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Abstract. This paper is concerned with the asymptotic behavior of the free energy for a class
of Hermitian random matrix models, with odd degree polynomial potential, in the large N limit. It
continues an investigation initiated and developed in a sequence of prior works whose ultimate aim is
to reveal and understand, in a rigorous way, the deep connections between correlation functions for
eigenvalues of these random matrix ensembles on the one hand and the enumerative interpretations
of their matrix moments in terms of map combinatorics (a branch of graph theory) on the other. In
doing this we make essential use of the link between the asymptotics of the random matrix partition
function and orthogonal polynomials with exponential weight equal to the random matrix potential.
Along the way we develop and analyze the continuum limits of both the Toda lattice equations and
the difference string equations associated to these orthogonal polynomials. The former are found
to have the structure of a hierarchy of near-conservation laws; the latter are a novel semi-classical
extension of the traditional string equations. One has these equations for each class of regular maps
of a given valence. Our methods apply to regular maps of both even and odd valence, however
we focus on the latter since that is the relevant case for this paper. These methods enable us to
rigorously determine closed form expressions for the generating functions that enumerate trivalent
maps, in general implicitly, but also explicitly in a number of cases.

Key words. Random matrices, Toda lattice, Motzkin paths, string equations, conservation law
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1. Introduction

The general class of matrix ensembles we want to analyze has probability measures
of the form

dµtj =
1

Z
(n)
N (tj)

exp{−N Tr[Vj(M,tj)]}dM, where (1.1)

Vj(λ; tj)=
1

2
λ2+ tjλ

j , (1.2)

defined on the space Hn of n×n Hermitian matrices M , and with N a positive

parameter. The normalization factor Z
(n)
N (tj), which serves to make µt a probability

measure, is called the partition function of this unitary ensemble. Previous works
[9, 10, 12, 7] have focused on the case of even j, for which the measure (1.1) is indeed
normalizable for tj >0. The case of odd j is more complicated; it is not clear prima
facie how to initiate a rigorous analysis in this setting.

Very recently, however, a generalization of the equilibrium measure (which governs
the leading order behavior of the free energy associated to (1.1)) was developed and
applied to this problem [3]. It is based on a complex contour deformation of the
variational problem for the leading order of the free energy that was motivated by new
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ideas in approximation theory related to complex Gaussian quadrature of integrals
with high order stationary points [4].

This analysis shows that an equilibrium measure associated to the weight
exp

{

−N
(

1
2λ

2+ t2ν+1λ
2ν+1

)}

, with dominant exponent odd, will exist. It is con-
structed explicitly for the case of a cubic weight, ν=1, in [3]. A detailed study of
the explicit construction for general odd-dominant weights, as opposed to just the
existence argument which may be deduced from [4], will be taken up elsewhere. The
boundaries of the support of this equilibrium measure are determined by the simul-
taneous solutions of the two equations:

∫ B

A

V ′(λ)
√

(λ−A)(λ−B)
dλ=0, (1.3)

∫ B

A

λV ′(λ)
√

(λ−A)(λ−B)
dλ=2πi. (1.4)

One can compute these integrals which, in the cubic case, V (λ)= 1
2λ

2+ t3λ
3, leads

to a pair of equivalent algebraic equations determining A and B.

1

2
(A+B)+3t3

(

3

8
A2+

1

4
AB+

3

8
B2

)

=0, (1.5)

(

3

8
A2+

1

4
AB+

3

8
B2

)

+3t3

(

5

16
A3+

3

16
A2B+

3

16
AB2+

5

16
B3

)

=2. (1.6)

It is natural to make the following change of variables: z0=
1
16 (B−A)

2
and u0=

1
2 (A+B). The corresponding algebraic equations for z0, u0 are

u0+3t3(u
2
0+2z0)=0, (1.7)

u2
0+2z0+3t3(u

3
0+6u0z0)=2. (1.8)

With the above notations, the interval of support of the equilibrium measure in
the cubic case may be written as

[A,B]= [u0−2
√
z0,u0+2

√
z0 ] .

The equilibrium measure has a variational characterization [4], and from the varia-
tional equations the measure can be explicitly determined to be

1

2πi
(1+3t3(λ+u0))χ[A,B](λ)

√

(λ−A)(λ−B). (1.9)

A minimal basis for the ideal of relations given by (1.7) and (1.8) is

3t3u
2
0+u0+6t3z0=0, (1.10)

−6t3z0u0+(1−z0)=0. (1.11)

It is straightforward to use (1.10) to eliminate z0 in (1.11) and get

18t23u
3
0+9t3u

2
0+u0+6t3=0. (1.12)

The resultant of (1.7) and (1.8) eliminating u0 is given by

R(z0)=

∣

∣

∣

∣

∣

∣

3t3 1 6t3z0
−6t3z0 1−z0 0

0 −6t3z0 1−z0

∣

∣

∣

∣

∣

∣

(1.13)

=3t3
(

72t23z
3
0−z20+1

)

=0. (1.14)
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We note that (1.14) has a form that is reminiscent of the implicit equation for z0 that
one has in the case of even weights [10, 7].

For general polynomial potentials V with even dominant power, it is possible to
establish the following fundamental asymptotic expansion [9, 10] of the free energy
associated to the partition function. More precisely, those papers consider potentials
of the form

V (λ)=
1

2
λ2+

J
∑

j=1

tjλ
j , (1.15)

with J =2ν. Introducing a renormalized partition function, which we refer to as a tau
function,

τ2n,N (~t )=
Z

(n)
N (~t )

Z
(n)
N (0)

, (1.16)

where ~t=(t1, . . .tJ)∈R
J , this expansion has the form

logτ2n,N (~t )=n2e0(x,~t )+e1(x,~t )+
1

n2
e2(x,~t )+ · · ·+ 1

n2g−2
eg(x,~t )+ · · · (1.17)

as n,N→∞ with x= n
N held fixed. Moreover, for T =(1−ǫ,1+ǫ)×

(

{|~t |<δ}∩{tJ >0}
)

for some ǫ>0, δ >0,

(i) the expansion is uniformly valid on a compact subset of T ;

(ii) eg(x,~t ) extends to be complex analytic in T C=
{

(x,~t )∈C
J+1
∣

∣|x−1|<ǫ, |~t|<δ
}

;

(iii) the expansion may be differentiated term by term in (x,~t ) with uniform error
estimates as in (i).

The meaning of (i) is that for each g there is a constant Kg, depending only on
T and g, such that

∣

∣

∣

∣

logτ2n,N
(

~t
)

−n2e0(x,~t )−···− 1

n2g−2
eg(x,~t )

∣

∣

∣

∣

≤ Kg

n2g

for (x,~t ) in a compact subset of T . The estimates referred to in (iii) have a similar
form with τ2n,N and ej(x,~t ) replaced by their mixed derivatives (the same derivatives
in each term) and with a possibly different constant.

This result is based on the analysis of a Riemann-Hilbert problem (RHP) for
orthogonal polynomials on R whose exponential weight is associated to the weight
of the random matrix measure. This RHP was first introduced in [11] for studying
the asymptotic behavior of random matrix partition functions. The relevant analysis
of this RHP for the above result was carried out in [9] by the method of nonlinear
steepest descent [5]. In particular, in [9] it is shown that the constantsKg are explicitly
determinable in terms of Airy asymptotics stemming from the Airy parametrix that
is used in the vicinity of the endpoints of the support of the equilibrium measure to
explicitly solve the RHP.

This result extends directly to the case of V with odd dominant power (i.e. with
J =2ν+1) once one has the existence of the equilibrium measure (which is explicitly
given by (1.9) in the cubic case). This involves studying the asymptotic behavior of
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the appropriate non-Hermitian orthogonal polynomials for the given odd weight (see
Section 2). More precisely, the Riemann-Hilbert analysis of [9] carries over mutatis
mutandis to a Riemann-Hilbert problem for the non-Hermitian orthogonal polynomi-
als with the principal difference being that the contour along which the jump matrices
are originally defined is no longer the real axis but rather a deformed contour [4, 3].

Our principal interest in this paper is to better understand the analytical structure
of the coefficients eg for potentials of the form (1.15) when J is odd. For J even
these coefficients provide a wealth of information about problems in combinatorial
enumeration as well as about eigenvalue correlations for random matrices [7]. One
expects to see similar connections in the case of odd J , but this is much less developed.

Despite the fact that we are focused on potentials of the form (1.2) that only
depend on a single tj , we will need to appeal to properties (i - iii) for other parameters
as well, specifically t1 and x. That is because in characterizing the eg we will want
to make use of differential relations in t1 and tj between these coefficients as well as
certain rescalings of these variables in terms of x:

s1=x− 1
2 t1, (1.18)

sj =x
j
2−1tj . (1.19)

We will also be studying the tau-functions (1.16) as functions of lattice variables
on the non-negative integers, indexed by n, which depend analytically on (x,~t ) as
parameters. Certain logarithmic derivatives of the tau functions with respect to these
parameters satisfy difference equations which, in this context, we refer to as differ-
ence string equations. Furthermore they satisfy differential (in tj) - difference (in n)
equations classically known as the Toda lattice equations. Of particular relevance for
describing and analyzing the eg will be the continuum limits of the difference parts of
all these equations. These involve, as independent variables, sj and s1 as well as a con-
tinuous “spatial” variable w in terms of which the differencing in our string and Toda
equations may be regarded as a discretization. At the final stage, after one has recur-
sively solved the continuum limit hierarchies for eg (and various of their derivatives) as
functions of (x,s1,sj ,w), the auxiliary variables are set to (x,s1,w)=(1,0,1) to arrive
at the desired closed formulae for eg(sj)= eg(tj). (Note that when x=1,sj = tj .)

The continuum limit of the difference string equations is a hierarchy of nonlinear
ODEs in w while that of the Toda equations is a hierarchy of quasi-linear PDEs in
sj and w, where in both cases g indexes the respective hierarchy. One will have these
hierarchies for each value of j.

We take a moment here to briefly explain the connection of the expansion
(1.17) to combinatorial enumeration that was alluded to earlier. The eg(tj)=
eg
(

x=1,~t=(0, . . . ,0,tj)
)

(we have set J = j here) are generating functions for the
enumeration of j-regular maps. Such a map is an embedding of a labeled graph into
a compact, oriented, and connected surface X with the requirement that the com-
plement of the graph in X should be a disjoint union of simply connected open sets.
More specifically the asymptotic expansion coefficient eg is a generating function for
enumerating (topological) equivalence classes of maps on a Riemann surface of genus
g (g-maps) whose embedded graphs are j-regular:

eg(tj)=
∑

m≥1

1

m!
(−tj)

mκ(j)
g (m), (1.20)
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in which each of the Taylor expansion coefficients κ
(j)
g (m) is the number of g-maps

with m j-valent vertices. Consequently the Taylor coefficients of eg(tj),κ
(j)
g (m), are

non-negative integers.
The notion of g-maps was introduced by Tutte and his collaborators in the ’60s

[15] as a means to study the four color conjecture. However, this subject soon took
on a life of its own as a sub-topic of combinatorial graph theory. In the early ’80s
a group of physicists [2] discovered a profound connection between the enumerative
problem for labeled g-maps and diagrammatic expansions of random matrix theory.
That seminal work was the basis for bringing asymptotic analytical methods into the
study of maps and other related combinatorial problems.

The trivalent case of map enumeration (which corresponds to the random ma-
trix ensemble with cubic weight) is of particular relevance for problems in discrete
geometry since the corresponding maps are dual to triangulations which are stable
discretizations of the associated Riemann surfaces. In particular, in Section 4, in
order to explicitly solve the continuum difference string equations we will use the
fact that the coefficient z0 appearing in the equilibrium measure is the generating
function for enumerating labeled trivalent maps on a sphere connected to two marked
univalent vertices. This is dual to the generating function that enumerates ordered
triangulations of the sphere with two marked loops. One also expects z0 to have a
combinatorial interpretation analogous to the one it has in the cases of even valence,
which is as a generating function for the Catalan numbers (in the case of valence 4)
and generalized Catalan numbers in the cases of higher even valence [10, 7]. That
interesting topic will be taken up elsewhere.

