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NOISE-INDUCED STATISTICALLY STABLE OSCILLATIONS IN A
DETERMINISTICALLY DIVERGENT NONLINEAR DYNAMICAL
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Abstract. Inspired by partial differential equation models of homogeneous convection possessing
heteroclinic connections to infinity, we study a two dimensional system of ordinary differential equa-
tions whose solutions diverge exponentially for almost all initial conditions. Random perturbations
of the dynamical system destabilize the divergences resulting in stochastic oscillations. Stochastic
Lyapunov function methods are used to prove the existence of a statistically stationary state. A
novel Monte-Carlo method is implemented to measure the extreme statistics associated with the
stochastic oscillations, and a WKB analysis at low noise amplitude is carried out to corroborate the
simulations.
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1. Introduction
Noise-induced dynamical phenomena are observed in mathematical models arising

from applications in physics, chemistry, biology [9], and neuroscience [8]. In some
cases a dynamical system’s variability arises from underlying discreteness. One such
example is an individual-based predator-prey system [12] where it was demonstrated
that stochastic cycles are present in the population-level models even though the
continuous (infinite population) model fails to display oscillations. Low level noise
may also induce oscillating behavior in problems close to a bifurcation, e.g., close
to a saddle-node [18] or sniper [7] bifurcation, and in excitable systems [13]. Even
though intrinsic internal or externally imposed noise is an integral component of many
processes, numerical simulations of theoretically deterministic models may be sensitive
to round-off errors that serve as small (albeit artificial) random perturbations.

There is evidence that numerical errors can systematically impact computational
simulations of some problems. Recently, Calzavarini et al. [3] studied a model of “ho-
mogeneous” Rayleigh-Bénard convection described by nonlinear partial differential
equations with spatially periodic boundary conditions. That model contains exact
exponentially growing solutions, i.e., heteroclinic connections to infinity, and these
solutions accurately fit numerical simulations for a finite time, followed by an unex-
pected sudden collapse. This pattern is repeated with collapses occurring at seemingly
random times even though there is no inherent randomness in the model or in the nu-
merical method. The only systematic error present is the small round-off noise. This
example inspired us to look for a simple dynamical system with the same property,
i.e., a deterministic model that blows up exponentially for almost all initial conditions
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but remains bounded for arbitrarily small stochastic perturbation. The aim here is
to reveal some of the dynamical elements responsible for the behavior as well as to
explore the limits of rigorous, asymptotic, and numerical analyses of such systems.

Although the role of noise in ordinary differential equations is still not fully un-
derstood, some particular questions have been answered already. In one dimension,
Scheutzow [16] showed that if a deterministic equation has solutions that explode (i.e.,
go to infinity) in a finite time for some initial condition then it necessarily explodes in
a finite time with probability strictly greater than zero when a constant white noise
is added. In different work [17] the same author constructed an example of a two-
dimensional system where deterministic solutions explode in a finite time uniformly
for all initial conditions, but with any arbitrarily small level of additive white noise
all solutions are nonexplosive with probability one. The construction of the example
is extremely complicated and the dynamical mechanisms at work are unclear. That
is, it is not straightforward to identify the key properties of the system that lead to
observed behavior.

The main goal of this work is to show that there are simple systems in which ar-
bitrarily small random perturbations, such as numerical round-off error, significantly
change the qualitative behavior of solutions. We present a planar deterministic dy-
namical system designed to capture key features of the homogenous convection prob-
lem, namely the property that almost every solution diverges to infinity exponentially
in time. Note that the system we consider serves only as a prototype of this behavior
and it is not derived from the convection problem. On the other hand, a 3D model
with similar behavior was systematically derived for a homogeneous thermohaline
convection problem directly from the partial differential equations [10]. Here we aim
to capture the central qualitative features in a two dimensional model.

Under the addition of a small magnitude Gaussian noise perturbation, the dy-
namical system studied in this work exhibits statistical oscillations. Using a theory of
stochastic Lyapunov functions [11] we rigorously prove that addition of arbitrary small
white noise produces a statistically steady stochastic evolution that is a stationary
Markov process. Next, we develop an effective numerical method to find the distribu-
tion of collapse times that capture random periods of the oscillations and formulate
an ansatz for the long-time behavior of its statistics. We use the ansatz to study the
time-inhomogeneous non-constant coefficient Fokker-Planck equation for the related
first exit time problem in the long-time limit. Finally, we perform an asymptotic
analysis of a corresponding Sturm-Liouville problem and confirm that our numerical
and analytical results are consistent.

2. Model equations
We study the nonlinear dynamical system

dx

dt
=−x(4−xy+x2), (2.1)

dy

dt
=
y−x3

1+x2
, (2.2)

with the symmetry (x,y)→ (−x,−y). The model is designed to have solutions that
grow exponentially in time and that are also sensitive to small random perturbations.
The system has three equilibria: a saddle (0,0) and two spiral sources (x∗,y∗) =
±
(

1
2 (1+

√
17)1/2, 1

2 (1+
√

17)3/2
)
. There are separatrices from the sources to ±∞,

and also from ±∞ to the origin. All trajectories eventually escape to infinity along
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Fig. 2.1. (left) Sample trajectories of the deterministic model (2.1)-(2.2). The dx/dt= 0 null-
clines 4−xy+x2 = 0 and x= 0 and the dy/dt nullcline y=x3 are shown as well. (right) Solutions of
(2.3)-(2.4) with an added white noise of magnitude σ= 1. Trajectories grow along the y-axis before
noise pushed them across the approaching 4−xy+x2 = 0 nullcline and the trajectory returns back
to a neighborhood of the origin. Note the change of vertical scale on the right panel.

the y-axis at an exponential rate except for those starting precisely at the fixed points
or on the separatrices to (stable manifold of) the origin; see the left panel of Figure 2.1.

