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Abstract. We study the Benjamin-Ono hierarchy with positive initial data of a general type, in
the limit when the dispersion parameter tends to zero. We establish simple formulae for the limits (in
appropriate weak or distributional senses) of an infinite family of simultaneously conserved densities
in terms of alternating sums of branches of solutions of the inviscid Burgers hierarchy.
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1. Introduction
The Benjamin-Ono equation is a nonlinear evolution equation governing certain

types of internal waves. Internal waves are disturbances — set into motion by gravity
— of the interface between two immiscible fluids of different densities. A number
of assumptions are employed to deduce the Benjamin-Ono equation as a simplified
model from the full equations of three-dimensional fluid mechanics:

• One supposes that both fluid layers consist of inviscid and incompressible
fluids, and (for stability) the less-dense fluid rests on top of the denser fluid.

• One supposes that the waves are propagating in one direction only, which
reduces the problem to that of two-dimensional fluid mechanics (only the
vertical direction and the propagation direction survive).

• One supposes that the top layer containing the less-dense fluid is thin com-
pared to a typical wavelength of the interface. This allows the top layer to
be treated by a depth-averaging approach. The top of this layer is idealized
to a rigid horizontal lid.

• One supposes that the bottom layer containing the denser fluid is infinitely
thick, and that the flow in this layer is irrotational. This simplifies the con-
tribution from this layer to the dispersion relation of small-amplitude waves
on the interface in the linear approximation.

• One supposes that the amplitude of the waves is small compared to the thick-
ness of the top layer. This allows the nonlinear effects to be brought in per-
turbatively, and it also means that we are assuming the interface does not
breach the surface by meeting the rigid lid.

In the linear and dispersionless approximation, deformations of the interface sat-
isfy the one-dimensional wave equation. If one perturbatively introduces the balanced

∗Received: December 31, 2010; accepted: April 21, 2011.
This work was supported by the National Science Foundation under grant DMS-0807653.
†Department of Mathematics, University of Michigan, East Hall, 530 Church St., Ann Arbor, MI

48109 (millerpd@umich.edu, http://www.math.lsa.umich.edu/∼millerpd).
‡Department of Mathematics, University of Michigan, East Hall, 530 Church St., Ann Arbor, MI

48109 (zhengjxu@umich.edu).

117



118 THE BENJAMIN-ONO HIERARCHY IN THE ZERO-DISPERSION LIMIT

effects of weak nonlinearity and dispersion on a solution of the wave equation propa-
gating to the right (say) at constant velocity, then the Benjamin-Ono equation arises
as the first correction in the moving frame of reference of the wave, describing the
slow variation of the dimensionless wave height u as a function of a spatial coordinate
x in the propagation direction and the time t:

ut+2uux+εH[uxx] = 0. (1.1)

Here, subscripts denote partial derivatives, and H is the (bounded) Hilbert transform
operator densely defined on L2(R) by the singular integral

H[f ](x) :=
1
π
−
∫

R

f(y)dy
y−x

, (1.2)

where the integral is interpreted in the Cauchy principal value sense, and ε>0 is
a dimensionless measure of the relative strength of dispersive effects compared with
nonlinear effects. If an initial condition u=u0(x) is given at t= 0, where u0 is inde-
pendent of ε, then of course the corresponding solution of (1.1) will depend on ε, but
we will often not be explicit about this dependence in our notation.

It is quite useful in applications to have accurate and easily analyzable models
for internal waves. Indeed, one application that is particularly timely is the model-
ing of submerged “plumes” of oil as were reported following the Deepwater Horizon
leak in the Gulf of Mexico in May–August 2010. Recent experiments [1] performed
by Roberto Camassa and Richard McLaughlin at the University of North Carolina,
Chapel Hill have demonstrated that if oil is emitted as a turbulent jet from an ocean
floor leak and a density stratification is present in the surrounding fluid, then most
of the oil will become trapped at the interface between the dense and less-dense fluid
layers rather than floating to the surface, even though the oil is less dense still than
the upper layer. In these circumstances, modeling the motion of the submerged oil
plumes within the fluid column amounts to modeling the motion of the density inter-
face, that is, modeling internal waves. Accurate predictions of internal wave motion
can determine whether the trapped contaminants will interact with biological popu-
lations at various depths, and also whether the contaminants might reach the mixing
layer near the surface.

