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Abstract. Three different hybrid Vlasov-fluid systems are derived by applying reduction by
symmetry to Hamilton’s variational principle. In particular, the discussion focuses on the Euler-
Poincaré formulation of three major hybrid MHD models, which are compared in the same framework.
These are the current-coupling scheme and two different variants of the pressure-coupling scheme.
The Kelvin-Noether theorem is presented explicitly for each scheme, together with the Poincaré
invariants for its hot particle trajectories. Extensions of Ertel’s relation for the potential vorticity
and for its gradient are also found in each case, as well as new expressions of cross helicity invariants.
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1. Introduction

1.1. Hybrid Vlasov-fluid models in plasma physics. Hybrid Vlasov-fluid
plasma models contain elements of both continuum fluids and phase-space probability
density. The latter obeys a Vlasov kinetic equation, which in turn is coupled to the
momentum equation of the background magnetized fluid.

These hybrid kinetic-fluid models arise in several circumstances in modern plasma
physics research, ranging from fusion research [36] to astrophysical plasmas [46]. These
circumstances involve the coexistence of a cold fluid component with an ensemble
of energetic particles that require a kinetic description. In meeting the challenges
presented in such situations, the plasma simulation community has begun developing
multiscale fluid plasma models that allow hybrid descriptions of the two types of flows.
This hybrid approach successfully couples ordinary fluid models for the cold fluid
component to appropriate kinetic equations that govern the phase-space distribution
of the energetic particle species.

One research direction of relevance in applications is the development of hybrid
schemes for magnetohydrodynamics (MHD) [36]. This development has split into two
promising approaches: the current-coupling scheme [36, 1] and the pressure-coupling
scheme [36, 11, 8, 43]. These schemes differ in how the fluid equation is coupled to
the kinetic equation for the hot particles.

Recently, the Hamiltonian formulations of a variety of hybrid Vlasov-fluid plasma
models were developed that led to new theories of either current-coupled or pressure-
coupled hybrid Vlasov-MHD models [44]. These Hamiltonian formulations cast con-
siderable light on the energetics of hybrid Vlasov-fluid plasmas and the relations
between their MHD approximations. In particular, the current-coupling scheme has
been shown to possess a well defined Hamiltonian structure. However, the pressure-
coupling schemes were found to require additional fluid transport terms in their ac-
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companying kinetic equations to preserve their corresponding Hamiltonian structures,
which otherwise would have been lost.

While the Hamiltonian picture of plasma models provides a powerful tool for
energy-conserving properties and may also open the way to relevant stability consid-
erations, the question has remained open whether these models allow a Lagrangian
variational formulation by Hamilton’s principle. Lagrangian formulations of plasma
physics have been successful in several contexts, since they can be easily approached
by several approximation methods such as averaging or asymptotic expansions. Well
known results of this approach are contained in the Lagrangian wave theory by Dewar
[10] and the celebrated guiding center motion by Littlejohn [26]. The key feature of
Lagrangian variational formulations is that, in contrast to their Hamiltonian counter-
parts, the application of essentially any approximation scheme preserves the intrinsic
geometrical properties of the resulting dynamics that emerge from its variational struc-
ture in the presence of symmetry. In particular, the derivations on the Lagrangian side
provide a framework in which straight-forward application of asymptotic expansions
would still preserve the fundamental circulation and Lie-Poisson properties of these
theories. In contrast, asymptotic expansions of the Hamiltonian formulations, for ex-
ample, require exceptional care in preserving the Jacobi identity, while applications
of asymptotic expansions directly to the equations of motion typically pay no heed
to these geometric properties. An illustrative example of this phenomenon for fluids
was given in Camassa, Holm, and Levermore [6] in deriving the “Lake equations” and
“Great Lake equations”.1

The above discussion provides a natural motivation for this paper, whose aim
is to present the complementary derivations of the hybrid fluid models that were
introduced in [44] from the Hamiltonian side, by recovering them on the Lagrangian, or
Hamilton’s-principle side. As in the Hamiltonian Lie-Poisson formulation, the Euler-
Poincaré approach presented in this paper incorporates the geometric properties that
follow from the relabeling symmetry shared by all continuum systems. In addition,
the Euler-Poincaré variational framework provides a systematic framework for the
derivation of other approximate models, which also inherit these geometric properties
from the variational structure.

The new information we gain in this paper in each case is the natural formulation
of a Kelvin-Noether circulation theorem and a corresponding Ertel theorem for the
potential vorticity. While the comparisons of the Lie-Poisson Hamiltonian properties
in paper [44] afford insight into the energetics of these theories, the comparisons of
their complementary derivations on the Lagrangian side provide distinctions in their
circulation laws, and in their Ertel relations for evolution of the potential vorticity and
its gradient. Thus, the Euler-Poincaré approach affords additional insights into the
diagnostics of basic MHD processes in the presence of a hot particle Vlasov component.

Maxwell-Vlasov plasmas have been treated earlier using the Euler-Poincaré vari-
ational approach based on applying symmetry reduction to Hamilton’s principle [7].
The present work starts with the Low Lagrangian [27] and systematically develops a
series of approximate Lagrangians for use in symmetry-reduced Hamilton’s principles
for re-deriving the hybrid Vlasov-MHD fluids in [44]. These approximate Lagrangians
are shown to admit a variety of symmetry reductions that produce variants of Kelvin’s
circulation law for each theory, together with new expressions for the dynamics of their

1 It was a very good moment in all our careers when Roberto Camassa, Dave Levermore, and
DDH realized the efficacy of applying asymptotics to Hamilton’s principle, while working on the
board together one afternoon in Los Alamos.
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cross helicities, some of which are found to remain invariant.
The resulting Euler-Poincaré equations recover the equations in [44] and illumi-

nate the differences in the interplay between the geometric structure and circulation
mechanisms of both the current-coupled and pressure-coupled hybrid Vlasov-MHD
models. The dynamics of the potential vorticity and its gradient are also explained
through appropriate generalizations of Ertel’s theorem to the hybrid MHD case. These
generalizations arise as a direct consequence of the vorticity dynamics produced by
the Euler-Poincaré equations of motion.

1.2. Plan of the paper and its main results. The main content of the
paper is, as follows.

1. The remainder of this Introduction reviews the Euler-Poincaré construction of
the Maxwell-Vlasov equations. Section 2 then extends this system to account
for the presence of several cold fluid components (kinetic-multifluid system).
The reduction process and the resulting circulation laws are presented explic-
itly, including the Poincaré invariant relations that are now obtained from
Noether’s theorem.

2. Section 3 considers the MHD limit of the kinetic-multifluid system, thereby
formulating the Euler-Poincaré equations for the hybrid current-coupling
MHD scheme. After presenting the Kelvin-Noether theorem, Ertel’s relation
for the potential vorticity is presented, thereby extending Ertel’s theorem for
MHD [15] to a hybrid model. Also, it is shown that the usual expression of
cross helicity is conserved by this hybrid model.

3. Section 4 presents the Euler-Poincaré formulation of the first pressure-
coupling hybrid MHD scheme. In this setting, the cold component drives
the whole dynamics, so its velocity adds to the mean velocity of the hot
particles. This property appears geometrically in the semidirect-product Lie
group structure that generates the Euler-Poincaré construction. The Kelvin
circulation and Ertel potential vorticity relation are derived explicitly, to-
gether with a new expression of the cross helicity invariant.

4. Section 5 focuses on the second pressure-coupling hybrid MHD scheme. In
this context, the assumption of a rarefied hot component allows one to ne-
glect the kinetic energy contribution of the corresponding mean flow. Then a
decomposition becomes necessary to separate the hot particle velocity from
its mean flow. This decomposition produces a nested semidirect-product
Lie group structure that fits into the Euler-Poincaré construction. Explicit
expressions for Kelvin circulation, Ertel’s theorem and a new cross helicity
invariant again result.

5. Finally Section 6 summarizes our main conclusions and discusses the outlook
for future research along the present directions.

1.3. Euler-Poincaré formulation of the Maxwell-Vlasov system. The
variational structure of the Maxwell-Vlasov system has been investigated in many
different ways, starting from the pioneering work by Low [27]. Since then, several
variational formulations of this system were presented [37, 38, 39, 47], which are mainly
based on Eulerian variables. The Low Lagrangian, however, involves a mixture of
Eulerian and Lagrangian variables. The first variational formulation in terms of purely
Lagrangian variables appeared in [7], in which the Low Lagrangian was modified by
the insertion of an extra term. This extra term ties the Lagrangian particle velocity
to its corresponding Eulerian coordinate, i.e. ẋ(x0,v0)=v(x0,v0). The variational
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principle was then cast into Euler-Poincaré form [21] by using a reduction process
that takes advantage of the relevant symmetry properties of the Lagrangian under
the Lie group of diffeomorphisms (smooth invertible maps of both physical space and
phase space).

Motivated by the recent results [44] on hybrid plasma models, one may ask
whether the variational methods developed in [7] would also apply to hybrid Vlasov-
fluid systems. This paper shows that these methods do indeed apply, and that they
provide a systematic framework in which to develop a fully Lagrangian formulation of
the hybrid models. The resulting theory is again an Euler-Poincaré formulation, which
naturally inherits all the Lie-symmetry properties of both fluid motion and Vlasov
kinetic dynamics. These symmetry properties then provide the various theorems for
circulation and cross-helicity that are derived later in the paper.

The present section introduces the approach that we shall follow throughout the
rest of this paper. In particular, we shall review the Euler-Poincaré variational for-
mulation [7] of the Maxwell-Vlasov system

∂f

∂t
+v ·

∂f

∂x
+
q

m
(E+v×B) ·

∂f

∂v
=0, (1.1)

ǫ0µ0
∂E

∂t
=∇×B−qµ0

∫

vf d3v,
∂B

∂t
=−∇×E, (1.2)

ǫ0∇·E= q

∫

f d3v, ∇·B=0, (1.3)

where q is the particle charge and m its mass, while ǫ0 and µ0 are respectively the
dielectric and diamagnetic constants. Moreover, in the standard notation adopted
here, f(x,v,t) is the Vlasov distribution on R

3×R
3, while E(x,t) and B(x,t) are the

electric field and the magnetic flux, respectively.