The dx/dt= 0 nullcline y=x+4/x rapidly approaches the y-axis to form a shrink-
ing stability boundary on one side of the attracting trajectory x(t) = 0, y(t) =y0e

t.
Trajectories near the y-axis thus become very sensitive to small perturbations in the
x-direction, and in response they may cross the dx/dt= 0 nullcline and rapidly move
away from the y-axis before collapsing exponentially towards the origin. Adding
Gaussian white noise to the x-variable changes the system (2.1)-(2.2) to

dx=−x(4−xy+x2)dt+σdW, (2.3)

dy=
y−x3

1+x2
dt. (2.4)

As shown in the right panel of Figure 2.1 and in the time-series in Figure 2.3, the
noise-perturbed system has several different significant types of dynamics:

• noise-driven (slow) dynamics near the origin;
• growth along the y-axis while 4−xy+x2>0 for x>0 (and symetrically for
x<0);

• noise-induced transition across the nullcline y=x+4/x;
• rapid drift-dominated flow to large |x| and subsequent exponential collapse

to a neighborhood of origin along y≈x.
The shrinking basin of attraction of the attracting trajectory along the y-axis

together with the collapses towards the origin are the key dynamical properties re-
sponsible for the noise-induced phenomena in the model (see Remark 2.2 below). In
particular, the deterministic system (2.1)-(2.2) has a resetting property: any trajec-
tory starting from 4−xy+x2<0 for x>0 (and by symmetry for x<0), i.e., outside of
a narrow “half-funnel” around the y-axis, will eventually (in finite time) enter a fixed
neighborhood of the origin. In terms of the regions A1, A2, B, and R (see Figure 2.2)
defined as
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• A1 ={(x,y) : d|x|dt (x,y)>0, |x|≤ |x∗|} (increasing |x|≤ |x∗|),

• A2 ={(x,y) : d|x|dt (x,y)>0, |x|≥ |x∗|} (increasing |x|≤ |x∗|),

• B={(x,y) : d|x|dt (x,y)<0}∩{(x,y) :x(y−x)>0} (decreasing |x|),
• R={|x|≤ |x∗|, |y|≤ |y∗|},

the property reads as follows: any trajectory of (2.1)-(2.2) starting in region A1

eventually enters regions A2, B and R in the order A1→A2→B→R. This reflects
the dynamical properties of (2.1)-(2.2) near the one-sided funnel, i.e., near the part
of B along the vertical axis, that drives the trajectories from A1 to A2 in a finite time
due to the positive x-derivative that is bounded away from zero. The trajectory is
consequently driven to the narrow part of region B along y=x and along this region
it enters R in a finite time. For more details, see [2].

−10 −5 0 5 10
−10

−5

0

5

10

x

y

R

A
1

A
2

B

x*

*y

Fig. 2.2. Regions A=A1∪A2,B,R. A trajectory of (2.1)-(2.2) starting in A1 enters A2, then
B, then R in a finite time. The red curves correspond to the nullclines y=x3 and y=x+4/x and
the black circle is the equilibrium of the system.

Remark 2.1. Although the system analyzed in this paper has a very particular form,
the results obtained can be generalized to a wider class of problems. A straightforward
generalization is a nondimensionalized system

dx=−x(4−xy+ax2)dt+σdW, (2.5)

dy= δ(1+x2
0)
y−bx3

1+x2
dt, (2.6)

where (x∗,y∗) =±(x0,bx
3
0) are the nontrivial equilibria and a, b, δ are positive. Note

that the system (2.5)-(2.6) is topologically equivalent to (2.3)-(2.4) only in a certain
parameter regime. Particularly, there is a restriction on the parameter δ in terms of
a and b. The time scale separation constant δ must be bounded both from below and
above. An important role is played by the natural time scale T ∗= |4−ax2

0| of the
system, associated with the nontrivial equilibria (x∗,y∗). If 4−ax2

0>0, the bound
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Fig. 2.3. Sample solution of the stochastic model (2.3)-(2.4) showing statistically steady oscil-
lations in time with the noise strength σ= 0.5. Functions xσ(t) and yσ(t) are plotted in red/dash
and black/solid, respectively. The deterministic solution y0(t) is plotted in green/dash-dot.

is symmetrical with respect to T ∗: δ∈ (Tb,(T ∗)2/Tb), otherwise δ∈ (T ∗,(T ∗)2/Tb),
Tb>0. The stochastic Lyapunov function, introduced in Section 3, can be constructed
analogously with V̂ (x,y) = (ax−y)2 +y2.

Remark 2.2. The system (2.3)-(2.4) is sensitive to small noise in the horizontal
direction due to the narrowing (on one side) region of attraction of the exact expo-
nentially growing solution along the y-axis. Here we present an example of a system
with similar dynamics that does not have a SLF:

dx=−x(1−xy)dt+σdW, (2.7)

dy= (y−x3)dt. (2.8)

The two models differ in the resetting property. While the system (2.3)-(2.4) returns
back to a neighborhood of the origin at every collapse, the system (2.7)-(2.8) keeps
drifting to infinity along the vertical axis, i.e., repeating collapses do not bring the
trajectory closer to the origin. A detailed analysis of this model can be found in [2].

3. Stochastic Lyapunov function
The theory of stochastic Lyapunov function (SLF) was developed by R. Khas-

minskii [11]. Consider a time-homogeneous stochastic differential equation in Rn

dx= b(x)dt+σ(x)dW , x(t0) =x0, (3.1)

where W is an n-dimensional Wiener process and σ(x) = (σ1(x), ... , σn(x)) with
b,σ1, ... , σn∈C (Rn,Rn). Let K be a compact subset of Rn and let the coefficients
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in (3.1) satisfy the following growth conditions for some c∈R for any x, x1, x2∈K:

|b(x)|+
n∑
k=1

|σk(x)|≤ c(1+ |x|), (3.2)

|b(x2)−b(x1)|+
n∑
k=1

|σk(x2)−σk(x1)|≤ c|x2−x1|. (3.3)

Assume that

there exists x0∈Rn such that x(t)is regular, (3.4)

and there exists an auxiliary function V ∈C 2(Rn) satisfying

V (x)≥0, (3.5)
sup
|x|>R

LV (x) =−AR→−∞ as R→∞. (3.6)

Here L is a generator of the stochastic process (3.1):

L=
∑
i

bi(x) ·∂xi +
1
2

∑
i,j

(σ(x)σ(x)′)∂xi∂xj . (3.7)

The theory of R. Khasminskii then implies that the stochastic process (3.1) has an
invariant measure, i.e., a solution is a stationary Markov process. Such a function
V (x) is called a stochastic Lyapunov function. Now we can formulate the main result
of the paper.

4. The main result
Theorem 4.1. For a continuous drift function b(x), b :R2→R2, defined in (2.1)-
(2.2), the solutions of the system dx/dt= b(x) with x(0) =x0 satisfy limt→∞ |x(t)|=
±∞ for almost all x0∈R2 but solutions of (3.1) with σ1 = (σ̄,0)T and σ2 = (0,0)T

form a stationary Markov process for an arbitrary σ̄ >0.

