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Abstract. The convergence of solutions of the Navier-Stokes Equations, set in a domain with
boundary, to solutions of the Euler Equations in the large Reynolds number limit is a challenging
open problem in both 2 and 3 space dimensions. In particular it is distinct from the question
of existence in the large of a smooth solution of the initial-boundary value problem for the Euler
Equations. The present paper proposes three results in that direction. First, if the solutions of the
Navier-Stokes Equations satisfy a slip boundary condition with vanishing slip coefficient in the large
Reynolds number limit, we show by an energy method that they converge to the classical solution of
the Euler Equations on its time interval of existence. Next we show that the incompressible Navier-
Stokes limit of the Boltzmann Equation with Maxwell’s accommodation condition at the boundary
is governed by the Navier-Stokes Equations with slip boundary condition, and we express the slip
coefficient at the fluid level in terms of the accommodation parameter at the kinetic level. This
second result is formal, in the style of [Bardos-Golse-Levermore, J. Stat. Phys., 63, 323–344, 1991].
Finally, we establish the incompressible Euler limit of the Boltzmann Equation set in a domain with
boundary with Maxwell’s accommodation condition assuming that the accommodation parameter is
small enough in terms of the Knudsen number. Our proof uses the relative entropy method following
closely [L. Saint-Raymond, Arch. Ration. Mech. Anal., 166, 47–80, 2003] in the case of the 3-torus,
except for the boundary terms, which require special treatment.
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1. Introduction

In a program initiated more than 20 years ago with Dave Levermore [3, 4, 5],
we outlined a strategy for deriving incompressible fluid dynamic equations from the
theory of renormalized solutions of the Boltzmann Equation invented by R. DiPerna
and P.-L. Lions [12].

At the time of this writing, complete derivations of the Stokes [24, 25], Stokes-
Fourier [14], and Navier-Stokes-Fourier [15, 16, 20] Equations have been obtained,
following that program, in the greatest possible generality allowed by the current
existence theories for both the fluid dynamic and the Boltzmann Equations; see [36]
for a survey of these issues.

The case of the incompressible Euler Equations in space dimension 3 stands out,
primarily because there does not exist a satisfactory theory of global weak solutions
of these equations analogous to Leray’s theory of weak solutions of the Navier-Stokes
Equations [21] in space dimension 3. Even if there was a global existence theory of
weak solutions of the incompressible Euler Equations in the energy space L∞

t (L2
x) in

dimension 3, such solutions would not satisfy the weak-strong uniqueness property
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observed by Leray in the case of the Navier-Stokes Equations. (Indeed there exist
nontrivial compactly supported solutions of the incompressible Euler Equations in
energy space; see [32, 33, 11].) In [23], P.-L. Lions proposed a notion of dissipative
solution of the incompressible Euler Equations — in the same spirit of his defini-
tion of the notion of viscosity solutions of Hamilton-Jacobi Equations, but using the
conservation of energy instead of the maximum principle as in the Hamilton-Jacobi
case. The weak-strong uniqueness property is satisfied by dissipative solutions of the
incompressible Euler Equations (essentially by definition): if there exists a classical
(C1) solution of the incompressible Euler Equations, all dissipative solutions with the
same initial data must coincide with this classical solution on its maximal time in-
terval of existence. Unfortunately, dissipative solutions are not known to satisfy the
incompressible Euler Equations in the sense of distributions.

Using the relative entropy method pioneered in [38] and adapted to the case of
the Boltzmann Equation in [10, 25], L. Saint-Raymond [28, 29] succeeded in deriving
dissipative solutions of the Euler Equations in arbitrary space dimension (or classical
solutions whenever they exist) from weak solutions of the BGK model [28] or from
renormalized solutions of the Boltzmann Equation [29].

However, all the derivations of fluid dynamic equations from the Boltzmann Equa-
tion referred to above are carried out in either the Euclidean space RN or the flat
torus TN so as to avoid difficulties that may result from boundary conditions. The
theory of renormalized solutions of the Boltzmann Equation in the presence of ac-
commodation boundary conditions was obtained, only very recently, by S. Mischler
[27]; subsequently, N. Masmoudi and L. Saint-Raymond established the Stokes-Fourier
limit of such solutions [26].

In the present paper, we derive dissipative solutions (or classical solutions when-
ever they exist) of the incompressible Euler Equations from renormalized solutions of
the Boltzmann Equation in some spatial domain satisfying Maxwell’s accommodation
boundary condition. In particular, we identify a sufficient scaling condition on the
accommodation parameter under which the hydrodynamic limit of the family of solu-
tions of the Boltzmann Equation is governed by the incompressible Euler Equations
with its classical boundary condition — i.e. assuming that the velocity field is tangent
at the boundary.

The outline of the paper is as follows. Section 2 gives a sufficient condition on
the slip coefficient at the boundary under which the incompressible Euler Equations
are obtained as the inviscid limit of the incompressible Navier-Stokes Equations with
slip-boundary condition. The main result in this section is Theorem 2.2, and is based
on an energy method. Section 3 provides a formal derivation of the incompressible
Navier-Stokes Equations with slip boundary condition from the Boltzmann Equation
with Maxwell’s accommodation condition at the boundary of the spatial domain; see
Theorem 3.1 for a precise statement of this result. Based on the intuition provided by
sections 2 and 3, we identify a scaling limit of the Boltzmann Equation with Maxwell’s
accommodation boundary condition leading to the incompressible Euler Equations;
see Theorem 4.2, whose proof occupies most of Section 4.

It is a our great pleasure to offer this modest contribution to our friend Dave Lev-
ermore, in recognition of his outstanding influence on the analysis of nonlinear partial
differential equations in the past 30 years, especially on the problem of hydrodynamic
limits of the Boltzmann Equation, directly inspired from Hilbert’s 6th problem on the
axiomatization of physics.
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2. Inviscid limit of the Navier-Stokes Equations with slip boundary

conditions

A a warm-up, we begin with a simple observation bearing on the inviscid limit
of the incompressible Navier-Stokes Equations set in some smooth domain with slip
boundary condition. In particular, we identify a sufficient scaling condition on the
slip coefficient in order to obtain the incompressible Euler Equations in the inviscid
limit.

Let Ω designate an open set in RN with C1 boundary ∂Ω, assuming that N =2 or
3; henceforth the outward unit normal vector at the point x of ∂Ω is denoted by nx.
Consider the following initial-boundary value problem with unknown uν =uν(t,x), set
for x∈Ω and t≥0:































divxuν =0,

∂tuν +divx(uν ⊗uν)+∇xpν =ν∆xuν ,

uν ·n
∣

∣

∂Ω
=0,

(ν(Σ(uν) ·n)τ +λuν)
∣

∣

∂Ω
=0,

uν

∣

∣

t=0
=uin,

(2.1)

where ν >0 is the kinematic viscosity, λ>0 the slip coefficient,

Σ(u) :=∇xu+(∇xu)
T ,

while

v(x)τ := (I−n(x)⊗2) ·v(x).

Henceforth, we denote

H(Ω) :={v∈L2(Ω;RN )|divv=0 and v ·n
∣

∣

∂Ω
=0}.

For each ν >0 and uin ∈H(Ω), there exists a weak solution uν of (2.1) in
L∞(R+;H(Ω))∩L2(R+;H1(Ω)), meaning that, for each test vector field U belonging
to C(R+;H(Ω))∩C∞

c (R+×Ω), one has

ν

∫ ∞

0

∫

Ω

1
2Σ(uν) :Σ(U)dxdt+λ

∫ ∞

0

∫

∂Ω

uν ·UdS(x)dt

=

∫ ∞

0

∫

Ω

(uν ·∂tU+uν ⊗uν :∇xU)dxdt+

∫

Ω

uin(x) ·U(0,x)dx.

(2.2)

This solution also satisfies uν ∈C(R+;w−L2(Ω)), together with the Leray-type en-
ergy dissipation inequality

∫

Ω

1
2 |uν(t,x)|2dx+ν

∫ t

0

∫

Ω

|Σ(uν)(t,x)|2dxdt

+λ

∫ t

0

∫

∂Ω

|uν(t,x)|2dS(x)dt≤
∫

Ω

1
2 |u

in(x)|2dx
(2.3)

for each t≥0. Such a weak solution of (2.1) will henceforth be referred to as a “Leray
solution of (2.1)”. The well known classical theory of Leray solutions, in the case where
the velocity field satisfies the Dirichlet boundary condition on ∂Ω, can be adapted to
the case of the slip-boundary condition; see [34, 7] and Theorem 2 in [18].
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Since uν ∈C(R+;w−L2(Ω)), by an elementary density argument one can choose
a sequence of test vector fields Un of the special form Un(t,x)=χn(T − t)w(t,x), with
w∈C(R+;H(Ω))∩C1

c (R+×Ω) and

χn(z)=

∫ z

−∞
χ′

n(s)ds,

where χ′
n is a regularizing sequence on R, so that the weak formulation (2.2) of the

Navier-Stokes Equations becomes

ν

∫ T

0

∫

Ω

1
2Σ(uν) :Σ(w)dxdt+λ

∫ T

0

∫

∂Ω

uν ·wdS(x)dt

=

∫

Ω

uin(x) ·w(0,x)dx−
∫

Ω

uν(T,x)w(T,x)dx

+

∫ T

0

∫

Ω

(uν ·∂tw+uν ⊗uν :∇xw)dxdt,

for each T >0. Furthermore, denoting

E(w) :=∂tw+w ·∇xw,

one has
∫ T

0

∫

Ω

uν ·∂twdxdt=

∫ T

0

∫

Ω

(uν ·E(w)−uν ⊗w ·∇xw)dxdt

while
∫ T

0

1
2 |w(t,x)|2dx−

∫ T

0

1
2 |w(0,x)|2dx+

∫ T

0

∫

Ω

w⊗w :∇xwdxdt

=

∫ T

0

∫

Ω

w ·E(w)dxdt.