Euler-Poincaré approach. The Euler-Poincaré approach to the Maxwell-Vlasov
system is based on an action principle of the type

δ

∫ t1

t0

Lf0(ψ,ψ̇,Φ,Φ̇,A,Ȧ)dt=0,

where the Lagrangian L is a functional

Lf0 :TDiff(TM)×TQ→R

depending on the parameter f0∈Den(TM), where f0 belongs to the space of distri-
butions on the tangent bundle TM with local coordinates (x0,v0). Here the notation
is such that M is the particle configuration space, ψ∈Diff(TM) is an element of the
Lie group of diffeomorphisms of TM , and Q is the space of electromagnetic poten-
tials (Φ,A), i.e. Q=C∞(M)×Ω1(M) (where Ω1(M) denotes the space of differential
1-forms on M). At this stage, the variational principle produces Euler-Lagrange
equations on Diff(TM)×Q. The explicit form of the Lagrangian reads as [7]

Lf0 =
1

2
m

∫

f0

(

|ẋ(x0,v0)|
2
+ |ẋ(x0,v0)−v(x0,v0)|

2
)

d3x0d
3v0

−q

∫

f0

(

Φ(x(x0,v0))− ẋ(x0,v0) ·A(x(x0,v0))
)

d3x0d
3v0

+
ǫ0
2

∫

|∇Φ+∂tA|
2
d3r−

1

2µ0

∫

|∇×A|
2
d3r, (1.4)
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where the potentials determine the electric field as E=−∇Φ−∂tA and the mag-
netic flux as B=∇×A. Also, the map ψ in the action principle above denotes
(x(x0,v0),v(x0,v0)) :=ψ(x0,v0), and the term

1

2
m

∫

f0
∣

∣ẋ(x0,v0)−v(x0,v0)
∣

∣

2
d3x0d

3v0

allows v(x0,v0) to be varied independently and enforces ẋ=v. Dropping the above
term returns precisely the Low Lagrangian [27].

At this point, the invariance property of the Lagrangian (1.4) is such that

Lf0(ψ,ψ̇,Φ,Φ̇,A,Ȧ)=Lf0◦ψ−1(ψ̇◦ψ−1,Φ,Φ̇,A,Ȧ)=: l(X,Φ,Φ̇,A,Ȧ,f),

where we have defined

X := ψ̇◦ψ−1∈X(TM), f :=f0 ◦ψ
−1∈Den(TM), (1.5)

and X(TM) denotes the Lie algebra of vector fields on TM . Notice that the depen-
dence on the identity element ψ◦ψ−1 has been omitted in the reduced Lagrangian. In
this setting, the reduced Euler-Poincaré Lagrangian l : X(TM)×Den(TM)×TQ→R

produces the equations [7]

∂

∂t

δl

δX
+£X

δl

δX
= f∇(x,v)

δl

δf
,

∂f

∂t
+£Xf = 0, (1.6)

∂

∂t

δl

δΦ̇
−
δl

δΦ
=0,

∂

∂t

δl

δȦ
−
δl

δA
=0. (1.7)

Here, the symbol £X denotes the Lie derivative along the phase-space vector field
X∈X(TM) whose components are given by

X(x,v)=(u(x,v),a(x,v)) ,

in which (x,v)∈TM are the Eulerian position-velocity coordinates and M =R
3, so

X∈X(R6). The symmetry-reduced version of the Lagrangian (1.4) is

l=

∫

f

(

1

2
m |u|

2
+

1

2
m |u−v|

2
−qΦ+qu ·A

)

d3xd3v

+
ǫ0
2

∫

|∇Φ+∂tA|
2
d3x−

1

2µ0

∫

|∇×A|
2
d3x. (1.8)

The Maxwell-Vlasov equations are obtained upon applying the variations in the above
Lagrangian and substituting them into the Euler-Poincaré equations (1.6)-(1.7), as
shown in [7].

Outlook. The remainder of the paper applies the Euler-Poincaré approach to the
case of hybrid Vlasov-fluid models that commonly arise in plasma physics research.
After studying a general Vlasov-multifluid system for the interaction of several fluid
plasma components with a hot particle species, the paper focuses on comparing
the Euler-Poincaré structures of current-coupling and pressure-coupling hybrid MHD
schemes. In the latter case, the geometry of the system provides an interesting exam-
ple of how the Vlasov distribution function may be transported by the background
fluid through diffeomorphisms (smooth invertible maps) acting by tangent lifts. Our
considerations here are restricted to barotropic fluid flows.
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From the strictly mathematical point of view, the case of ideal adiabatic flows that
transport the specific entropy may be obtained by a straightforward generalization.
However, from the physical viewpoint the role of heat exchange and the effects of an
additional advected quantity should lead to other interesting effects that we intend to
discuss elsewhere. In particular, adiabatic flow effects may be especially interesting
for hybrid fluid drift-kinetic models, which may be treated in a Lagrangian setting,
perhaps by using an approach similar to that for oscillation-center theory as in [40].
For example, this problem might benefit from an exploration of adiabatic invariants
that arise from averaging the Hamilton’s principle. This is available for Lagrangian
theories, but not for Hamiltonian theories, which instead would use Lie series methods.
A proof of the equivalence of these theories would also be interesting. This approach
follows ideas that go back to Dewar [10], but now have been further illuminated by
the advent of the Euler-Poincaré approach to reduction by symmetry for continuum
descriptions on the Lagrangian side [21].

An early step in this direction was already made by Holm, Kupershmidt, and
Levermore in [20], who studied Poisson maps in the Eulerian and Lagrangian descrip-
tions of continuum mechanics. Many of the concepts from that work, particularly
momentum maps from canonical phase spaces to the duals of Lie algebras, remain
just as important in the present work as they were then, but here they are applied on
the Lagrangian, or Hamilton’s principle side for hybrid Vlasov-fluid systems.

2. Vlasov-multifluid system

This section presents the Euler-Poincaré formulation of a system composed of
several fluid plasma species, each denoted by its label s=1, . . . ,N , with an energetic
Vlasov component. The Hamiltonian formulation of this system has been presented
in [44] and its equations of motion are expressed as

ρs
∂U s

∂t
+ρs (U s ·∇)U s=asρs (E+U s×B)−∇ps, (2.1)

∂ρs
∂t

+∇·(ρsU s)=0, (2.2)

∂f

∂t
+v ·

∂f

∂x
+ah (E+v×B) ·

∂f

∂v
=0, (2.3)

µ0ǫ0
∂E

∂t
=∇×B−µ0

∑

s

asρsU s−µ0 qh

∫

vf d3v, (2.4)

∂B

∂t
=−∇×E, (2.5)

ǫ0∇·E=
∑

s

asρs+qh

∫

f d3v, ∇·B=0. (2.6)

In these equations for the Vlasov-multifluid system, as= qs/ms is the charge-to-mass
ratio of the fluid species s, ρs and U s are its mass density and velocity, respectively,
and ps is the scalar partial pressure of species s. In the above system, the index h
denotes the hot particle component, while each fluid species s is governed by its own
momentum and mass-transport equations. In order to avoid proliferation of indexes,
the notation ∇ is relegated to denote only spatial gradients applied to quantities on
physical space. Gradients on phase space coordinates are denoted by ∇(x,v), while
partial differentiation of phase-space quantities will be denoted by ∂x or ∂v.

For the case that the fluid component is absent, the Euler-Poincaré formulation
of the resulting Maxwell-Vlasov system was presented in [7]. On the other hand, an
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Euler-Poincaré formulation of charged fluids was given in [21]. A combination of these
two approaches yields the Euler-Poincaré formulation of the kinetic-multifluid system.
Indeed, we shall show that the equations (1.6)-(1.7) can be suitably generalized to
apply for the Vlasov-multifluid system. As we shall prove below, this generalization
results from the following choice of Lagrangian:

l({U s},{ρs},X,f,Φ,Φ̇,A,Ȧ)

=
1

2

∑

s

∫

ρs |U s|
2
d3x−

∑

s

∫

ρs
(

U(ρs)+asΦ−asU s ·A
)

d3x

+mh

∫

f

(

1

2
|u|

2
+

1

2
|u−v|

2
−ahΦ+ahu ·A

)

d3xd3v

+
ǫ0
2

∫

|∇Φ+∂tA|
2
d3x−

1

2µ0

∫

|∇×A|
2
d3x, (2.7)

where U(ρs) denotes the total internal fluid energy, related to partial pressure of
species s by ps=ρ

2
sU

′(ρs), while the notation {U s} means that that one considers
all species s=1. . .N (and analogously for {ρs}). In the special case of a single fluid
species (s=1), the above Lagrangian is defined as a functional

l :
(

X(R3)⊕X(R6)
)

×
(

C∞(R3)∗×C∞(R6)∗
)

×TQ(R3)→R,

where X(Rn) denotes the Lie algebra of vector fields in R
n, the asterisk denotes

the distributional dual space, and the tangent space TQ(R3) is constructed on the
space Q(R3) of electromagnetic 4-potentials (Φ,A). In this setting, the advected fluid
quantity is the mass density ρ(x)∈Den(R3), while the advected phase-space quantity
is the Vlasov distribution f(x,v)∈Den(R6).

At this point, in order to use the above Lagrangian, equations (1.6)-(1.7) must
be adapted to the present case by extending them to account for the presence of the
fluid components. In following the treatment in [21, 7], one writes the Euler-Poincaré
theorem in the following general form.

Theorem 2.1 (Euler-Poincaré kinetic-multifluid system). The kinetic-multifluid

system (2.1)-(2.6) arises from the Euler-Poincaré variational principle

δ

∫ t1

t0

l({U s},{ρs},X,f,Φ,Φ̇,A,Ȧ)dt=0, (2.8)

with the Lagrangian given in (2.7) and the variations

δU s=∂tWs−£Us
Ws, δX=∂tZ−£XZ, δf =−£Zf, δρs=−£Ws

ρs,

where Ws∈X(R3), Z∈X(R6), δΦ, and δA all vanish at the endpoints. This varia-

tional principle is equivalent to the Euler-Poincaré equations

∂

∂t

δl

δU s
+£Us

δl

δU s
= ρs∇

δl

δρs
, (2.9)

∂

∂t

δl

δX
+£X

δl

δX
=f∇(x,v)

δl

δf
, (2.10)

∂ρs
∂t

+£Us
ρs= 0,

∂f

∂t
+£Xf =0, (2.11)

∂

∂t

δl

δΦ̇
−
δl

δΦ
=0,

∂

∂t

δl

δȦ
−
δl

δA
=0. (2.12)
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Proof. The equivalence of the variational principle (2.8) and the Euler-Poincaré
equations (2.9)-(2.12) follows easily upon repeating the same steps as in [21, 7]. In
order to derive the equations (2.1)-(2.6), one simply computes the functional deriva-
tives of the Lagrangian (2.7). In particular, upon writing X=(u,a), for the Vlasov
kinetic part one has

δl

δu
=mhf (2u−v+ahA) ,

δl

δa
=0,

δl

δf
=
mh

2
|u|2+

mh

2
|u−v|2+qhu ·A−qhΦ.