The drift function b(x) is chosen according to (2.3)-(2.4). In order to prove Theo-
rem 4.1 it is necessary to construct the SLF satisfying (3.4)-(3.6) for system (2.3)-(2.4).
Note that the deterministic system (2.1)-(2.2) does not have a Lyapunov function
because almost all its trajectories blow up exponentially. To construct a SLF for
(2.3)-(2.4) for arbitrarily small σ in the sense of [11] we need to design this auxil-
iary function for the noise-perturbed system in such a way that the diffusion term in
the generator dominates the rest. However, the diffusion term in the generator L is
proportional to σ2 which may be arbitrarily small. Thus the form of the SLF must
depend on σ as well. Trajectories are most sensitive to noise in the narrow “funnel”
region of B between the y-axis and A, and thus the key is to construct the SLF in this
region. Note that the SLF may be defined arbitrarily on any given compact region
without violating (3.4)-(3.6).

Proof. We will prove that the system (2.3)-(2.4) satisfies all conditions given
by Theorem 4.1. The corresponding deterministic system trivially satisfies all the
requirements, having non-diverging solutions only when starting at one of the three
fixed points or two stable connections from ±∞ to the origin. We construct a simple
stochastic Lyapunov function that respects the structure of the problem (symmetry,
fast/slow phase). The construction consists of three steps.
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(a) Fast region: V̂ (x,y) = (x−y)2 +y2 satisfies SLF condition on ΩF ={(x,y)∈
R2 : |x|≥ C̄,|y|≥1}, where C̄= 2.

(b) Slow region: f(x,σ)V̂ (x,y) satisfies SLF condition on ΩS ={(x,y)∈R2 : |x|≤
C̄}. In addition, it can be patched with constant multiples of V̂ (x,y) on ΩF
so that the result will be C 2. The SLF will be defined separately for y>1
and by parity for y<−1. It will depend on the noise strength σ.

(c) All the remaining “rough” parts of the function (|y|≤1) will be patched
together to produce an explicit C 2 function V (x,y,σ) that satisfies the SLF
condition on R2 for arbitrarily small noise strength σ.

(a) Fast region ΩF . Trajectories of (2.3)-(2.4) are not very sensitive to noise in the
fast region ΩF . We choose V̂ (x,y) = (x−y)2 +y2 to obtain

LV̂ (x,y) =
(

4
1+x2

−2x2

)
y2 +

(
8x+4x3− 2x+4x3

1+x2

)
y

+σ2−8x2−2x4 +
2x4

1+x2
. (4.1)

This quadratic function in y is concave down for |x|≥ C̄. For technical purposes we
analyze two cases: |x|∈ [C̄,M ], and |x|∈ [M,∞] for sufficiently large M . First, observe
that if x∈ [C̄,M ] then simple inequalities imply that

LV̂ (x,y)≤−y2 +18M3|y|+σ2 (4.2)

and LV̂ (x,y)→−∞ when y→∞, so the condition (3.6) is satisfied. Next we use
concavity of LV̂ (x,y) with respect to variable y to find its maximum on the remaining
interval [M,∞) by setting ∂LV̂

∂y (x,ym) = 0 and solving for ym:

ym=
2x5 +4x3 +3x
2x4 +2x2−4

x∼x for x�1. (4.3)

The resulting ym can be furthermore substituted into LV̂ (x,y):

LV̂ (x,ym) =
−4x8 +O(x6)
2x6 +O(x4)

∼−2x2 for x�1. (4.4)

This shows that for |x|∈ [M,∞) the function LV̂ (x,y) is bounded from above by a
negative polynomial and therefore approaches −∞ as |x|→∞. In fact, LV̂ (x,y)→
−∞ as |(x,y)|→∞ since it is a polynomial in y. Therefore any positive multiple of
V̂ (x,y) satisfies the SLF condition in ΩF .

(b) Slow region ΩS. The dynamics of (2.3)-(2.4) is very sensitive to the noise
magnitude σ in the slow region ΩS ={(x,y)∈R2 : |x|≤ C̄}. However, the function
V̂ (x,y) = (x−y)2 +y2 does not depend on the noise magnitude σ, and therefore cannot
satisfy condition (3.6). In order to modify it we define the SLF on a half-strip region
|x|≤ C̄, y>1 (and by symmetry for y<−1) as

V (x,y,σ) =fσ(x)V̂ (x,y) =fσ(x)[(x−y)2 +y2], (4.5)

where f =fσ ∈C 2 depends on σ. Note that the smoothness requirement for the SLF
imposes boundary conditions on f(x) at x=±C̄:

f ′′(−2) =f ′′(2) = 0 and f ′(−2) =f ′(2) = 0, (4.6)
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Fig. 4.1. The piecewise defined function f ′′(x) in the slow region. Values of K̄, L̄, X̄, Ȳ , and ε
depend exclusively on the magnitude of the noise strength σ. K̄ is chosen big enough and ε small
enough to satisfy the SLF properties.

but also f(−2), f(2)>0. The stochastic generator of (2.3)-(2.4) applied to the func-
tion V (x,y,σ) can be written as

LV (x,y,σ) =
3∑

n=0

An(x,f,f ′,f ′′,σ)yn (4.7)

= 2x2y3f ′+y2

(
−2x2f−8xf ′−4x3f ′+σ2f ′′+

4f
1+x2

)
+yA1(x,f,f ′,f ′′,σ)+A0(x,f,f ′,f ′′,σ). (4.8)

A necessary condition for V (x,y,σ) to be a SLF is yf ′<0, i.e., f ′<0 in the half-strip
|x|≤ C̄, y>1. That implies that f needs to be decreasing in the positive half-strip.
Since the system (2.1)-(2.2) blows up exponentially (and for that reason it does not
have a LF) it must be the stochastic term in the generator 1

2σ
2∂xxV (x,y,σ) that

cancels all the terms that blow up and makes LV (x,y,σ) approach −∞. This leads
to the observation that V (x,y,σ) must be concave in x for x≈0 and also that its
second derivative (with respect to x) must dominate positive terms in LV (x,y,σ).
The construction is divided into three steps:

(i) Construct a piecewise linear function f ′′(x) that is

• decreasing on [−2,−ε] and [X̄,2],

• equal to a large negative constant on [−ε,ε],
• increasing on [ε,X̄],

• has a zero integral,

and depends on parameters ε, K̄, L̄, X̄, and Ȳ (and all depend on the noise
magnitude σ), as in Figure 4.1.
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(ii) Integrate the function f ′′(x) twice to find f(x) and choose the parameters
Ā, B̄, L̄, X̄, Ȳ to satisfy f ′′(−2) =f ′′(2) =f ′(−2) =f ′(2) = 0, f(−2) = Ā>0,
f(2) = B̄=ε>0 and f ′(x)<0 for |x|<C̄.