The purpose of this short paper is to show how methods we have recently devel-
oped [9] to study the asymptotic behavior of solutions of the Benjamin-Ono equation
as ε↓0 in the weak topology extend both to the whole hierarchy of “higher-order”
Benjamin-Ono equations and also to the whole hierarchy of densities coming from
conservation laws. It is a pleasure to be able to contribute to this special volume of
papers in honor of Dave Levermore. It will be clear to all of those who have followed
his work that our small contribution is directly inspired by his groundbreaking analy-
sis with Peter Lax of the zero-dispersion limit for the Korteweg-de Vries equation [7], a
project that has had a tremendous impact on fields of study ranging from asymptotic
analysis of nonlinear evolution equations to the theory of orthogonal polynomials and
of random matrices.

2. The Benjamin-Ono hierarchy
Let us take the phase space of fields u to be

P :={u∈L2(R)∩C∞(R), u(k)∈L2(R), ∀k}. (2.1)

This is clearly a linear space over R, and it is also an algebra that is closed under dif-
ferentiation and Hilbert transforms. We will have use below for the Cauchy operators
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C± densely defined on L2(R) by singular integrals as follows:

C±[f ](x) := lim
δ↓0

1
2πi

∫
R

f(y)dy
y−x∓ iδ

. (2.2)

The Cauchy operators are bounded with respect to the L2(R) norm and hence extend
to bounded operators with the same norms on all of L2(R). In fact, the operators
C+ and −C− are just the self-adjoint orthogonal projections from L2(R) onto the
complementary Hardy subspaces of functions analytic in the upper and lower half-
planes, respectively. They satisfy the identities

C+ ◦(−C−) = (−C−)◦C+ = 0, (±C±)2 =±C±, C+−C−= 1, C+ +C−=−iH.

Since C± are self-adjoint, it follows that H is skew-adjoint, that is,∫
R
fH[g]dx=−

∫
R
gH[f ]dx (2.3)

whenever f and g area real-valued functions in the phase space P. The operators C±
and H commute with differentiation in x.

If I[u] is a suitable functional defined on the phase space P, we define the vari-
ational derivative δI/δu by

d

dt
I[u+ tv]

∣∣∣∣
t=0

=
∫

R

δI

δu
[u](x)v(x)dx. (2.4)

For functionals I with I[0] = 0, assuming the existence of the variational derivative of
I for each u∈P we can recover the functional from its derivative by the formula

I[u] =
∫ 1

0

∫
R

δI

δu
[tu](x)u(x)dxdt=

∫
R

(∫ 1

0

δI

δu
[tu](x)dt

)
u(x)dx. (2.5)

2.1. Conservation Laws for the Benjamin-Ono equation. The
Benjamin-Ono equation conserves an infinite number of functionals of u. These may
be obtained by a number of different methods, several of which we review (in historical
order of discovery) for the reader’s convenience.

2.1.1. The Nakamura scheme. A. Nakamura [10] (see also [8]) was the first
to deduce an infinite number of conserved quantities for the Benjamin-Ono Equation
(1.1). His derivation is based on a Bäcklund transformation for (1.1). The Bäcklund
transformation u 7→n is

−iεµC+[nx]+1−e−n=µu, (2.6)

where µ is an arbitrary parameter. From this equation it can be shown that regardless
of the value of µ,

d

dt

∫
R
ndx= 0 (2.7)

when u satisfies (1.1). Therefore, by expanding n in a power series in µ with coef-
ficients depending on u, the coefficients will all be densities of conserved functionals
of u. Writing n=µn1 +µ2n2 +µ3n3 + ·· · one easily obtains a recurrence in which the
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conserved density nn is explicitly given in terms of n1,n2,. ..,nn−1 and u. In fact, the
recurrence can be made more explicit by noting that the nonlinearity of the scheme
is only quadratic in nx: differentiating (2.6) with respect to x and then using (2.6) to
eliminate e−n from the result gives

nx=µ(unx+ux+ iεnxC+[nx]+ iεC+[nxx]), (2.8)

and therefore n1,x=ux and

nm,x=unm−1,x+ iεC+[nm−1,xx]+ iε

m−2∑
j=1

nj,xC+[nm−1−j,x], m= 2,3,4,. ... (2.9)

The first several densities are given by (using C+ = 1
2 (1− iH)):

n1 =u,

n2 =
1
2
u2 +ε

(
1
2
H[ux]+

1
2
iux

)
,

n3 =
1
3
u3 +ε

(
1
2
uH[ux]+ iuux+

1
2
H[uux]

)
+ε2

(
1
2
iH[uxx]− 1

2
uxx

)
,

n4 =
1
4
u4 +ε

(
1
2
u2H[ux]+

1
2
uH[uux]

)
−ε2 1

2
uuxx

+
[
ε

(
1
2
iu3 +

1
6
H[u3]

)
+ε2

(
3
4
iuH[ux]+

3
4
iH[uux]− 3

4
uux+

1
4
H[uH[ux]]

)]
x

−ε2 1
4
uxH[ux]+ε2

1
8
(
H[ux]2−(ux)2

]
).