Then, dividing equation (2.10) by f yields

∂

∂t

(

1

f

δl

δX

)

+£X

(

1

f

δl

δX

)

=∇(x,v)
δl

δf
. (2.13)

Next, projecting onto the second component yields

0=∂vu ·
1

f

δl

δu
−∂v

δl

δf
=u(x,v)−v,

so that

X(x,v)=(v,a(x,v)) ,
δl

δu
=f (mhv+qhA) ,

δl

δf
=
mh

2
|v|2+qhv ·A−qhΦ.

Upon denoting the particle momentum as p(x,v) :=mhv+qhA(x) and projecting
equation (2.13) onto its first component, we obtain

∂tp+(v ·∂x+a ·∂v)p+∂xv ·p=∂x

(mh

2
|v|2+qhv ·A−qhΦ

)

,

where (x,v) are independent coordinates. Standard vector identities then produce
the Lorentz force,

a(x,v)=−ah

(

∇Φ+
∂A

∂t

)

+ahv×(∇×A).

Therefore, the second equation of (2.11) gives the Vlasov kinetic equation in the form

∂f

∂t
+v ·

∂f

∂x
−ah

[(

∇Φ+
∂A

∂t

)

−v×(∇×A)

]

·
∂f

∂v
=0.

The fluid equations follow easily by inserting the appropriate variational deriva-
tives into the Euler-Poincaré equation (2.9) and the first equation of (2.11). For
example, one computes

δl

δU s
=ρsU s+asρsA,

δl

δρs
=−

d(ρsU)

dρs
−asΦ+asU ·A.

Next, upon dividing equation (2.9) by ρ, one obtains

∂U s

∂t
+£Us

U s+as

(

∂A

∂t
+£Us

A

)

=−∇ps−as∇Φ+as∇(U s ·A),

where ps=ρ
2
sU

′(ρs) is the scalar partial pressure. Finally, equation (2.1) arises from
the explicit form of the Lie derivative operation by using standard vector identities.
Analogous arguments also hold for the equations of the electromagnetic potentials.
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Remark 2.2 (Euler-Poincaré reduction). The above theorem follows by an Euler-
Poincaré reduction process applied to the following unreduced Lagrangian:

Lf0,{ρ0s}({ηs},{η̇s},ψ,ψ̇,Φ,Φ̇,A,Ȧ)

=
1

2

∑

s

∫

ρ0s(a0) |η̇s(a0)|
2
d3a0

−
∑

s

∫

ρ0s(a0)
(

U(ρ0s)+asΦ(ηs(a0))−as η̇s(a0) ·A(ηs(a0))
)

d3a0

+
1

2
mh

∫

f0(x0,v0)
(

|q̇(x0,v0)|
2
+ |q̇(x0,v0)−v(x0,v0)|

2
)

d3x0d
3v0

−qh

∫

f0(x0,v0)
(

Φ(q(x0,v0))+ q̇(x0,v0) ·A(q(x0,v0))
)

d3x0d
3v0

+
ǫ0
2

∫

|∇Φ+∂tA|
2
d3r−

1

2µ0

∫

|∇×A|
2
d3r, (2.14)

with the notation (q(x0,v0),v(x0,v0))=ψ(x0,v0) for a group action ψ : TR3→TR3.
Indeed, the invariance property

Lf0,{ρ0s}({ηs},{η̇s},ψ,ψ̇,Φ,Φ̇,A,Ȧ)=L
f0◦ψ−1,{ρ0s◦η

−1
s }

({η̇s ◦η
−1
s },ψ̇◦ψ−1

,Φ,Φ̇,A,Ȧ)

yields the Euler-Poincaré Lagrangian

l({U s},{ρs},X,f,Φ,Φ̇,A,Ȧ) :=Lf0◦ψ−1,{ρ0s◦η
−1
s }({η̇s ◦η

−1
s },ψ̇◦ψ−1,Φ,Φ̇,A,Ȧ),

with the notation

U s= η̇s ◦η
−1
s , X= ψ̇◦ψ−1, ρs=ρ0s ◦η

−1
s , and f =f0 ◦ψ

−1.

This argument follows easily from the treatment in [21, 7]. Notice that for the case
of a single species s=1, the unreduced Lagrangian is of the form

Lf0,ρ0 :TDiff(R3)×TDiff(TR3)×TQ→R,

which emphasizes the Lie group structure that underlies the Vlasov-multifluid system
(2.1)-(2.6).

Remark 2.3 (Kelvin-Noether theorem for the Vlasov multifluid system). It is
easy to verify that equations (2.9)-(2.10) produce the following circulation conserva-
tion laws:

d

dt

∮

γt(Us)

(

U s(x,t)+asA(x,t)
)

·dx=0,
d

dt

∮

ζt(X)

(

v+ahA(x,t)
)

·dx=0.

In the first relation the curve γt moves with the fluid flow, while in the second relation
the curve ζt moves with the phase-space vector field X(x,v)=

(

v,a(x,v)
)

. More
explicitly, one can write γt=ηs(t)◦γ0 for a fixed loop γ0, and analogously ζt=ψ(t)◦ζ0.
This difference emphasizes the role of the Poincaré invariant associated with the hot
particle motion; see [7].

The next sections will consider the Euler-Poincaré formulation of hybrid Vlasov-
MHD models. In particular, the discussion will focus on two main types of hybrid
systems: the current-coupling and pressure-coupling schemes.
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Remark 2.4 (The Legendre transform). Notice that the Euler-Poincaré La-
grangian (2.7) is degenerate since δl/δa=0. This degeneracy is related to a redun-
dancy in the Euler-Poincaré construction, which carries all the information about
particle paths that are already encoded in the Vlasov equation. As explained in [7],
this degeneracy presents some problems when one wants to perform a Legendre trans-
form to obtain the corresponding Hamiltonian description. However, these problems
may be overcome by a standard use of Dirac constraints. Similar arguments to those
in [7] also hold for the hybrid models treated in this paper.

3. Current-coupling hybrid MHD scheme

3.1. Formulation of the model. In common physical situations, one is
interested in single-fluid models. In the context of hybrid schemes, it is customary
to specialize the system (2.1)-(2.6) to the two-fluid case and to neglect the inertia of
one of the fluid species (electrons). This last approximation is equivalent to taking
the limit m2→0 for the second species in the total fluid momentum equation. Under
this assumption, the sum of the equation (2.1) for s=1,2 produces

ρ1
∂U1

∂t
+ρ1 (U1 ·∇)U1=(a1ρ1+a2ρ2)E+(a1ρ1U1+a2ρ2U2)×B−∇p1. (3.1)

Also, upon assuming neutrality by letting ǫ0→0, the electromagnetic fields satisfy
the equations

∑

s

asρsU s=
1

µ0
∇×B− ah

∫

vf d3v, (3.2)

∂B

∂t
=−∇×E, (3.3)

∑

s

asρs=−qh

∫

f d3v, ∇·B=0. (3.4)

Then, equation (3.1) becomes

ρ
∂U

∂t
+ρ(U ·∇)U =−

(

qh

∫

f d3v

)

E+

(

1

µ0
∇×B− ah

∫

vf d3v

)

×B−∇p, (3.5)

where we have dropped labels for convenience. Finally, inserting Ohm’s ideal law
E+U×B=0, the kinetic two-fluid system becomes

ρ
∂U

∂t
+ρ(U ·∇)U =

(

qhU

∫

f d3v− qh

∫

vf d3v+
1

µ0
∇×B

)

×B−∇p, (3.6)

∂ρ

∂t
+∇·(ρU)=0, (3.7)

∂f

∂t
+v ·

∂f

∂x
+ah (v−U)×B ·

∂f

∂v
=0, (3.8)

∂B

∂t
=∇×(U×B) . (3.9)

This is the same as the current-coupling hybrid scheme presented in [11, 36, 1], ex-
cept that the particle dynamics are governed by the Vlasov equation rather than its
gyrokinetic counterpart. Notice that the above system does not make any assumption
about the form of the Vlasov distribution for the energetic particles. Therefore, this
system should in principle apply to a variety of other possible physical situations as
well.
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3.2. Euler-Poincaré reduction by symmetry. We now turn our attention
to the Euler-Poincaré formulation of these equations. That is, we ask whether the
above current-coupling system possesses an Euler-Poincaré variational principle. A
positive answer is provided by the reduced Lagrangian

l(U ,ρ,X,f,A)=
1

2

∫

ρ|U |
2
d3x−

∫

ρU(ρ)d3x−
1

2µ0

∫

|∇×A|
2
d3x

+

∫

f
(mh

2
|u|

2
+
mh

2
|u−v|

2
+qh (u−U) ·A

)

d3xd3v (3.10)

of the type

l :
(

X(R3)⊕X(R6)
)

×C∞(R3)∗×Ω1(R3)×C∞(R6)∗→R,

together with the following Euler-Poincaré theorem.

Theorem 3.1. The hybrid current-coupling MHD scheme (3.6)-(3.9) arises from the

Euler-Poincaré variational principle

δ

∫ t1

t0

l(U ,ρ,X,f,A)dt=0,

with the Lagrangian in (3.10) and variations given by

δU =∂tW−£UW, δX=∂tZ−£XZ, δf =−£Zf, δρ=−£W ρ, δA=−£WA,

where W and Z vanish at the endpoints. This variational principle is equivalent to

the Euler-Poincaré equations

∂

∂t

δl

δU
+£U

δl

δU
= ρ∇

δl

δρ
−
δl

δA
×(∇×A)+

(

∇·
δl

δA

)

A, (3.11)

∂ρ

∂t
+£U ρ= 0,

∂A

∂t
+£U A=0, (3.12)

∂

∂t

δl

δX
+£X

δl

δX
=f∇(x,v)

δl

δf
, (3.13)

∂f

∂t
+£Xf =0, (3.14)

which hold for an arbitrary hybrid Lagrangian.