Recently, in [7], closed form expressions for all of the eg(tj) were derived for the
cases of even j. This was based on the continuum limit of Toda lattice equations,
developed in [10], that are closely related to the random matrix ensembles (1.1). In
this paper we will derive the analogous continuum j-Toda equations for odd j as well
as the related hierarchy of continuum difference string equations. From these we will
derive explicit closed form expressions for the eg(t3) for some low values of the genus
g. For example, we will find that

e0(t3)=
1

2
log(z0)+

1

12

(z0−1)(z20−6z0−3)

(z0+1)
,

e1(t3)=− 1

24
log

(

3

2
− z20

2

)

, (1.21)

e2(t3)=
1

960

(z20−1)3(4z40−93z20−261)

(z20−3)5
,

where z0 is given by the boundary of the equilibrium measure discussed above and is
implicitly related to t3 by the polynomial equation (1.14)

1= z20−72t23z
3
0 .

We expect that our methods will ultimately enable one to derive closed form expres-
sions for the eg(tj) for all odd j and all genus g. In [3] the Taylor coefficients of e0
and e1 are calculated for the cubic case (j=3). These derivations were based on a
different approach using the classical string equations.

The outline of this paper is as follows. In Section 2 we summarize the necessary
background on non-Hermitian orthogonal polynomials that is the basis for the validity
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of the asymptotic expansions that we study as well as their continuum limits. This
section also presents a path formulation for both the Toda lattice equations and the
difference string equations associated to these orthogonal polynomials. The latter
in particular represent a novel method for the study of random matrix continuum
limits. The continuum limits themselves are derived in Section 3, for general odd
valence, at least for the leading order and higher order homogeneous terms. To help
make this paper more self-contained, a preliminary subsection of Section 3 is included
that summarizes prior results on which the work in this paper is based. This part
also contains a new result: a description of the asymptotic structure of the diagonal
recursion coefficients for the orthogonal polynomials. This result was not needed
previously because these diagonal coefficients vanish in the case of even potentials.
Although this result has a similar character to what had previously been found for the
off-diagonal recursion coefficients, the derivation is technically more complicated due
to the fact that the Hirota expression (3.12) for the diagonal coefficients is given in
terms of a leading order differential-difference operator rather than the pure second
derivative (3.13) for the off-diagonal coefficients. In Section 4 we specialize to the
trivalent case and derive the full Toda and difference string equations up to order
g=1. Moreover, we illustrate the use of these methods by explicitly solving the g=1
difference string equations. Finally in Section 5 we derive a recursive method for
expressing each generating function eg(t3) in terms of z0 and use this to establish the
explicit formulae (1.21).

2. The role of orthogonal polynomials and their asymptotics

Let us recall the classical relation between orthogonal polynomials and the space
of square-integrable functions on the real line R with respect to exponentially weighted
measures. In particular, we want to focus attention on weights that correspond to the
random matrix potentials V (λ), (1.2), that interest us here. To that end we consider
the Hilbert space H=L2

(

R,e−NV (λ)
)

of weighted square integrable functions. This
space has a natural polynomial basis, {πn(λ)}, determined by the conditions that

πn(λ)=λn+ lower order terms,
∫

πn(λ)πm(λ)e−NV (λ)dλ=0 forn 6=m.

For the construction of this basis and related details we refer the reader to [5].
With respect to this basis, the operator of multiplication by λ is representable as

a semi-infinite tri-diagonal matrix,

L=













a0 1
b21 a1 1

b22 a2
. . .

. . .
. . .













. (2.1)

L is commonly referred as the recursion operator for the orthogonal polynomi-
als and its entries as recursion coefficients. We remark that often a basis of or-
thonormal, rather than monic orthogonal, polynomials is used to make this repre-
sentation. In that case the analogue of (2.1) is a symmetric tri-diagonal matrix.
As long as the coefficients {bn} do not vanish, these two matrix representations
can be related through conjugation by a semi-infinite diagonal matrix of the form
diag(1,b−1

1 ,(b1b2)
−1

,(b1b2b3)
−1

, . . .).
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Similarly, the operator of differentiation with respect to λ, which is densely defined
on H, has a semi-infinite matrix representation D, which we now determine. Observe
that

∫

π′
n(λ)πm(λ)e−NV (λ)dλ=0 forn≤m,

∫

π′
n(λ)πm(λ)e−NV (λ)dλ=N

∫

πn(λ)V
′(λ)πm(λ)e−NV (λ)dλ forn>m

=N

∫

πn(λ)
{

λ+jtλj−1
}

πm(λ)e−NV (λ)dλ, (2.2)

hence

D=N
(

L+jtLj−1
)

−
, (2.3)

where the “minus” subscript denotes projection onto the strictly lower part of the
matrix.

From the canonical (Heisenberg) relation on H, one sees that

[∂λ,λ]=1,

where here λ in the bracket and 1 on the right hand side are regarded as multiplication
operators. Using this and orthogonality one has, for some κn>0,

∫

{[∂λ,λ]πn(λ)}πm(λ)e−NV (λ)dλ=κnδnm

=

∫

πn(λ)
{

[λ,−∂λ]πm(λ)e−NV (λ)
}

dλ,

where we note that under this transposition of the bracket within the inner product
the order of composition of the operators has interchanged and the minus sign on the
derivative comes from integrating by parts;

=

∫

πn(λ)
∑

ℓ

[L,D]ℓ,mπℓ(λ)e
−NV (λ)dλ

by (2.2) and (2.3), so that

=κn [L,D]n,m .

It follows that

[L,D]= I.

From this observation one deduces a fundamental relation among the recurrence
coefficients:

[

L,
(

L+jtLj−1
)

−

]

=
1

N
I. (2.4)

The relations implicit in (2.4) have been referred to as string equations in the physics
literature, but their origins go further back to the classical literature in approximation
theory [13]. In fact, the relations that one has, row by row in (2.4), are actually
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successive differences of consecutive string equations in the usual sense. However, by
continuing back to the first row one may recursively de-couple these differences to get
the usual equations. To make this distinction clear we will refer to the row by row
equations that one has directly from (2.4) as difference string equations.

L depends smoothly on the coupling parameter tj in the potential V (λ) (see 1.2).
The explicit dependence can be determined from the fact that multiplication by λ
commutes with differentiation by tj and the following consequence of the orthogonality
relations:

∫

∂

∂tj
(πn(λ))πm(λ)e−NV (λ)dλ=N

∫

λjπn(λ)πm(λ)e−NV (λ)dλ, forn>m.

This yields our second fundamental relation on the recurrence coefficients,

1

N
(L)tj =

[

(

Lj
)

−
,L
]

, (2.5)

which is equivalent to the jth equation of the semi-infinite Toda Lattice hierarchy.

2.0.1. Odd weights and Non-Hermitian orthogonal polynomials.

When j is odd, H as defined above ceases to be a finite measure space; however,
by deforming the real axis to an appropriate complex contour Γ one can define a
non-Hermitian analogue of orthogonal polynomials with respect to this contour and
weight [3, 4]. These polynomials may not be defined for all values of n but asymptoti-
cally they exist (i.e., for n≥n0−1 for some sufficiently large integer n0) [4]. Thus one
can work on the space H=L2

(

Γ,e−NV (λ)
)

of weighted square integrable functions
on the deformed contour Γ. Of course in doing this deformation one can no longer
relate the construction of the orthogonal polynomials to an inner product on H as
was done before (hence the nomenclature non-Hermitian). Instead one works with
the non-degenerate complex-valued bilinear form that integration naturally gives us.
One can then, as we will shortly see, define a basis of polynomials whose pairwise
product integrates to zero if they are of different degree. One can still use this basis
to represent the recurrence operators and related operators through the bilinear form.
To that end let

H=
{

span of 1,λ,...λn0−1,πn0
(λ),πn0+1(λ), . . .

}

,

where πn(λ) is a monic polynomial of degree n such that

0=

∫

Γ

πn(λ)λ
ke−NV (λ)dλ for k=0, . . . ,n−1.

With respect to this basis, multiplication by λ is represented as

L=



















⋆ 0
α0 α1 . . . αn0−1

0

an0
1

b2n0+1 an0+1 1

b2n0+2 an0+2
. . .

. . .
. . .



















, (2.6)

where b2n0
πn0−1(λ)=αn0−1λ

n0−1+ · · ·+α1λ+α0.
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One may apply standard methods of orthogonal polynomial theory [14] to the
lower right semi-infinite block of this matrix

L̂=













an0
1

b2n0+1 an0+1 1

b2n0+2 an0+2
. . .

. . .
. . .













. (2.7)

In particular there is a unique semi-infinite lower unipotent matrix A such that

L̂=A−1ǫA,

where

ǫ=













0 1
0 0 1

0 0
. . .

. . .
. . .













.

(For a description of the construction of such a unipotent matrix we refer the reader
to Proposition 1 of [8].)

This is related to the Hankel matrix

H=











c0 c1 c2 . . .
c1 c2 c3 . . .
c2 c3 c4 . . .
...

...
...
. . .











,

where

ck=

∫

Γ

λke−NV (λ)dλ

is the kth moment of the measure, by

ADA†=











cn0+1 cn0+2 cn0+3 . . .
cn0+2 cn0+3 cn0+4 . . .
cn0+3 cn0+4 cn0+5 . . .

...
...

...
. . .











,

D=diag {dn0+1,dn0+2 . . .}
with

dn=
detHn

detHn−1
,

where Hn denotes the n×n principal sub-matrix of H whose determinant may be
expressed as (see Szegö’s classical text [14]),

detHn=n!Ẑ
(n)
N (t1,t2ν+1) ,

Ẑ
(n)
N (t2ν+1)=

∫

Γ

· · ·
∫

Γ

exp

{

−N2

[

1

N

n
∑

m=1

V (λm;t1, t2ν+1)

− 1

N2

∑

m 6=ℓ

log |λm−λℓ|











dnλ, (2.8)
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where V (λ;t1, t2ν+1)=
1
2λ

2+ t1λ+ t2ν+1λ
2ν+1.

Remark 2.1. As mentioned in the introduction, we will sometimes need to extend
the domain of the tau functions to include other parameters, such as t1, as we have
done here. Doing this presents no difficulties in the prior constructions.

The diagonal elements may in fact be expressed as

dn=
τ2n,N

τ2n−1,N

dn(0),

where

τ2n,N =
Ẑ

(n)
N (t1,t2ν+1)

Ẑ
(n)
N (0,0)

(2.9)

=
Z

(n)
N (t1,t2ν+1)

Z
(n)
N (0,0)

, (2.10)

which agrees with the definition of the tau function given in (1.16). The second
equality follows by reducing the unitarily invariant matrix integrals in (2.10) to their
diagonalizations which yields (2.9) [9]. This also provides the connection to the eigen-
value correlations alluded to in the introduction. Tracing through these connections,
from L̂ to D, one may derive the basic identity relating the random matrix partition
function to the recurrence coefficients,

b2n,N =
τ2n+1,Nτ2n−1,N

τ4n,N
b2n,N (0), (2.11)

which is the basis for our analysis of continuum limits in the next section. With this,
the fundamental relations (2.4) and (2.5) continue to hold in the non-Hermitian case
for n sufficiently large.

Remark 2.2. It needs to be noted that the bilinear form used to define orthogonal
polynomials and recurrence coefficients in this section depends on the choice of the
contour Γ and therefore so do these polynomials and coefficients. However, it does
not affect the asymptotics of these objects. This is a consequence of the fact that
outside the locus of support of the equilibrium measure, one has exponential decay of
the asymptotics. The deformation of Γ away from R is taken in these exponentially
decaying regimes. We refer the reader to [11, 6, 7] where similar issues concerning non-
Hermitian orthogonal polynomials and their asymptotics are discussed for a different
problem.