(2.10)

In the expression for n4, only the terms on the first line contribute to the integral
over R. Indeed, those on the second line are derivatives of functions in P, and those
on the third line have zero integral because H is skew-adjoint and H2 =−1.

2.1.2. The Fokas-Fuchssteiner scheme. The following method is due to
Fokas and Fuchssteiner [5]. It is based on Lie-theoretic analysis of one-parameter
symmetry groups of the Benjamin-Ono Equation (1.1). One begins with

δI1
δu

[u] = 1 and
δI2
δu

[u] =u, (2.11)

and then recursively defines for m= 3,4,5,. ..,

δIm
δu

[u] =
1

m−2
δ

δu

∫
R

[
2xuux+u2 +ε

(
xH [uxx]+

3
2
H [ux]

)]
δIm−1

δu
[u]dx. (2.12)

To compute the variational derivative on the right-hand side one needs the identity

H[xf ] =xH[f ] if
∫

R
f(x)dx= 0. (2.13)

Although the explicit function x appears in the integrand on the right-hand side
of (2.12), the recursion guarantees that the variational derivatives produced are all
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generated from u and its derivatives and a finite number of applications of H. For
example,

δI3
δu

[u] =
δ

δu

∫
R

[
2xu2ux+u3 +ε

(
xuH[uxx]+

3
2
uH[ux]

)]
dx=u2 +εH[ux] (2.14)

and

δI4
δu

[u] =u3 +ε

(
3
2
uH[ux]+

3
2
H[uux]

)
−ε2uxx. (2.15)

As x does not appear explicitly in the resulting expressions, it follows from the for-
mula (2.5) that the functionals Im are integrals of densities that also do not involve x
explicitly. These densities may be easily obtained from the variational derivatives sim-
ply by first multiplying through term-by-term by u and then dividing each term by its
homogeneous degree in u. For example, from each δIm/δu we obtain a corresponding
conserved density fm as follows:

f1 =u,

f2 =
1
2
u2,

f3 =
1
3
u3 +ε

1
2
uH[ux],

f4 =
1
4
u4 +ε

(
1
2
u2H[ux]+

1
2
uH[uux]

)
−ε2 1

2
uuxx.

(2.16)

2.1.3. The Kaup-Matsuno scheme. The following method was derived
from the inverse-scattering transform for the Benjamin-Ono equation by Kaup and
Matsuno [6]. Set k1 :=u and then define recursively

km :=uC+[km−1]+ iε

(
km−1

u

)
x

, m= 2,3,. ... (2.17)

Then, the quantities km are all densities of functionals conserved by (1.1). The first
several densities obtained by the Kaup-Matsuno scheme are

k1 =u,

k2 =
1
2
u2− 1

2
iuH[u],

k3 =
1
4
u3− 1

4
uH[uH[u]]− 1

4
iu2H[u]− 1

4
iuH[u2]+ε

(
1
2
iuux+

1
2
uH[ux]

)
,

k4 =
1
8
u4− 1

8
u2H[uH[u]]− 1

8
uH[u2H[u]]− 1

8
uH[uH[u2]]+

1
8
uH[uH[uH[u]]]

− 1
8
iu3H[u]− 1

8
iu2H[u2]− 1

8
iuH[u3]

+ε

(
1
2
u2H[ux]+

3
4
uH[uux]+

1
4
uuxH[u]+

3
4
iuux−

1
2
iuH[uH[ux]]− 1

4
iuH[uxH[u]]

)
+ε2

(
−1

2
uuxx+

1
2
iuH[uxx]

)
.

(2.18)



122 THE BENJAMIN-ONO HIERARCHY IN THE ZERO-DISPERSION LIMIT

2.1.4. Comparison of the schemes. Although the three schemes clearly
do not give rise to identical densities, they apparently produce exactly the same inte-
grals. That is, for u∈P we typically have nm, fm, and km being different (unequal)
expressions generated by derivatives of u and applications of H. However,

Im[u] :=
∫

R
nmdx=

∫
R
fmdx=

∫
R
kmdx, m= 1,2,3,. ... (2.19)

From each of the three schemes it follows that if u is a smooth solution of (1.1),
then dIm/dt= 0 for all m. We do not provide a direct proof of the equivalence of
the integrals generated by each of the three schemes here, although in the case where
ε= 0 all three schemes produce the same result: if u∈P is independent of ε, then

lim
ε↓0

Im[u] =
1
m

∫
R
u(x)mdx. (2.20)

This is rather straightforward to show from the Nakamura and Fokas-Fuchssteiner
schemes, while for the Kaup-Matsuno scheme it follows from a lemma proved in the
appendix of [9]. In any case, this fact easily establishes the functional independence
of the integrals Im[u], m= 1,2,3,. ...