(iii) Choose the remaining parameter values ε and K̄ so that the condition (3.6)
is valid, i.e., that A2(x)<0.

(i) The piecewise linear function f ′′(x) is constructed to satisfy conditions in (i). The
simplest candidate is schematically plotted on Figure 4.1. There are 5 parameters: ε,
K̄, L̄, X̄, and Ȳ :

f ′′(x) =



− ε

2− Ȳ
(x+2), x∈ [−2,−Ȳ ),

−K̄−ε
Ȳ −ε

(x+ Ȳ )−ε, x∈ [−Ȳ ,−ε),

−K̄, x∈ [−ε,ε),
K̄+ L̄

X̄−ε
(x−ε)−K̄, x∈ [ε,X̄),

2−x
2−X̄

L̄. x∈ [X̄,2).

(ii) The first integration of the function f ′′(x) with use of boundary conditions
f ′(−2) =f ′(2) = 0 yields

f ′(x) =



− ε(2+x)2

4(1−ε) , x∈ [−2,−2ε),

ε(ε−1+x)+ x2

2 −K̄(2ε+2x− x2

2ε ), x∈ [−2ε,−ε),
− ε2 (2−ε)− K̄

2 (3ε+2x), x∈ [−ε,ε),
6ε2−2ε4+2ε3x+2εx2−ε2(2+x)2

2ε(2−ε) +

+K̄ 8ε3−xε(8−5x)+2x2−ε2(4+8x)
2ε(2−ε) , x∈ [ε,2ε),

− ε(2+6K̄−ε)(2−x)2

4(2−ε)(1−ε) , x∈ [2ε,2),

where X̄= Ȳ = 2ε and K̄, L̄ are chosen such that the boundary condition f ′(2) = 0 is
satisfied. Then

L̄=ε+K̄
X̄+ Ȳ +2ε

2−ε
=ε+

6ε
2−ε

K̄. (4.9)

The second integration with the use of boundary conditions f(−2) = Ā>0 and f(2) =
B̄=ε>0 yields

f(x) =



ε(2+ε−3ε2)
1−ε K̄+

+ ε(20−12ε−28ε2+12ε3−12x−6x2−x3)
12(1−ε) , x∈ [−2,−2ε),

10ε3+12ε2(1−x)−6εx2−x3

6ε K̄+
+ 10ε2+4ε3−2ε4−6ε2x+6ε3x+3ε2x2+εx3

6ε , x∈ [−2ε,−ε),
1
6K̄(11ε2 +ε(12−9x)−3x2)+
+ 1

6 (10ε+4ε2−3ε3−6εx+3ε2x), x∈ [−ε,ε),
−16ε4+8ε3(1+3x)−12ε2(x2+x−2)+εx2(12−5x)−2x3

6ε(2−ε) K̄+

+ 4ε5−ε4(12+6x)+ε3(−2+18x+3x2)+ε2(20−12x−6x2−x3)+2εx3

6ε(2−ε) , x∈ [ε,2ε),

− ε(x−2)3

2(2−ε)(1−ε)K̄+

+ ε[12ε2+ε(−44+12x−6x2+x3)+(40−24x+12x2−2x3)]
12(2−ε)(1−ε) , x∈ [2ε,2),
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after substituting for Ā, B̄, X̄, and Ȳ , where constants Ā and B̄ are chosen to satisfy
boundary conditions f(−2) = Ā and f(2) = B̄=ε. This leads to a relationship between
Ā and B̄:

Ā=B̄+
1
6

[
−2ε3 +K̄(2+ Ȳ )(X̄+ Ȳ )+ε2(2K̄−X̄− Ȳ )

+ 2ε(4+X̄+ Ȳ +K̄(2+X̄+ Ȳ ))
]

=−ε3 +
(

4
3

+3K̄
)
ε2 +

(
7
3

+2K̄
)
ε.

(iii) The Lyapunov condition requires the coefficient A2, defined in (4.7), to be nega-
tive. We plug f, f ′, and f ′′ into its formula to find conditions on remaining parameters
K̄ and ε that guarantee A2(x,f,f ′,f ′′,σ)<0. For x∈ [−ε,ε) we have

A2(x,σ) =
3ε3

3(1+x2)
(x4 +x2−2)

− ε2

3(1+x2)
[
(2+x2)(9x3 +4x2 +3x−4+11K̄(x2−1))

]
+

ε

3(1+x2)
[
(2+x2)(18x3−10x2 +6x+10+3K̄(9x3−4x2 +3x+4))

]
+

1
3(1+x2)

[
3K̄(5x6 +13x4 +(6−σ2)x2−σ2)

]
.

For K̄= 1
ε we obtain

A2(x,σ) =
(

8− σ
2

ε

)
1

1+x2
+O(ε).

For small enough ε>0 the coefficient satisfies A2(x,σ)<−c<0 for some c∈R and for
x∈ [−ε,ε]. Then the SLF condition is valid for all x∈ [−2,2] since

LV (x,y,σ)∼A3(x)y3 +A2(x)y2 =−2(xy)2|yf ′(x)|+A2(x)y2→−∞

both for |x|<ε (A3(x)y≤0, A2(x)<0) and for |x|>ε (A3(x)y<0) as |y|→∞. More-
over, the stochastic Lyapunov function connects in a C 2 manner to V (x,y,σ) =
ĀV̂ (x,y) for x≤−2 and to V (x,y,σ) =εV̂ (x,y) for x≥2. Note that for y<−1
we need to define V (x,y,σ) =V (−x,−y,σ), V (x,y,σ) =εV̂ (x,y) for x≤−2, and
V (x,y,σ) = ĀV̂ (x,y) for x≥2.

Below is the summary of all boundary conditions for f(x,σ) in the upper half-strip
(|x|≤2, y≥1):

f(−2) =−ε3 +
9K̄+4

3
ε2 +

6K̄+7
3

ε, f(2,σ) =ε,

f ′(−2) = 0, f ′(2) = 0,
f ′′(−2) = 0, f ′′(2) = 0,

and analogously by symmetry in the lower half-strip (|x|≤2, y≤−1).