Remark 2.3. The fact that the lower degree recurrence coefficients may not exist
in the non-Hermitian case creates technical difficulties in deriving the usual string
equations since, as was pointed out earlier, this derivation requires that one be able
to recursively relate higher degree recurrence coefficients all the way back to degree 0.
However, this issue poses no problems for the asymptotic difference string equations
nor for the asymptotic Toda equations, which are what will be used in this paper.
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2.0.2. Path weights and recurrence coefficients. In order to effectively
utilize the relations (2.4, 2.5), it will be essential to keep track of how the matrix
entries of powers of the recurrence operator, Lj , depend on the original recurrence
coefficients. That is best done via the combinatorics of weighted walks on the index
lattice of the orthogonal polynomials. The relevant walks here are Motzkin paths
which are walks P on Z which, at each step, can increase by 1, decrease by 1, or stay
the same. Set

Pj(m1,m2)= the set of all Motzkin paths of length j from m1 to m2. (2.12)

Then step weights, path weights and the (m1,m2)-entry of Lj are, respectively, given
by

ω(p)=







1 if the pth step moves from n to n+1 on the lattice,
an if the pth step stays at n,
b2n if the pth step moves from n to n−1,

ω(P )=
∏

steps p∈P

ω(p),

Lj
m1,m2

=
∑

P∈Pj(m1,m2)

ω(P ). (2.13)

2.1. Motzkin representation of the difference string equations.

The difference string equations are given (for the j-valent case) by (2.4):

[

L,
(

L+jtLj−1
)

−

]

=
1

N
I. (2.14)

This leads to a pair of equations:

• the (n+1,n) entry gives

0=(an+1−an)
(

L+jtLj−1
)

n+1,n
+
(

L+jtLj−1
)

n+2,n

−
(

L+jtLj−1
)

n+1,n−1
, (2.15)

• and the (n,n) entry gives

1

N
=
(

L+jtLj−1
)

n+1,n
−
(

L+jtLj−1
)

n,n−1
. (2.16)

Let us work this out in terms of Motzkin paths for the particular case of j=3. The
equations for the diagonal and subdiagonal equations reduce respectively to

x

n
=(Ln+1,n−Ln,n−1)+3t

(

L2
n+1,n−L2

n,n−1

)

,

0=(an+1−an)
(

Ln+1,n+3tL2
n+1,n

)

+(Ln+2,n−Ln+1,n−1)+3t
(

L2
n+2,n−L2

n+1,n−1

)

,

where we have used the relation x= n
N .

Referring to (2.12), we see that the relevant path classes here are

P1(n+1,n)=a descent by one step,

P1(n+2,n)=the empty set,

P2(n+1,n)=a horizontal step followed by a single descent

or a single descent followed by a horizontal step,

P2(n+2,n)=two successive descent steps.
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Note that the structure of the path classes does not actually depend upon n. This is
a reflection of the underlying spatial homogeneity of these equations. Thus, for the
purpose of describing the path classes, one can translate n to 0.

Now applying (2.13), the difference string equations become

1

n
=
(

b2n+1−b2n
)

+3t
(

an+1b
2
n+1+anb

2
n+1−anb

2
n−an−1b

2
n

)

,

0=(an+1−an)
(

b2n+1+3t(an+1+an)b
2
n+1

)

+3t
(

b2n+2b
2
n+1−b2n+1b

2
n

)

,

where, for this example, we have set the parameter x equal to 1. The coefficient b2n+1

is non-vanishing by (2.11) and the fact that the partition functions are non-vanishing
for n sufficiently large. Hence we may divide it out of the second equation to arrive
at the slightly simpler system

1

n
=
(

b2n+1−b2n
)

+3t
(

b2n+1(an+1+an)−b2n(an+an−1)
)

,

0=(an+1−an)(1+3t(an+1+an))+3t
(

b2n+2−b2n
)

.

2.2. Motzkin representation of the Toda equations. We now pass to a
more explicit form of of the Toda equations (2.5) in the case j=2ν+1:

− 1

N

dan
dt2ν+1

=
(

L2ν+1
)

n+1,n
−
(

L2ν+1
)

n,n−1
, (2.17)

− 1

N

db2n
dt2ν+1

=(an−an−1)
(

L2ν+1
)

n,n−1
+
(

L2ν+1
)

n+1,n−1
−
(

L2ν+1
)

n,n−2
. (2.18)

To describe this in more detail we will once again specialize to the trivalent case
(ν=1). There are two relevant path classes here:

P3(n+1,n) described in Figures 2.1 and 2.2 for the case n=0,

P3(n+2,n) described in Figure 2.3 for the case n=0.

The latter case corresponds to what was used in [10], but for Dyck paths (Motzkin
paths without any horizontal steps) of length 2ν.

!

"

Fig. 2.1. Elements of P3(1,0) with two horizontal steps

Applying (2.13), the trivalent Toda equations become

− 1

n

dan
dt

=
(

a2n+1b
2
n+1−a2nb

2
n

)

+
(

an+1anb
2
n+1−anan−1b

2
n

)

+
(

a2nb
2
n+1−a2n−1b

2
n

)

+
(

b2n+1b
2
n−b2nb

2
n−1

)

+
(

b2n+2b
2
n+1−b2n+1b

2
n

)

+
(

b2n+1b
2
n+1−b2nb

2
n

)

,

− 1

n

db2n
dt

=(an−an−1)
[

a2nb
2
n+anan−1b

2
n+a2n−1b

2
n+b2nb

2
n−1+b2n+1b

2
n+b2nb

2
n

]

+
(

an+1b
2
n+1b

2
n−anb

2
nb

2
n−1

)

+
(

anb
2
n+1b

2
n−an−1b

2
nb

2
n−1

)

+
(

an−1b
2
n+1b

2
n−an−2b

2
nb

2
n−1

)

,

where we have again used the relation x= n
N and then set the parameter x=1.
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!

"

#

$"

Fig. 2.2. Elements of P3(1,0) with no horizontal steps (Dyck paths)

!

"

#

Fig. 2.3. Elements of P3(2,0)

3. Continuum limits

A number of discrete variables will appear in the following discussion as we prepare
to make the transition to the continuum limit. Not all of these discrete variables will
be directly involved in the description of that limit. However, in order to avoid
confusion, it is perhaps best that we start by briefly describing all of these variables
and their interrelations as well as their relations with other variables and parameters.
As indicated at the outset, the positive parameter N sets the scale for the potential
in the random matrix partition function and, throughout this paper, it is taken to
be large. The discrete variable n labels the lattice position on Z

≥0 that marks, for
instance, the nth orthogonal polynomial and recurrence coefficients, diagonal or sub-
diagonal. We also always take n to be large and in fact to be of the same order as
N . As stated in the Introduction, it is to be understood that as n and N tend to ∞,
they do so in such a way that their ratio

x
.
=

n

N
(3.1)

remains fixed at a value close to 1. In fact within all subsequent proofs and derivations
x itself will be held fixed.

In addition to the global or absolute lattice variable n, we also introduce a local
or relative lattice variable which we will denote by k. It varies over integers but
will always be taken to be small in comparison to n and independent of n. We will
frequently study expressions involving n+k which we will think of as small discrete
variations around a large value of n. We have already encountered this in the form of
the difference string or Toda equations. The spatial homogeneity of those equations
manifests itself in their all having the same form, independent of what n is, while
k in those equations varies over {−ν−1, . . . ,−1,0,1, . . . ,ν+1}, the bandwidth of the
(2ν+1)st Toda / Difference String equations, as explicitly displayed for the trivalent
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case (ν=1) in Subsections 2.1 and 2.2. Indeed in what follows it will suffice to take
ν+1<<n in order to insure the necessary separation of scales between k and n.

We introduce a number of other scalings of variables that we will be using:

s1
.
=x− 1

2 t1, (3.2)

or more generally for ν ∈Z
+,

s2ν+1
.
=xν− 1

2 t2ν+1, (3.3)

w̃
.
=1+

k

n
. (3.4)

The variable w̃ is introduced for two reasons. First, to help make some of the subse-
quent expressions less cumbersome. Which value of k is intended will be clear from
the context or it will be made explicit. The second reason for introducing this vari-
able is that it provides the transition to the continuum equations. As we shall see,
at a certain point in the subsequent arguments w̃ will appear within the arguments
of coefficient functions of the large n asymptotic expansions. Since these coefficient
functions are in fact analytic in their arguments, we will take advantage of this fact
to regard these functions as analytic functions of w̃ regarded as a continuous variable.

In Theorem 3.2 we will present a more precise statement and extension of prior
results on the free energy expansion (1.17) as they will relate to what we do in the re-
mainder of this paper. However, before getting to that we need to recall a preliminary
prior result.

Proposition 3.1. [10]

τ2n+k,N (t1,t2ν+1)= τ2n+k,n+k

(

(

n+k

N

)−1/2

t1,

(

n+k

N

)ν−1/2

t2ν+1

)

= τ2n+k,n+k

(

(

1+
k

n

)−1/2

s1,

(

1+
k

n

)ν−1/2

s2ν+1

)

= τ2n+k,n+k

(

w̃−1/2s1,w̃
ν−1/2s2ν+1

)

.

Proof. The first equality follows from an appropriate change of variables in
the Szegö representation (2.8, 2.9), the second just applies the definitions (3.2) and
(3.3) and the third applies (3.4). The change of variables in the Szegö representation

amounts to introducing the re-scaling λj =
√
xλ̂j , from which we then have

Ẑ
(n)
N (t1,t2ν+1)=xn2/2

∫

· · ·
∫

exp

(

−n

{ n
∑

j=1

(

1

2
λ̂2
j + t2ν+1x

ν−1/2λ̂2ν+1
j

+
t1√
x
λ̂j

)})

V(λ̂) dnλ̂

=xn2/2Ẑ(n)
n (s1,s2ν+1) , (3.5)

where V(λ)=∏j<ℓ |λj−λℓ|2. Shifting from n to n+k this becomes

Ẑ
(n+k)
N (t1,t2ν+1)=x(n+k)2/2Ẑ

(n+k)
n+k

(

(

1+
k

n

)−1/2

s1,

(

1+
k

n

)ν−1/2

s2ν+1

)

.
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The proposition follows immediately from this.

Remark 3.1. Starting in Subsection 3.1 we will in general be setting x=1. That is
because the main focus in this paper is on the structure of the partition function coef-
ficients as generating functions for map enumeration. However, for (possible, future)
applications to the statistics of random matrix eigenvalues, the ability to asymptot-
ically “detune” the matrix size away from the scale of the potential is important.
Therefore, we have chosen to keep this parameter free up through this preliminary
subsection.

We introduce one more notational definition:

∆k logτ
2
n,n(s1,s2ν+1)

.
=logτ2n+k,n+k(w̃

−1/2s1,w̃
ν−1/2s2ν+1)− logτ2n,n(s1,s2ν+1).

(3.6)
Theorem 3.2. [9, 10, 3]

logτ2n+k,n+k (s1,s2ν+1)=n2w̃2e0(w̃
−1/2s1,w̃

ν−1/2s2ν+1)

+e1(w̃
−1/2s1,w̃

ν−1/2s2ν+1)+ . . .

+
1

n2g−2
w̃2−2geg(w̃

−1/2s1,w̃
ν−1/2s2ν+1)+ . . . (3.7)

is an asymptotic expansion in n−2, uniformly valid for (s1,s2ν+1)∈K= any compact

subset of (−δ,δ)× [0,s
(ν,g)
c ) and |k|≤ν+1 with ν+1

n <ǫ for ǫ and δ sufficiently small.

(Here s
(ν,g)
c is a fixed positive constant depending only on ν and g.) Explicitly, this

means that for each g there is a constant, Cg, depending only on ν and K, such that

∣

∣

∣logτ2n+k,n+k (s1,s2ν+1)−n2w̃2e0(w̃
−1/2s1,w̃

ν−1/2s2ν+1)− . . .