The variational derivatives δIm/δu in fact play a dual role, as is proved in both [5]
and [8] (in the respective contexts of the Fokas-Fuchssteiner and Nakamura schemes);
they also serve as densities of integrals:∫

R

δIm
δu

dx= (m−1)Im−1[u], m≥2, or Im[u] =
∫

R

1
m

δIm+1

δu
dx, m≥1. (2.21)

The main advantage of the Nakamura scheme is that it can be used to place all of
the equations of the Benjamin-Ono hierarchy (see below) in bilinear form after which
Hirota’s method can be applied to deduce the form of the simultaneous N -soliton
solution of the entire hierarchy. This is done in [8], and we will use the resulting
formulae below.

The advantages of the Fokas-Fuchssteiner scheme are (i) that it provides a direct
one-term recurrence for the variational derivatives of the conserved quantities (which
unlike densities are uniquely determined by the functional), (ii) that the variational
derivatives it generates are manifestly real and the corresponding densities fm are
simpler than in either of the other two schemes, and (iii) that it allows a direct proof
of the fact that the functionals Im are all in involution with respect to the Poisson
bracket:

{I,J} :=
∫

R

δI

δu
(x)

∂

∂x

δJ

δu
(x)dx, (2.22)

in other words, {Ij ,Ik}= 0 for all j,k.
In the Kaup-Matsuno scheme, the quantities Nm :=km/u are the coefficients in

the Laurent expansion about λ=∞ of the eigenfunction N(λ;x,t) that is a simultane-
ous solution of the two linear equations making up the Lax pair for the Benjamin-Ono
equation. Here λ∈C is the spectral parameter. Because the integrals Im[u] :=

∫
Rkndx

are obtained by expanding a scattering eigenfunction, they equivalently encode the
scattering data in an explicit way, and in [6] one can find explicit formulae for Im in
terms of the discrete spectrum and the reflection coefficient of the direct scattering
problem. Thus, the Kaup-Matsuno scheme leads not just to an infinite collection
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of integrals of motion of the Benjamin-Ono equation, but also a hierarchy of trace
formulae equivalently expressing each Im both as a functional of u and also as func-
tional of the scattering data. These formulae can be used to deduce from initial
data the asymptotic distribution of eigenvalues λj of the scattering problem in the
zero-dispersion limit (see [8] and section 3.2 of [9]).

2.2. Construction of the hierarchy. The Benjamin-Ono Equation (1.1)
can be written in Hamiltonian form as

ut=− ∂

∂x

δI3
δu

. (2.23)

The Noetherian symmetry of (1.1) associated with the conserved quantity Ik+2 is the
Hamiltonian flow with Hamiltonian Ik+2:

utk =− ∂

∂x

δIk+2

δu
, k= 1,2,3,. ... (2.24)

Here tk is the parameter of the symmetry group generated by Ik+2. The fact that the
integrals Ik are all in involution [5] implies that these flows are all compatible (that
is, the symmetry group is abelian), so given a smooth function u0∈P and a positive
integer K, there will exist a function u(x,t1,t2,. ..,tK) satisfying u(x,0,0,. ..,0) =u0(x)
and equations (2.24) for k= 1,2,. ..,K. Equations (2.24) constitute the Benjamin-Ono
hierarchy.

3. Setting up the zero-dispersion limit

3.1. Formulation of the problem. The problem we wish to consider is the
following. Let u0∈P be given, an initial condition independent of ε. For each ε>0
we may construct the simultaneous solution u(x,t1,t2,. ..,tK) of the Benjamin-Ono
hierarchy (2.24) of commuting flows satisfying the initial condition u(x,0,0,. ..,0) =
u0(x). The question of interest is the asymptotic behavior of u(x,t1,t2,. ..,tK) in the
zero-dispersion limit ε↓0. As a first step, we will address this problem by establishing
the existence of the dispersionless limits (in appropriately weak topologies) of all of
the conserved densities (see (2.21))

Dm :=
1
m

δIm+1

δu
, m= 1,2,3,. ... (3.1)

Note thatD1 =u. In general, Dm differs from all three of nm, fm, and km by numerical
factors and addition of “trivial” densities that integrate to zero for all u∈P. However,
the densities Dm are those that most directly yield a dispersionless representation.