(c) Final patching. Now we will smoothly patch ĀV̂ (x,y) and B̄V̂ (x,y) in the region
|y|<1. This is done in a straightforward way by using a fifth-order polynomial as a
smoothing function close to the x-axis.
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We define the function V (x,y,σ) =V+(x,y) on |y|<1, x>2 and V (x,y,σ) =
V−(x,y) on |y|<1, x<−2 separately. Let V±(x,y) =g±(y)V̂ (x,y), where g±(y) satisfy
boundary conditions (smoothness requirements)

g+(1) =ε and g+(−1) = Ā, (4.10)
g−(1) = Ā and g−(−1) =ε, (4.11)

g′±(±1) = 0 and g′′±(±1) = 0. (4.12)

Polynomial functions of the lowest order that satisfy all stated requirements are

g+(y) = Ā−(Ā−ε)
∫ y
−1

(u+1)2(u−1)2du∫ 1

−1
(u+1)2(u−1)2du

, (4.13)

g−(y) =ε+(Ā−ε)
∫ y
−1

(u+1)2(u−1)2du∫ 1

−1
(u+1)2(u−1)2du

. (4.14)

One needs to make sure that LV (x,y,σ)→−∞ while y stays bounded as |x|→∞.
The stochastic system (2.3)-(2.4) has the following approximate form in this region:

dx= (−x3 +O(x2y))dt+σdξ, (4.15)
dy= (−x+O(1+y))dt, (4.16)

yielding

LV (x,y,σ) =−2x4g±(y)+δ(x3,y,g±,g
′
±), (4.17)

where δ(x3,y,g±,g
′
±) =O(x3) since y, g±(y) and g′±(y) are all nonzero and bounded by

a constant inside |y|<1. Since the leading term is negative (and grows to −∞ as |x|→
∞) V (x,y,σ) satisfies the SLF condition. The function V (x,y,σ)∈C 2, schematically
plotted on Figure 4.2, has the form

V (x,y,σ) =



εV̂ (x,y) if x>2 and y>1,
εV̂ (x,y) if x<−2 and y<−1,
ĀV̂ (x,y) if x<−2 and y>1,
ĀV̂ (x,y) if x>2 and y<−1,
fσ(x)V̂ (x,y) if |x|≤2 and y≥1,
fσ(−x)V̂ (x,y) if |x|≤2 and y≤−1,
g+(y)V̂ (x,y) if x≥2 and |y|≤1,
g−(y)V̂ (x,y) if x≤−2 and |y|≤1,
arbitrary if |x|<2 and |y|<1,

(4.18)

where V̂ (x,y) = (x−y)2 +y2, K̄= 1
ε , and ε is small enough. Note that the regularity

of the process (x(t),y(t)) (condition (3.4)) is trivially satisfied for every initial condi-
tion. It is implied by a weaker SLF condition of the form LV ≤ cV for some positive
constant c [11]. The process is therefore regular for all initial conditions.

Note that in order to satisfy V (x,y,σ)>0 for all x, y∈R we may add an arbitrary
positive constant to the function V . The other properties of LV (x,y,σ) do not depend
on the choice of this constant.

Remark 4.1. Theorem 4.1 can be proven for a more general class of dynamical
systems (2.5)-(2.6) as pointed out in Remark 2.1 with a minor change in the proof,
i.e., the stochastic Lyapunov function will be based on V̂ (x,y) = (ax−y)2 +y2 where
a is the parameter of the system.
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Fig. 4.2. A schematic picture of the stochastic Lyapunov function.

5. First exit time problem
The dynamics of (2.3)-(2.4) is very sensitive to noise in the slow region, i.e., along

the y-axis, until the trajectory crosses the x-nullcline. However, in the rest of the phase
space noise does not considerably alter the trajectory. Noise-driven collapses together
with the system’s resetting dynamical property force trajectories to repeatedly visit
a small rectangle around the origin. Therefore we can say that the system has short
memory, e.g. it effectively resets once it enters the neighborhood of origin even though
the trajectory may travel very far away along the y-axis before it returns back towards
the origin.

The time/location of collapses is studied as the first exit time problem from the
noisy funnel region between the y-axis and the nullcline y=x+4/x. Since the initial
condition is quickly forgotten by the system we choose it to be fixed (x,y) = (0,1) (thus
restraining only to the upper half of R2 in the symmetric system). Alternatively, one
may use a random initial condition (say, y= 1 and x∈ [−4,4] according to a chosen
distribution). The first exit time problem corresponding to (2.3)-(2.4) is


dx=−x(4−xy+x2)dt+σdW, x-dynamics,
dy= y−x3

1+x2 dt, y-dynamics,
x(0) = 0, y(0) = 1, initial conditions,
0 = 4−xy+x2, exit condition.

(5.1)

The asymptotic regime of interest is y→∞ (i.e., t→∞) where x≈0. In this regime
(2.3)-(2.4) is accurately approximated by

dx=−x(4−xy)dt+σdW, (5.2)
dy=ydt. (5.3)
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Transformation of the problem to a constant boundary using x̄=x−4e−t yields
dx̄= (4x̄+ x̄2et+4e−t)dt+σdW, x-dynamics,
x̄(0) =−4, initial conditions,
x̄(t) = 0, exit condition.

(5.4)

5.1. Numerical study of the first exit time problem. The first exit time
problem (5.1) can be studied using a standard Monte Carlo method (MC). However,
we are interested in a long time limit where standard MC methods are extremely
computationally expensive. This is because the funnel-shaped region between the y-
axis and the nullcline y=x+4/x is narrowing at an exponential rate as time progresses
and, with a set value of noise level σ, trajectories are progressively less likely to stay
inside the region as time grows (also the step size must be finer as the region gets
narrower). The probability that a trajectory stays in the region is very small at long
times and the event is therefore called rare. There have been effective algorithms
designed to simulate rare events in various applications, for example in finding the
harmonic measure for critical percolation and Ising clusters [15]. Here we develop a
new computationally effective method, inspired by [15], suitable for the first exit time
problem (5.1).

The idea behind the method is to “recycle” otherwise irrelevant trajectories, there-
fore we will call it Monte Carlo method with Recycling (MCR). In terms of the imple-
mentation, MCR simultaneously keeps track of many trajectories. Once a trajectory
hits the boundary of the region it is replaced by a different, randomly chosen trajec-
tory from the sample. Consequently the survival probability S(t) is updated to take
the replacement into account and the process continues. The method is similar to
[15].