− 1

n2g−2
w̃2−2geg(w̃

−1/2s1,w̃
ν−1/2s2ν+1)

∣

∣

∣

∣

≤ Cg

n2g

for all (s1,s2ν+1)∈K and |k|≤ν+1.

a) This expansion may be differentiated term by term in s1,s2ν+1 with the
same type of uniformity except that the constant Cg will now also de-
pend on the multi-index of the derivatives. Moreover, the coefficient
eg(w

−1/2s1,w
ν−1/2s2ν+1) and its mixed derivatives in (w,s1,s2ν+1), after be-

ing evaluated at (w,s1)=(1,0), are all complex analytic in a disc of radius

s
(ν,g)
c centered at 0 in the complex s2ν+1 plane. (Here we introduce w as a
continuous complex variable replacing w̃; hence, one may differentiate eg with
respect to it.) One expects this radius of convergence to be independent of g
as is known to be true in the case of even weights [7].

b) One also has an asymptotic expansion for differences ∆k logτ
2
n,n:

∆k logτ
2
n,n (s1,s2ν+1) (3.8)

=
∞
∑

g=0

1

n2g−2

∞
∑

j=1

1

j!

∂j

∂wj
w2−2geg(w

−1/2s1,w
ν−1/2s2ν+1)|w=1

(

k

n

)j

,

where we regard w as a continuous complex variable. Once again this expan-
sion is uniformly valid for (s1,s2ν+1)∈K and |k|≤ν+1, by which we mean
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that for each g there is a constant, Dg, depending only on ν and K such that
∣

∣

∣

∣

∣

∆k logτ
2
n,n (s1,s2ν+1)−

g
∑

m=0

{

1

n2m−2

(3.9)

2(g−m)+1
∑

j=1

1

j!

∂j

∂wj
w2−2mem

(

w−1/2s1,w
ν−1/2s2ν+1

)

|w=1

(

k

n

)j






∣

∣

∣

∣

∣

∣

≤ Dg

n2g
.

This expansion may be differentiated term by term in s1,s2ν+1 preserving
uniformity.

Proof. The basic result is that of [9], extended in [3] to the case of weights with
odd dominant power (see (1.17) i - iii). From this it follows that one has constants
Ĉg depending only on ν,K such that

∣

∣

∣logτ2n+k,n+k (s1,s2ν+1)−(n+k)2e0(w̃
−1/2s1,w̃

ν−1/2s2ν+1)− . . .

· · ·− 1

(n+k)2g−2
eg(w̃

−1/2s1,w̃
ν−1/2s2ν+1)

∣

∣

∣

∣

≤ Ĉg

(n+k)2g
.

We then rewrite the above equation using n+k=nw̃,
∣

∣

∣logτ2n+k,n+k (s1,s2ν+1)−n2w̃2e0(w̃
−1/2s1,w̃

ν−1/2s2ν+1)− . . .

· · ·− 1

n2g−2
w̃2−2geg(w̃

−1/2s1,w̃
ν−1/2s2ν+1)

∣

∣

∣

∣

≤ Ĉg

n2gw̃2g
.

The desired estimate is realized by taking Cg =
Ĉg

(1−ǫ)2g ≥
Ĉg

w̃2g .

The ensuing statements part (a) of the theorem also follow directly from these
prior results. In particular, the analyticity of eg in its arguments follows from (1.17)
(ii); mixed derivatives then yield linear combinations of derivatives of eg with respect
to its arguments whose coefficients are polynomials in s1,s2ν+1 and fractional powers
of w (which is bounded away from zero). Evaluating at (w,s1)=(1,0) then yields a
linear combination of derivatives of eg with coefficients that are polynomials in s2ν+1.
By (ii) this linear combination is analytic in a disc as stated in the theorem.

For (b) observe that a straightforward estimate of the difference of the asymptotic
expansions for logτ2n+k,n+k and logτ2n,n yields

∣

∣

∣logτ2n+k,n+k (s1,s2ν+1)− logτ2n,n (s1,s2ν+1)−n2w2e0(w
−1/2s1,w

ν−1/2s2ν+1)

+e0(s1,s2ν+1)− . . .

− 1

n2g−2
w2−2geg(w

−1/2s1,w
ν−1/2s2ν+1)+eg(s1,s2ν+1)

∣

∣

∣

∣

w=1+ k
n

≤ 2Cg

n2g
.

We rewrite this as
∣

∣

∣

∣

∆k logτ
2
n,n (s1,s2ν+1)

−
g
∑

m=0

1

n2m−2

(

w2−2mem(w−1/2s1,w
ν−1/2s2ν+1)−eg(s1,s2ν+1)

)

∣

∣

∣

∣

w=1+ k
n

≤ 2Cg

n2g
,
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which is
∣

∣

∣

∣

∆k logτ
2
n,n (s1,s2ν+1)

−
g
∑

m=0

1

n2m−2

(

(1+
k

n
)2−2mem((1+

k

n
)−1/2s1,(1+

k

n
)ν−1/2s2ν+1)

−eg(s1,s2ν+1)

)∣

∣

∣

∣

≤ 2Cg

n2g
.

One now inspects the Taylor expansion of the em terms, centered at w=1 and eval-
uated at 1+ k

n . For notational convenience set

Fm (w,s1,s2ν+1)=w2−2mem(w−1/2s1,w
ν−1/2s2ν+1).

Then this expansion has the form
∣

∣

∣

∣

∣

∆k logτ
2
n,n (s1,s2ν+1)−

g
∑

m=0

{

1

n2m−2

2(g−m)+1
∑

j=1

1

j!

∂j

∂wj
Fm (w,s1,s2ν+1) |w=1

(

k

n

)j

+R(m) (w,s1,s2ν+1)

(

k

n

)2(g−m+1)






∣

∣

∣

∣

∣

∣

≤ 2Cg

n2g
,

where R(m) (w,s1,s2ν+1) denotes the remainder term, of order 2(g−m+1) in w, for
Fm. By elementary inequalities one then has

∣

∣

∣

∣

∆k logτ
2
n,n (s1,s2ν+1)

−
g
∑

m=0

1

n2m−2

2(g−m)+1
∑

j=1

1

j!

∂j

∂wj
w2−2mem

(

w−1/2s1,w
ν−1/2s2ν+1

)

|w=1

(

k

n

)j ∣
∣

∣

∣

≤ 2Cg

n2g
+

1

n2g

g
∑

m=0

∣

∣

∣
R(m) (w,s1,s2ν+1)

∣

∣

∣
|k|2(g−m+1).

By Cauchy’s remainder theorem for analytic functions one has
∣

∣

∣R(m) (w,s1,s2ν+1)
∣

∣

∣≤22(g−m+1)dm,

dm= max
(s1,s2ν+1)∈K

max
|w−1|=1/2

Fm (w,s1,s2ν+1) .

(We assume here that ǫ<1/2.) Thus statement (b) is established by taking

Dg =2Cg+

g
∑

m=0

dm|2ν+2|2(g−m+1).

Remark 3.2. We mention here that the variables sj as defined above differ slightly
from their usage in related works [10, 7] where sj =−cjtj for appropriate constants
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cj >0. Also for comparison with [3], s3=−u, where u is the weight parameter in
that work. We further observe that because of the combinatorial interpretation of
these generating functions, one can show that eg(s2ν+1) is even in s2ν+1. Thus odd
derivatives of eg are odd functions and even derivatives are even.

Remark 3.3. By collecting terms in (3.9) of the same order in n−1 one sees that
the asymptotic series represented by (3.8) does indeed have a uniformly valid, well
ordered expansion in inverse powers of n. The precise form of the coefficients in this
re-summed expansion is not prima facie obvious; however, the results in the remainder
of this paper will show precisely how these coefficients and those of other similarly
derived asymptotic series can in fact be determined. A key point for this process may
already be observed in (3.9); namely, all terms in the re-summation will be in the
form of differential expressions in the continuous variable w which are then uniformly
evaluated at w=1. In the relevant settings, the coefficients of the inverse powers of n
may be regarded as hierarchies of differential equations in w which are to be solved and
whose solutions are then evaluated at w=1 in order to yield explicit expressions for
generating functions (in s2ν+1) and similar functions of combinatorial or statistical
interest. In the remainder of this section we build upon these ideas to derive the
general form of the various hierarchies of differential equations. In Sections 4 and
5 we carry out this process in complete detail for the trivalent case (ν=1). To get
an idea of how the whole strategy comes together the reader might find it useful to
browse these last two sections before proceeding systematically through the general
derivations which begin in Subsection 3.1.

We will make essential use of the Hirota formulas for the Toda variables in their
original scaling.

Lemma 3.3. (Hirota)

an,N =− 1

N

∂

∂t1
log

[

τ2n+1,N

τ2n,N

]

=− 1

N

∂

∂t1
log

[

Z
(n+1)
N (t1,t2ν+1)

Z
(n)
N (t1,t2ν+1)

]

, (3.10)

b2n,N =
1

N2

∂2

∂t21
logτ2n,N =

1

N2

∂2

∂t21
log

1

N2
Z

(n)
N (t1,t2ν+1), (3.11)

where the factors of 1/N are consistent with the energy scaling chosen in the definition
of µ (1.1).

Proof. From (2.17) and (2.18) one deduces that the Toda equations for ν=0 are

− 1

N

dan,N
dt1

= b2n+1,N −b2n,N ,

− 1

N

db2n,N
dt1

= b2n,N (an,N −an−1,N ) .

Substituting the fundamental identity (2.11) into the second of these equations one
has

an,N −an−1,N =− 1

N

d

dt1

(

logτ2n+1,N −2logτ2n,N − logτ2n−1,N

)

.

From the Szegö representation one has that the τ2n,N are simultaneously analytic in
(t1,t2ν+1). By continuation of (t1,t2ν+1) back to (0,0), the recurrence coefficients
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become those of the Hermite polynomials. From these initial values and the previous
line one may deduce that, in fact,

an,N =− 1

N

d

dt1
log

τ2n+1,N

τ2n,N
,

which is the first Hirota relation. Substituting this into the first Toda equation above
one may similarly derive the second Hirota relation. The expression in terms of the
partition function in each case follows directly from (1.16).

Corollary 3.4.

an+k,N (t1,t2ν+1)=− 1

N

∂

∂t1

[

logτ2n+k+1,N (t1,t2ν+1)− logτ2n+k,N (t1,t2ν+1)
]

=−x1/2

n

∂

∂s1
∆1 logτ

2
n+k,n+k (s1,s2ν+1) , (3.12)

b2n+k,N (t1,t2ν+1)=
1

N2

∂2

∂t21
logτ2n+k,N

=
x

n2

∂2

∂s21

[

logτ2n,n(s1,s2ν+1)+∆k logτ
2
n,n(s1,s2ν+1)

]

. (3.13)

Proof. These representations follow directly from the Hirota relations (3.10),
(3.11), along with (3.2), (3.3), and the definition (3.6) of ∆k.

We have the following asymptotic expansions for an+k,N , bn+k,N . Moreover,
expanding the ∂/∂w and ∂/∂s1 derivatives within the coefficients in these asymptotic
expansions one can see that these coefficients acquire a self-similar scaling.

Theorem 3.5. The following are asymptotic series in 1/n:

an+k,N =h(s1,s2ν+1,w̃)=x1/2
∑

g≥0

hg(s1,s2ν+1,w̃)n
−g, (3.14)

hg(s1,s2ν+1,w̃)=−w̃1−g×
∑

2g1+j=g+1
g1≥0,j >0

1

j!

∂j+1

∂s1∂wj

[

w2−2g1eg1

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)]

w=1
,

b2n+k,N =f(s1,s2ν+1,w̃)=x
∑

g≥0

fg(s1,s2ν+1,w̃)n
−2g, (3.15)

fg(s1,s2ν+1,w̃)= w̃2−2g ∂2

∂s21
eg(w̃

−1/2s1,w̃
ν−1/2s2ν+1).