Proof. The derivation of the Euler-Poincaré equations (3.11)-(3.14) from
the Euler-Poincaré variational principle can be easily obtained by direct verification
[21, 7]. In order to derive the current-coupling MHD scheme (3.6)-(3.9), one simply
computes the functional derivatives and inserts them into the Euler-Poincaré equa-
tions (3.11)-(3.14). In particular, for the Vlasov kinetic part one has

δl

δu
=mhf (2u−v+ahA) ,

δl

δa
=0,

δl

δf
=
mh

2
|u|2+

mh

2
|u−v|2+qh (u−U) ·A.

Then, by projecting equation (2.10) onto the second component (recall that X=
(u,a)), we get

0=∂vu ·
1

f

δl

δu
−∂v

δl

δf
=u(x,v)−v,
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so that

X(x,v)=(v,a(x,v)) ,
δl

δu
=mhf (v+ahA) ,

δl

δf
=
mh

2
|v|2+qh (v−U) ·A.

Upon denoting p(x,v)=mhv+qhA(x) and dividing equation (2.10) by f , one finds

∂

∂t

(

1

f

δl

δX

)

+£X

(

1

f

δl

δX

)

=∇(x,v)
δl

δf
,

which when projected onto the first component yields

∂tp+(v ·∂x+a ·∂v)p+∂xv ·p=∂x

(mh

2
|v|2+qh (v−U) ·A

)

.

Upon recalling that (x,v) are independent coordinates, and using standard vector
identities, we can write

a(x,v)=−ah

(

∇(U ·A)+
∂A

∂t

)

+ahv×(∇×A),

=ah (v−U)×(∇×A)

where the bottom line is justified by the second equation in (3.12). Therefore, equation
(3.14) returns the Vlasov kinetic equation (3.8) in the form

∂f

∂t
+v ·

∂f

∂x
+ah

[

(v−U)×(∇×A)
]

·
∂f

∂v
=0

with a modified Lorentz force.
We now focus on the fluid part. It suffices to compute

δl

δU
=ρU−qhnA,

δl

δA
=−∇×∇×A+qh (K−nU) ,

δl

δρ
=

1

2
|U |

2
+ρU ′(ρ)+U(ρ),

where we have introduced the additional notation

n=

∫

f d3v, K=

∫

vf d3v.

At this point, it suffices to insert the above functional derivatives into equation (3.11),
so that

(

∂

∂t
+£U

)

(ρU−qhnA)=ρ∇

(

1

2
|U |

2
+ρU ′(ρ)+U(ρ)

)

−qh (K−nU)×∇×A+qhA∇·(K−nU)

+(∇×∇×A)×(∇×A) . (3.15)

We observe that the zero-th moment of the Vlasov equation (3.8) satisfies
∂tn+∇·K=0. Then, making use of the second equation in (3.12) yields

(∂t+£U )(nA)=−A∇·(K−nU) , (3.16)

while expanding the Lie derivatives in (3.15) returns the velocity equation

ρ
∂U

∂t
+ρ(U ·∇)U =

(

qhnU− qhK+
1

µ0
∇×B

)

×B−∇p, (3.17)
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in which we have substituted B=∇×A and p=ρ2U ′(ρ).

Remark 3.2 (Euler-Poincaré reduction). Upon following the treatment in [21,
7], one finds that the unreduced Euler-Poincaré Lagrangian of the current-coupling
scheme is a functional of the type

Lρ0,A0,f0 :TDiff(R3)×TDiff(R6)→R,

where × denotes direct product. Consequently,

Lρ0,A0,f0 =Lρ0,A0,f0(η,η̇,ψ,ψ̇).

The reduced Euler-Poincaré Lagrangian (3.10) is obtained by the reduction process

l(u,X,ρ,A,f)=Lρ0◦η−1,A0◦η−1,f0◦ψ−1(η̇◦η−1,ψ̇◦ψ−1).

Here the advected quantities ρ,A,f are acted on by the corresponding diffeomor-
phism groups, taking into account their intrinsic tensorial nature — that is (ρ,A,f)∈
Den(R3)×Ω1(R3)×Den(R6), where Ω1(R3) denotes the space of differential one-
forms on R

3.

3.3. Discussion of the Kelvin circulation law. Relation (3.15) amounts
to the following Kelvin circulation law:

d

dt

∮

γt(U)

(

U−qh
n

ρ
A
)

·dx= qh

∮

γt(U)

1

ρ

(

(∇·(K−nU))A−(K−nU)×B
)

·dx

+

∮

γt(U)

1

ρ
(∇×B)×B ·dx, (3.18)

which agrees with the corresponding result found in [44]. Notice that the creation
of circulation on the right hand side is generated by the terms involving δl/δA in
the Euler-Poincaré equation (3.11). As explained in [21], these terms comprise a
momentum map generated by the action of the diffeomorphisms on the cotangent
bundle T ∗Ω1(R). The presence of these terms is related to the fact that the non-
zero magnetic potential A (together with the mass density ρ) breaks the relabeling

symmetry of the unreduced Lagrangian, so that

Lρ0,A0,f0(η,η̇,ψ,ψ̇) 6=Lρ0◦η−1,A0,f0◦ψ−1(η̇◦η−1,ψ,ψ̇).

On the other hand, the Kelvin circulation theorem for the hot particles reads simply

d

dt

∮

ζt(X)

p ·dx=0,

which recovers the well known preservation of the Poincaré invariant for the hot
particle motion.

Ertel’s theorem. The above Kelvin circulation law identifies the expression of the
force

Ψ=(∇·(K−nU))A−(K−nU)×B+µ−1
0 (∇×B)×B (3.19)

acting on the fluid with momentum ρU−qhnA. The above quantity can be used
to generalize Ertel’s theorem for MHD (see [15] and references therein) to the hybrid
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current-coupling scheme. For simplicity, consider the incompressible case, so that ρ≡1
enforces ∇·U =0. Next, project the quantity ρ−1nA onto its divergence-free part by
defining

[

ρ−1nA
]

=ρ−1nA+∇ϕ, for a scalar function ϕ such that ∇·
[

ρ−1nA
]

=0.
Notice that we keep the density ρ in these relations to provide correct dimensions,
while ρ=1 for incompressible flows. Then, upon denoting Dt=∂t+U ·∇ and ω̄=
∇×

(

U−qh
[

ρ−1nA
])

, it is easy to see that the curl of equation (3.15) produces the
generalized Ertel relation

Dt (ω̄ ·∇α)−(ω̄ ·∇)Dtα=∇α ·∇×Ψ, (3.20)

where α is an arbitrary smooth function and Ψ is the force expressed by (3.19). The
quantity ω̄ ·∇α is the potential vorticity and the above relation generalizes Ertel’s
theorem to the current-coupling scheme of hybrid MHD.

Cross helicities. Upon denoting V=U−qhρ
−1nA, the following two cross-

helicities may now be defined:

Λ1=

∫

U ·Bd3x Λ2=

∫

V ·Bd3x.

However, while the first is conserved in time, i.e. dΛ1/dt=0, the second satisfies

d

dt
Λ2=−qh

d

dt

∫

ρ−1nA ·Bd3x= qh

∫

ρ−1 (A ·B)∇·(K−nU)d3x,

where the last non-vanishing integral is generated by the term parallel toA in equation
(3.15).

4. First pressure-coupling hybrid MHD scheme

4.1. Formulation of the model. In this section we show how the vari-
ational structure of the previous current-coupling scheme provides a basis for the
Euler-Poincaré formulation of a pressure-coupling scheme. This scheme establishes
an equation for the total velocity

U =U+
mh

ρ

∫

vf d3v,

under the assumption that the kinetic moment

K=

∫

vf d3v (4.1)

does not contribute to the total energy of the system. This assumption can be justified
if the energetic component is particularly rarefied, so that its density

n=

∫

f d3v (4.2)

is negligible compared to the density ρ of the cold fluid. This is precisely the hypothesis
that we shall use in our derivation of the following energy-conserving pressure-coupling
scheme obtained in [44]:

ρ
∂U

∂t
+ρ(U ·∇)U =−∇p−mh∇·

∫

vvf d3v−
1

µ0
B×∇×B, (4.3)

∂f

∂t
+(U+v) ·

∂f

∂x
−
∂f

∂v
·∇U ·v+ahv×B ·

∂f

∂v
=0, (4.4)

∂ρ

∂t
+∇·(ρU)=0,

∂B

∂t
=∇×(U×B) . (4.5)
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Here we have dropped the bar symbol for convenience. Before proceeding further, we
remark that the U -terms appearing in the kinetic equation (4.4) differ substantially
from the corresponding term in the hybrid MHD model presented in [36] (whose
Vlasov kinetic equation is replaced by its gyrokinetic approximation). Indeed, the
fluid transport term U ·∂xf is totally absent in reference [36], where the circulation
force term ∂vf ·∇U ·v is replaced by the Lorentz force −qhU×B emerging in (3.8)
as an electric field force (from ideal Ohm’s law). More particularly, upon denoting
P=

∫

vvf d3v, reference [36] derives a pressure-coupling scheme by assuming
∂tK=−∇·P+ah(K−nU)×B≃0 in the current-coupling model (3.6)-(3.9); then the
resulting force balance allows replacing Lorentz forces by the pressure term in the
momentum equation (3.6). These crucial steps break the energy-conserving nature
of the system, as explained in [44]. However, notice that the static equilibria of the
above equations (4.3)-(4.5) coincide with those of the hybrid model in [36], provided
the hot particles are governed by Vlasov dynamics.

4.2. Euler-Poincaré reduction by symmetry. Although the physical
approximations leading to the pressure-coupling scheme present some problems that
were summarized in [44], we shall see below how the variational approach to the model
(4.3)-(4.5) produces an Euler-Poincaré system on a semidirect-product Lie group. At
the reduced level, we shall prove that the Euler-Poincaré Lagrangian is a functional
of the form

l :
(

X(R3)sX(R6)
)

×Den(R3)×Ω1(R3)×Den(R6)→R,

where the infinitesimal action that is involved in the semidirect-product Lie algebra
X(R3)sX(R6) is given by

U ·X=£XU
X, where XU :=

(

U ,(v ·∇)U
)

, ∀ U ∈X(R3).