We define the survival probability S(t) as a probability that at time t the tra-
jectory is still inside of the half-funnel, i.e., 0≤y<x+4/x with x≤1 or x≤0 with
y≥0. Since the stochastic process (x(t),y(t)) is Markov the survival probability at
time t+∆t may be calculated from S(t) and the probability of an exit in the time
interval (t,t+∆t] as

S(t+∆t) =S(t) ·P [exit in (t,t+∆t]] (5.5)

=S(t)
N−k
N

, (5.6)

where k represents the number of exited trajectories during (t,t+∆t]. The value of k
is either zero or one if ∆t is sufficiently small. The numerical algorithm of the MCR
is based on the rule (5.6) with replacements of the exiting trajectories by ones that
are still inside of the region and thus keeping the same size of the sample with the
same statistical properties. The MCR algorithm is:

1◦ Initialization: Start with a population of N trajectories at t(0) = 0 with the
same initial condition (

x(0)
n ,y(0)

n

)
= (x,1),

where x= 0. Set the initial values of the survival probability S(t) at time t
and the probability P (t) of having hit the boundary by time t

S(t(0)) = 1−P (t(0)) = 1.
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Fig. 5.1. The Monte Carlo method with recycling for three sample trajectories. Simulation is
plotted at three different times: at the time of first, second and third hit of the boundary with σ= 1.
Each time a boundary is hit a trajectory is replaced by a different one from the surviving set.

2◦ Time step: For all trajectories n∈{1,. ..,N} apply the Euler scheme for (2.3)-
(2.4) to move forward in time.

3◦ Exit of trajectory: If y(i)
n >4−x(i)

n y
(i)
n +x

(i)
n

2
and x

(i)
n >0, replace trajectory(

x
(i)
n ,y

(i)
n

)
by another, randomly chosen from the remaining N−1 trajecto-

ries. Update survival probability S(t(i) +∆t) = N−1
N S(t(i)).

4◦ Loop: Repeat steps (2)-(3) until the terminal time.
By using the MCR algorithm we are able to compute survival probabilities of very

small magnitudes. However, it is important to choose a number of sample trajectories
N large enough in order to visit a majority of possible outcomes at each time. Also, the
time step needs to be adjusted in such a way that the probability of two trajectories
exiting at the same time step is negligible. In practice we need to decrease the
time step at the same rate as the nullcline approaches the y-axis. This happens at
an exponential rate and the calculation therefore slows down exponentially in time.
Figure 5.1 shows an illustration of the algorithm to the problem (5.1) for only three
trajectories and three consequent hits of the boundary.

The algorithm is applied to (5.1) in order to provide information about the decay
of the survival probability and the distribution of trajectories that have not hit the
boundary yet. For the numerical analysis we choose terminal time T = 10 and number
of sample trajectories N = 2000. We find that the numerical results for (5.1) and (5.4)
are almost undistinguishable, particularly for large times (results not shown).

The survival probability is naturally a decreasing function of time and y. The
simulation results on Figure 5.2 suggest that log | logS(t)| as well as logm(t) are ap-
proaching a linear function for t→∞, where m(t) =E[x̄(t)]. In the case of m(t) there
is an initial transition from one to a different exponential rate of decay, as can be
observed on the right panel of Figure 5.2. Results in both cases suggest that for
different values of noise parameter σ the slope is independent on σ whereas the shift
seems to depend linearly on some power of σ. We assume that S(t) and m(t) have
the following description as t→∞:

• The survival probability S(t) has a double exponential asymptotic growth
with appropriate k, δ, and α:

S(t)∼e−Ke
αt

=e−kσ
δeαt . (5.7)
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α K B β C γ

σ= 1 0.7185 0.7701 0.7984 0.3303 3.6095 1.5468
σ= 1/2 0.7333 0.4220 0.4995 0.3290 4.0837 1.4020
σ= 1/4 0.7591 0.2075 0.2750 0.3131 4.2989 1.2652

Table 5.1. Fitted parameter values for the decay of S(t) and m(t).

• The mean m(t) of a conditional distribution of x̄(t) asymptotically approaches
an exponential function with appropriate B= bσρ, β and C, γ>β, where the
prefactors B and C depend on the noise strength σ:

m(t) =Be−βt+Ce−γt∼Be−βt= bσρe−βt. (5.8)
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Fig. 5.2. (left) Survival probability S(t) approaches a double exponential function as t→∞.
This information is contained in the graph of log(−logS(t)) that appears to converge to a linear
function for any σ. The slope of the function corresponds to α and the vertical shift corresponds to
a linear function logk+δ logσ. (right) The mean of the conditional distribution of x̄(t) as a function
of time. The function can be accurately approximated by a sum of two exponential functions, the
noise magnitude controls prefactors.

To estimate values of coefficients α, K, δ and β, B for different σ, we fit numerical
data (for times ti∈{0,. ..,T}) to a function of the form (5.7) and (5.8). The best fit
in L2 space for this rule is a solution of two separate minimization problems

(α,K) = argmin
T∑

ti=ti∗

(
log(−logS(ti))+logK−αti

)2
, (5.9)

(β,γ,B,C) = argmin
T∑
ti=0

(
logm(ti)− log(Be−βti +Ce−γti)

)2
. (5.10)

Note that the fitting function in (5.9) is chosen to match the values only in the
asymptotic regime, i.e., after some time (specified by index i∗). For σ= 1, 1

2 , and
1
4 the minimization problems yield parameter values in Table 5.1, where values of b,
δ, and ρ may be found from B a posteriori. Numerical results for coefficients β and
α seem to be roughly independent of the noise magnitude, implying the asymptotic
form for S(t) and m(t), with α, β approximately constant and β≈1/3.
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Fig. 5.3. (left) The histogram of trajectories in the MCR simulation at times T = 1, 2, . .. , 7. The
distribution is being squeezed towards the origin as time increases. (right) The rescaled probability
density function v(t,z) at times T = 2, 3, 4, 6, 8, 10. The functions converge to a time invariant pdf
that captures behavior in the asymptotic regime t=∞.

A natural way to confirm that (5.7) and (5.8) are true is to rescale the histograms
on Figure 5.2 in the following way:

z=σ−ρeβtx̄, (5.11)

u(t,x̄) =e−Ke
αt

v(t,z), (5.12)

where u(t,x̄) is the unconditional pdf on (−∞,0) and v(t,z) is the conditional pdf after
the normalization. If both hypotheses are correct then as time grows to infinity the
density function v(t,z) should converge to a self-similar solution. This is confirmed
by Figure 5.3 in the case σ= 1.