(2.4)

Therefore

ν

∫ T

0

∫

Ω

1
2Σ(uν) :Σ(w)dxdt+λ

∫ T

0

∫

∂Ω

uν ·wdS(x)dt

=

∫ T

0

∫

Ω

(uν ·E(w)+uν ⊗(uν −w) :∇xw−w⊗uν :∇xw)dxdt

+

∫

Ω

uin(x) ·w(0,x)dx−
∫

Ω

uν(T,x)w(T,x)dx, (2.5)

since
∫

Ω

w⊗uν :∇xwdx=

∫

Ω

divx(uν
1
2 |w|

2)dx=0

because uν ·n
∣

∣

∂Ω
=0. Combining (2.5) and (2.4), we find that

ν

∫ T

0

∫

Ω

1
2Σ(uν) :Σ(w)dxdt+λ

∫ T

0

∫

∂Ω

uν ·wdS(x)dt

=

∫ T

0

∫

Ω

((uν −w) ·E(w)+(uν −w)⊗(uν −w) :∇xw)dxdt

+

∫

Ω

uin(x) ·w(0,x)dx−
∫

Ω

1
2 |w(0,x)|2dx

−
∫

Ω

uν(T,x)w(T,x)dx+

∫

Ω

1
2 |w(T,x)|2dx. (2.6)
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Finally, combining (2.3) and (2.6), we conclude that any Leray solution uν of (2.1)
satisfies the inequality

∫

Ω

1
2 |uν −w|2(t,x)dx+

∫ t

0

∫

Ω

(uν −w)⊗(uν −w) :∇xwdxds

+ν

∫ t

0

∫

Ω

1
2 |Σ(uν)(s,x)|2dxds+λ

∫ t

0

∫

∂Ω

|uν(s,x)|2dS(x)ds

≤
∫

Ω

1
2 |u

in(x)−w(0,x)|2dx−
∫ t

0

∫

Ω

E(w) ·(uν −w)dxds

+ν

∫ t

0

∫

Ω

1
2Σ(uν) :Σ(w)dxds+λ

∫ t

0

∫

∂Ω

uν ·wdS(x)ds

for each w∈C(R+;H(Ω))∩C1
c (R+×Ω).

At this point we recall the definition of dissipative solutions of the incompressible
Euler Equations set in a domain Ω with smooth boundary:























divxu=0,

∂tu+divx(u⊗u)+∇xp=0,

u ·n
∣

∣

∂Ω
=0,

u
∣

∣

t=0
=uin.

(2.7)

Definition 2.1 (P.-L. Lions [23], p. 154, C. Bardos, E. Titi [6], p. 16). Given
uin ∈H(Ω), a dissipative solution of (2.7) is an element u∈C(R+;w−H(Ω)) satisfy-
ing u

∣

∣

t=0
=uin and the inequality

∫

Ω

1
2 |u−w|

2(t,x)dx

≤exp

(
∫ t

0

2‖σ(w)−‖L∞(Ω)(s)ds

)
∫

Ω

1
2 |u

in(x)−w(0,x)|2dx

−
∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)
∫

Ω

E(w) ·(u−w)(s,x)dxds

for each w∈C(R+;H(Ω))∩C1(R+×Ω), where

σ(w)−(t,x) := sup
|ξ|=1

(−Σ(w)(t,x) : ξ⊗ξ). (2.8)

We recall that, if the Euler Equations (2.7) have a classical solution v belonging
to C1([0,T ∗)×Ω) and satisfying

σ(v)−∈L1([0,T ];L∞(Ω)) and p∈L1([0,T ];H1(Ω)) for each T <T ∗,

then all dissipative solutions of (2.7) must coincide with v on [0,T ∗)×Ω a.e. since
one can use w=v as the test vector field, so that

∫

Ω

E(v) ·(u−v)(s,x)dx=−
∫

Ω

∇xp ·(u−v)(s,x)dx=0

because (u−v)(s,·)∈H(Ω) for each s∈ [0,T ).
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Theorem 2.2. Let uin ∈H(Ω), and assume that the slip coefficient λ≡λ(ν) in (2.1)
scales with the kinematic viscosity ν so that

λ(ν)→0 as ν→0. (2.9)

Then any family (uν) of Leray solutions of (2.1) is relatively compact in
L∞(R+;H(Ω)) weak-* and in C(R+;w−H(Ω)) for the topology of uniform conver-
gence on bounded time intervals, and each limit point of (uν) as ν→0 is a dissipative
solution of (2.7).

Proof. We deduce from (2.7) with w=0, or equivalently from the Leray energy
inequality, that

√
νΣ(uν) is bounded in L2(R+;L2(Ω)), and
√

λ(ν)uν

∣

∣

∂Ω
is bounded in L2(R+;L2(∂Ω)).

(2.10)

By Gronwall’s inequality
∫

Ω

1
2 |uν −w|2(t,x)dx

≤ exp

(
∫ t

0

2‖σ(w)−‖L∞(Ω)(s)ds

)
∫

Ω

1
2 |u

in(x)−w(0,x)|2dx

−
∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)
∫

Ω

E(w) ·(uν −w)(s,x)dxds

+

∫ t

0

exp

(
∫ t

s

2‖σ(w)−‖L∞(Ω)(τ)dτ

)

Qν(s)ds (2.11)

where, by the Cauchy-Schwarz inequality,

Qν(s)=ν‖Σ(uν)‖L2(Ω)(s)‖Σ(w)‖L2(Ω)(s)

+λ(ν)‖uν‖L2(∂Ω)(s)‖w‖L2(Ω)(s).

In view of (2.10), one has

‖Qν‖L1([0,T ]) =O(
√
ν)+O(

√

λ(ν))→0

as ν→0, and we conclude by passing to the limit in (2.11) following the same argument
as in [23].

Several remarks are in order after this result.
In some references, the slip boundary condition is written

(

ν

(

∂uν

∂n

)

τ

+λu

)

∣

∣

∣

∣

∣

∂Ω

=0 (2.12)

instead of

(ν(Σ(uν) ·n)τ +λu)
∣

∣

∂Ω
=0. (2.13)

Likewise, the boundary condition

curluν ×n
∣

∣

∂Ω
=0
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is also considered by some authors — and referred to as the Navier slip condition —
in the context of the inviscid limit of the Navier-Stokes Equations; see for instance
[22, 2, 7, 9].

If ∂Ω is a straight line, or a plane, or a hyperplane in space dimension N >3, the
normal vector field n is constant, so that

(Σ(uν) ·n)τ

∣

∣

∂Ω
=

(

∂uν

∂n

)

τ

∣

∣

∣

∣

∣

∂Ω

+∇τ (u ·n
∣

∣

∂Ω
)=

(

∂uν

∂n

)

τ

∣

∣

∣

∣

∣

∂Ω

and, in space dimension 3,

curluν ×n
∣

∣

∂Ω
=(∇xuν −(∇xu)

T ) ·n
∣

∣

∂Ω

=

(

∂uν

∂n

)

τ

∣

∣

∣

∣

∣

∂Ω

−∇τ (u ·n
∣

∣

∂Ω
)=

(

∂uν

∂n

)

τ

∣

∣

∣

∣

∣

∂Ω

(with ∇τ denoting the tangential component of the ∇ operator), since the velocity
field uν is tangential on ∂Ω. Therefore, in the case of a flat boundary, all these
boundary conditions are equivalent.

If ∂Ω is a smooth curve, or a surface or a hypersurface in space dimension N >3,
then

(Σ(uν) ·n)τ

∣

∣

∂Ω
=

((

∂uν

∂n

)

τ

−∇τn ·uτ

)

∣

∣

∣

∣

∣

∂Ω

while, in space dimension 3,

curluν ×n
∣

∣

∂Ω
=

((

∂uν

∂n

)

τ

+∇τn ·uτ

)

∣

∣

∣

∣

∣

∂Ω

,

so that all these boundary conditions differ by a 0-order operator given by the Wein-
garten endomorphism of the boundary ∂Ω.

Here we have chosen the second boundary condition above, as it is the more
natural one when looking at the Navier-Stokes Equation as a fluid dynamic limit of
the kinetic theory of gases.

However, the same argument as in the proof of Theorem 2.2 can be extended to
treat the case of a slip coefficient λ which is negative, provided that

λ(ν)+ =max(λ(ν),0)→0 and λ−(ν)=max(−λ(ν),0)=O(ν)

as ν→0. Indeed, the contribution of λ(ν)− in the estimate (2.7) can be absorbed in
the viscous dissipation term by means of the following classical inequality: for each
α>0, there exists Cα>0 such that, for each v∈H1(Ω),

∫

∂Ω

|v(x)|2dS(x)≤α
∫

Ω

|∇xv(x)|2dx+
Cα

α

∫

Ω

|v(x)|2dx.

With this observation, the term

(Σ(uν) ·n)τ

∣

∣

∂Ω
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can be replaced indifferently with either

((

∂uν

∂n

)

τ

)

∣

∣

∣

∣

∣

∂Ω

or curluν ×n
∣

∣

∂Ω

in the slip boundary condition.
More precise variants of Theorem 2.2 have been established by various authors,

see for instance [37, 8]. The result given here holds for a very general class of nonneg-
ative slip boundary coefficients λ and is based upon the simplest imaginable energy
estimate. The condition λ≥0 in (2.1) is somehow natural when this initial-boundary
value problem is considered as some scaling limit of the Boltzmann Equation of the
kinetic theory of gases.

