient in the mechanism of neuronal orientation
selectivity in the primary visual cortex [130].

Of course, the kinetic theory only describes the statistics of the neuronal voltages
and membrane potentials, not the individual time-courses of these quantities for each
network neuron, and the average neuronal firing rates, not an individual neuron’s
spike-times. When these more specific quantities are required, one must resort to
full I&F network simulations. In cases when detailed dynamical information is only
required for specific groups of neurons, a very promising but as yet largely unexplored
modeling technique would consist of hybrids between coarse-grained and point-neuron
models. One such hybrid between the kinetic theory and an I&F point-neuron model
was developed in [30].

An intermediate coarse-graining step would be a generalization of the kinetic-
theoretic approach presented here to more than one-point statistics, such as including
the two-point correlation functions [68]. In fact, experimental measurements indi-
cate that populations of neurons in various brain areas exhibit temporal correlations
between firings [7, 38, 64, 67, 77,104, 106, 109, 115, 146], which have been associated
with stimulus encoding, discrimination, and behavior. The inability of the current
kinetic theory to incorporate dynamical correlations among neuronal firings has pre-
vented it from addressing a number of deep and interesting problems in realistic
settings [7, 54, 104], so that its generalization to multi-point statistics would be an
important and timely effort.

Higher-order statistics of neuronal firings will also be strongly influenced by the
network architecture, whose own statistical properties are not yet well understood.
Experimental evidence points at the fact that neuronal networks can be sparse [9, 73—
76,118,133,134]. Cortical networks appear to possess small-world attributes, with
the numbers of synapses needed to connect a given pair of neurons close to those
in similar random networks but with significantly more clustering [56, 57,123, 124],
scale-free topology [41], or perhaps both [59,121]. We have so far addressed firing-rate
statistics of scale-free networks in the framework of the mean-field model deep into
the mean-driven regime in order to decouple the effects of the network-connectivity
fluctuations from those of the synaptic input-fluctuations.
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Many questions concerning coarse-grained dynamics of complex I1&F networks
still remain. Some could potentially be answered using the mean-field model, such
as whether network-connectivity fluctuations modify or remove the bistability of gain
curves like the synaptic-input fluctuations do. Addressing small-world effects probably
falls in this category as well. Formally extending our kinetic equations and their
derivation via the maximum-entropy principle to the complex-network case is likely
to be relatively straightforward; the extension of the computational algorithm of [98]
may present a bigger challenge due to the numerical issues arising from the coupling
in the dynamics of many populations of k-neurons. The main challenge seems to lie
in the above-mentioned question of how to generalize the kinetic theory to the case of
multi-point statistics and taking into account complex network topology at the same
time.

A very general approach to this question from the viewpoint of the perturbation
theory is presented in [93,94]. For weakly-coupled networks, successive approxima-
tions to the complete network statistics are found using an expansion in terms of the
small coupling parameter. The nth approximation involves subnetworks of neurons
coupled via n intermediate synaptic connections. The work described in [93,94] thus
provides a potentially important probabilistic framework for investigating neuronal
network dynamics.
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Appendix A. Flowchart of equation interdependence. In this appendix,
we display a flowchart representing the interdependence of the exact and approxi-
mate coarse-grained equations corresponding to the all-to-all coupled I&F model, as
discussed in the text of the paper. We denote the choice of description, limits, and
assumptions leading to the specific equations by Roman numerals. The flowchart is
displayed in Figure A.1.

Not shown in Figure A.1 is the progression from the advection-diffusion Equation
(2.22) via the marginalization on the conductance to obtain the Fokker-Planck Equa-
tion (2.27), and further mean-driven limit and projection on the first conductance
moment to obtain Equation (2.10b).

An analogous flowchart can be obtained for the heterogeneously coupled I1&F
model (3.1), which includes nontrivial network topology, and replaces Equation (2.1)
in the chart. The corresponding Boltzmann system of Equation (3.5) and advection-
diffusion Equation (3.9) replace Equations (2.3) and (2.22). The mean-field system
(3.12) replaces the system (2.10), and its steady version (3.15) replaces the steady
mean-field Equation (2.17a). Finally, the limiting, high-conductance system (3.16)
replaces the equation for the linear gain-curve asymptote, Equation (2.20). Other
complex-network analogs of the equations in the flowchart in Figure A.1 can be ob-
tained using the techniques of this paper.
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) all-to-all coupled ) Boltzmann
all-to-all coupled (iv) I&F model (2.44) () equation (2.46)
T&F model (2.1) with vanishing for voltage pdf

conductance time-scale

(i)l (i) l

Boltzmann (i) advection-diffusion ({11 kinetic (iv) Fokker-Planck
equation (2.3) equation (2.22) equations (2.37) ) equation (2.50)

(i) (vi)l ) )

- iv vii
mean-field (iv) me.an—ﬁeld (vii)
system (2.10) equation (2.10a)

vii vii with (g)(t) = g(t)
R

steady mean-field steady Fokker-Planck
equation (2.17a) - equation (2.58)

(viii) l

gain-curve
asymptote (2.20)

Fic. A.1. The flowchart for the equations, discussed in the text, corresponding to the all-to-all
coupled I6F model. The labels above the arrows represent: (i) statistical description; (ii) diffusion
approzimation; (i) mazimum-entropy closure; () limit o0 — 0, (v) mean-driven limit f —0, N,v —
oo, with fv=0(1); (vi) same mean-driven limit as in (v), assumption p(v,g,t) = p(*) (v,t)p(9) (g,t),
marginalization on the voltage and taking the first conductance moment; (vii) steady-state; (viii)
high conductance.
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