Moreover

hg(s1,s2ν+1,w)=w
1
2−gug(s1w

−1/2,s2ν+1w
ν− 1

2 ), (3.16)

fg(s1,s2ν+1,w)=w1−2gzg(s1w
−1/2,s2ν+1w

ν− 1
2 ), (3.17)

where ug and zg are analytic functions of their arguments in a neighborhood of (0,0)
and w is a continuous variable in terms of which the general form of these coefficient
functions is described.
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Proof. We first consider (3.15). By (3.13), (3.7), and the fact that these
asymptotic series may be differentiated term by term, one has

b2n+k,N =f(s1,s2ν+1,w̃)=x

∞
∑

g=0

1

n2g
w̃2−2g ∂2

∂s21
eg(w̃

−1/2s1,w̃
ν−1/2s2ν+1)

=x

∞
∑

g=0

1

n2g
w̃1−2g ∂2

∂q2
eg(q,w̃

ν−1/2s2ν+1)|q=w̃−1/2s1 . (3.18)

Thus we define

zg(s1w
−1/2,s2ν+1w

ν− 1
2 )

.
=

∂2

∂q2
eg(q,w

ν−1/2s2ν+1)|q=w−1/2s1

which, in light of Theorem 3.2, establishes all claims concerning f and fg. The case
for h and hg proceeds in essentially the same manner but is a bit more complicated.
By (3.12) and (3.7) one has

an+k,N =−x1/2

n

∂

∂s1

∑

g≥0

[

(n+k+1)2−2geg

(

(w̃+1/n)−1/2s1,(w̃+1/n)ν−1/2s2ν+1

)

−(n+k)2−2geg

(

w̃−1/2s1,w̃
ν−1/2s2ν+1

)]

.

Setting ŵ=1+ 1
n+k , this may be rewritten as

h(s1,s2ν+1,w̃)=−x1/2

n

∂

∂s1

∑

g≥0

(n+k)2−2g
[

ŵ2−2geg

(

(ŵw̃)−1/2s1,(ŵw̃)
ν−1/2s2ν+1

)

−eg

(

w̃−1/2s1,w̃
ν−1/2s2ν+1

)]

.

We next expand the summands in terms of Taylor series in the continuous variable
w, centered at w=1 and evaluated at w=1+ 1

n+k :

h(s1,s2ν+1,w̃)

=− x1/2

n

∂

∂s1

∑

g≥0

(n+k)2−2g×

∑

j≥1

1

j!

∂j

∂wj

[

w2−2geg

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)]

w=1

1

(n+k)j

=− x1/2

n

∂

∂s1

∑

g≥0

(n+k)1−g×

∑

2g1+j=g+1
g1≥0,j >0

1

j!

∂j

∂wj

[

w2−2g1eg1

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)]

w=1
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=x1/2
∑

g≥0

{

n−gw̃1−g

∑

2g1+j=g+1
g1≥0,j >0

− 1

j!

∂j+1

∂s1∂wj

[

w2−2g1eg1

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)

]

w=1

}

.

In the second equality above, we have collected the coefficients of (n+k)1−g; in the
last equality we make use of the relation n+k=nw̃. To see the self-similar structure
of the internal sum in this last line, observe that

∂

∂w
wmE

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)

=mwm−1E
(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)

+(ν− 1

2
)wm−1

(

(ww̃)ν−1/2s2ν+1

) ∂

∂q2
E(ww̃)−1/2s1,q2)q2=(ww̃)ν−1/2s2ν+1

− 1

2
wm−1

(

(ww̃)−1/2s1

) ∂

∂q1
E(q1,(ww̃)

ν−1/2s2ν+1)q1=(ww̃)−1/2s1 ,

where E(q1,q2) is an arbitrary analytic function of (q1,q2). We see from this equation
that a w derivative of a power of w times a function of the self-similar variables q1=
(ww̃)−1/2s1, q2=(ww̃)ν−1/2s2ν+1 has the same form, with the power of the pre-factor
reduced by 1. Thus, by induction, the summands of the expression for hg(s1,s2ν+1,w̃)
are of the form

w̃1−g ∂j+1

∂s1∂wj

[

w2−2g1eg1

(

(ww̃)−1/2s1,(ww̃)
ν−1/2s2ν+1

)]

w=1

= w̃1/2−g ∂j

∂wj

[

w3/2−2g1
∂

∂q1
eg1

(

(q1,(ww̃)
ν−1/2s2ν+1

)

q1=(ww̃)−1/2s1

]

w=1

= w̃1/2−gEj(w̃
−1/2s1,w̃

ν−1/2s2ν+1),

for a function Ej of the self-similar variables w−1/2s1 and wν−1/2s2ν+1. The claims
concerning h and hg now follow from these observations.

Example. The terms of order less than 1/n2 in these series have the coefficients

h0(s1,s2ν+1,w̃)=−w̃
∂2

∂s1∂w
w2e0((ww̃)

−1/2s1,(ww̃)
ν−1/2s2ν+1)

∣

∣

∣

∣

w=1

=− ∂2

∂s1∂(ww̃)
(ww̃)2e0((ww̃)

−1/2s1,(ww̃)
ν−1/2s2ν+1)

∣

∣

∣

∣

ww̃=w̃

=− ∂2

∂s1∂w
w2e0(w

−1/2s1,w
ν−1/2s2ν+1)

∣

∣

∣

∣

w=w̃

, (3.19)

at order 1 in h, where in the second line we have made a change of variables and in
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the third line we have relabeled ww̃ as w; and

f0(s1,s2ν+1,w̃)= w̃2 ∂2

∂s21
e0(w̃

−1/2s1,w̃
ν−1/2s2ν+1),

h1(s1,s2ν+1,w̃)=−1

2

∂3

∂s1∂w2
w2e0((ww̃)

−1/2s1,(ww̃)
ν−1/2)

∣

∣

∣

∣

w=1

=−1

2

∂3

∂s1∂(ww̃)2
(ww̃)2e0((ww̃)

−1/2s1,(ww̃)
ν−1/2)

∣

∣

∣

∣

ww̃=w̃

=−1

2

∂3

∂s1∂w2
w2e0(w

−1/2s1,w
ν−1/2)

∣

∣

∣

∣

w=w̃

, (3.20)

at order 1 in f and order 1/n in h respectively.
In particular, the terms up through order 1/n of an,N and bn,N are, respectively,

x1/2h0(s1,s2ν+1,1)=x1/2u0(s1,s2ν+1)

=−x1/2 ∂2

∂s1∂w
w2e0(w

−1/2s1,w
ν−1/2s2ν+1)|w=1, (3.21)

x1/2h1(s1,s2ν+1,1)=x1/2u1(s1,s2ν+1)

=−1

2
x1/2 ∂3

∂s1∂w2
w2e0(w

−1/2s1,w
ν−1/2s2ν+1)|w=1, (3.22)

xf0(s1,s2ν+1,1)=xz0(s1,s2ν+1)

=x
∂2

∂s21
e0(s1,s2ν+1). (3.23)

In Subsection 4.1.1 we will show that the coefficients u0 and z0 defined here are indeed
the same as the functions introduced in Section 1 to describe how the endpoints of
the support of the equilibrium measure depend on the parameters in the exponential
weight.

We also introduce a shorthand notation to denote the expansion of the coefficients
of h(s1,s2ν+1,w̃) and f(s1,s2ν+1,w̃) around w=1. This is analogous to what was done
in interpreting (3.8) via (3.9), the main difference being that the order of summation
is interchanged. This is again justified by the asymptotic interpretation (3.9) where
both summations are finite.

Definition 3.6. For w̃=1+k/n with |k|≤2ν and 2ν
n <ǫ,

h(s1,s2ν+1,w̃)=
∞
∑

m=0

hw(m) |w=1

m!

(

k

n

)m

, (3.24)

f(s1,s2ν+1,w̃)=

∞
∑

m=0

fw(m) |w=1

m!

(

k

n

)m

, (3.25)

where the subscript w(m) denotes the formal operation of taking the mth derivative
with respect to w of each coefficient of h (respectively f):

hw(m) =
∑

g≥0

∂m

∂wm
hg(s1,s2ν+1,w)

1

ng
,

fw(m) =
∑

g≥0

∂m

∂wm
fg(s1,s2ν+1,w)

1

n2g
.
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As valid asymptotic expansions these representations denote the asymptotic series
whose successive terms are gotten by collecting all terms with a common power of 1/n
in (3.24) (respectively (3.25)).

In what follows, in the rest of Section 3 and in Section 4, we will frequently abuse
notation and drop the evaluation at w=1. In particular, with x=1, we will write

an+k,N =

∞
∑

m=0

hw(m)

m!

(

k

n

)m

=

∞
∑

m=0

1

m!

∑

g≥0

∂m

∂wm
hg(s1,s2ν+1,w)

1

ng

(

k

n

)m

, (3.26)

b2n+k,N =
∞
∑

m=0

fw(m)

m!

(

k

n

)m

=
∞
∑

m=0

1

m!

∑

g≥0

∂m

∂wm
fg(s1,s2ν+1,w)

1

n2g

(

k

n

)m

. (3.27)

In doing this these series must now be regarded as formal but whose orders are still
defined by collecting all terms with a common power of 1/n. They will be substituted
into the difference string and the Toda equations to derive the respective continuum
equations. At any point in this process, if one evaluates these expressions at w=1
one may recover valid asymptotic expansions in which the an+k,N and b2n+k,N have
their original significance as valid asymptotic expansions of the recursion coefficients.
In particular, in Section 5, the results of the formal derivations will be evaluated at
w=1 and we will recover explicit expressions for the eg appearing in the asymptotic
expansion of the partition function.

3.1. Continuum limits of the difference string equations. We are now
in a position to substitute our asymptotic expansions for an+k,N and bn+k,N into
the difference string equations (2.15) and (2.16). Collecting terms in these equations
order by order in powers of 1/n we will give a hierarchy of equations that, in principle,
allows one to recursively determine the coefficients of (3.14) and (3.15). We will refer
to this hierarchy as the Continuum Difference String Equations. (Note that one
has such a hierarchy for each value of ν.) Of course this is a standard procedure
in perturbation theory. The equations we will derive are ODEs in which w, now
regarded as a continuous variable, is the independent variable. The variables s1 and
s2ν+1 here are parameters on which the ODE depends analytically. One must still
determine, at each level of the hierarchy, which solution of the ODE is the one that
corresponds to the expressions given for hg and fg in Theorem 3.5. This amounts to a
kind of solvability condition which will be imposed through a small number of initial
Taylor coefficients of eg to insure that the solution coincides with its enumerative
interpretation in terms of counting maps. This solvability analysis will be illustrated
in detail in Section 4. In this subsection the main emphasis will be to derive the form
of the continuum string difference equations and their general solutions.

From this point on in this section (and in fact for the remainder of the paper)
we will set x=1; i.e., n=N . This has the effect of centering the matrix size n at
the same scale as that of the potential, N . We will also set s1=0 from now on
since its role in determining the structure of the asymptotic expansions of an+k and
bn+k is now completed. When x=1, s2ν+1= t2ν+1; however, we will continue to
present statements in terms of the s-variables. If one wants to subsequently “detune”
to a value x.1 one can do this by replacing s2ν+1 with its expressions in (3.3)
and comparing to (3.14) and (3.15). Finally, when the context is clear, we will for
simplicity just use s to denote s2ν+1.

We begin by substituting the expansions (3.26) and (3.27) into the difference
equations (2.15) and (2.16) which are satisfied by these coefficients (as represented
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through L). We arrive at the following formal asymptotic equations. For Equation
(2.15) one has

0=

[

∞
∑

m=1

hw(m)

m!