Another question is whether the condition λ(ν)→0 as ν→0 is optimal. Consider
instead the Dirichlet boundary condition for uν , i.e.

uν

∣

∣

∂Ω
=0.

Formally, this boundary condition corresponds with any one of the slip boundary
conditions above with

lim
ν→0

λ(ν)>0.

In that case, it well known that the Euler Equations (2.7) may fail to describe the
inviscid limit of the Navier-Stokes Equations, even in the simpler 2 dimensional case.
Because the Dirichlet boundary condition overdetermines the velocity field in the
inviscid limit, the Euler Equations (2.7) are expected to govern the inviscid limit
of the Navier-Stokes Equations only if the effect of viscosity remains confined on
a thin layer near the boundary. But it may happen — and does happen under
certain circumstances — that the viscous layer detaches from the boundary, as for
instance in the case of the so-called von Karman vortex streets in the case of a Navier-
Stokes flow past a cylinder, even at moderate Reynolds numbers. While this situation
seems beyond the grasp of current mathematical analysis, there exists a least a very
interesting criterion due to T. Kato [19], formulated in terms of the viscous energy
dissipation only, identifying situations where the inviscid limit of the incompressible
Navier-Stokes Equations with Dirichlet boundary condition is described by the Euler
Equations. This suggests that, unless λ(ν)→0, the Euler Equations (2.7) might also
fail to govern the inviscid limit of the Navier-Stokes Equations with slip boundary
conditions (2.1).

3. From the Boltzmann Equation with accommodation boundary con-

dition to the Navier-Stokes Equations with slip boundary condition

In this section, we revisit the incompressible Navier-Stokes limit for the Boltz-
mann Equation in the case of the initial-boundary value problem. Our main interest
is to understand how the slip boundary condition arises from Maxwell’s accommoda-
tion boundary condition at the kinetic level in the fluid dynamic limit, and especially
how the slip coefficient is related to the accommodation parameter. Strictly speaking,
this is not needed in the proof of the main result in the present paper. Therefore, the
discussion in this section will be only formal, along the line of [4].

Consider the Boltzmann Equation with the incompressible Navier-Stokes scaling

ǫ∂tFǫ +v ·∇xFǫ =
1

ǫ
B(Fǫ,Fǫ). (3.1)
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Here the unknown is the distribution function F ≡F (t,x,v) that is the density at time
t of molecules with velocity v∈RN at the position x∈Ω with respect to the phase
space Lebesgue measure dxdv.

3.1. Formal structure of the Boltzmann Equation. The Boltzmann
collision integral acts only on the v variable in Fǫ, keeping t,x as parameters. Its
expression for φ∈Cc(R

N ) is

B(φ,φ)(v)=

∫∫

RN×SN−1

(φ(v′)φ(v′∗)−φ(v)φ(v∗))b(v−v∗,ω)dv∗dω, (3.2)

where v′,v′∗∈RN are the velocities of 2 identical particles about to undergo an elastic
collision, assuming that their post-collision velocities are v,v∗∈RN . The set of all
possible pre-collision velocities v′,v′∗ are parametrized by the unit vector ω as follows:

{

v′≡ v′(v,v∗,ω) :=v−(v−v∗) ·ωω,
v′∗≡v′∗(v,v∗,ω) :=v∗+(v−v∗) ·ωω.

(3.3)

The collision kernel b(z,ω)>0 is a locally integrable function that satisfies the sym-
metries

b(v−v∗,ω)= b(v∗−v,ω)= b(v′−v′∗,ω) (3.4)

a.e. in (v,v∗,ω), assuming that v′ and v′∗ are given in terms of v,v∗,ω by the relations
(3.3). Depending on the growth of the collision kernel b as |v−v∗|→+∞, the collision
integral can be extended by continuity to larger classes of functions than Cc(R

N ).
Finally, we denote

B(F,F )(t,x,v) :=B(F (t,x,·),F (t,x,·))(v).

The collision integral satisfies the identities































∫

RN

B(φ,φ)(v)dv=0,

∫

RN

B(φ,φ)(v)vdv=0,

∫

RN

B(φ,φ)(v)|v|2dv=0,

(3.5)

for each φ∈Cc(R
N ) or in the larger class allowed by the growth at infinity of the col-

lision kernel b. As a result, whenever F is a classical solution of the scaled Boltzmann
Equation (3.1) with appropriate decay as |v|→∞,































ǫ∂t

∫

RN

Fǫdv+divx

∫

RN

vFǫdv=0,

ǫ∂t

∫

RN

vFǫdv+divx

∫

RN

v⊗2Fǫdv=0,

ǫ∂t

∫

RN

1
2 |v|

2Fǫdv+divx

∫

RN

v 1
2 |v|

2Fǫdv=0,

(3.6)

and these relations are the local conservation laws of mass, momentum, and energy
respectively.



168 EULER LIMIT OF BOLTZMANN WITH ACCOMMODATION

Whenever b(v−v∗,ω) has polynomial growth as |v−v∗|→∞, for each positive,
rapidly decaying φ∈C(RN ) such that lnφ has polynomial growth as |v|→∞, Boltz-
mann’s H Theorem states that

∫

RN

B(φ,φ)(v)lnφ(v)dv≤0, (3.7)

and
∫

RN

B(φ,φ)(v)lnφ(v)dv=0⇔B(φ,φ)=0

⇔φ is a Maxwellian distribution,

(3.8)

meaning that there exists ρ,θ>0 and u∈RN such that

φ(v)=Mρ,u,θ(v) :=
ρ

(2πθ)N/2
e−

|v−u|2

2θ (3.9)

for all v∈RN . As a result, whenever F is a classical solution of the scaled Boltzmann
Equation (3.1) with appropriate decay as |v|→∞, it satisfies the differential entropy
inequality

ǫ∂t

∫

RN

Fǫ lnFǫdv+divx

∫

RN

vFǫ lnFǫdv

=
1

ǫ

∫

RN

B(Fǫ,Fǫ)lnFǫdv≤0.

(3.10)

Throughout this paper, we denote

M :=M1,0,1. (3.11)

Since Maxwellians are equilibrium distributions for the collision integral, it is nat-
ural to investigate the linearization thereof about a Maxwellian, say M for simplicity
— the case of an arbitrary Maxwellian being similar. We therefore introduce the
linearized collision operator, which has the form

LMφ :=−M−1 δB(F,F )

δF

∣

∣

F=M
·Mφ,

i.e.

LMφ(v) :=

∫∫

RN×SN−1

(φ(v)+φ(v∗)−φ(v′)−φ(v′∗))b(v−v∗,ω)Mdv∗dω.

Likewise, we introduce the quadratic operator QM defined by

QM (φ,φ) :=M−1B(Mφ,Mφ).

Under certain assumptions on the collision kernel b, known as Grad’s angular cutoff
assumption, H. Grad proved in [17] that LM is an unbounded, self-adjoint Fredholm
operator on L2(RN ;Mdv) with domain

D(LM ) :={φ∈L2(RN ;Mdv)|φ(b⋆vM)∈L2(RN ;Mdv)},
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where

b(z) :=

∫

SN−1

b(z,ω)dω

and ⋆v designates the convolution product in the v variable. Moreover, the nullspace
of LM is

KerLM =span{1,v1,... ,vn,|v|2}.

In particular, the tensor field A(v)=v⊗2− 1
N |v|2 satisfies A⊥KerLM , so that, by the

Fredholm alternative, there exists a unique tensor field

Â∈D(LM )∩(KerL)⊥ such that LM Â=A

componentwise.
Henceforth in this paper, we assume that the collision kernel b comes from a hard

cutoff potential in the sense of Grad, and more precisely that it satisfies, for some
constant Cb>0 and all (z,ω)∈RN ×SN−1,

0<b(z,ω)≤Cb(1+ |z|), and b(z)≥ 1

Cb
. (3.12)

3.2. Boundary value problem and fluid dynamic limit. The incom-
pressible Navier-Stokes limit of the Boltzmann Equation bears on solutions of the
Boltzmann Equation that are of the form

Fǫ =M(1+ǫgǫ), (3.13)

where it is understood that the relative number density fluctuation gǫ is O(1) in some
sense to be made precise as ǫ→0; see [3, 4, 5] for more details, together with physical
justifications for this scaling assumption.

Here, the scaled Boltzmann Equation (3.1) is set on the spatial domain Ω, with
Maxwell’s accommodation at the boundary, that is assumed to be maintained at the
constant temperature 1. This boundary condition reads

Fǫ(t,x,v)=(1−α)RxFǫ(t,x,v)+αΛx

(

Fǫ

M

)

(t,x)M(v),

x∈∂Ω, v ·nx<0,

(3.14)

where

RxF (t,x,v) :=F (t,x,v−2v ·nxnx) (3.15)

is the specular reflection operator on the boundary, while

Λxφ :=
√

2π

∫

RN

φ(v)(v ·nx)+M(v)dv. (3.16)

In (3.14), the parameter α satisfies 0≤α≤1, and is called the accommodation coeffi-
cient. The case α=0 corresponds with specular reflection of the gas molecules on ∂Ω
without thermal exchange, while the case α=1 corresponds with diffuse reflection, or
total accommodation, in which case gas molecules are instantaneously thermalized at
the boundary.
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We henceforth denote, for each φ∈L1(RN ;Mdv),

〈φ〉 :=
∫

RN

ψ(v)M(v)dv.