This action naturally arises from the tangent-lifted action of Diff(R3) on TR3=R
6,

which in turn generates the natural Diff(R3)-action on Diff(R6) (see Remark 4.3
below). On the other hand, the space of the advected quantities [21]

(ρ,A,f)∈Den(R3)×Ω1(R3)×Den(R6)

involves the Lie algebra representation

(U ,X) ·(ρ,A,f)=(£U ρ,£U A,£X+XU
f) ,

whose associated diamond operation, defined by

〈(

δl

δρ
,
δl

δA
,
δl

δf

)

⋄(ρ,A,f) , (U ,X)

〉

:=−

〈(

δl

δρ
,
δl

δA
,
δl

δf

)

,
(

£U ρ,£U A,£X+XU
f
)

〉

,

(4.6)
will be derived explicitly in what follows.

At this point, the problem has been cast into the standard Euler-Poincaré the-
ory for parameter-dependent Lagrangians L :TG×V ∗→R, with the peculiarity that
the Lie group G is a semidirect-product. Indeed, upon replacing G by GsH, the
pressure-coupling scheme will be written as an Euler-Poincaré variational principle
on T (GsH)×V ∗. Upon specializing to the case G=Diff(R3), H=Diff(TR3), and
V ∗=Den(R3)×Ω1(R3)×Den(R6), the Euler-Poincaré equations associated to such a
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Lagrangian can be written as follows on the reduced space X(R3)sX(R6)×V ∗:

∂

∂t

δl

δU
+£U

δl

δU
=

δl

δX
⋆X+

(

δl

δρ
,
δl

δA
,
δl

δf

)

⋄1 (ρ,A,f) , (4.7)

∂ρ

∂t
+£U ρ= 0,

∂A

∂t
+£UA=0, (4.8)

∂

∂t

δl

δX
+£X+XU

δl

δX
=f∇(x,v)

δl

δf
, (4.9)

∂f

∂t
+£X+XU

f =0, (4.10)

where (⋄1) in equation (4.7) denotes the U -component of the diamond operation
defined in (4.6), and the star (⋆) operation is defined as

〈

δl

δX
⋆X,U

〉

:=−

〈

δl

δX
,£XU

X

〉

. (4.11)

Integration by parts yields the more explicit expression,

〈

δl

δX
⋆X,U

〉

:=−

〈

δl

δX
,£XU

X

〉

=−

〈

£X

δl

δX
,
(

U ,(v ·∇)U
)

〉

=−

〈
∫
(

£X

δl

δX

)

1

d3v−∇·

∫

v

(

£X

δl

δX

)

2

d3v,U

〉

,

so that

δl

δX
⋆X=−

∫
(

£X

δl

δX

)

1

d3v+∇·

∫

v

(

£X

δl

δX

)

2

d3v, (4.12)

where the indices 1 and 2 denote the u- and the a-components, respectively.
In order to complete the set of equations (4.7)-(4.10), we shall need a suitable

Euler-Poincaré Lagrangian, which is given by

l(U ,ρ,X,f,A)=
1

2

∫

ρ|U |
2
d3x−

∫

ρU(ρ)d3x−
1

2µ0

∫

|∇×A|
2
d3x

+

∫

f
(mh

2
|u|

2
+
mh

2
|u−v|

2
+qhu ·A

)

d3xd3v. (4.13)

This Lagrangian is obtained from (3.10) by simply neglecting the term qh
∫

nU ·Ad3x,
consistently with the assumption of a rarefied energetic component.

The simplest starting point involves the kinetic part of the system (4.7)-(4.10),
which is composed of the last two equations, i.e. (4.9)-(4.10). Let us start by cal-
culating the functional derivatives. Upon using similar arguments as those in the
previous section (and especially using the second component of equation (4.9)), in
slightly different notation (X(x,v)=

(

u(x,v),α(x,v)
)

) one finds

X+XU =
(

v+U ,α+(v ·∇)U
)

,
δl

δu
=mhf (v+ahA) ,

δl

δf
=
mh

2
|v|2+qhv ·A.
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Upon denoting p(x,v)=mhv+qhA(x), we divide equation (2.10) by f , so that

∂

∂t

(

1

f

δl

δX

)

+£X+XU

(

1

f

δl

δX

)

=∇(x,v)
δl

δf
,

and project it onto the first component to obtain

∂tp+
(

(v+U) ·∂x
)

p+(α ·∂v)p+
(

(v ·∂x)U ·∂v
)

p+∂x (v+U) ·p=∂x
(mh

2
|v|2+qhv ·A

)

.

Then, upon using the second equation in (4.8) as well as standard vector identities,
one writes

α=ahv×(∇×A)−∇U ·v−(v ·∇)U ,

and the vector field X+XU becomes

X+XU =
(

v+U , ahv×(∇×A)−∇U ·v
)

.

In turn, upon noticing that ∇(x,v) ·(X+XU )=0, this vector field produces the Vlasov
kinetic equation (4.9) in the form

∂f

∂t
+(v+U) ·

∂f

∂x
−
(

∇U ·v−ahv×(∇×A)
)

·
∂f

∂v
=0,

which is identical to (4.4).
At this point, one needs to verify that equation (4.7) effectively returns the ve-

locity equation (4.3) of the pressure-coupling scheme (4.3)-(4.5). To this purpose, we
shall use the following

Lemma 4.1. In the special case when

X(x,v)=
(

v,α(x,v)
)

and
δl

δX
(x,v)=

(

w(x,v),0
)

,

then

X⋆
δl

δX
=0

for arbitrary vector quantities α(x,v) and w(x,v).

Proof. The proof follows by direct verification, upon writing the definition of
the star operation in (4.11) as

〈

X⋆
δl

δX
,U

〉

:=

〈

δl

δX
,
[

XU ,X
]

〉

=

〈

δl

δX
,
(

(

XU ·∇(x,v)

)

X−
(

X ·∇(x,v)

)

XU

)

〉

=
〈

w,
(

(

XU ·∇(x,v)

)

v−
(

X ·∇(x,v)

)

U

)〉

=
〈

w,
(

(

(v ·∇)U ·∂v
)

v−(v ·∇)U
)〉

=
〈

w,
(

(v ·∇)U−(v ·∇)U
)〉

=0,

in which the last step uses integration by parts of the first term.
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Another result that we shall need is the following formula for the diamond operation
in (4.11):

δl

δf
⋄1 f =

∫

f ∂x
δl

δf
d3v−∇·

∫

f v∂v
δl

δf
d3v, (4.14)

which may be directly verified from its definition

〈

δl

δf
⋄1 f,U

〉

:=

〈

f,
(

XU ·∇(x,v)

) δl

δf

〉

.

Now, upon recalling the particular form of the variational derivative

δl

δf
=

1

2
mh|v|

2+qhv ·A,

we calculate

δl

δf
⋄1 f = qh∇A ·K−mh∇·P−qh (∇·K)A−qh (K ·∇)A

= qhK×B−qh (∇·K)A−mh∇·P,

where we recall the definition (4.1) of the averaged kinetic momentum and we have
introduced the absolute pressure tensor

P=

∫

vvf d3v.

Then, upon writing

δl

δρ
⋄1 ρ=ρ∇

δl

δρ
,

δl

δA
⋄1A=−

δl

δA
×∇×A+

(

∇·
δl

δA

)

A

and evaluating

δl

δU
=ρU ,

δl

δA
=−∇×∇×A+qhK,

δl

δρ
=

1

2
|U |

2
+ρU ′(ρ)+U(ρ),

we see that equation (4.7) returns the velocity equation (4.3) of the pressure-coupling
scheme (4.3)-(4.5). In conclusion, we have proven the following theorem.
Theorem 4.2. The hybrid pressure-coupling MHD scheme (4.3)-(4.5) arises from

the Euler-Poincaré variational principle

δ

∫ t1

t0

l(U ,ρ,X,f,A)dt=0

with the reduced Lagrangian

l :
(

X(R3)sX(R6)
)

×C∞(R3)∗×Ω1(R3)×C∞(R6)∗→R,

given in (4.13), and variations

δ(U ,X)=∂t(W,Z)−(£UW,£XW
X−£XU

Z+£XZ) ,

δf =−£Z+XW
f, δ(ρ,A)=−£W (ρ,A) ,
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where the vector fields W∈X(R3) and Z∈X(R6) vanish at the endpoints. This varia-

tional principle is equivalent to the Euler-Poincaré equations (4.7)-(4.10), which hold

for an arbitrary hybrid Lagrangian.

Remark 4.3 (Conjugation action in semidirect-product Lie groups). The Lie
algebra action that is involved in the semidirect product X(R3)sX(R6) is naturally
inherited from the Jacobi-Lie bracket on X(R6). According to the theory of semidirect-
product Lie groups, this action must arise from a group action of Diff(R3) on Diff(R6)
that is also a group homomorphism. In other words, η (ψ1ψ2)=η (ψ1)η (ψ2), with
η∈Diff(R3) and ψ1,ψ2∈Diff(R6). In particular, since we can regard Diff(R3) as
a subgroup of Diff(R6), one is led to consider the action ψ 7→η◦ψ◦η−1 which is
naturally inherited from the conjugation action in Diff(R6). This action generates
the semidirect-product Lie group Diff(R3)sDiff(R6), whose tangent space at the
identity X(R3)sX(R6) is endowed with the Lie bracket

[(U ,X),(W ,Z)]=−(£UW,£XW
X−£XU

Z+£XZ).

More details on semidirect-products of two Lie groups may be found in [28, 4].

4.3. Discussion. The Euler-Poincaré construction of the first pressure cou-
pling scheme is based on the following proposition:

Proposition 4.4. The Euler-Poincaré equations (4.3)-(4.5) yield

(

∂

∂t
+£U

)(

δl

δU
−

∫

δl

δu
d3v+

∫

(v ·∂x)
δl

δα
d3v

)

=ρ∇
δl

δρ
−
δl

δA
×∇×A+

(

∇·
δl

δA

)

A. (4.15)

Proof. The proof is a direct verification, based on relations (4.12) and (4.14).
After computing

(

∂

∂t
+£U

)(

δl

δU
−

∫

δl

δu
d3v+

∫

(v ·∂x)
δl

δα
d3v

)

=
δl

δρ
⋄1 ρ+

δl

δA
⋄1A+

∫
(

£XU

δl

δX

)

1

d3v−£U

∫

δl

δu
d3v

−

∫

(v ·∂x)

(

£XU

δl

δX

)

2

d3v+£U

∫

(v ·∂x)
δl

δα
d3v,

the proof follows immediately from Lemma 4.5 below.