(

1

n

)m
]{[

∞
∑

m=0

fw(m)

m!

(

1

n

)m
]

+(2ν+1)s2ν+1





∑

P∈P2ν(1,0)




2µ(P )+1
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa

n

)m








ν−µ(P )
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb

n

)m














+(2ν+1)s2ν+1





∑

P∈P2ν(2,0)




2µ(P )
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb

n

)m




−





2µ(P )
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−1

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−1

n

)m






 , (3.28)

where µ(P )= ⌊σ/2⌋ for σ equal to the total number of horizontal steps in a given
path P and ℓpa

(respectively ℓpb
) denotes the lattice location of the path at the

ptha horizontal step (respectively before the pthb downstep). Note also that we have
taken advantage of the discrete space homogeneity of these walks in order to shift the
initial/final points of these paths to (1,0), (2,0), and (2,1) in the respective cases.
Note further that each term of (3.28) is divisible by

b2n+1=

∞
∑

m=0

fw(m)

m!

(

1

n

)m

.

Likewise for (2.16) we find

1

n
=

[

∞
∑

m=1

fw(m)

m!

(

1

n

)m
]

+(2ν+1)s2ν+1





∑

P∈P2ν(1,0)




2µ(P )+1
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa

n

)m








ν−µ(P )
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb

n

)m




−





2µ(P )+1
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−1

n

)m








ν−µ(P )
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−1

n

)m






 . (3.29)
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To begin with, the equations at leading order are

0=∂wh0

(

1+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ+1,ν−µ−1,ν−µ

)

h2µ+1
0 fν−µ−1

0

)

+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ,ν−µ−1,ν−µ+1

)

∂w

(

h2µ
0 fν−µ+1

0

)

/f0,

1=∂wf0+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ+1,ν−µ−1,ν−µ

)

∂w

(

h2µ+1
0 fν−µ

0

)

.

This may be written in a vector form as
Proposition 3.7.

A

(

h0,w

f0,w

)

=

(

0
1

)

, (3.30)

where

A11=1+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ+1,ν−µ−1,ν−µ

)

h2µ+1
0 fν−µ−1

0 (3.31)

+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ,ν−µ−1,ν−µ+1

)

(2µ)h2µ−1
0 fν−µ

0 ,

A12=(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ,ν−µ−1,ν−µ+1

)

(ν−µ+1)h2µ
0 fν−µ−1

0 , (3.32)

A21=f0A12, (3.33)

A22=1+(2ν+1)s2ν+1

ν−1
∑

µ=0

(

2ν

2µ+1,ν−µ−1,ν−µ

)

(ν−µ)h2µ+1
0 fν−µ−1

0 =A11,

(3.34)

in terms of tri-nomial coefficients.

We will see that the coefficient matrix of the n−2g−1 terms is of the same form
as the matrix in Equation (3.30). Thus the following lemma will be useful.

Lemma 3.8. For the matrix A given in (3.30),

A−1=

(

f0,w h0,w

h0,wf0 f0,w

)

.

Proof. The second column of the inverse follows directly from (3.30). To find
the first column one notes that

A−1=

(

A11 A12

A12f0 A11

)−1

=
1

A2
11−A2

12f0

(

A11 −A12

−A12f0 A11

)

.

Thus we have that A11/det(A)=f0,w and −A12/det(A)=h0,w, and the result fol-
lows.
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We will also need the following lemma.

Lemma 3.9. For the matrix A given in (3.30),

δh0
A12−δf0A11=0,

δh0
A22−δf0A21=0,

where δh0
(resp. δf0) denotes the functional derivative with respect to h0 (resp. f0).

Proof. The left-hand side of the first equation, written out, is

(2ν+1)s2ν+1

[

ν−1
∑

µ=1

(

2ν

2µ,ν−µ−1,ν−µ+1

)

(ν−µ+1)(2µ)h2µ−1
0 fν−µ−1

0

−
ν−1
∑

µ=0

(

2ν

2µ+1,ν−µ−1,ν−µ

)

(ν−µ−1)h2µ+1
0 fν−µ−2

0

−
ν−1
∑

µ=1

(

2ν

2µ,ν−µ−1,ν−µ+1

)

(2µ)(ν−µ)h2µ−1
0 fν−µ−1

0

]

. (3.35)

Shifting the index of the middle sum by µ 7→µ−1 one sees that the coefficient of each
monomial in h0,f0 cancels and the result follows. To prove the second formula one
first applies the identity (3.33) to find

δh0
A22−δf0A21= δh0

A22−f0δf0A12−A12. (3.36)

Written out, the right-hand side of (3.36) is

(2ν+1)s2ν+1

ν−1
∑

µ=1

[(

2ν

2µ+1,ν−µ−1,ν−µ

)

(ν−µ)(2µ+1)

−
(

2ν

2µ,ν−µ−1,ν−µ+1

)

(ν−µ+1)(ν−µ−1)

−
(

2ν

2µ,ν−µ−1,ν−µ+1

)

(ν−µ+1)

]

h2µ
0 fν−µ−1

0 ,

whose coefficients vanish.

The homogeneous terms of the equations at level n−2g−1 can be computed directly.
They are linear in h2g and fg with coefficients depending only on h0, f0, and their w
derivatives. The inhomogeneous (forcing) terms depend on hj for j <2g, and fj for
j <g. As usual in perturbation theory, the homogeneous part of the equation can be
derived by replacing (h0,f0) in the leading order equations with

(h0+ǫh2g,f0+ǫfg), (3.37)

and retaining just the first order in ǫ terms. We find that the homogeneous terms are

A

(

h2g,w

fg,w

)

+h2gδh0
A

(

h0,w

f0,w

)

+fgδf0A

(

h0,w

f0,w

)

. (3.38)
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We also have the identity

∂w

{

A

(

h2g

fg

)}

=A

(

h2g,w

fg,w

)

+δh0
A

(

h0,wh2g

h0,wfg

)

+δf0A

(

f0,wh2g

f0,wfg

)

. (3.39)

Lemma 3.9 implies that (3.38) is in fact equal to the right-hand side of (3.39). Thus
the equation at order n−2g−1 has the form

∂w

{

A

(

h2g

fg

)}

=

(

F
(1)
2g

F
(2)
2g

)

, (3.40)

where F
(1)
2g and F

(2)
2g are expressions involving the lower order terms in the expansions

of (3.28) and (3.29). We also find, at order n−2g, that

∂w {A11h2g−1}=F
(1)
2g−1. (3.41)

In fact there is a second equation involving h2g−1; however, it must be equivalent
to the first and so we do not record it. Equations (3.40) and (3.41), together with
Lemma 3.8, yield the following

Proposition 3.10. The functions h2g,h2g−1,fg may be recursively found by the
formulas

(

h2g

fg

)

=

(

f0,w h0,w

h0,wf0 f0,w

)∫

(

F
(1)
2g

F
(2)
2g

)

dw, (3.42)

h2g−1=
1

A11

∫

F
(1)
2g−1dw. (3.43)

3.2. The continuum limit of the Toda equations. Analogous to what
was done in the previous subsection for the difference string equations, one can study
the system (2.17) and (2.18) expanded on the formal asymptotic series (3.26) and
(3.27):

− 1

n

d

ds
h(s,w)=

∑

P∈{P2ν+1(1,0)}




2µ(P )
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb

n

)m




−





2µ(P )
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−1

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−1

n

)m


 ,

(3.44)

− 1

n

d

ds
f(s,w)=

∑

P∈{P2ν+1(2,0)}




2µ(P )+1
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−1

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−1

n

)m
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−





2µ(P )+1
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−2

n

)m








ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−2

n

)m




−
(

∞
∑

m=1

hw(m)

m!

(−1

n

)m
)

∑

P∈{P2ν+1(1,0)}





2µ(P )
∏

pa=1

∞
∑

m=0

hw(m)

m!

(

ℓpa
−1

n

)m




×





ν−µ(P )+1
∏

pb=1

∞
∑

m=0

fw(m)

m!

(

ℓpb
−1

n

)m


 , (3.45)

where, again, µ(P )= ⌊σ/2⌋ for σ equal to the total number of horizontal steps in a
given path P and ℓpa

(respectively ℓpb
) denotes the lattice location of the path at the

ptha horizontal step (respectively before the pthb downstep). As before, the expansion
order by order produces a hierarchy of equations that we will call the Continuum
Toda equations. At leading order in the hierarchy one has, for general ν,

− d

ds
h0(s,w)=∂w

ν
∑

µ=0

(

2ν+1

2µ,ν−µ,ν−µ+1

)

h2µ
0 fν−µ+1

0 , (3.46)

− d

ds
f0(s,w)=∂w

ν−1
∑

µ=0

(

2ν+1

2µ+1,ν−µ−1,ν−µ+1

)

h2µ+1
0 fν−µ+1

0

+∂wh0

ν
∑

µ=0

(

2ν+1

2µ,ν−µ,ν−µ+1

)

h2µ
0 fν−µ+1

0 . (3.47)

At orders n−2g the equations are equivalent to a hierarchy of 2×2 quasi-linear
systems of PDEs.
Proposition 3.11.

− d

ds

(

h2g

fg

)

=∂w

[

B

(

h2g

fg

)]

+

(

0
−r1f0,wh2g+r2h0,wfg

)

+

(

Forcing(1)g

Forcing(2)g

)

, (3.48)

where

B11=B22=

ν
∑

µ=1

(

2ν+1

2µ,ν−µ,ν−µ+1

)

2µh2µ−1
0 fν−µ+1

0 , (3.49)

B12=

ν
∑

µ=0

(

2ν+1

2µ,ν−µ,ν−µ+1

)

(ν−µ+1)h2µ
0 fν−µ

0 , (3.50)

B21=f0B12, (3.51)

r1=(2ν+1)h2ν
0 +

ν−1
∑

µ=0

(

2ν+1

2µ+1,ν−µ−1,ν−µ+1

)

(2µ+1)(ν−µ+1)h2µ
0 fν−µ

0 ,

(3.52)

r2=

ν
∑

µ=0

(

2ν+1

2µ,ν−µ,ν−µ+1

)

(ν−µ+1)h2µ
0 fν−µ

0 . (3.53)
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Proof. The proposition follows from the same approach and methods used to
establish Proposition 3.10. The various relationships between the entries of B are
consequences of simple trinomial identities, as was the case for the relations between
entries of A.

Remark 3.4. We observe that the homogeneous terms in (3.48) are almost in pure
conservation law form, with the first terms on the right being in the form of a spatial
derivative of a flux pair associated to the density pair (h2g,fg). The form of the non-
conservative homogeneous terms (the second group of terms) suggests that one might
be able to use the difference string equations to rewrite these in terms of lower genus
expressions, and thereby pass them into the forcing, so that the equations would then
have the structure of a hierarchy of forced conservation laws. Indeed, in Section 4 we
show that this is what happens for the genus 1 equations.

We also note that the numerical coefficients appearing in the homogeneous terms
of (3.48) depend only on the total number of Motzkin paths of each class Pj(m1,m2)
that appear in the Toda equations. On the other hand the specific terms in the forcing
expressions depend on more detailed combinatorial characteristics of these Motzkin
paths. See [10, 7] for details about how the forcing terms can be determined explicitly
from the structure of the lattice paths in the case of even valence.

4. Specialization to the trivalent case

We now illustrate the results of Section 3, in the trivalent case (when ν=1), to
demonstrate their form and utility. We will then apply Lemma 3.10 to find explicit
expressions for h1, h2, and f1 in terms of f0, h0, and their w-derivatives. As mentioned
at the start of Subsection 3.1, this will require comparison with the enumerative
significance of the coefficients in the asymptotic expansions in order to determine a
unique solution. Note in particular that we will need to go beyond the results of

Section 3 in order to explicitly determine the forcing terms F
(1)
1 , F

(1)
2 , and F

(2)
2 . In

this section we will use s to denote s3.