3.2. Admissible Initial Conditions. We will further assume that u0∈P
satisfies the following conditions adapted from [9]:

• u0(x)>0 for all x∈R.
• There is a unique critical point x0∈R for which u′0(x0) = 0, and u′′0(x0)<0,

making x0 the global, nondegenerate maximizer of u0.
• u0 exhibits power-law decay in its tails: limx→±∞u0(x) = 0 and

lim
x→±∞

|x|q+1u′0(x) =C± for some q>1, (3.2)

where C+<0 and C−>0 are constants.
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• For each k= 1,2,. ..,K let f(x) =u0(x)k. Then in each bounded interval there
exist at most finitely many points x= ξ at which f ′′(ξ) = 0, and each is a
simple inflection point: f ′′′(ξ) 6= 0.

Such u0∈P will be called admissible initial conditions. An example is shown in
Figure 3.1.
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Fig. 3.1. An admissible initial condition for which u′0(x) =−5x(1+cos(πx)/2)/(1+x2)2. Left:
u0(x). Center: u′0(x). Right: u′′0 (x). Note that this particular admissible initial condition has an
infinite number of inflection points asymptotically near integer values of x for x large.

3.3. Reflectionless modification of the initial data. Our method will
be to study the Benjamin-Ono hierarchy with admissible initial condition u0 using
the inverse-scattering transform for the x-part of the Lax pair (see [4, 6]). The first
step in the process is to associate to u0 its scattering data, consisting of a complex-
valued reflection coefficient β(λ), λ>0, as well as discrete eigenvalues {λj<0} and
corresponding phase constants {γj ∈R}. Matsuno was the first to observe that the
conservation laws can be used to deduce information about the scattering data (see [8],
Section 3.3) when the parameter ε>0 (which appears parametrically in the scattering
problem although the potential u0 is independent of ε) is small. His analysis becomes
more rigorous with the use of the trace formulae arising from the Kaup-Matsuno
scheme. For admissible initial conditions, Matsuno’s main results are:

• The reflection coefficient β(λ) is small when ε�1.
• The number N of eigenvalues is large when ε�1, but

lim
ε↓0

εN =M :=
∫

R
u0(x)dx. (3.3)

The number N [a,b] of eigenvalues in the interval [a,b], −L≤a≤ b≤0, L :=
maxx∈Ru0(x), satisfies

lim
ε↓0

εN [a,b] =
∫ b

a

F (λ)dλ, F (λ) :=
1

2π
(x+(λ)−x−(λ)). (3.4)

Here x−(λ)<x+(λ) are defined for −L<λ<0 as the two solutions of the
equation u0(x) =−λ. They play the role of turning points in this theory.

(Note that the “mass” M defined by (3.3) is finite for admissible u0 although it is
not so for general elements of P.) The solution of the Benjamin-Ono hierarchy for
an admissible initial condition is therefore in particular approximately reflectionless
in the zero-dispersion limit. In the absence of reflection the exact solution of the
hierarchy is a multi-soliton solution that takes the form [8]:

u(x,t1,t2,. ..,tK) = 2ε
∂

∂x
={log(τ(x,t1,t2,. ..,tk))}, (3.5)
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where the “tau function” is

τ(x,t1,t2,. ..,tK) := det(I+ iε−1A) (3.6)

and A is an N×N Hermitian matrix with constant off-diagonal elements

Anm :=
2iε
√
λnλm

λn−λm
, n 6=m (3.7)

and diagonal elements depending explicitly on x,t1,t2,. ..,tK :

Ann :=−2λn (X(λn;x,t1,t2,. ..,tK)+γn) , (3.8)

where for future convenience we define a polynomial in λ by

X(λ;x,t1,t2,. ..,tK) :=x−
K∑
k=1

(k+1)(−λ)ktk. (3.9)

To specify an appropriate family of exact solutions of the Benjamin-Ono hierarchy,
first define the exact number of approximate eigenvalues by

N(ε) :=
⌊
M

ε

⌋
. (3.10)

Then, define approximations {λ̃n}N(ε)
n=1 of the discrete eigenvalues {λn} with −L<

λ̃1<λ̃2< ·· ·<λ̃N(ε)<0 by quantizing the Matsuno eigenvalue density:

∫ λ̃n

−L
F (λ)dλ= ε

(
n− 1

2

)
, n= 1,2,. ..,N(ε). (3.11)

Next, define approximations {γ̃n}N(ε)
n=1 for the phase constants {γn} by setting [9]:

γ̃n :=γ(λ̃n), γ(λ) :=−1
2

(x+(λ)+x−(λ)), −L≤λ<0. (3.12)

Now, for each ε>0, let ũ= ũ(x,t1,t2,. ..,tK) denote the exact solution of the Benjamin-
Ono hierarchy given by the reflectionless solution formula (3.5) with determinantal tau
function τ̃ involving the N(ε)×N(ε) Hermitian matrix Ã whose elements are given
by (3.7)–(3.8) with λn and γn replaced by λ̃n and γ̃n respectively, for 1≤n≤N(ε).
In [9] it is proved that for admissible u0,

lim
ε↓0

∫
R
|u0(x)− ũ(x,0,0,. ..,0)|2dx= 0, (3.13)

so that the replacement of the scattering data we have just made amounts to a modifi-
cation of the initial condition that is negligible in the L2(R) sense in the zero-dispersion
limit.

4. Distributional limits of conserved densities
The conserved densities D̃m, m≥1 (we are using tildes to remind the reader that

these are expressions in ũ, its derivatives in x, and Hilbert transforms thereof), all
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have representations in terms of the tau function associated with ũ. Indeed, since ũ
satisfies (2.24) it follows from using the formula (3.5) for ũ that

2ε
∂2

∂x∂tk
={log(τ̃)}=−(k+1)

∂

∂x
D̃k+1. (4.1)

Integration in x using decay at x=±∞ to fix the integration constant yields the
formulae

D̃m=−2ε
m

∂

∂tm−1
={log(τ̃)}, m= 2,3,. ..,K+1. (4.2)

Of course since D̃1 = ũ a slightly different formula holds for D̃1 according to (3.5).
In principle, this gives a way of evaluating D̃m for arbitrary m, although one must
include dependence on a sufficient number of times tk by choosing K large enough.

Let α1≤α2≤···≤αN(ε) denote the (real) eigenvalues of Ã. Then, we may write
the densities in the form

ũ= D̃1 =
∂Ũ

∂x
, D̃m=− 1

m

∂Ũ

∂tm−1
, m= 2,3,. ..,K+1, (4.3)

where

Ũ(x,t1,t2,. ..,tK) := ε

N(ε)∑
n=1

2arctan(ε−1αn). (4.4)

Remarkably, the function Ũ has a completely explicit zero-dispersion limit:

Proposition 4.1. Uniformly on compact subsets of RK+1,

lim
ε↓0

Ũ(x,t1,t2,. ..,tK) =V (x,t1,t2,. ..,tK) :=
∫

R
π sgn(α)G(α;x,t1,t2,. ..,tK)dα, (4.5)

where

G(α;x,t1,t2,. ..,tK) :=− 1
4π

∫ 0

−L
χI(α)

dλ

λ
(4.6)

and where χI(α) denotes the indicator function of the interval

I := [−2λ(X(λ;x,t1,t2,. ..,tK)−x+(λ)),−2λ(X(λ;x,t1,t2,. ..,tK)−x−(λ))] . (4.7)

Proof. This is a straightforward generalization of Proposition 4.2 from [9] and it
is proved in exactly the same way (see in particular sections 4.1–4.3 of that reference).
For the reader’s convenience we will simply describe the idea of the proof.

The key observation is that the eigenvalues of the matrix Ã have a limiting density
G(α;x,t1,t2,. ..,tK); that is, the normalized (to total mass M) counting measures of
eigenvalues of Ã converge in the weak-∗ sense to Gdα as ε↓0. This fact is proved
using Wigner’s method of moments. One studies the asymptotic behavior of traces of
arbitrary powers of the N(ε)×N(ε) matrix Ã in the limit N(ε)→∞, and with the use
of some combinatorial arguments and approximation in terms of diagonal and Toeplitz
matrices one obtains leading-order asymptotic formulae for these, which in turn are
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proportional to moments of the eigenvalue counting measures. Then one solves the
moment problem for the limiting moments to obtain Gdα. Finally, by estimating the
extreme eigenvalues of Ã one is able to convert convergence of moments to weak-∗
convergence.

Next, one observes that the exact formula (4.4) can be written as the integral of
the function 2arctan(ε−1α) against the normalized counting measure of eigenvalues of
Ã. Pointwise, the integrand converges to π sgn(α) as ε↓0, and by a careful dominated
convergence argument one then establishes the desired locally uniform convergence of
Ũ to V .