Theorem 3.1. Let (Fǫ)ǫ>0 be a family of solutions of the scaled Boltzmann Equation
(3.1) set on the spatial domain Ω, satisfying the accommodation boundary condition
(3.14) on ∂Ω. Assume that the relative fluctuations

gǫ =
Fǫ−M
ǫM

→g

a.e. and in weak-L1
loc(R+×Ω×RN ;dtdxMdv) (possibly up to extraction of a subse-

quence), and that

〈|v|31|v|>R|gǫ|〉+〈|Â|1|v|>R|QM (gǫ,gǫ)|〉+〈|Â||v|1|v|>R|gǫ|〉→0

in L1
loc(R+×Ω) as R→+∞ uniformly in ǫ>0. Then

g(t,x,v)=ρ(t,x)+u(t,x) ·v+θ(t,x) 1
2 (|v|2−N),

where u is a solution of the incompressible Navier-Stokes Equations
{

divxu=0,

∂tu+divx(u⊗2)+∇xp=ν∆xu,

and where

ν= 1
(N−1)(N+2) 〈Â :A〉.

Assume further that
{

〈v ·nxgǫ

∣

∣

∂Ω
〉→〈v ·nxg

∣

∣

∂Ω
〉,

〈vτ (v ·nx)+gǫ

∣

∣

∂Ω
〉→〈vτ (v ·nx)+g

∣

∣

∂Ω
〉

in weak-L1
loc(R+×∂Ω). Then, the velocity field u satisfies the boundary condition

{

u ·nx =0, x∈∂Ω,

ν(Σ(u) ·nx)τ +λu=0, x∈∂Ω,

where the slip coefficient is given by the formula

λ= α0

N−1 〈|vτ |2(v ·nx)+〉=
α0√
2π
.

Proof. Observe that, under the substitution v 7→w=v−2v ·nn, one has, for each
unit vector n,

∫

RN

φ(v−2v ·nn)(v ·n)−Mdv=

∫

RN

φ(w)(w ·n)+Mdw,

so that, for each x∈∂Ω, one has
∫

RN

Fǫ(t,x,v)v ·nxdv=−α
∫

RN

Fǫ(t,x,v)(v ·nx)+dv

+αΛx

(

Fǫ

M

)

(t,x)

∫

RN

M(v)(v ·nx)−dv=0,
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since
∫

RN

M(v)(v ·nx)+dv=

∫

RN

M(v)(v ·nx)−dv=
1√
2π
.

Hence, for each x∈∂Ω and each ǫ>0, one has

〈vgǫ〉(t,x) ·nx =
1

ǫ

∫

RN

Fǫ(t,x,v)v ·nxdv=0,

so that, after passing to the limit as ǫ→0,

u(t,x) ·nx = 〈vg〉(t,x) ·nx =0, t>0, x∈∂Ω.

Next write the local conservation of momentum — the second local conservation
law in (3.6) – in the form

∂t〈vgǫ〉+divx
1

ǫ
〈Agǫ〉+∇x

1

ǫ
〈 1

N |v|2gǫ〉=0,

where

A≡A(v) :=v⊗2− 1
N |v|2.

Let now w≡w(x)∈RN designate a compactly supported C1 vector field on RN sat-
isfying

divw=0 and w(x) ·nx =0, x∈∂Ω.

Taking the inner product of both sides of the local conservation of momentum with
w and integrating over Ω leads to

∂t

∫

Ω

w · 〈vgǫ〉dx+

∫

∂Ω

w⊗nx :
1

ǫ
〈Agǫ〉dS(x)

−
∫

Ω

∇w :
1

ǫ
〈Agǫ〉dx=0,

(3.17)

since
∫

Ω

w ·∇x
1

ǫ
〈 1

N |v|2gǫ〉dx=

∫

Ω

divx

(

1

ǫ
〈 1

N |v|2gǫ〉 ·w
)

dx

=

∫

∂Ω

1

ǫ
〈 1

N |v|2gǫ〉w ·nxdS(x)=0.

Next we pass to the limit in the sense of distributions in each term appearing in
(3.17); following the analysis in [3, 4], one finds that

∫

Ω

w · 〈vgǫ〉dx→
∫

Ω

w · 〈vg〉dx=

∫

Ω

w ·udx

while
∫

Ω

∇w :
1

ǫ
〈Agǫ〉dx→

∫

Ω

∇w : (A(u)−νΣ(u))dx

=

∫

Ω

∇w : (u⊗2−νΣ(u))dx.
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(Indeed, since w is divergence-free, ∇w : 1
N |u|2 = 1

N |u|2divxw=0.)
It remains to analyze the boundary term

∫

∂Ω

w⊗nx :
1

ǫ
〈Agǫ〉dS(x).

Since w ·nx =0 on ∂Ω,

w⊗nx : 〈Agǫ〉=w⊗nx : 〈v⊗2gǫ〉= 〈vτv ·nxgǫ〉 ·w.

At this point, we decompose the boundary term into the contribution of gas molecules
about to collide and those having just collided with the boundary

〈vτv ·nxgǫ〉= 〈vτv ·nx1v·nx>0gǫ〉+〈vτv ·nx1v·nx<0gǫ〉

and use the accommodation condition to write

〈vτv ·nx1v·nx<0gǫ〉= 〈vτv ·nx1v·nx<0((1−α)Rxgǫ +αΛx(gǫ))〉.

Observing that

〈vτv ·nx1v·nx<0Rxgǫ〉= 〈Rx(vτv ·nx1v·nx>0)gǫ〉
=−〈vτv ·nx1v·nx>0gǫ〉,

we conclude that

〈vτv ·nx1v·nx<0gǫ〉=−〈vτv ·nx1v·nx>0((1−α)gǫ +αΛ(gǫ))〉,

so that

〈vτv ·nxgǫ〉=α〈vτv ·nx1v·nx>0(gǫ−Λx(gǫ))〉=α〈vτv ·nx1v·nx>0gǫ〉,

where the second equality follows from the fact that the function

v 7→vτv ·nx1v·nx>0(gǫ−Λx(gǫ)

is odd in vτ .
Therefore the boundary term appearing in (3.17) becomes

∫

∂Ω

w⊗nx :
1

ǫ
〈Agǫ〉dS(x)=

α

ǫ

∫

∂Ω

w · 〈vτv ·nx1v·nx>0gǫ〉dS(x).

Assume that α≡α(ǫ) varies with ǫ so that α(ǫ)/ǫ→α0 as ǫ→0. Since

gǫ →g=ρ+u ·v+θ 1
2 (|v|2−N),

and we already know that

u ·nx =0 on ∂Ω,

one has

w · 〈vτv ·nx1v·nx>0gǫ〉→〈v⊗2
τ (v ·nx)+〉 :ut⊗w

= 1
N−1 〈|vτ |2(v ·nx)+〉u ·w.
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Thus, passing to the limit in (3.17) leads to

∂t

∫

Ω

w ·udx+ α0

N−1 〈|vτ |2(v ·nx)+〉
∫

∂Ω

u ·wdS(x)

−
∫

Ω

∇w : (u⊗2−νΣ(u))dx=0.

(3.18)

(Notice that the term 〈|vτ |2(v ·nx)+〉 is independent of x and therefore comes out of
the boundary integral.)

Whenever u(t,·)∈C2(Ω), an application of Green’s formula transforms the last
integral above into

∫

Ω

∇w : (u⊗2−νΣ(u))dx=−
∫

Ω

w ·(divx(u⊗2)−νdivx(Σ(u)))dx

+

∫

∂Ω

w ·uu ·nxdS(x)−ν
∫

∂Ω

w ·(Σ(u) ·n)dS(x).

Since u ·nx =0 on ∂Ω, the second integral on the right-hand side above vanishes, and
since divxu=0, one has divx(Σ(u))=∆xu, so that

∫

Ω

∇w : (u⊗2−νΣ(u))dx=−
∫

Ω

w ·(divx(u⊗2)−ν∆xu)dx

−ν
∫

∂Ω

w ·(Σ(u) ·n)dS(x).

Thus, if u∈C2([0,T ]×Ω), the equality (3.18) becomes

∂t

∫

Ω

w ·udx+

∫

Ω

w ·(divx(u⊗2)−ν∆xu)dx

+ α0

N−1 〈|vτ |2(v ·nx)+〉
∫

∂Ω

u·wdS(x)+ν

∫

∂Ω

w·(Σ(u)·n)dS(x)=0.

This identity holds, say, for each w∈C∞
c (Ω;RN ). In particular, it holds for each

w∈C∞
c (Ω;RN ) such that divw=0, which implies that

∂tu+divx(u⊗2)−ν∆xu=−∇xp

in the sense of distributions (for some p∈D′(R∗
+×Ω)). Since the velocity field u

belongs to C2([0,T ]×Ω) we conclude that p∈C1([0,T ]×Ω). Substituting this in the
identity above with w∈C∞

c (Ω;RN ), such that divw=0 and w ·n=0 on ∂Ω, gives

−
∫

Ω

w ·∇xpdx+

∫

∂Ω

(νΣ(u) ·nx + α0

N−1 〈|vτ |2(v ·nx)+〉u) ·wdS(x)=0

and since, by Green’s formula,

−
∫

Ω

w ·∇xpdx=−
∫

Ω

divx(pw)dx=

∫

∂Ω

pw ·nxdS(x)=0,

we conclude that

ν(Σ(u) ·nx)τ + α0

N−1 〈|vτ |2(v ·nx)+〉u=0 on ∂Ω.
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In other words, (3.18) is the weak formulation of










∂tu+divx(u⊗2)−ν∆xu=−∇xp, x∈Ω, t>0,

ν(Σ(u) ·nx)τ +λu=0, x∈∂Ω, t>0,

u ·nx =0, x∈∂Ω, t>0,

with

λ= α0

N−1 〈|vτ |2(v ·nx)+〉=
α0√
2π
.