4.1. String difference equations for j=3. In the trivalent case one has

0= b2n+1

[

(an+1−an)(1+3s(an+an+1))+3s(b2n+2−b2n)
]

, (4.1)

1

n
=(b2n+1+3sb2n+1(an+an+1))−(b2n+3sb2n(an+an−1)) (4.2)

=(b2n+1−b2n)+3sb2n+1(an+an+1)−3sb2n(an+an−1). (4.3)

Using (3.10), (3.11), and Taylor expansions around w=1 of the continuum limits,
we have

• Dividing (4.1) by b2n+1:

0=

(

h

(

s,1+
1

n

)

−h(s,1)

)(

1+3s

(

h(s,1)+h

(

s,1+
1

n

))

+3s

(

f

(

s,1+
2

n

)

−f(s,1)

))

(4.4)

=

(

∞
∑

m=1

hw(m)

m!

1

nm

)[

1+3s

(

2h+
∞
∑

m=1

hw(m)

m!

1

nm

)]

+3s

(

∞
∑

m=1

fw(m)

m!

2m

nm

)

,

(4.5)

where the second line is evaluated at w=1.
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• The Equation (4.2) becomes

1

n
=

(

f

(

s,1+
1

n

)

−f(s,1)

)

+3sf

(

s,1+
1

n

)(

h(s,1)+h

(

s,1+
1

n

))

−3sf(s,1)

(

h(s,1)+h

(

s,1− 1

n

))

=

(

∞
∑

m=1

fw(m)

m!

1

nm

)

+3s

(

f+

∞
∑

m=1

fw(m)

m!

1

nm

)(

2h+

∞
∑

m=1

hw(m)

m!

1

nm

)

−3sf

(

2h+

∞
∑

m=1

hw(m)

m!

(−1)m

m!

)

, (4.6)

where the second line is evaluated at w=1.

4.1.1. Leading order. The leading order (O(n−1)) of the system (4.5-4.6) is
as given in (3.30) with ν=1:

(

0
1

)

=

(

1+6sh0 6s
6sf0 1+6sh0

)(

h0,w

f0,w

)

. (4.7)

Expanding, we have

0=(1+6sh0)h0,w+6sf0,w,

1=6sf0h0,w+(1+6sh0)f0,w.

These can be anti-differentiated with respect to w:

C1(s)=h0+3sh2
0+6sf0,

w+C2(s)=6sf0h0+f0.

The C1(s) and C2(s) are constants of integration which must be determined by the
combinatorial interpretation or some other constraints. For example, by converting
to the self-similar variables s̃=w1/2s and dividing the first equation by w1/2 and the
second by w, we find

w−1/2C1(s)=u0(s̃)+3s̃u0(s̃)
2+6s̃z0(s̃),

1+w−1C2(s)=6s̃z0(s̃)u0(s̃)+z0(s̃).

In order for the left hand side of these equations to give functions of the self-similar
variable s̃ we must have that C1(s)= c1s

−1 and C2(s)= c2s
−2. However the functions

on the right hand side are analytic in a neighborhood of s=s3=0, and so we conclude
that c1= c2=0. Comparing these with (1.10) and (1.11), we have shown here that
the leading order functions of the asymptotic expansion of an,N and bn,N agree with
the functions u0 and z0 describing the equilibrium measure.

4.1.2. n−2g terms. The odd terms of the expansion for h(s,w) are governed
by either of the n−2g terms of Equations (4.5-4.6); i.e., by either of the equations

0=h2g−1,w [1+6sh0]+h0,w [6sh2g−1]−F
(1)
2g−1,

0=6sf0h2g−1,w+6sf0,wh2g−1−F
(2)
2g−1,
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where the F
(j)
2g−1 are the forcing terms coming from the n−2g terms of (4.5-4.6) which

do not contain an h2g−1 or its derivatives. The first equation is equivalent to the
specialization of (3.41) to the trivalent case:

∂w {[1+6sh0]h2g−1}=F
(1)
2g−1.

4.1.3. n−2g−1 terms. The even terms of the expansion for h(s,w) and the
terms of the expansion for f(s,w) are governed by the n−2g−1 terms of equations
(4.5-4.6). We find the system (given by taking ν=1 in (3.40))

∂w

{(

1+6sh0 6s
6sf0 1+6sh0

)(

h2g

fg

)}

=

(

F
(1)
2g

F
(2)
2g

)

, (4.8)

where F
(j)
2g are the forcing terms coming from the n−2g−1 terms of (4.5-4.6) which do

not contain an h2g or fg or their derivatives.
Applying Lemma 3.8 and Proposition 3.10 we have

(

h2g

fg

)

=

(

f0,w h0,w

h0,wf0 f0,w

)∫

(

F
(1)
2g

F
(2)
2g

)

dw, (4.9)

h2g−1=
1

1+6sh0

∫

F
(1)
2g−1dw. (4.10)

Lemma 4.1. h1(s,w)=
1
2h0,w(s,w).

Proof. From (3.43) and the n−2 coefficients in the first difference string Equation
(4.5) one has

[1+6sh0]h1=−
∫ (

3sh2
0,w+

1

2
(1+6sh0)h0,ww+6sf0,ww

)

dw

=−
(

1

2
(1+6sh0)h0,w+6sf0,w

)

+C(s)

=
1

2
((1+6sh0)h0,w)+C(s) by (4.7), so that

h1=
1

2
h0,w+

C(s)

1+6sh0
.

We see that this agrees with the first two terms of the asymptotic expansion of an+k,N ,
given in (3.19) and (3.20),

h0(s,w)=− ∂2

∂s1∂w
w2e0

(

w−1/2s1,w
1/2s3

)

∣

∣

∣

∣

s1=0

, (4.11)

h1(s,w)=−1

2

∂3

∂s1∂w2
w2e0

(

w−1/2s1,w
1/2s3

)

∣

∣

∣

∣

s1=0

, (4.12)

from which we can also conclude that C(s)≡0.

Proposition 4.2.

(

h2

f1

)

=−
(

f0,w h0,w

h0,wf0 f0,w

)(

13
4 s(h0,w)

2+ 5
2sh0h0,ww+4sf0,ww+ 5

12h0,ww

0

)

.
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Proof. From (3.42) and the n−3 coefficients in the differenced string equations
(4.5-4.6) one has

(

h2

f1

)

=−
(

f0,w h0,w

h0,wf0 f0,w

)

×
∫ (

6s(h1+h0,w)
(

h1,w+ 1
2h0,ww

)

+(1+6sh0)
(

1
2h1,ww+ 1

6h0,www

)

1
6 (1+6sh0)f0,www+ 3

2sf0,w(2h1,w+h0,ww)+
3
2sf0,ww(2h1+h0,w)

+4sf0,www

+sf0h0,www

)

dw.

Substituting for the h1 on the right-hand side, from the previous lemma, one finds
that the integrand is an exact derivative, so that the right-hand side becomes

−
(

f0,w h0,w

h0,wf0 f0,w

)(

13
4 s(h0,w)

2+ 5
2sh0h0,ww+4sf0,ww+ 5

12h0,ww+C1(s)
2sh0,wf0,w+s(h0f0,ww+h0,wwf0)+

1
6f0,ww+C2(s)

)

. (4.13)

One finds further, using the leading order Equation (4.7), that the second entry of the
right vector in (4.13) is identically zero, except possibly for the constant of integration
C2(s).

Converting to equations in the self-similar variable s̃=w1/2s, and focusing on the
terms involving C1 and C2 in the expression for f1 (the second component in (4.13)),
we have

f1(s̃)=w−1z1(s̃)

= [terms not involvingC1,C2]−{(f0h0,w)C1(s)+(f0,w)C2(s)} ,

z1(s̃)= [terms not involvingC1,C2]−
1

2
z0(s̃)(u0(s̃)+ s̃u′

0(s̃))w
3/2C1(s)

−(z0(s̃)+
1

2
s̃z′0(s̃))wC2(s).

For this to give an equation for z1 as a function of the self-similar variable s̃ we must
have that C1(s)= c3s

3 and C2(s)= c2s
2. To pin down c1 and c2 we expand the first

3 terms of the Taylor series for z1, as given just above, and find that

z1(s)=−c2s
2+(−72c2+6c3+810)s4+ . . . . (4.14)

On the other hand from the asymptotic expansion (3.18) we have

z1(s)=f1(s,1)=
∂2

∂s21
e1 (s1,s)

∣

∣

∣

∣

s1=0

, (4.15)

and thus the combinatorial meaning of the jth coefficient in the Taylor expansion
of z1 is the number of genus 1 maps, with 2 vertices of valence 1, and j vertices of
valence 3. The set of maps with a fixed valence structure on their vertices is bijectively
equivalent to the set of pairs of permutations (ω,σ), where σ is a fixed permutation
whose cycle structure matches the valence structure of the vertices and ω is a fixed
point free product of disjoint transpositions satisfying a further condition equivalent
to connectedness of the corresponding maps. It is straightforward to partition these
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pairs by the genus. More details on this equivalence can be found in [1] and [16].
This allows one to efficiently count the number of maps corresponding to the first
few Taylor coefficients of z1. The numbers of genus 1 trivalent maps for j=2 and
4 are found to be 0 and 810 ·4!=19440, respectively. Therefore we conclude that
c2= c3=0.

4.2. Toda equations for j=3. In the trivalent case we find that the leading
order equations become

− d

ds
h0(s,w)=3∂w

[

f2
0 +h2

0f0
]

, (4.16)

− d

ds
f0(s,w)=3∂w(h0f

2
0 )+3(∂wh0)

[

f2
0 +h2

0f0
]

. (4.17)

One could integrate these equations and, after determining the constants of integra-
tion, show that they are equivalent when w=1 to (1.10) and (1.11). As this has
already been done for the leading order of the continuum difference string equations
in Section 4.1.1 we omit the analogous computation here.

The higher order equations (for g>0) are

− d

ds3

(

h2g

fg

)

=3∂w

{[

2h0f0 (2f0+h2
0)

f0(2f0+h2
0) 2h0f0

](

h2g

fg

)}

+3(2f0+h2
0)

(

0
h0wfg−f0wh2g

)

+

(

Forcing(1)g

Forcing(2)g

)

.

Remark 4.1. We now observe that, for the case of g=1, by using Proposition 4.2
to re-express the terms in the second summand above in terms of h0, f0, and their
w-derivatives, these terms may be absorbed into the forcing and those homogeneous
terms that remain are now in pure conservation law form as was asserted in remark
3.4.

4.2.1. Odd terms. The odd terms of the expansion of h(s,w) also generate
a hierarchy of (scalar) quasi-linear PDE, which are recursively decoupled from the
even terms. The odd terms do appear in the forcing terms for the non-homogeneous
equations determining h2g and fg described in the previous subsection.

The n−2g+1 term of the expansion of (3.44) is

−dh2g−1

ds
=3∂w (2h0h2g−1f0)+Forcing2g−1. (4.18)

5. Determining eg
Recalling the basic identity (2.11)

b2n=
τ2n+1τ

2
n−1

τ4n
b2n(0), (5.1)

we have, by taking logarithms,

logτ2n+1−2logτ2n+logτ2n−1=log(b2n)− log(b2n)(0), (5.2)

where the initial value b2n(0)=n is given by the recursion relations of the Hermite
polynomials. As in [10], we can use formula (5.2) to recursively determine eg in terms
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of solutions to the continuum equations. We use the asymptotic expansion of b2n which
has the form (3.15):

1

n
b2n=

∞
∑

g=0

fg(s,1)n
−2g

=
∞
∑

g=0

zg(s)n
−2g, (5.3)

where we have used the self-similar scaling

fg(s,w)=w1−2gzg(sw
1/2), giving fg(s,1)= zg(s). (5.4)

In this section, unless otherwise stated we will use s to denote s3. It should also be
noted that the left hand side of Equation (5.2) has the form of a centered second
difference, ∆1τ

2
n,n−∆−1τ

2
n.n.