Before giving our next result, we recall the inviscid Burgers hierarchy. Consider
the equation

uB =u0

(
x−

K∑
k=1

(k+1)ukBtk

)
. (4.8)

For t1,. ..,tK all sufficiently small (given x∈R) it follows from the implicit function
theorem that there exists a unique solution uB(x,t1,t2,. ..,tK)≈u0(x). As tk increases
from zero, there will be bifurcation points at which the number of solutions of (4.8)
increases by a finite even integer (this is due to the condition on inflection points of
f(x) =u0(x)k satisfied by admissible u0). Therefore, near a given x and at given values
of t1,t2,. ..,tK , there will generically be an odd finite number 2P (x,t1,t2,. ..,tK)+1
of distinct solutions uB,0<uB,1< ·· ·<uB,2P to (4.8), and each is differentiable with
respect to all of the independent variables x and t1,t2,. ..,tK . By differentiation of
(4.8) one observes that each of the solution branches is a function uB(x,t1,t2,. ..,tK)
that simultaneously satisfies the equations

∂uB

∂tk
+(k+1)ukB

∂uB

∂x
= 0 or

∂uB

∂tk
+
∂

∂x
uk+1

B = 0, k= 1,2,. ..,K. (4.9)

These are the partial differential equations of the inviscid Burgers hierarchy. The
simultaneous solution of these equations with initial condition uB(x,0,0,. ..,0) =u0(x)
is accomplished by the method of characteristics and produces the solution in implicit
form (4.8). We note that whereas typically when Burgers-type equations appear in the
theory of partial differential equations one is interested in single-valued weak solutions
representing shock waves, our interest here is in the multivalued solution produced by
finding all real solutions of the implicit Equation (4.8). See Figures 3.1 and 4.1.
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Fig. 4.1. Left and center: the solution uB of (4.8) with initial data as specified in Figure 3.1
with tk = 0 for k>3 and with t1 = t2 = t3 = 0.1 and t1 = t2 = t3 = 3 respectively. Right: a close-up of
the case when t1 = t2 = t3 = 3 displaying intervals of x with P = 0,1,2 (one, three, and five branches,
respectively).
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Proposition 4.2. The function V is of class C1(RK+1), and

∂V

∂x
=

2P∑
n=0

(−1)nuB,n(x,t1,t2,. ..,tK) (4.10)

while

− 1
m

∂V

∂tm−1
=

2P∑
n=0

(−1)n
1
m
uB,n(x,t1,t2,. ..,tK)m, m= 2,3,. ..,K+1, (4.11)

where P =P (x,t1,t2,. ..,tK). Both of these formulae assume that (x,t1,t2,. ..,tK)∈
RK+1 is a point at which the integer P is well-defined; however, since new solution
branches bifurcate in pairs from the same value of uB it is clear that the formulae
extend by continuity to all of RK+1.

Proof. The proof is virtually identical to that of Lemma 4.12 from [9]. The idea
is as follows. With the use of the explicit formula (4.6) for G(α;x,t1,t2,. ..,tK) one
can exchange the order of integration in the formula (4.5) to obtain

V (x,t1,t2,. ..,tK) =
∫ 0

−L
J(λ;x,t1,t2,. ..,tK)dλ, (4.12)

where

J(λ;x,t1,t2,. ..,tK) :=
−πF (λ), X(λ;x,t1,t2,. ..,tK)<x−(λ)
X(λ;x,t1,t2,. ..,tK)+γ(λ), x−(λ)≤X(λ;x,t1,t2,. ..,tK)≤x+(λ)
πF (λ), X(λ;x,t1,t2,. ..,tK)>x+(λ).

(4.13)

The integrand therefore has a different form as a function of λ in three different
types of subintervals of [−L,0], with boundary points given by the solutions λ of the
equations

X(λ;x,t1,t2,. ..,tK) =x±(λ). (4.14)

Recalling that x±(λ) are two branches of the inverse function of u0 in the sense that
for −L<λ<0, u0(x±(λ)) =−λ, both of these equations can be combined in the form

−λ=u0(X(λ;x,t1,t2,. ..,tK)), (4.15)

which one immediately notices is the same implicit Equation (4.8) providing the mul-
tivalued solution of the Burgers hierarchy, under the substitution uB =−λ. Differen-
tiation of (4.12) using Leibniz’ rule to take into account the moving boundaries then
yields the desired formulae.

Now we may formulate our main result.

Theorem 4.3. Let v∈L2(R). Then

lim
ε↓0

∫
R
D̃1(x,t1,t2,. ..,tK)v(x)dx=

∫
R

(
2P∑
n=0

(−1)nuB,n(x,t1,t2,. ..,tK)

)
v(x)dx (4.16)
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holds uniformly for (t1,. ..,tK) in compact subsets of RK . Recalling that D̃1 = ũ, this
means that ũ converges to the alternating sum of branches of the multivalued solution
of the Burgers hierarchy with initial condition u0 in the weak L2(Rx) sense. Moreover,
the convergence is in the strong L2(Rx) sense if t1,. ..,tK are all sufficiently small that
uB is single-valued as a function of x.