5.2. Analytical study of the first exit time problem. The first exit
time problem (5.4) is mathematically studied using a Fokker-Planck equation (FPE).
The conditional probability density function u(t,x) that x(t) has not yet reached the
boundary satisfies the FPE with a moving boundary

ut=
(
(4x−x2et)u

)
x

+
σ2

2
uxx, (5.13)

0 =u(t,4e−t). (5.14)

The numerical results suggest that the following three transformations should be used:
shifting to a constant boundary, stretching to accommodate (5.8), and scaling to fit
(5.7). Including all three transformations, i.e., shifting, stretching, and scaling, we
formulate an ansatz for the asymptotic form of u(t,x̄) for t→∞ where x̄=x−4e−t:

u(t,x̄) =e−Ke
αt

σ−ρeβtv(t,σ−ρeβtx̄) =σ−ρeβt−Ke
αt

v(t,σ−ρeβtx̄). (5.15)

Note that

S(t) =
∫ 0

−∞
u(t,x̄)dx̄=e−Ke

αt

∫ 0

−∞
σ−ρeβtv(t,σ−ρeβtx̄)dx̄=e−Ke

αt

∫ 0

−∞
v(t,x̂)dx̂.

(5.16)

Therefore v(t,x̄) is the conditional probability density function of x̄ in the noise dom-
inated region (it is normalized to give

∫ 0

−∞v(t,x̄) = 1). If we denote z=σ−ρeβtx̄ then
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the FPE becomes

vt=αKeαtv−
(

((4+β)z+z2σρe(1−β)t+4σ−ρe(β−1)t)v
)
z

+
σ2(1−ρ)

2
e2βtvzz ,

0 =v(t,0). (5.17)

For t large we can use the numerical evidence that α,β∈ (0,1) to obtain effective long
time behavior as

vt=eαt(αKv)−σρe(1−β)t(z2v)z+e2βtσ
2(1−ρ)

2
vzz. (5.18)

If the stationary distribution exists, then it satisfies the ODE where the left hand
side of (5.18) is replaced by 0 and right hand side only contains terms with the same
exponential rates. The existence of invariant measure is then closely connected to the
magnitude of growth constants α and β. It is not difficult to see that the only way this
equation has nontrivial but normalizable solutions with boundary conditions v(t,z=
0) = 0 and limz→−∞v(t,z) = 0 is when β= 1

3 and α= 2
3 . This is not inconsistent with

numerically estimated values of constants α≈0.7185 and β= 0.3303. The problem
becomes

0 =λv−σρ(z2v)z+
σ2(1−ρ)

2
vzz. (5.19)

This is a linear eigenvalue problem with an eigenvalue λ=αK= 2
3K that we can

compute numerically for any value of ρ. We are interested in a positive normalizable
solution—the eigenfunction (or the ground state)—corresponding to the smallest pos-
itive eigenvalue of the related operator. The eigenvalue problem (5.19) can be trans-
formed to a singular, self-adjoint Sturm-Liouville (SL) problem on interval (−∞,0]
by an exponential transformation v=w(z) exp(σ3ρ−2z3/3), giving

λw=−σ
2(1−ρ)

2
wzz+

(
1

2σ2−4ρ
z4 +zσρ

)
w, (5.20)

with λ being the eigenvalue of the corresponding regular SL problem. Note that
boundary conditions for the normalizable solution are

w(0) = 0 and w(−∞) = 0. (5.21)

The functional dependence of the ground state eigenvalue on noise magnitude σ can
be found using a simple scaling argument. The linear transformation z=σ2/3−ρz̃
yields

2λσ−2/3w=−wz̃z̃+
(
z̃4 +2z̃

)
w. (5.22)

Since 2λσ−2/3 is an eigenvalue of the right-hand side operator that does not depend
on a noise strength σ, the eigenvalue itself should be independent of σ. This implies
λ∼σ2/3, i.e., δ= 2/3 in (5.7).

Next we turn our attention to an asymptotic calculation of the ground state
eigenvalue using a WKB method. In order to turn the SL problem (5.20) into the
right form, we rescale the independent variable z and introduce a new variable z̄=
(2σ2−4ρ)−

1
4 z. The result after dropping bars is

σ√
8
wzz+(λ−V (z))w= 0, (5.23)
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where

V (z) =z4 +(2σ2)
1
4 z. (5.24)

Let us denote

φ(z) =λ−V (z) =λ−(z4 +(2σ2)
1
4 z). (5.25)

The ODE we obtained has a form of a time-independent Schrödinger equation with a
potential V (z) for z≤0 and V (z) =∞ for z>0 (this implies w(0) = 0). The parameter
σ is small and as σ→0 the potential asymptotically approaches the potential of an
anharmonic oscillator V (z) =z4. The physical interpretation of the problem suggests
that the smallest eigenvalue of the problem is positive. Otherwise there would need
to be an exponentially growing pattern in the time evolution of the survival proba-
bility that contradicts its non-increasing property. Therefore we can apply the WKB
approximation, discussed in J. D. Murray [14] to find an approximate solution of

εwzz+[h0(ε)φ0(z)+h1(ε)φ1(z)]w= 0, (5.26)

where ε= σ√
8

is the small parameter and

h0(ε) = 1, φ0(ε) =λ−z4, (5.27)

h1(ε) = 2
√
ε, φ1(z) =−z. (5.28)

There are two distinct regions: z∈ (−∞, ẑ) where φ0(z)<0 and (ẑ,0) where φ0(z)>0.
The constant ẑ=−λ1/4<0 is the turning point, i.e., φ0(ẑ) = 0. We can approximate
the solution of (5.26) in both regions. First, if φ0(z)>0 and σ is small we use the
asymptotic form as in [14]

w+(z)∼ K

φ0(z)1/4
exp

(
i

1√
ε

∫ z

zc

√
φ0(z′)dz′

)
=

a

φ0(z)
1
4

sinU+
b

φ0(z)
1
4

cosU, (5.29)

where

U =
1√
ε

∫ z

zc

√
φ0(z′)dz′ (5.30)

and zc∈ (−∞,0) is an arbitrary integration constant; we take zc= ẑ. Second, if φ0(z)<
0 the solution w−(z) is a combination of exponentially growing and decaying solutions

w−(z)∼ A

φ0(z)1/4
eU +

B

φ0(z)1/4
e−U . (5.31)