We introduce here the classes of iterated integrals of rational functions (or iir for
short). These classes are defined inductively in terms of the variable z= z0 regarded
as an independent variable. To begin with, the class contains rational functions of
z. One then adds integrals of these rational functions with respect to dz. Next one
considers the vector space of polynomials in products of these integrals over the field
of rational functions of z and augments the space by integrals, with respect to dz, of
these functions. One continues this iterative process up to any given finite stage. (In
the classical literature these classes are sometimes referred to as abelian functions.)

It follows recursively from (3.42) and (3.43) that u2g,u2g−1 and zg are possibly
in a larger class of functions given by iterated integrals of rational functions as well
as square roots of rational functions of z0.

For general g we have the following theorem.

Theorem 5.1. The function eg(s3) satisfies

eg(s3)=
4

γ2+1

[

s−γ1−1
3

∫ s3

0

sγ1Hg(s)ds−s−γ1−γ2−2
3

∫ s3

0

sγ1+γ2+1Hg(s)ds

]

+C1s
−γ1−1
3 +C2s

−γ1−γ2−2
3 , (5.5)

where Hg(s) is a collection of recursively defined drivers for eg involving terms de-
pending on zj for j≤g and ej for j <g, with

(γ1,γ2)=(1−4g,1) or (3−4g,−3), (5.6)

and where C1 and C2 are constants of integration determined either by the analyticity
of eg(s3) or the initial Taylor coefficients of eg(s3) determined by some other method
(for instance direct counting of maps with few vertices). Either choice for the pair
(γ1,γ2) in (5.6) produce the same expression. Moreover, assuming that zj for j≤g
are in class iir, eg(s3) is also in the class of iterated integrals of rational functions.

Here s is a variable of integration, although it plays, in the integrand, the role of
s3.

Proof. We start from the expression (5.2) and inductively assume that all
necessary zj have been determined (we will need them for j≤g, and will also need
that, by induction, ej has been determined for j <g). The left hand side of (5.2) is
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a second order centered difference and so has an expansion for large n involving only
even derivatives of the spatial variable w. We have

∑

g≥0

1

n2g

[

∂2

∂w2
w2−2geg+

1

12

∂4

∂w4
w4−2geg−1+ · · ·+ 2

(2g)!

∂2g

∂w2g
w2e0

]

w=1

=log(z0)+

∞
∑

j=1

1

n2j

[

zj
z0

− zj−1z1
z20

+ · · ·+ (−1)j+1

j

zj1
zj0

]

, (5.7)

where on the left hand side eh= eh(w
1/2s3).

In the coefficient of n−2g on the left hand side one expands the term containing
eg as a second order linear differential operator applied to eg. The remaining con-
tributions in the equation are terms that have been recursively determined. More
precisely, expanding the left hand side of

∂2

∂w2
w2−2geg(w

1/2s3)

∣

∣

∣

∣

w=1

=Hg(s3), (5.8)

we find

(2−2g)(1−2g)eg+
1

4
(7−8g)s3e

′
g+

1

4
s23e

′′
g =Hg(s3). (5.9)

We then multiply by sγ1

3 , where

γ1=1−4g,3−4g, (5.10)

and integrate once to find

(2−2g)(1−2g)

γ1+1
sγ1+2
3 eg+

1

4
sγ1+2
3 e′g =

∫ s3

0

sγ1Hg(s)ds+C ′
1. (5.11)

Next multiply both sides by sγ2

3 , with

γ2=1,−3, (5.12)

respectively for each choice of γ1, and integrate once to find

1

4
sγ1+γ2+2
3 eg =

∫ s3

0

s′
γ2

∫ s′

0

sγ1Hg(s)dsds
′+C1s

γ2+1
3 +C2. (5.13)

We conclude by switching the order of integration in the double integral and comput-
ing the integral with respect to s′.

Finally we note that the Hg(s3) are functions of zj for j≤g, and ej for j <g,
and so provided that the zj are in the class iir, we have recursively that Hg is an iir
function. Therefore a consequence of formula (5.5) and this assumption is that eg will
be an iir function.

Corollary 5.2. If the driver terms have Taylor expansion

Hg(s3)=
∞
∑

k=1

ηg(2k)s
2k
3 , (5.14)
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then the Taylor coefficients of the eg(s3) take the form

κ(3)
g (2k)=ηg(2k)

(2k)!

(1−2g+k)(2−2g+k)
(5.15)

for k 6=2g−1,2g−2.
The proof follows from integration using the power rule. The exceptions, or pos-

sible resonances, at k=2g−1 and 2g−2 occur at precisely the powers of s associated
with the constants of integration C1 and C2. To demonstrate the usefulness of Theo-
rem 5.1, we will now compute explicitly expressions for e0 and e1 as functions of the
fundamental auxiliary variable z0. These are analogous to the expressions determined
for the eg in [10].

5.1. Example: g=0. In the case of g=0, we have that H0(s)= log(z0), and
Theorem 5.1 gives

e0(s3)=2

[

s−2
3

∫ s3

0

s log(z0)ds−s−4
3

∫ s3

0

s3 log(z0)ds

]

+C1s
−2
3 +C2s

−4
3 . (5.16)

We see immediately that the constants must be zero to preserve analyticity near
s3=0.

Following [10] we write both integrals in terms of z0, determined as a function of
s by Equation (1.14):

1= z20−72s2z30 . (5.17)

One can then solve this equation for s as a function of z0:

s=

√

z20−1

72z30
, sds=− 1

144

(z20−3)

z40
dz0. (5.18)

Thus we find

e0(s3)=− z30
(z20−1)

∫ z0

1

(z2−3)

z4
log(z)dz+

z60
(z20−1)2

∫ z0

1

(z2−1)(z2−3)

z7
log(z)dz

=− z30
(z20−1)

[

− (z20−1)

z30
log(z0)+

1

3

(z0−1)2(2z0+1)

z30

]

+
z60

(z20−1)2

[

−1

2

(z20−1)2

z60
log(z0)+

1

12

(z20−1)3

z60

]

=
1

2
log(z0)+

1

12

(z0−1)(z20−6z0−3)

(z0+1)
. (5.19)

5.2. Example: g=1. In the case of g=1, we have that

H1(s)=
z1
z0

− 1

12

∂4

∂w4
w2e0(sw

1/2)

∣

∣

∣

∣

w=1

, (5.20)

where z1(s) is given by Proposition 4.2 as follows: from that proposition, after a bit
of manipulation using the first component of Equation (4.7), we have

f1(s,w)=w−1z1(sw
1/2)=−3

2
sf0h0,wf0,ww− 3

4
sf0h

3
0,w, (5.21)
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into which we substitute the self-similar scalings f0=wz0(sw
1/2) and h0=

w1/2u0(sw
1/2) (see Theorem 3.5), expand the w-derivatives and then set w=1 to

find

z1(s)=−3

2
sz0

(

1

2
u0+

1

2
su′

0

)(

3

4
sz′0+

1

4
s2z′′0

)

− 3

4
sz0

(

1

2
u0+

1

2
su′

0

)3

; (5.22)

finally we use the algebraic relations (1.7) and (1.8), and the expression (5.18), to
eliminate all but z0 from the formula for z1 to obtain

z1(s)=
1

4

(z20−1)2(z20+9)z0
(z20−3)4

. (5.23)

Theorem 5.1 gives

e1(s3)=2

[

s23

∫ s3

0

s−3H1(z0)ds−
∫ s3

0

s−1H1(z0)ds

]

+C1s
2
3+C2. (5.24)

We make the change of variables, as before, to integrals with respect to z0 using (5.18).
We then have

e1(s3)=− (z20−1)

z30

∫ z0

1

z2(z2−3)

(z2−1)2
H1(z)dz+

∫ z0

1

(z2−3)

z(z2−1)
H1(z)dz (5.25)

+C1s
2
3+C2.

A direct calculation of H1(z0) using (5.17), (5.19), and (5.23) shows that the inte-
grands of both integrals in (5.25) are regular at z0=1 (which corresponds to s3=0).
Hence, the vanishing of e1(0), which follows from (1.17), implies that C2=0. To de-
termine C1 we will need to appeal to the Taylor expansion of e1 and its combinatorial
interpretation.

Using the explicit form of H1 as a function of z0(s3) one finds from (5.25) that

e1(s3)=− 1

24
log

(

3

2
− z20

2

)

+

(

C1

72
− 1

48

)

(z20−1)

z30
(5.26)

=− 1

24
log

(

3

2
− z20

2

)

+

(

C1−
3

2

)

s23 (5.27)

=− 1

24
log

(

3

2
− z20

2

)

, (5.28)

where we have chosen C1=3/2 so that the coefficient of s23 in e1(s3) will be 3/2!, as
can be checked by directly calculating the second derivative of (5.28) with respect to
s3 using the differential relation in (5.18) and then evaluating at s3=0 (equivalently
z0=1). This value of the second order coefficient is required since there are three
genus one maps with two vertices of valence 3.

The procedure can be continued for as far as one wishes; the only real constraint
is the ability to find explicit expressions for the zg needed. We state (without the
computations) the formula derived for e2(s3):

e2(s3)=
1

960

(z20−1)3(4z40−93z20−261)

(z20−3)5
. (5.29)

The formulas we have derived for e0, e1,, and e2 as functions of z0 have much in
common with those found in the case of even times in [10]. This suggests an extension
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of the global result, proven for the case of even times in [7]); namely, we expect that
for g>1, eg(s3) is a rational function of z20 with singularities occurring only at z20 =3,
where z0 is related to s3 by

1= z20−72s23z
3
0 .

5.3. Taylor Coefficients of e0(s3) and e1(s3). From formulas for eg in terms
of z0 it is a straightforward procedure to derive expressions for the Taylor coefficients
using contour integrals. The trick (as in [10]) is to again change variables to integrals
with respect to z0.

One represents the Taylor coefficients of e0(s3) as contour integrals and substitutes
the expression (5.19) in terms of z0. The 2jth Taylor coefficient is given by

K
(0)
2j

(2j)!
=

1

2πi

∮

s3∼0

e0

s2j+1
3

ds3 (5.30)

=
1

j

1

2πi

∮

z∼1

de0
dz

s−2j
3 dz (5.31)

=
1

j

1

2πi

∮

z∼1

(z2−3)(z2−2z−1)

6z(z+1)2

[

72
z3

(z2−1)

]j

dz (5.32)

=
32j−123j−2

j

1

2πi

∮

z∼1

z3j−1(z−1)2(z2−3)(z2−2z−1)
dz

(z2−1)j+2
, (5.33)

where we have used an integration by parts to find line (5.31), and the notation

∮

z∼1
indicates that the integral is over a small circle in the complex plane, oriented counter
clockwise, and containing z=1. We then note that

(z−1)2(z2−3)(z2−2z−1)= z6−4z5+z4+12z3−13z+3. (5.34)

We insert this into the integral together with the change of variables ζ= z2:

K
(0)
2j

(2j)!
=

32j−123j−2

j

1

2πi

∮

ζ∼1

ζ(3j−2)/2
(

ζ3−4ζ5/2+ζ2+12ζ3/2−13ζ+3
) dζ

(ζ−1)j+2

=
32j−123j−2

j

(

( 3j
2 +2

j+1

)

−4

( 3j
2 + 3

2

j+1

)

+

( 3j
2 +1

j+1

)

+12

( 3j
2 + 1

2

j+1

)

−13

( 3j
2

j+1

)

+3

( 3j
2 −1

j+1

)

)

=
32j23j

j

Γ
(

3j
2

)

Γ
(

j
2

)

Γ(3+j)
. (5.35)

Likewise we can express the Taylor coefficients of the genus one expansion as
contour integrals:

K
(1)
2j

(2j)!
=

32j−123j−2

j2πi

∮

ζ∼1

−ζ(3j+1)/2

(ζ−3)

dζ

(ζ−1)j
. (5.36)
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