Kelvin-Noether theorem and its momentum map. The above relation rep-
resents the Lagrangian analogue of an important construction in Lie-Poisson Hamil-
tonian systems, known as untangling. Untangling is accomplished by shifting the
momentum by a momentum map that takes the Lie-Poisson bracket on the dual of a
semidirect-product Lie algebra into the Lie-Poisson bracket on the dual of a direct-sum
Lie algebra. For more details, see Corollary 2.4 in [24].

It is perhaps not surprising that the very first application of this construction
occurred in plasma physics [18, 17]. This construction was also used in [44]. The
momentum map in the present case is the dual i∗ :X∗(R6)→X

∗(R3) of the Lie algebra
inclusion i :U 7→XU . The result (4.15) hinges on the following property, which is
proven in Appendix A:
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Lemma 4.5. The following map i∗ :X∗(R6)→X
∗(R3):

i∗
(

δl

δX

)

=

∫

δl

δu
d3v−

∫

(v ·∂x)
δl

δα
d3v,

is a momentum map satisfying the relation

i∗
(

£XU

δl

δX

)

=£U i∗
(

δl

δX

)

for an arbitrary vector field U ∈X(R3).

Notice that the momentum map i∗ :X∗(R6)→X
∗(R3) is different in nature from

the star operator ⋆ :X(R6)×X
∗(R6)→X

∗(R3) introduced in (4.11). Indeed, while the
latter arises from the cotangent lift of the Diff(R3)-action on X(R6), the momentum
map i∗ arises from the Diff(R3)-action on Diff(R6), which is given by conjugation, as
explained in Remark 4.3. The momentum map property of i∗ can be easily verified
since the inclusion i :X(R3) →֒X(R6) is the dual of a Lie algebra homomorphism, i.e.

[XU ,XW ]= [i(U),i(W )]= i([U ,W ])=X[U ,W ],

where [·, ·] denotes minus the Jacobi-Lie bracket on X(R3) or X(R6), depending on
the context. The proof in Appendix A shows explicitly that i∗ satisfies the definition
of momentum map.

An immediate consequence of Proposition 4.4 is the following circulation law for
the hybrid scheme (4.3)-(4.5), which recovers the previous results in [44].

Corollary 4.6 (Kelvin circulation law). The pressure-coupling MHD scheme

(4.3)-(4.5) possesses the following equivalent circulation theorems:

d

dt

∮

γt(U)

U ·dx=−

∮

γt(U)

1

ρ

(

1

µ0
B×∇×B+mh∇·

∫

vvf d3v

)

·dx, (4.16)

d

dt

∮

γt(U)

(

U−
1

ρ

∫

f pd3v

)

·dx

=−

∮

γt(U)

1

ρ

(

B×
(

µ−1
0 ∇×B−qhK

)

−qh(∇·K)A
)

·dx. (4.17)

Proof. Upon considering the Euler-Poincaré Lagrangian (4.13), relation (4.16)
is implied by the Euler-Poincaré theorem; see [21] and the equation of motion (4.7).
On the other hand, relation (4.17) is an immediate consequence of equation (4.15) in
Proposition 4.4.

Notice that taking the difference of the above circulation laws yields

d

dt

∮

γt(U)

(

1

ρ

∫

f p d3
v

)

·dx=−

∮

γt(U)

1

ρ

(

mh∇·

∫

vvf d3
v−qhK×B+qh(∇·K)A

)

·dx,

where we recall the relation p=mhv+qhA. Thus, upon considering (4.9) and the
zero-th moment equation ∂tn+∇·(nU )=−∇·K associated to (4.4), we have

d

dt

∮

γt(U)

K

ρ
·dx=−

∮

γt(U)

1

ρ

(

∇·

∫

vvf d3v−ahK×B
)

·dx.
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Moreover, the above fluid circulation laws are accompanied by preservation of the
Poincaré-invariant

d

dt

∮

ζt(X+XU )

p ·dx=0,

where the curve ζt now moves along the total phase-space vector field X+XU .

Ertel’s theorem. By proceeding as in the corresponding treatment for the current-
coupling scheme, one recognizes that the force

Ψ=
(

µ−1
0 ∇×B−qhK

)

×B+qh(∇·K)A (4.18)

provides the opportunity to generalize Ertel’s relation for MHD [15] to apply to the
first pressure-coupling scheme. Indeed, upon following similar steps as those in Section
3.3, one finds that the incompressible form of equation (4.15) yields the relation (3.20),
with ω̄=∇×

(

U−ρ−1
∫

f pd3v
)

and Ψ as given in (4.18). Again, we kept the density
ρ in the expression of ω̄ in order to provide correct dimensions; incompressible flows
are always accompanied by ρ=1.

Cross helicities. Notice that, upon denoting W=U−ρ−1
∫

f pd3v, both of the
cross helicities

Λ1=

∫

U ·Bd3x , Λ3=

∫

W ·Bd3x

possess nontrivial dynamics. Indeed, their equations of motion read as

dΛ1

dt
=−mh

∫

ρ−1 (∇·P) ·Bd3x,
dΛ3

dt
= qh

∫

ρ−1 (A ·B)∇·Kd3x.

On the other hand, the following cross helicity is conserved:

Λ2=

∫

Υ ·Bd3x, (4.19)

where we have denoted Υ=U−mhρ
−1K. Upon noticing that Dt(ρ

−1n)=
ρ−1(∂tn+∇·(nU )), the conservation of Λ2 is readily seen by computing

dΛ2

dt
=

dΛ3

dt
+qh

d

dt

∫

ρ−1nA ·Bd3x=0,

where one considers the equation ∂tn+∇·(nU )=−∇·K arising from the zeroth mo-
ment of the Vlasov equation (4.4).

5. Second pressure-coupling hybrid MHD scheme

5.1. Formulation of the model. As mentioned in the previous section, the
pressure-coupling MHD scheme is conventionally obtained under the assumption that
the hot plasma component is rarefied. Upon denoting by n the particle density of the
hot component and by mc the cold particle mass, this assumption reads as n≪ρ/mc.
Then, in order to avoid divergences in the mean velocity V =n−1

∫

vf d3v of the hot
component, a small hot particle density n requires the hot momentum K=

∫

vf d3v
to also be small. Thus, it is customary to replace the total momentum ρU+mhK by
simply ρU , i.e. the cold fluid momentum. While this operation is often performed on
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the equations of motion [8, 36], our approach makes this replacement directly in the
variational principle, resulting in agreement with [44]. The advantage of modeling in
the Lagrangian of the Euler-Poincaré variational principle is that it always produces
circulation theorems. This is the content of the Kelvin-Noether theorem of [21].

The assumption of a rarefied hot component may also require that the mean
kinetic energy mh

2

∫

n|V |
2
d3x of the hot component is subtracted from the corre-

sponding total kinetic energy mh

2

∫

f |v|
2
d3xd3v. This operation yields the second

pressure-coupling scheme [44]

ρ
∂U

∂t
+ρ(U ·∇)U =−∇p−mh∇·

∫
(

v−
K

n

)(

v−
K

n

)

f d3v−
1

µ0
B×∇×B, (5.1)

∂f

∂t
+

(

v+U−
K

n

)

·
∂f

∂x
+

(

ah

(

v−
K

n

)

×B−∇U ·v+

(

∇
K

n

)

·

(

v−
K

n

))

·
∂f

∂v
=0,

(5.2)

∂ρ

∂t
+∇·(ρU)=0,

∂B

∂t
=∇×(U×B) . (5.3)

We remark that neglecting all U - and n−1K-terms in the kinetic equation (5.2)
and replacing n−1K×B by U×B produces the hybrid MHD model in [23, 43] (al-
though the general Vlasov equation is adopted here, rather than a drift-kinetic equa-
tion). Upon denoting P̄=

∫

(v−〈v〉)⊗2f d3v and 〈v〉=K/n, the model in [23, 43] can
be derived by assuming n∂t〈v〉+n(〈v〉 ·∇)〈v〉=−∇· P̄+ah(K−nU)×B≃0 in the
current-coupling scheme (3.6)-(3.9), so that the Lorentz forces in (3.6) are replaced
by a relative pressure term.

Notice that the static equilibria of the equations (5.1)-(5.3) coincide with those of
the hybrid model in [23, 43] (for hot particles undergoing Vlasov dynamics), provided
the equilibrium Vlasov distribution (usually denoted by f0) is isotropic in the velocity
coordinate, i.e. K0=

∫

vf0d
3v=0.

5.2. Euler-Poincaré reduction by symmetry. In order to obtain the
Euler-Poincaré formulation of the hybrid model (5.1)-(5.3) for the second pressure-
coupling scheme [44], the Lagrangian (4.13) is transformed into

l(U ,V ,X,ρ,A,f)

=
1

2

∫

ρ|U |
2
d3x−

∫

ρU(ρ)d3x−
1

2µ0

∫

|∇×A|
2
d3x

+

∫

f
(mh

2
|u|

2
+
mh

2
|u−v|

2
−
mh

2
|V |

2
+qh (u+V ) ·A

)

d3xd3v, (5.4)

where we notice that the mean velocity V appears as a new dynamical variable. The
term qh

∫

fV ·Ad3xd3v has been inserted in order to match the correct Lorentz force
on the hot component [44]. As we shall see, the two V −terms in the above Lagrangian
correspond to subtracting the contributions of the mean velocity 〈v〉=n−1K=−V .
Upon following the same reasoning as in the previous section, we realize that the
fluid U -transport exerted by the cold fluid component on the Vlasov distribution f
of the hot particles must imply a U -transport of the mean hot velocity V . More
particularly, we interpret the above Lagrangian as a functional of the type

l :X1(R
3)s

(

X2(R
3)sX(R6)

)

×Den(R3)×Ω1(R3)×Den(R6)→R,

where X1(R
3) and X2(R

3) are two copies of the same Lie algebra X(R3) of vector
fields, although they are denoted differently because the second is assumed to act



D.D. HOLM AND C. TRONCI 213

trivially on the space Den(R3)×Ω1(R3) containing the cold fluid density ρ as well as
the magnetic potential A. The first (outer) semidirect-product symbol corresponds to
fluid U -transport of both the mean velocity V ∈X2(R

3) and the phase-space vector
field X∈X(R6). On the other hand, the second (inner) semidirect-product symbol
corresponds to the V -transport exerted by the mean flow of the hot component on
its corresponding phase-space velocity. At the group level, the unreduced Lagrangian
is of the type

Lρ0,A0,f0 :T
(

Diff1(R
3)s

(

Diff2(R
3)sDiff(R6)

))

→R, (5.5)

where (ρ0,A0,f0) are the advected parameters. Notice that similar arguments to those
in Remark 4.3 also apply here about the group actions involved in nested semidirect-
product Lie group structures of this kind. The first instance of nested semidirect-
product Lie-group structures also occurred in plasma physics — in the discovery of
the Lie-Poisson brackets dual to nested semidirect-product Lie algebras in models of
Alfvén wave turbulence [14, 16]. This construction was also used for hybrid Vlasov-
fluid models in [44]. Further details can be found in [12], where similar Lie group
structures were shown to arise in polymer dynamics.