In order to find eigenvalues of the problem we need to connect solutions (5.29) and
(5.31) that are both singular at the turning point ẑ. This is done by locally solving
(5.26) around ẑ. This matching process discussed in [14] yields a connection formula

a=
1√
2

(
B

2
−A

)
, b=

1√
2

(
B

2
+A

)
. (5.32)

Required decay at z=−∞ forces B= 0, therefore a=−b. The boundary condition
at z= 0 then gives sinU = cosU , yielding U = π

4 +nπ. The quantization condition in
terms of σ therefore has a form(

8
σ2

)1/4∫ 0

ẑ

√
λ−z′4dz′= π

4
+nπ. (5.33)
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Fig. 5.4. The comparison of MCR and FPE solutions in a long-time limit. Thin lines are prob-
ability density functions of the conditional survival probability distribution inside the noise-sensitive
region found by MCR (for times t= 2, . . . 10), and the solid thick line is the numerically found and
normalized eigenfunction of the stationary FPE corresponding to the first exit time problem. This
line seems to capture the limiting distribution of the exit time problem.

The ground state corresponding to the smallest eigenvalue satisfies n= 0 and it re-
mains nonnegative for all z∈ (−∞,0]. Since ẑ=−λ1/4 we have∫ 0

−λ1/4

√
λ−z′4dz′=λ3/4

∫ 0

−1

√
1−z′4dz′=λ3/4

√
πΓ
(

1
4

)
8Γ
(

7
4

) . (5.34)

The value of λ can be found from (5.33):

λ=
σ2/3

2

[
2
√
π

Γ
(

7
4

)
Γ
(

1
4

)]4/3

∝σ2/3, (5.35)

where the scaling law is consistent with the intuitive answer found by the scaling
argument λ=αK= 2

3kσ
2
3 , yielding δ= 2/3.

We now test the agreement between the numerically found density function for
the location of trajectories that have not yet hit the nullcline (MCR method) and
the ground state, described by (5.19) on Figure 5.3. Note that (5.19) is a PDE with
boundary conditions v(0) =v(−∞) = 0. The condition at z=−∞ can be transformed
to a first order boundary condition at zero by assuming that

∫ 0

−∞v(z)dz= 1. Then
integration of the PDE results in

0 =λ

∫ 0

−∞
v+
[
−σρz2v+

σ2(1−ρ)

2
vz

]
z

dz ⇒ vz(0) =− 2αk
σ2(1−ρ)−δ , (5.36)

where α= δ= 2/3. The results for the noise magnitude σ= 1 are plotted on Figure 5.4.
Table 5.2 shows parameter predictions by the numerical MCR method and by the
analytic approach for σ= 1. The value k in the FPE approach is calculated from the
approximate formula

k=
3
2
λσ−2/3≈ 3

4

[
2
√
πΓ
(

7
4

)
Γ
(

1
4

) ]4/3

≈0.6504. (5.37)
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α K β

Numerical method MCR 0.7185 0.7701 0.3303
Analytical method FPE 2/3 0.6504 1/3

Table 5.2. Parameter values for different methods (σ= 1).

We remark that MCR method and analysis via the FPE give almost identical values
for β (exponential contraction rate on the horizontal axis) and similar values for α
(double exponential decay rate of the survival probability) and K (the pre-factor).

As Figure 5.4 suggests, the solution of the FPE captures the trend in MCR results
for σ= 1 as time grows. Since the time t= 10 is still not very large, the match is not
perfect. Note that time t= 10 in the MCR method corresponds to y=e10≈2.2 ·104,
for which the time step required is the original time step reduced by this factor. The
slowdown of the numerical calculation due to the exponential approach of the exit
boundary is a major difficulty of any numerical method for this problem.

6. Summary and discussion
This paper discusses a planar dynamical system exhibiting exponential blow-up

of trajectories in the absence of noise and persistent oscillations when arbitrarily small
noise is applied. This is caused by two dynamical features of the model. First, the
nonlinearities in the system determine a shrinking basin of attraction of the diverg-
ing solution. The dynamics in the x-direction in this region is dominated by noise
while the rest of the phase space is relatively impervious to perturbations. Second,
trajectories from anywhere outside of the attraction region return to a neighborhood
of the origin. These two properties account for the existence of an invariant proba-
bility measure that is proven by an explicit construction of the stochastic Lyapunov
function. An alternative model is presented that does not have a stochastic Lyapunov
function because its trajectories do not reset back to the origin.

The typical size of the noise-induced oscillations depends on the noise strength:
noise must force the trajectory out of the ever-narrowing basin of attraction to gen-
erate a collapse, and weaker noise makes the trajectory exit the region later. The
problem is formulated as a first exit problem and is studied both numerically and
analytically, the latter in the regime of small noise. The problem of inefficiency of
standard Monte Carlo algorithms for numerical simulations is resolved by introducing
a modified Monte Carlo with Recycling (MCR) method. Evidence is found that the
survival probability and conditional mean behave like

S(t)∼e−Ke
αt

, m(t)∼Be−βt, (6.1)

with appropriate α, β and K, B. In the analytical approach the first exit problem is
replaced by a Fokker-Planck equation. The ansatz (6.1) and a solvability argument
for t→∞ are used to confirm that values of α and β agree with the numerical results.
Further WKB analysis allows us to determine the remaining parameters and to com-
pare the asymptotic stationary probability density function of the trajectories near
the deterministic heteroclinic connection to infinity with the numerically observed
density function at large times found by MCR method. Again, the analysis predicts
the density function accurately.

The original motivation for this study came from models in fluid mechanics where
rigid walls confining—and often driving—the fluid are (primarily for computational
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and analytical convenience) replaced by periodic conditions to eliminate boundary
layers. In various cases including thermal and thermohaline convection and even shear
flows, such a change in boundary conditions introduces spurious “runaway” solutions
that have no counterpart in the physically bounded flows [3]. Indeed, physically
realizable boundary conditions result in uniformly bounded solutions [5, 4, 6, 1]. While
direct numerical simulations on the a priori unbounded systems are sometimes used
to produce predictions for statistical features of the physically bounded models, it
remains an open problem to prove the reliability of the results and their relation
to the original models. The investigations presented here demonstrate robust and
quantifiable features of such runaway dynamical systems, in particular their sensitivity
to the noise that is inevitable in scientific computation.
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