The argument above is a proof of the (formal) Navier-Stokes limit Theorem 3.1
by a moment method analogous to the one used in [4]. As far as we know, the
first derivation of this slip boundary condition, in the steady, linearized regime (i.e.
leading to the Stokes Equations in the fluid limit), is due to K. Aoki, T. Inamuro, and
Y. Onishi [1] (see especially formula (33) in that reference). That derivation uses a
Hilbert expansion method (formal series expansion of the solution of the Boltzmann
Equation in powers of the Knudsen number ǫ). The interested reader is referred to
the recent book by Y. Sone [35] (in particular to §3.7 there) for a systematic study
of boundary conditions in the context of the fluid dynamic limit of the Boltzmann
Equation.

For a complete proof of the derivation of the same slip boundary condition as in
Theorem 3.1 in the linearized regime — i.e. in a situation where the limiting equation
is the Stokes, instead of the Navier-Stokes Equations — the reader is referred to the
work of N. Masmoudi and L. Saint-Raymond [26].

4. From the Boltzmann Equation with accommodation boundary con-

dition to the incompressible Euler Equations

In this section, we consider the Boltzmann Equation in the scaling leading to the
incompressible Euler Equations in the fluid dynamic limit. We recall from [3, 4] that
this scaling is

ǫ∂tFǫ +v ·∇xFǫ =
1

ǫ1+q
B(Fǫ,Fǫ), (x,v)∈Ω×RN , (4.1)

with q>0, while the distribution function Fǫ is sought in the same form (3.13) as
in the Navier-Stokes limit. This scaled Boltzmann Equation is supplemented with
Maxwell’s accommodation condition on ∂Ω, with accommodation coefficient α≡α(ǫ)
driven by the small parameter ǫ:

Fǫ(t,x,v)=(1−α(ǫ))RxFǫ(t,x,v)+α(ǫ)Λ

(

Fǫ

M

)

(t,x)M(v),

x∈∂Ω, v ·nx<0,

(4.2)

and with the initial condition

Fǫ(0,x,v)=F in
ǫ (x,v), (x,v)∈Ω×RN . (4.3)

The formal result presented in Theorem 3.1 suggests that, in the limit as ǫ→0,
the velocity field

lim
ǫ→0

1

ǫ

∫

RN

vFǫdv
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should behave like the solution of the incompressible Navier-Stokes Equations with
kinematic viscosity of order ǫq and slip boundary condition with slip coefficient of
the order of α(ǫ)/ǫ. Thus, if α(ǫ)=o(ǫ), Theorem 2.2 suggests that this velocity field
should satisfy the incompressible Euler Equation (2.7). In fact, the formal result in
Theorem 3.1 is only a guide for our intuition, and we shall give a direct proof of the
Euler limit starting from the Boltzmann Equation with accommodation boundary
condition without using the Navier-Stokes limit.

4.1. Renormalized solutions and a priori estimates. Global solutions of
the Cauchy problem for the Boltzmann Equation for initial data of arbitrary size have
been constructed by R. DiPerna and P.-L. Lions [12]. Their theory of renormalized
solutions was extended to the initial boundary value problem by S. Mischler [27]. His
result is summarized below; see also Section 2 in [26] and Section 2.3.2 of [31].

Theorem 4.1 (Mischler). Let F in
ǫ ≡F in

ǫ (x,v)≥0 a.e. on Ω×RN be a measur-
able function satisfying

∫∫

Ω×RN

(1+ |v|2 + |lnF in
ǫ (x,v)|)F in

ǫ (x,v)dxdv<+∞.

There exists Fǫ ∈C(R+;L1(Ω×RN )) satisfying the initial condition (4.3), and the
Boltzmann Equation (4.1) together with the boundary condition (4.2) in the renormal-
ized sense, meaning that, for each Γ∈C1(R+) such that Z 7→

√
1+ZΓ′(Z) is bounded

on R+, the function

Γ′
(

Fǫ

M

)

B(Fǫ,Fǫ)∈L1
loc(R+×Ω×RN )

and
∫ ∞

0

∫∫

Ω×RN

Γ

(

Fǫ

M

)

(ǫ∂t +v ·∇x)φMdvdxdt

+
1

ǫ1+q

∫ ∞

0

∫∫

Ω×RN

Γ′
(

Fǫ

M

)

B(Fǫ,Fǫ)φdvdxdt

=

∫ ∞

0

∫∫

∂Ω×RN

Γ

(

Fǫ

M

)

φv ·nxMdvdS(x)dt

−ǫ
∫∫

Ω×RN

Γ

(

F in
ǫ

M

)

φ
∣

∣

t=0
Mdvdx

for each φ∈C1
c (R+×Ω×RN ).

Moreover

a) the trace of Fǫ on ∂Ω satisfies the accommodation boundary condition

Fǫ

∣

∣

∂Ω
(t,x,v)=(1−α)Rx(Fǫ

∣

∣

∂Ω
)(t,x,v)+Λx

(

Fǫ

∣

∣

∂Ω

M

)

(t,x)M(v)

for a.e. (t,x,v)∈R+×∂Ω×RN such that v ·nx>0;

b) the distribution function Fǫ satisfies the local conservation law of mass

ǫ∂t

∫

RN

Fǫdv+divx

∫

RN

vFǫdv=0
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with boundary condition

∫

RN

Fǫ(t,x,v)v ·nxdv=0, x∈∂Ω, t>0;

c) the distribution function Fǫ satisfies the relative entropy inequality

H(Fǫ|M)(t)−H(F in
ǫ |M)

≤− 1

ǫ2+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds−
α

ǫ

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

for each t>0, where the following notations have been used: for each f,g measurable
on Ω×RN such that f ≥0 and g>0 a.e., the relative entropy is

H(f |g) :=

∫∫

Ω×RN

h

(

f

g
−1

)

gdvdx

with

h(z) :=(1+z)ln(1+z)−z ,

while the entropy production rate per unit volume is

Pǫ :=

∫∫∫

RN×RN×SN−1

r

(

F ′
ǫF

′
ǫ∗

FǫFǫ∗
−1

)

FǫFǫ∗b(v−v∗,ω)dvdv∗dω

with

r(z) :=z ln(1+z)≥0,

and the Darrozes-Guiraud information is

DGǫ :=
1√
2π

(

Λx

(

h

(

Fǫ

M
−1

))

−h
(

Λx

(

Fǫ

M
−1

)))

.

In particular H(f |g)≥0 since h≥0 on [−1,+∞) and Pǫ ≥0 a.e. on R+×Ω since
r≥0 on (−1,+∞), while DGǫ ≥0 a.e. on R+×∂Ω since h is convex and Λx is the
average with respect to a probability measure;

d) for each T >0 and each compact K⊂∂Ω, there exists CK,T >0 such that, for each
ǫ>0, one has

∫ T

0

∫∫

K×RN

Fǫ(t,x,v)(v ·nx)2dvdS(x)dt≤CK,T , ǫ>0.

Statement d) appears in [26], without proof. We give a brief justification for this
estimate below.

Notice that in general, renormalized solutions of the initial-boundary value prob-
lem (4.1)-(4.2)-(4.3) are not known to satisfy the local conservation law of momentum;
see Equation (2.35) in [31] for a variant involving a defect measure, following an earlier
remark due to P.-L. Lions and N. Masmoudi.
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On the contrary, for any classical solution Fǫ ∈C(R+×Ω×RN ) that is continu-
ously differentiable in (t,x) and such that

v 7→ sup
0≤t≤T

|x|≤R

(|Fǫ(t,x,v)|+ |∂tFǫ(t,x,v)|+ |∇xFǫ(t,x,v)|)

decays rapidly as |v|→+∞,

(4.4)

one has

ǫ∂t

∫

RN

vFǫdv+divx

∫

RN

v⊗2Fǫdv=0, x∈Ω, t>0.

Moreover, for each w∈C1
c (R+×Ω), Green’s formula implies that

∫ t

0

∫∫

Ω×RN

(ǫv ·∂tw(s,x)+v⊗2 :∇xw(s,x))Fǫ(s,x,v)dvdxds

=

∫ t

0

∫

∂Ω×RN

v⊗2 :w(s,x)⊗nxFǫ(s,x,v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

w(t,x) ·vFǫ(t,x,v)dvdx

−ǫ
∫∫

Ω×RN

w(0,x) ·vF in
ǫ (x,v)dvdx.

Let us use the accommodation condition (4.2) to reduce the boundary integral:

∫

RN

v⊗2 :w(t,x)⊗nxFǫ(s,x,v)dv

=

∫

RN

(w(s,x)·v)(v·nx)+Fǫ(s,x,v)dv

−
∫

RN

(w(s,x)·v)(v·nx)−Fǫ(s,x,v)dv

and, whenever w is tangential on ∂Ω, one has

∫

RN

(w(s,x)··nx)−Fǫ(s,x,v)dv

=

∫

RN

(w(s,x)·v)(v·nx)−

(

(1−α)RxFǫ +αΛx

(

Fǫ

M

)

M

)

(s,x,v)dv

=

∫

RN

(w(s,x)·v)(v·nx)+

(

(1−α)Fǫ +αΛx

(

Fǫ

M

)

M

)

(s,x,v)dv.

Therefore
∫

RN

v⊗2 :w(s,x)⊗nxFǫ(s,x,v)dv

=α

∫

RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dv

−αΛx

(

Fǫ

M

)
∫

RN

(w(s,x) ·v)(v ·nx)+Mdv,
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and the last integral vanishes since the integrand is odd in the tangential component
of v.

Finally, whenever w∈C1
c (R+×Ω) is tangential on ∂Ω, one has

∫

RN

v⊗2 :w(s,x)⊗nxFǫ(s,x,v)dv

=α

∫

RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dv.