At this point, general geometric mechanics arguments ensure that the Euler-
Poincaré variational principle δ

∫ t1
t0
l(U ,V ,X,ρ,A,f)dt=0 produces the following

equations of motion:

∂

∂t

δl

δU
+£U

δl

δU
=−£V

δl

δV
+
δl

δX
⋆X+

(

δl

δρ
,
δl

δA
,
δl

δf

)

⋄1 (ρ,A,f) , (5.6)

∂ρ

∂t
+£U ρ= 0,

∂A

∂t
+£U A=0, (5.7)

∂

∂t

δl

δV
+£V +U

δl

δV
=

δl

δX
⋆X+

δl

δf
⋄1 f, (5.8)

∂

∂t

δl

δX
+£X+XV +U

δl

δX
=f∇(x,v)

δl

δf
, (5.9)

∂f

∂t
+£X+XV +U

f =0. (5.10)

In order to see how equations (5.6)-(5.10) recover the second pressure coupling
scheme (5.1)-(5.3), it suffices to substitute the Lagrangian (5.4). After computing

δl

δu
=mhf (2u−v+ahA) ,

δl

δα
=0,

δl

δf
=
mh

2
|u|2+

mh

2
|u−v|2−

mh

2
|V |2+qh (u+V ) ·A,

the second component of equation (4.10) yields u=v so that X=(v,α(x,v)), sim-
ilarly to the results in the previous section. Moreover, the first component of (4.10)
reads as

∂tp+
(

(v+V +U) ·∂x
)

p+(a ·∂v)p+∂x(v+V +U) ·p=∂x
(

qh(v+V ) ·A−
mh

2
|V |2

)

,

where we have denoted by a=α+(XV +U )2=α+(v ·∇)(V +U) the total accelera-
tion of the hot particles. After using standard vector identities, this equation yields
the expression for the total force on the hot component:

mha= qh (v+V )×B−mh∇U ·v−mh∇V ·(v+V ) .
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Then, the total vector field X+XV +U =(v+V +U ,a) is divergence-free and the
Vlasov equation (4.10) becomes

∂f

∂t
+(v+V +U) ·

∂f

∂x
+
(

ah (v+V )×B−∇U ·v−∇V ·(v+V )
)

·
∂f

∂v
=0. (5.11)

At this point, we observe that the constraint V =−K/n is preserved by the dynamics.
This is a direct consequence of the following

Proposition 5.1. With the notation of Lemma 4.5, the Euler-Poincaré equations

(5.6)-(5.10) yield
(

∂

∂t
+£V +U

)(

δl

δV
− i∗

(

δl

δX

))

=0. (5.12)

The proof proceeds analogously to that of Proposition 4.4 (see also Lemma 4.5). Upon
considering the Lagrangian (5.4), the Euler-Poincaré equations (5.6)-(5.10) preserve
the constraint

−V

∫

f d3v=

∫

vf d3v,

which allows one to recover the Vlasov equation (5.2) of the second pressure coupling
scheme in [44]. Analogously, one can show that equation (5.6) recovers the hybrid
equation of motion of the same pressure coupling scheme, that is (5.1). In order to
show this, it suffices to verify that

−£V

δl

δV
+
δl

δf
⋄1 f =−mh∇·

∫
(

v−
K

n

)(

v−
K

n

)

f d3v=:−mh∇·P.

This formula requires a lengthy but straightforward calculation that uses V =−n−1K

and the well known relation

∇·

∫

vvf d3v=∇·

(

n−1KK+

∫

(

v−n−1K
)(

v−n−1K
)

f d3v

)

between the absolute and relative pressure tensors. Thus, in conclusion, we have
proven the following

Theorem 5.2. The hybrid pressure-coupling MHD scheme (5.1)-(5.3) arises from

the Euler-Poincaré variational principle

δ

∫ t1

t0

l(U ,V ,X,ρ,A,f)dt=0,

with the reduced Lagrangian

l :X1(R
3)s

(

X2(R
3)sX(R6)

)

×C∞(R3)∗×Ω1(R3)×C∞(R6)∗→R

as in (5.4) and variations

δ(U ,V ,X)=∂t(W,P,Z)−
(

£UW,£WV −£UP+£V P,£XP+W
X−£XV +U

Z+£XZ
)

,

δf =−£Z+XP+W
f, δ(ρ,A)=−£W (ρ,A) ,

in which the vector fields P,W∈X(R3) and Z∈X(R6) vanish at the endpoints. This

variational principle is equivalent to the Euler-Poincaré equations (5.6)-(5.10) which

hold for an arbitrary hybrid Lagrangian.
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5.3. Discussion. It is relevant to notice that equations (5.6) and (5.9) yield
the following relation:

(

∂

∂t
+£U

)(

δl

δU
− i∗

(

δl

δX

))

=−£V

(

δl

δV
− i∗

(

δl

δX

))

+ρ∇
δl

δρ

−
δl

δA
×∇×A+

(

∇·
δl

δA

)

A, (5.13)

where one has used Lemma 4.5. Upon inserting the Lagrangian (5.4), the Lie deriva-
tives in the right hand side cancel due to the constraint V =−K/n.

Kelvin circulation laws. The Kelvin-Noether conservation laws also hold for equa-
tions (5.1)-(5.3). Indeed, upon repeating the same steps as in the proof of Corollary
4.6, one finds the circulation laws

d

dt

∮

γt(U)

U ·dx=−

∮

γt(U)

1

ρ

(

1

µ0
B×∇×B+mh∇·P

)

·dx, (5.14)

d

dt

∮

γt(U)

(

U−
1

ρ

∫

f pd3v

)

·dx=−µ−1
0

∮

γt(U)

1

ρ
B×∇×B ·dx, (5.15)

where the second is a direct consequence of equation (5.13). These results coincide
with those found in [44] within the Lie-Poisson Hamiltonian setting. Taking the
difference of the above two relations yields

d

dt

∮

γt(U)

(

1

ρ

∫

f p d3v

)

·dx=mh
d

dt

∮

γt(U)

K

ρ
·dx=−mh

∮

γt(U)

1

ρ

(

∇·P
)

·dx,

where we have used the zero-th moment equation ∂tn+∇·(nU )=0 associated to
(5.11). Indeed, together with equation (5.7), this yields the following conserved cir-
culation:

d

dt

∮

γt(U)

(

1+
n

ρ

)

A ·dx=0.

Moreover, the above circulation laws are accompanied by the following Poincaré
invariant relation:

d

dt

∮

ζt(X+XU−K/n)

p ·dx=0,

where the curve ζt moves along the total phase-space vector field X+XU−K/n.

Ertel’s relation. Proceeding as in Section 3.3, taking the curl of the incompressible
version of equation (5.13) for the Lagrangian (4.13), or equivalently applying the
Stokes theorem in the Kelvin-Noether relation (5.15) produces an Ertel relation of
the form

Dt (ω̄ ·∇α)−(ω̄ ·∇)Dtα=−µ−1
0 ∇α ·∇×

(

B×(∇×B)
)

,

where α is an arbitrary scalar function and, upon keeping the mass density ρ (equal
to one for incompressible flows),

ω̄=∇×

(

U−mh
K

ρ

)

.
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The Ertel relation above, written in terms of ω̄, has the same form as the correspond-
ing relation in [15], except that the vorticity ω̄ here involves a velocity shift due to
the mean specific momentum carried by the particles.

Cross helicities. Upon denoting W=U−ρ−1
∫

f pd3v, it easy to see that the two
cross helicities

Λ1=

∫

U ·Bd3x and Λ3=

∫

W ·Bd3x

possess the following dynamics:

dΛ1

dt
=−mh

∫

ρ−1
(

∇·P
)

·Bd3x,
dΛ3

dt
=0,

so that Λ3 is now conserved by the hybrid dynamics of equations (5.1)-(5.3). Also,
notice the conservation of the modified magnetic helicity

H=

∫

n

ρ
A ·Bd3x,

which allows to write the cross helicity invariant Λ3 as

Λ3=

∫
(

U−mh
K

ρ

)

·Bd3x.

The conservation law for H provides an interesting opportunity to study the stability
properties of this hybrid scheme. In particular, H does not vanish for static equilibria.
This means the energy-Casimir method may be applied for hybrid fluid equilibria that
are analogous to the Chandrasekhar flows of inviscid MHD [22].

6. Summary and conclusions

This paper has derived three different hybrid Vlasov-fluid plasma models by using
the Euler-Poincaré approach first developed for the Maxwell-Vlasov plasma [7]. After
presenting the Euler-Poincaré approach for the Vlasov-multifluid plasma system, the
discussion focused on three different schemes for deriving hybrid Vlasov-fluid MHD
models. These comprised the current-coupling scheme and two pressure-coupling
schemes. The first hybrid model was written on the direct product of two different
diffeomorphism groups, as explained in Remark 3.2. The second one involved the more
sophisticated construction of the semidirect-product diffeomorphism group discussed
in Remark 4.3. Finally, a compound semidirect-product structure arose for the third
hybrid model; see equation (5.5). In all three theories, Kelvin circulation theorems
were presented for both the fluid motion and the hot particle dynamics on phase
space, and the invariant cross-helicities were identified. A Legendre transform in each
case would recover the Lie-Poisson results found [44]. Shifting to the drift-kinetic (or
even gyrokinetic) approximation would require another Lagrangian, which may also
be derived systematically from the Lagrangian for Vlasov-MHD. Summaries of the
properties found here for the three different hybrid Vlasov-fluid plasma models are
given below.
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Current-coupling MHD scheme

• Equations of motion (3.6)-(3.9):

ρ
∂U

∂t
+ρ(U ·∇)U =

(

qhnU− qhK+
1

µ0
∇×B

)

×B−∇p,

∂f

∂t
+v ·

∂f

∂x
+ah (v−U)×B ·

∂f

∂v
=0,

∂ρ

∂t
+∇·(ρU)=0,

∂B

∂t
=∇×(U×B) ;

• Kelvin circulation laws derived from (3.16)-(3.18):

d

dt

∮

γt

U ·dx=

∮

γt

1

ρ

(

qhnU− qhK+
1

µ0
∇×B

)

×B ·dx,

d

dt

∮

γt

(

1+
n

ρ

)

A ·dx=

∮

γt

1

ρ

(

∇·(nU−K)
)

A ·dx.

where γt is any closed loop that moves with the fluid velocity U ;
• Magnetic and cross helicity invariants:

H=

∫

A ·Bd3x, Λ=

∫

U ·Bd3x;

• Approximation: same as ideal MHD; this yields the Lagrangian (3.10).