Now let φ∈D(R) be a test function. Then for m= 2,3,. ..,K+1,

lim
ε↓0

∫
R
D̃m(x,t1,t2,. ..,tK)φ(tm−1)dtm−1

=
∫

R

(
2P∑
n=0

(−1)n
1
m
uB,n(x,t1,t2,. ..,tK)m

)
φ(tm−1)dtm−1 (4.17)

holds uniformly for (x,t1,. ..,tm−2,tm,. ..,tK) in compact subsets of RK . Therefore D̃m

converges to the alternating sum of m-th powers, weighted by 1/m, of the branches
of the multivalued solution of the Burgers hierarchy with initial condition u0 in the
topology of D ′(Rtm−1), that is, distributional convergence with respect to tm−1.

Proof. The distributional convergence of D̃m for m≥2 clearly follows from our
above results. It is also easy to conclude that (4.16) holds if v is specialized to a
test function φ∈D(Rx). To strengthen this to weak L2(Rx) convergence and strong
L2(Rx) convergence pre-breaking, one follows nearly verbatim the arguments on pages
254–256 of [9].

We expect that with some additional effort, the nature of the convergence of D̃m

for m≥2 can be strengthened to exactly the same type as is available for D̃1 = ũ,
a type of convergence that is more suitable for evaluation at a point in the phase
space P of fields. This expectation is based on the reasonable hypothesis that the
weak (or distributional) nature of the convergence stems from the presence of wild
oscillations that can be modeled by modulated P -phase wave exact solutions of the
Benjamin-Ono hierarchy as have been described by Matsuno [8] using the bilinear
method of Hirota. These P -phase waves have also been obtained directly from the
Lax pair for (1.1) (for the k= 1 flow only) by Dobrokhotov and Krichever [3], who
further provided a formal Whitham-type modulation theory for these waves, noting
that the modulation equations simply take the form of 2P +1 copies of the inviscid
Burgers equation (Equation (4.9) for k= 1). In light of our results, it appears that
these 2P +1 copies should be globally viewed as sheets of the same multivalued so-
lution. In any case, if one interprets the distributional limits in D ′(Rtm−1) as local
averages of D̃m over vanishingly small intervals of tm−1, then assuming only that the
wavenumbers and frequencies are not rationally dependent, these averages could just
as well be calculated over small intervals in x, holding t1,t2,. ..,tK fixed. In other
words, if the weak limits are necessary due to the presence of modulated multiphase
waves of wavelengths and periods proportional to ε (as is suggested by numerical
simulations), then there should, at generic points, be no difference between conver-
gence in D ′(Rtm−1) and convergence in D ′(Rx). A proof of such a result probably
requires resolution of the microstructure as could be obtainable from an approach to
the zero-dispersion limit that starts with the nonlocal Riemann-Hilbert problem of
inverse scattering for Benjamin-Ono, and that involves the development of some new
analogue of the Deift-Zhou asymptotic method as has been applied [2] to strengthen
the zero-dispersion limit of the Korteweg-de Vries equation. We hope to be able to
announce progress in this direction in the near future.
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It seems to us that while the Benjamin-Ono equation looks at first glance to be
a more complicated model for wave propagation than the more famous Korteweg-de
Vries equation due to the presence of the Hilbert transform and its concomitant non-
locality (and perhaps even at “second glance”, since the treatment of the Benjamin-
Ono equation by the inverse-scattering transform method is far less well-understood
than in the case of the Korteweg-de Vries equation), in fact it is far simpler in the
zero-dispersion limit. Indeed, the asymptotic formulae that are the analogues in the
Korteweg-de Vries case of our limiting formulae for D̃m require the solution of a vari-
ational problem for a quadratic functional with constraints as was found by Dave
Levermore and Peter Lax in their pioneering work [7], while for Benjamin-Ono it suf-
fices to be able to solve the implicit algebraic Equation (4.8) for uB, or alternatively
to solve the system of partial differential equations (4.9) numerically by the method
of characteristics. These are far more elementary tasks. We want to stress this point
to hopefully encourage the use in the practical modeling of internal waves of the sim-
ple approximate formulae available for the Benjamin-Ono equation and its hierarchy
when the dispersion parameter ε can be reasonably assumed to be small.
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