Therefore, each classical solution Fǫ ∈C(R+×Ω×RN ) of the initial-boundary value
problem (4.1)-(4.2)-(4.3) that is continuously differentiable in (t,x) and satisfies (4.4)
also satisfies

∫ t

0

∫∫

Ω×RN

(ǫv ·∂tw(s,x)+v⊗2 :∇xw(s,x))Fǫ(s,x,v)dvdxds

=α

∫ t

0

∫

∂Ω×RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

w(t,x) ·vFǫ(t,x,v)dvdx

−ǫ
∫∫

Ω×RN

w(0,x) ·vF in
ǫ (x,v)dvdx. (4.5)

Henceforth, we shall consider exclusively renormalized solutions of the initial-
boundary value problem (4.1)-(4.2)-(4.3) satisfying the identity (4.5) for each vector
field w∈C1

c (R+×Ω) tangential on ∂Ω and such that divxw=0 on Ω.

Now we prove estimate d) in Theorem 4.1.

Proof. [Proof of estimate d).] A renormalized solution of the initial-boundary
value problem (4.1)-(4.2)-(4.3) can be constructed as the limit for ǫ>0 fixed and
m→+∞ of solutions Fǫ,m of the approximating equation

ǫ∂tFǫ,m +v ·∇xFǫ,m =
1

ǫ1+q

Bm(Fǫ,m,Fǫ,m)

1+
1

m

∫

RN

Fǫ,mdv

, (x,v)∈Ω×RN , (4.6)

with the same initial and boundary conditions (4.2)-(4.3) satisfied by Fǫ,m, where the
approximate collision integral is given by the same expression as Boltzmann’s collision
integral with collision kernel b replaced with its truncated variant bm defined as1

bm(v−v∗,ω) :=m∧b(v−v∗,ω).

Let ξ be a compactly supported C1 vector field satisfying

ξ(x)=a(x)nx for each x∈∂Ω, with a≥0 on ∂Ω and a=1 on K.

Since the approximate collision integral in (4.6) is normalized with an average of
Fǫ,m with respect to v, all solutions of that equation satisfy equality (4.5) for any

1For all x,y∈R, the notation x∧y designates min(x,y).
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w∈C1
c (R+×RN ), i.e. the local conservation of momentum. In other words,

∫ t

0

∫∫

Ω×RN

(v⊗2 :∇xξ(x))Fǫ,m(s,x,v)dvdxds

=

∫ t

0

∫∫

∂Ω×RN

(v ·ξ(x))(v ·nx)Fǫ,m(s,x,v)dvdS(x)ds

+ǫ

∫∫

Ω×RN

ξ(x) ·vFǫ,m(t,x,v)dvdx

−ǫ
∫∫

Ω×RN

ξ(x) ·vF in
ǫ,m(x,v)dvdx.

Therefore, since Fǫ,m ≥0 a.e. and (v ·ξ(x))(v ·nx)=a(x)(v ·nx)2≥0 for each x∈∂Ω
and v∈RN , one has

0≤
∫ t

0

∫∫

K×RN

(v ·nx)2Fǫ,m(s,x,v)dvdS(x)ds

≤
∫ t

0

∫∫

∂Ω×RN

(v ·ξ(x))(v ·nx)Fǫ,m(s,x,v)dvdS(x)ds

=

∫ t

0

∫∫

Ω×RN

(v⊗2 :∇xξ(x))Fǫ,m(s,x,v)dvdxds

+ǫ

∫∫

Ω×RN

ξ(x) ·vF in
ǫ,m(x,v)dvdx

−ǫ
∫∫

Ω×RN

ξ(x) ·vFǫ,m(t,x,v)dvdx. (4.7)

At this point, we recall that the function h : z 7→ (1+z)ln(1+z)−z introduced in
Theorem 4.1 has Legendre dual

h∗(ζ)= sup
z>−1

(ζz−h(z))=eζ −ζ−1.

By Young’s inequality — or equivalently, by definition of h∗ (see for instance [5]) —
one has

1
4 (1+ |v|2)ǫ|gǫ,n|≤h(ǫ|gǫ,n|)+h∗( 1

4 (1+ |v|2))

so that, for each nonnegative χ∈Cc(R
N ),

∫∫

Ω×RN

χ(x)(1+ |v|2)Fǫ,m(t,x,v)dvdx

=

∫∫

Ω×RN

χ(x)(1+ |v|2)(1+ǫgǫ,m)(t,x,v)M(v)dvdx

≤
∫∫

Ω×RN

χ(x)(1+h∗( 1
4 (1+ |v|2)))M(v)dvdx

+‖χ‖L∞H(Fǫ,m|M)(t)

≤
∫∫

Ω×RN

χ(x)(1+h∗( 1
4 (1+ |v|2)))M(v)dvdx

+‖χ‖L∞H(F in
ǫ |M), (4.8)
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since the relative entropy estimate c) in Theorem 4.1 is also satisfied by the approxi-
mate solution Fǫ,m.

Since ξ is compactly supported, putting together (4.7), (4.8), and letting m→+∞
leads to estimate d).

4.2. The Euler limit. Let uin ∈H(Ω), and pick initial data F in
ǫ for the

Boltzmann Equation satisfying

1

ǫ2
H(F in

ǫ |M1,ǫuin,1)→0. (4.9)

Theorem 4.2. For each ǫ>0, let Fǫ be a renormalized solution of (4.1)-(4.2)-(4.3)
satisfying the local momentum conservation law (4.5) for each w∈C1

c (R+×Ω) such
that divxw=0 and w ·nx

∣

∣

∂Ω
=0. Assume that the accommodation parameter α in the

accommodation condition (4.2) at the boundary depends on the scaling parameter ǫ in
such a way that

α(ǫ)=o(ǫ) as ǫ→0.

Then, for each compact K⊂Ω, the family

1

ǫ

∫

RN

vFǫdv

is bounded in L∞(R+;L1(K)) and weakly relatively compact in L1([0,T ]×K) for all
T >0, and each of its limit points as ǫ→0 is a dissipative solution of the Euler Equa-
tion (2.7).

Assume that uin ∈H(Ω) is smooth enough so that the initial-boundary value prob-
lem for the Euler Equation (2.7) has a classical solution on some finite time interval
[0,T ] — for instance uin ∈Hs(Ω) with s> N

2 +1, or uin ∈C1,θ with 0<θ<1. In that
case, the convergence result above can be strengthened with the notion of entropic
convergence, invented by Dave Levermore specifically to handle such problems.

Definition 4.3 (C. Bardos, F. Golse, C.D. Levermore [5]). A family gǫ ≡gǫ(x,v)
of L1

loc(Ω×RN ;Mdxdv) is said to converge entropically of order ǫ to g≡g(x,v) as
ǫ→0 if the following conditions hold:

(i) 1+ǫgǫ ≥0 a.e. on Ω×RN for each ǫ,

(ii) gǫ →g weakly in L1
loc(Ω×RN ;Mdxdv) as ǫ→0,

(iii)

1

ǫ2
H(M(1+ǫgǫ)|M)→ 1

2

∫∫

Ω×RN

g(x,v)2M(v)dxdv

as ǫ→0.

We recall that if gǫ →g entropically of order ǫ then, for each compact K⊂Ω, one
has

∫

K

∫

RN

(1+ |v|2)|gǫ(x,v)−g(x,v)|M(v)dvdx→0 as ǫ→0.

In other words, entropic convergence implies strong L1 convergence with the weight
(1+ |v|2)M(v) (see Proposition 4.11 in [5]).
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Whenever the incompressible Euler Equation (2.7) has a classical solution u on
[0,T ]×Ω, using the weak-strong uniqueness property of dissipative solutions and the
conservation of energy satisfied by classical solutions of (2.7) we arrive at the following
stronger convergence result, which is a straightforward consequence of Theorem 4.2.
The interested reader is referred to the proof of Theorem 6.2 in [5] where the squeezing
argument leading from weak compactness to entropic convergence is explained in
detail.
Corollary 4.4. Consider a family F in

ǫ ≡F in
ǫ (x,v)≥0 a.e. of measurable functions

on Ω×RN such that

F in
ǫ (x,v)−M(v)

ǫM(v)
→uin(x) ·v

entropically of order ǫ as ǫ→0, where uin ∈H(Ω) is smooth enough so that the initial-
boundary value problem (2.7) has a classical solution u defined on the time interval
[0,T ] with T >0.

For each ǫ>0, let Fǫ be a renormalized solution of (4.1)-(4.2)-(4.3) satisfying
the local momentum conservation law (4.5) for each w∈C1

c (R+×Ω) that satisfies
divxw=0 and w ·nx

∣

∣

∂Ω
=0. Assume that the accommodation parameter α in the

accommodation condition (4.2) at the boundary depends on the scaling parameter ǫ in
such a way that

α(ǫ)=o(ǫ) as ǫ→0.

Then

Fǫ(t,x,v)−M(v)

ǫM(v)
→u(t,x) ·v

entropically of order ǫ as ǫ→0, for a.e. t∈ [0,T ].
The proof of Theorem 4.2 above occupies the remaining part of the present section.

4.3. The relative entropy inequality. Statement c) in Theorem 4.1 bears
on the evolution of the relative entropy of the distribution Fǫ with respect to the
uniform Maxwellian M =M1,0,1. In the next proposition, we consider the evolution
of the relative entropy of the distribution Fǫ with respect to a local Maxwellian of the
form M1,ǫw,1, where w is a solenoidal velocity field on Ω that is tangential to ∂Ω.

Proposition 4.5. Let w∈C1
c (R+×Ω) be such that

divxw=0 and w ·n
∣

∣

∂Ω
=0.