Pressure-coupling MHD scheme – first variant

• Equations of motion (4.3)-(4.5):

ρ
∂U

∂t
+ρ(U ·∇)U =−∇p−mh∇·P−

1

µ0
B×∇×B,

∂f

∂t
+(U+v) ·

∂f

∂x
−
∂f

∂v
·∇U ·v+ahv×B ·

∂f

∂v
=0,

∂ρ

∂t
+∇·(ρU)=0,

∂B

∂t
=∇×(U×B);

• Kelvin circulation laws (4.16)-(4.17):

d

dt

∮

γt

U ·dx=−

∮

γt

1

ρ

(

1

µ0
B×∇×B+mh∇·P

)

·dx,

d

dt

∮

γt

K

ρ
·dx=

∮

γt

1

ρ

(

ahK×B−∇·P
)

·dx,

d

dt

∮

γt

(

1+
n

ρ

)

A ·dx=−

∮

γt

1

ρ
(∇·K)A ·dx;

• Magnetic and cross helicity invariants:

H=

∫

A ·Bd3x, Λ=

∫
(

U−mh
K

ρ

)

·Bd3x;
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• Approximation: neglects minimal coupling term
∫

nU ·Ad3x in the La-
grangian (3.10).

Pressure-coupling MHD scheme – second variant

• Equations of motion (5.1)-(5.3):

ρ
∂U

∂t
+ρ(U ·∇)U =−∇p−mh∇· P̄−

1

µ0
B×∇×B,

∂f

∂t
+

(

v+U−
K

n

)

·
∂f

∂x

+

(

ah

(

v−
K

n

)

×B−∇U ·v+

(

∇
K

n

)

·

(

v−
K

n

))

·
∂f

∂v
=0,

∂ρ

∂t
+∇·(ρU)=0,

∂B

∂t
=∇×(U×B);

• Kelvin circulation laws (5.14)-(5.15):

d

dt

∮

γt

U ·dx=−

∮

γt

1

ρ

(

1

µ0
B×∇×B+mh∇· P̄

)

·dx,

d

dt

∮

γt

K

ρ
·dx=−

∮

γt

1

ρ

(

∇·P
)

·dx,
d

dt

∮

γt

(

1+
n

ρ

)

A ·dx=0;

• Magnetic and cross helicity invariants:

H=

∫
(

1+
n

ρ

)

A ·Bd3x, Λ=

∫
(

U−mh
K

ρ

)

·Bd3x;

• Approximation: neglects
∫

nU ·Ad3x as well as mean flow terms in the
Lagrangian (3.10).

The Euler-Poincaré approach provided the means of comparing the geometrical
properties of these three hybrid Vlasov-fluid plasma schemes in the same framework.
This framework allowed the identification and comparison of the geometric relation-
ships within each scheme that were shared by the others. We expect that this frame-
work will be useful in other modeling contexts. For example, one may imagine using
the Euler-Poincaré framework (i) in the comparison and selection of Vlasov-fluid hy-
brid models, (ii) in the validation of previous derivations, (iii) in making choices
among the schemes in various physical regimes, and (iv) as a basis for performing
other derivations obtained by modeling in the Lagrangian. From the physical view-
point the roles of heat exchange and other advected quantities should also lead to
interesting effects in future investigations. For example, the introduction of another
advected quantity would produce an explicit Ertel theorem for the evolution of poten-
tial vorticity. Of course, Ertel’s theorem is an immediate result of the Euler-Poincaré
theory for any hybrid fluid-Vlasov model with advected quantities. However, it was
discussed here only in the simple case of incompressible hybrid fluid flows.

In another direction for future research in the context of potential vorticity, one
may use Ertel’s theorem to investigate the evolution of the gradient of the potential
vorticity, as studied recently in geophysical fluid dynamics in terms of the vector
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B=∇Q(q)×∇α [13]. Here Q is an arbitrary function and q= ω̄ ·∇α is the potential
vorticity arising in a given fluid model. Upon considering an advected function α such
that ∂tα+U ·∇α=0, Ertel’s theorem was shown in [13] to produce the dynamics of
the vector B in the form

∂B

∂t
−∇×(U×B)=∇×Φ,

where U =U−q−1
(

α∇×Ψ
)

and ∇×Φ=∇α×∇(qQ′∇·U) . Evidently, the diver-
genceless vector D=∇×Φ breaks the frozen-in condition of the vector B and it thus
affects the stretching properties that are governed by the left-hand side of the equa-
tion for the vector B; see [13]. The identification of the vorticity ω̄ and the force Ψ

in each of the hybrid models discussed here would provide interesting opportunities
to study the dynamics of the gradients of the potential vorticity. This would perhaps
lead to the production of fronts and other fine structures at high wave numbers that
develop by stretching of the B-vector.

Acknowledgment. We are grateful to C. David Levermore for many inspiring
discussions on these and related topics over the years. This paper is dedicated to him
on the occasion of his sixtieth birthday. Happy birthday, Dave! DDH was partially
supported by the Royal Society of LondonWolfson Scheme and the European Research
Council Advanced Investigator Grant.

Appendix A. Proof of Lemma 4.5.

Proof. The map i∗ is easily seen to be a momentum map arising from the dual
of the Lie algebra inclusion i :U 7→XU . Upon denoting Ξ= δl/δX, the momentum
map property

{

F,〈i∗(Ξ) ,U〉
}

X∗(R6)
=UF(X∗(R6))[F ]

can be verified explicitly. Here, UF(X∗(R6)) [F ] denotes evaluation on the functional
F (Ξ) of the infinitesimal generator UF(X∗(R6)) of the Diff(R3)−action on the space
of functionals F(X∗(R6)) on the one-form densities in X

∗(R6). Upon using the right
Lie-Poisson bracket on X

∗(R6), one computes

{

F,〈i∗(Ξ) ,U〉
}

X∗(R6)
=

〈

Ξ,

[

δF

δΞ
,
δ

δΞ
〈i∗(Ξ) ,U〉

]〉

X∗(R6)

=

〈

Ξ,

[

δF

δΞ
,
δ

δΞ
〈Ξ,i(U)〉

]〉

X∗(R6)

=

〈

Ξ,£i(U)
δF

δΞ

〉

X∗(R6)

=−

〈

£XU
Ξ,

δF

δΞ

〉

X∗(R6)

= UF(X∗(R6))[F ] .

where [·, ·] denotes minus the Jacobi-Lie bracket on X(R6).



220 HYBRID PLASMA MODELS

The rest of the proof proceeds in two steps. First,
∫

(

£XU

δl

δX

)

1

d3v

=

∫

(U ·∂x+(v ·∇)U ·∂v)
δl

δu
d3v

+

∫
(

∇U ·
δl

δu
+∂x((v ·∇)U) ·

δl

δα
+
(

∇·U+∂v ·((v ·∇)U)
) δl

δu

)

d3v

=

∫

(U ·∂x)
δl

δu
d3v+

∫

((v ·∇)U ·∂v)
δl

δu
d3v+

∫

(

(v ·∇)∇U
)

·
δl

δα
d3v

+

∫
(

∇U ·
δl

δu
+(∇·U)

δl

δu

)

d3v−

∫
(

((v ·∇)U ·∂v)
δl

δu

)

d3v

= £U

∫

δl

δu
d3v+

∫

(

(v ·∇)∇U
)

·
δl

δα
d3v.

One also has
∫

(v ·∂x)

(

£XU

δl

δX

)

2

d3v=

∫

(v ·∂x)

(

(

U ·∂x+(v ·∇)U ·∂v
) δl

δα

)

d3v

+

∫

(v ·∂x)

(

∂v
(

(v ·∇)U
)

·
δl

δα

)

d3v

+

∫

(v ·∂x)

(

(

∇·U+∂v ·
(

(v ·∇)U
)

) δl

δα

)

d3v.

Then, for each term, one computes
∫

(v ·∂x)

(

(

U ·∂x
) δl

δα

)

d3
v=U ·∇

∫

(v ·∂x)
δl

δα
d3

v+

∫

Tr
(

(∇U)(v∂x)
) δl

δα
d3

v,

∫

(v ·∂x)

(

(

∂v
(

(v ·∇)U
)

) δl

δα

)

d3
v=∇U ·

∫

(v ·∂x)
δl

δα
d3

v+

∫

(

(v ·∇)∇U
)

·
δl

δα
d3

v,

∫

(v ·∂x)

(

(

∇·U
) δl

δα

)

d3
v=

∫

(

(v ·∇)
(

∇·U
)

) δl

δα
d3

v+(∇·U)

∫

(v ·∂x)
δl

δα
d3

v,

and
∫

(v ·∂x)

(

(

∂v ·
(

(v ·∇)U
)

) δl

δα

)

d3
v

=∂x ·

∫

(

∂v ·
(

(v ·∇)U
)

)

v
δl

δα
d3

v

=−∇·

∫

(

(v ·∇)U
) δl

δα
d3

v−

∫

(v ·∂x)

(

(

(v ·∇)U ·∂v
) δl

δα

)

d3
v

=−

∫

(

(v ·∇)∇U
)

·
δl

δα
d3

v−

∫

Tr
(

(∇U)(v∂x)
) δl

δα
d3

v

−

∫

(v ·∂x)

(

(

(v ·∇)U ·∂v
) δl

δα

)

d3
v.

Thus, in conclusion,
∫

(

£XU

δl

δX

)

1

d3
v−

∫

(v ·∂x)

(

£XU

δl

δX

)

2

d3
v−£U

∫

δl

δu
d3

v+£U

∫

(v ·∂x)
δl

δα
d3

v=0

which completes the proof.
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