Then, for each ǫ>0, renormalized solutions Fǫ of the initial-boundary value problem
(4.1)-(4.2)-(4.3) satisfying the momentum conservation identity (4.5) also satisfy the
relative entropy inequality

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤− 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds−
α

ǫ3

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x))⊗2 :∇xw(s,x)Fǫ(s,x,v)dxdvds
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−1

ǫ

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x)) ·E(w)(s,x)Fǫ(s,x,v)dvdxds

+
α

ǫ2

∫ t

0

∫

∂Ω×RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dvdS(x)ds (4.10)

for each t>0.

Proof. We begin with the straightforward identity

H(Fǫ|M1,ǫw,1)=H(Fǫ|M)+

∫∫

Ω×RN

Fǫ ln

(

M

M1,ǫw,1

)

dxdv

=H(Fǫ|M)+

∫∫

Ω×RN

Fǫ(
1
2 |v−ǫw|

2− 1
2 |v|

2)dxdv

=H(Fǫ|M)+

∫∫

Ω×RN

Fǫ(
1
2ǫ

2|w|2−ǫv ·w)dxdv.

Thus

H(Fǫ|M1,ǫw,1)(t)−H(Fǫ|M1,ǫw,1)(0)

=H(Fǫ|M)(t)−H(Fǫ|M)(0)+ 1
2ǫ

2

∫∫

Ω×RN

Fǫ(t,x,v)|w(t,x)|2dxdv

− 1
2ǫ

2

∫∫

Ω×RN

F in
ǫ (x,v)|w(0,x)|2dxdv−ǫ

∫∫

Ω×RN

Fǫ(t,x,v)v ·w(t,x)dxdv

+ǫ

∫∫

Ω×RN

F in
ǫ (x,v)v ·w(0,x)dxdv. (4.11)

According to the continuity equation in statement a) in Theorem 4.1,

1
2ǫ

2

∫∫

Ω×RN

Fǫ(t,x,v)|w(t,x)|2dxdv− 1
2ǫ

2

∫∫

Ω×RN

F in
ǫ (x,v)|w(0,x)|2dxdv

=

∫ t

0

∫∫

Ω×RN

Fǫ(ǫ
2∂t +ǫv ·∇x) 1

2 |w|
2dxdvds

=

∫ t

0

∫∫

Ω×RN

Fǫw ·(ǫ2∂tw+ǫv ·∇xw)dxdvds. (4.12)

In (4.11), we replace the term H(Fǫ|M)(t)−H(Fǫ|M)(0) with the right hand side of
the inequality of statement c) of Theorem 4.1, and use (4.12) together with (4.5) to
arrive at

H(Fǫ|M1,ǫw,1)(t)−H(Fǫ|M1,ǫw,1)(0)

≤− 1

ǫ2+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds−
α

ǫ

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

+

∫ t

0

∫∫

Ω×RN

w ·(ǫ2∂tw+ǫv ·∇xw)(s,x)Fǫ(s,x,v)dxdvds

−
∫ t

0

∫∫

Ω×RN

(ǫv ·∂tw(s,x)+v⊗2 :∇xw(s,x))Fǫ(s,x,v)dvdxds

+α

∫ t

0

∫

∂Ω×RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dvdS(x)ds. (4.13)
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Next we express ∂tw in terms of E(w)=∂tw+w ·∇xw and ∇xw:

(ǫv ·∂tw(s,x)+v⊗2 :∇xw(s,x))−w ·(ǫ2∂tw+ǫv ·∇xw)

=(v−ǫw)⊗2 :∇xw+ǫ(v−ǫw) ·E(w).

In the right hand side of (4.13), we substitute

∫ t

0

∫∫

Ω×RN

w ·(ǫ2∂tw+ǫv ·∇xw)(s,x)Fǫ(s,x,v)dxdvds

−
∫ t

0

∫∫

Ω×RN

(ǫv ·∂tw(s,x)+v⊗2 :∇xw(s,x))Fǫ(s,x,v)dvdxds

=−
∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x))⊗2 :∇xw(s,x)Fǫ(s,x,v)dxdvds

−ǫ
∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x)) ·E(w)(s,x)Fǫ(s,x,v)dvdxds

and arrive at the relative entropy inequality (4.10).

4.4. Control of the boundary term. The relative entropy inequality (4.10)
is the same as in the one considered in [10], [25], and [29], except for the boundary term
— i.e. the last term on the right hand side, which is in general not nonpositive. Since
the effect of the boundary is our main interest in this paper, and is the only difference
with the case of the Cauchy problem treated in [29], the core of our argument is to
obtain a control of that term.

Lemma 4.6. With the notations of Theorem 4.1, for each ǫ>0 and each divergence-
free test vector field w∈C1

c (R+×Ω) that is tangential on the boundary ∂Ω, each
renormalized solution Fǫ of the initial-boundary value problem (4.1)-(4.2)-(4.3) satis-
fies the inequality

α

ǫ2

∫

RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dv

=
α

ǫ

∫

RN

(w(s,x) ·v)(v ·nx)+gǫ(s,x,v)M(v)dv

≤ α

2ǫ3
DGǫ(s,x)+

α

ǫ
C(w)1w(s,x) 6=0Λx(Fǫ/M)(s,x) (4.14)

a.e. in (s,x)∈R+×∂Ω, where

C(w) := 1
2

∫

RN

(e2‖w‖L∞ |v|−2‖w‖L∞ |v|−1)(v1)+M(v)dv.

We use Young’s inequality for a translate of the function h defined in Theorem
4.1, much in the same way as in the proof of Theorem 6.2 in [5] (see especially pp.
738–739 there).

Proof. Let z0>−1; for each z>−1, set

l(z−z0) :=h(z)−h(z0)−h′(z0)(z−z0).

We recall that the Legendre dual of the function h defined in Theorem 4.1 is

h∗(p) := sup
z>−1

(pz−h(z))=ep−p−1, p∈R.
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A straightforward computation shows that

l∗(p)= sup
z>−1

(p(z−z0)− l(z−z0))

= sup
z>−1

(p(z−z0)−h(z)+h(z0)+h′(z0)(z−z0))

=h(z0)−(h′(z0)+p)z0 + sup
z>−1

((h′(z0)+p)z−h(z))

=h(z0)−(h′(z0)+p)z0 +h∗(h′(z0)+p)

=h(z0)−(h′(z0)+p)z0 +eh′(z0)ep−h′(z0)−p−1

=(1+z0)ln(1+z0)−z0−(ln(1+z0)+p)z0

+(1+z0)e
p− ln(1+z0)−p−1

=(1+z0)(e
p−p−1)=(1+z0)h

∗(p).

Writing Fǫ =M(1+ǫgǫ) and observing that
∫

RN

(w(s,x) ·v)(v ·nx)+M(v)dv=0, (s,x)∈R+×∂Ω

since w is tangential on ∂Ω, one has
∫

RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dv

=ǫ

∫

RN

(w(s,x) ·v)(v ·nx)+gǫ(s,x,v)M(v)dv.

(4.15)

Then
∫

RN

(w(s,x) ·v)(v ·nx)+gǫ(s,x,v)M(v)dv

=

∫

RN

(w(s,x) ·v)(v ·nx)+(gǫ(s,x,v)−Λx(gǫ))M(v)dv

by (4.15) since Λx(gǫ) is independent of v.
By Young’s inequality (or equivalently, by the definition of the Legendre dual of

l),

2ǫ2(gǫ−Λx(gǫ))(w ·v)≤ l(ǫ(gǫ−Λx(gǫ)))+ l∗(ǫ(2w ·v)),
so that

2

∫

RN

(w ·v)(v ·nx)+gǫMdv≤ 1

ǫ2

∫

RN

l(ǫ(gǫ−Λx(ǫ)))(v ·nx)+Mdv

+
1

ǫ2

∫

RN

l∗(ǫ(2w ·v))(v ·nx)+Mdv.

First, since Λx is the average under a probability measure, one has
∫

RN

l(ǫ(gǫ−Λx(gǫ)))(v ·nx)+Mdv

= 1√
2π

Λx(l(ǫ(gǫ−Λx(ǫ))))

= 1√
2π

Λx(h(ǫgǫ)−h(ǫΛx(gǫ))−h′(ǫΛx(gǫ))(ǫgǫ−ǫΛx(gǫ)))

= 1√
2π

Λx(h(ǫgǫ)−h(ǫΛx(gǫ)))−h′(ǫΛx(gǫ))
1√
2π

Λx(ǫgǫ−ǫΛx(gǫ))

= 1√
2π

(Λx(h(ǫgǫ)−h(ǫΛx(gǫ))))=DGǫ.
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On the other hand

1

ǫ2

∫

RN

l∗(ǫ(2w ·v))(v ·nx)+Mdv

=(1+ǫΛx(gǫ))

∫

RN

e2ǫ|w||v|−2ǫ|w||v|−1

ǫ2
(v ·nx)+Mdv

≤Λx(Fǫ/M)

∫

RN

(e2|w||v|−2|w||v|−1)(v ·nx)+Mdv

since, for each a>0, the map

ǫ 7→ eaǫ−aǫ−1

ǫ2
=a2

∑

n≥2

(aǫ)n−2

n!

is increasing.
Finally,

α

ǫ2

∫

RN

(w(s,x) ·v)(v ·nx)+Fǫ(s,x,v)dv

≤α
ǫ

∫

RN

(w(s,x) ·v)(v ·nx)+gǫ(s,x,v)M(v)dv

≤ α

2ǫ3
DGǫ(s,x)+

α

ǫ
C(w)1w(s,x) 6=0Λx(Fǫ/M)(s,x),

where

C(w) := 1
2

∫

RN

(e2‖w‖L∞ |v|−2‖w‖L∞ |v|−1)(v1)+M(v)dv.

After integrating both sides of (4.14) with respect to (s,x), the first term on the
right hand side of (4.14) will be absorbed by the Darrozes-Guiraud information on the
right hand side of (4.10), so that, with Lemma 4.6, the inequality (4.10) is transformed
into

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤− 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds−
α

2ǫ3

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x))⊗2 :∇xw(s,x)Fǫ(s,x,v)dxdvds

−1

ǫ

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x)) ·E(w)(s,x)Fǫ(s,x,v)dvdxds

+
α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

Λx(Fǫ/M)(s,x)dS(x)ds, (4.16)

for all t≥0.

4.5. Control of the outgoing mass flux. In the lemma below, we shall
prove that the outgoing mass flux Λx(Fǫ) is uniformly bounded in L1

loc(R+×∂Ω), so
that the last term on the right hand side of (4.16) vanishes under the assumption
α(ǫ)=o(ǫ) as ǫ→0.



186 EULER LIMIT OF BOLTZMANN WITH ACCOMMODATION

Lemma 4.7. With the notations of Theorem 4.1, for each ǫ>0, each renormalized so-
lution Fǫ of the initial-boundary value problem (4.1)-(4.2)-(4.3) satisfies the inequality

∫

RN

Fǫ(t,x,v)(v ·nx)+dv≤
C1√

2πh(η)
DGǫ(t,x)

+
C1√

2π(1−η)

∫

RN

Fǫ(v ·nx)2dv

(4.17)

for all η∈ (0,1), a.e. in (t,x)∈R+×∂Ω, where

C1 =

(
∫ ∞

0

(z2∧1)e−z2/2 dz√
2π

)−1

.

Proof. First we recast the Darrozes-Guiraud information in the form

DGǫ = 1√
2π

Λx(h(ǫgǫ)−h(ǫΛx(gǫ)))

= 1√
2π

Λx(Gǫ lnGǫ−Gǫ−Λx(Gǫ)lnΛx(Gǫ)+Λx(Gǫ))

= 1√
2π

Λx

(

Gǫ ln

(

Gǫ

Λx(Gǫ)

)

−Gǫ +Λx(Gǫ)

)

,

(4.18)

since

Λx((Gǫ−Λx(Gǫ))lnΛx(Gǫ))=Λx((Gǫ−Λx(Gǫ)))lnΛx(Gǫ)=0.

Then we consider the integral

I :=ΛxGǫ

∫

RN

(v ·nx)2+∧1Mdv

=ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|>η(v ·nx)2+∧1Mdv

+ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|≤η(v ·nx)2+∧1Mdv=: I1 +I2

with η∈]0,1[.
The first term is estimated in terms of the Darrozes-Guiraud information on the

boundary, in view of (4.18):

I1≤
1

h(η)
ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|>ηh

(∣

∣

∣

∣

Gǫ

ΛxGǫ
−1

∣

∣

∣

∣

)

(v ·nx)2+∧1Mdv

≤ 1

h(η)
ΛxGǫ

∫

RN

h

(

Gǫ

ΛxGǫ
−1

)

(v ·nx)2+∧1Mdv

≤ 1

h(η)

∫

RN

(

Gǫ ln

(

Gǫ

ΛxGǫ

)

−Gǫ +ΛxGǫ

)

(v ·nx)+Mdv

≤ 1

h(η)
DGǫ(t,x).

As for the second term, one has

I2 =ΛxGǫ

∫

RN

1|Gǫ/ΛxGǫ−1|≤η(v ·nx)2+∧1Mdv

≤ 1

1−η

∫

RN

Gǫ1|Gǫ/ΛxGǫ−1|≤η(v ·nx)2+∧1Mdv

≤ 1

1−η

∫

RN

Gǫ(v ·nx)2Mdv.
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Combining both estimates gives

I= I1 +I2≤
1

h(η)
DGǫ(t,x)+

1

1−η

∫

RN

Fǫ(v ·nx)2dv.

Since
∫

RN

(v ·nx)2+∧1Mdv=

∫ ∞

0

z2∧1e−z2/2 dz√
2π

=:
1

C1
>0

is independent of x, we conclude that
∫

RN

Fǫ(t,x,v)(v ·nx)+dv= 1√
2π

Λx(Gǫ)(t,x)= C1√
2π
I

which, together with the previous inequality, leads to the announced estimate.

4.6. Convergence to the incompressible Euler Equations. At this point
we bring together the relative entropy inequality (4.10) and the boundary control
(4.14), thereby arriving at the estimate

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤− 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds−
α

2ǫ3

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x))⊗2 :∇xw(s,x)Fǫ(s,x,v)dxdvds

− 1

ǫ

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x)) ·E(w)(s,x)Fǫ(s,x,v)dvdxds

+
α

ǫ
C(w)

∫ t

0

∫

∂Ω∩supp(w)

Λx(Fǫ/M)(s,x)dS(x)ds.

Next, we use the pointwise inequality (4.17) with, say, η= 1
2 , to control the last integral

on the right-hand side above:

1

ǫ2
H(Fǫ|M1,ǫw,1)(t)−

1

ǫ2
H(F in

ǫ |M1,ǫw(0,·),1)

≤− 1

ǫ4+q

∫ t

0

∫

Ω

Pǫ(s,x)dxds

− α

2ǫ3
(1− 2C1

h(1/2)C(w)ǫ)

∫ t

0

∫

∂Ω

DGǫ(s,x)dxds

− 1

ǫ2

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x))⊗2 :∇xw(s,x)Fǫ(s,x,v)dxdvds

−1

ǫ

∫ t

0

∫∫

Ω×RN

(v−ǫw(s,x)) ·E(w)(s,x)Fǫ(s,x,v)dvdxds

+
2α

ǫ
C1C(w)

∫ t

0

∫

∂Ω∩supp(w)

∫

RN

Fǫ(v ·nx)2dvdS(x)ds. (4.19)

Now, statement d) in Theorem 4.1 and the scaling assumption on the accommodation
parameter, i.e. α(ǫ)=o(ǫ), show that, for each T >0,

2α

ǫ

∫ t

0

∫

∂Ω∩supp(w)

∫

RN

Fǫ(v ·nx)2dvdS(x)ds→0 (4.20)
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uniformly in t∈ [0,T ] as ǫ→0.
With (4.20), the relative entropy inequality (4.19) is precisely of the same form as

the inequality stated as Theorem 5 in [29]. One then concludes by the same argument
as in [29].

5. Conclusion and final remarks

As recalled above, the convergence of solutions of the boundary value problem for
the Navier-Stokes Equations in the large Reynolds number regime is an open problem,
as well as the validity of the Prandlt Equation for the boundary layer. Convergence
to solutions of the Euler Equation, for general boundary conditions (including the
Dirichlet boundary condition) are proved under only the most stringent regularity
assumptions.

On the other hand the onset of von Karman vortex streets and the Kolmogorov
hypothesis on turbulence based on a non zero energy dissipation in the large Reynolds
regime (see chapter 5 in [13]) suggest that, in general, the limit is not a solution of
the Euler Equation. This is in agreement with Kato’s criterion [19] relating the
convergence of the solutions of the Navier-Stokes Equations with Dirichlet boundary
condition to a solution of the Euler Equations with the vanishing of the viscous energy
dissipation in a boundary layer with thickness O(Re−1).

For the Navier slip boundary condition (2.13) or (2.12), the inviscid limit estab-
lished in the present paper is proved under the sole assumption λ→0 as ν→0.

The following remarks are in order:

• at variance with previous results [8, 37], no regularity assumption is required
for all the results in the present paper, as only energy estimates are used in
the proof;

• what is proved here is the convergence to a dissipative solution (hence to
the unique classical solution whenever it exists); therefore, this convergence
is also true even if no classical solution exists, or even if the L2 initial data
corresponds to a “wild” solution à la C. DeLellis and L. Szkelyhidi (see [11])
for which there is no uniqueness of the Euler solution;

• therefore the main goal of the present paper is to show the strong similarity
between the inviscid limit for the Navier-Stokes Equations and the fluid dy-
namic limit for the Boltzmann Equation; the accommodation coefficient α,
the Mach Ma and Strouhal Sh numbers, the Reynolds number Re (see [35],
§1.9), and the slip coefficient λ are related by

Ma=Sh= ǫ,
1

Re
=o(1),

α

ǫ
=λ,

as ǫ→0, so that the conditions α=o(ǫ) as ǫ→0 and λ→0 as ν→0 are
consistent.

In any case the convergence of the solution of the Navier-Stokes Equations to a
classical solution of the Euler Equations implies that the energy dissipation vanishes in
the limit, as observed by Kato [19]. Likewise, the entropic convergence obtained in the
present paper in the case of renormalized solutions of the Boltzmann Equation implies
that the sum of the entropy dissipation and of the Darrozes-Guiraud information at
the boundary vanishes with ǫ.

By analogy with the work of Kato [19], a possible conjecture is that, whenever

lim
ǫ→0

α(ǫ)

ǫ
>0,
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the vanishing of both the Darrozes-Guiraud information at the boundary and of the
entropy production implies that the inviscid fluid dynamic limit of the Boltzmann
Equation is described by a solution of the Euler Equations.

Other, perhaps less delicate problems could be analyzed by the methods used
in the present paper. For instance, Maxwell’s accommodation is but one example
in a wide class of nonlocal boundary conditions for the Boltzmann Equation; the
Navier-Stokes and Euler hydrodynamic limits of the Boltzmann Equation should be
considered also for such boundary conditions (see [35] §1.6). Likewise, the condition
(4.5), which may not be satisfied for all renormalized solutions of the initial boundary
value problem for the Boltzmann Equation, should be removed on principle (as in
[29]).

In other words, there remain many open problems related to the issues discussed
in the present paper, to which we shall return in future publications.
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