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CRITICAL THRESHOLDS IN MULTI-DIMENSIONAL

EULER-POISSON EQUATIONS WITH RADIAL SYMMETRY∗
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Abstract. We study the global regularity of multi-dimensional repulsive Euler-Poisson equa-
tions in the radial setup. We show that the question of global regularity vs. finite breakdown of
smooth solutions depends on whether the initial configuration crosses an initial critical threshold in
configuration space. Specifically, there exists a global-in-time smooth solution if and only if the initial
configuration of density ρ0, radial velocity R0, and electrical charge e0 satisfies R′

0 ≥F (ρ0,e0,R0) for
a certain threshold F . Similarly, we characterize the critical threshold for global smooth solutions
subject to two-dimensional radially symmetric data with swirl. We also discuss a possible framework
for global regularity analysis beyond the radial case, which indicates that the main difficulty lies with
bounding the spectral gap, λ2(∇u)−λ1(∇u).
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1. Introduction

We are concerned here with the Euler-Poisson equations, where the density n(·,t) :
R

d 7→R and velocity field, u(·,t) :Rd 7→R
d are governed by the system of equations

nt +∇·(nu)=0, (1.1a)

(nu)t +∇·(ρu⊗u)+∇p(n)=kn∇φ, ∆φ=n−b(x). (1.1b)

This system represents the usual statements of the conservation of mass and Newton’s
second law subject to isentropic pressure term p(n)=Anγ with amplitude A>0, and
an electrical charge ∇φ induced by the density n with background mass which we
set to zero (b(x)≡0). The parameter k is a scaled physical constant signifying the
property of the underlying force; the force is repulsive if k>0, and attractive if k<0.
This system describes dynamic behaviors of many important physical flows, from small
scale models of charged transport [20, 12], expansion of cold ions [9], and collisional
plasma [10], to large scale models of cosmological waves [1, 2]. For smooth solutions
away from vacuum, (1.1) can be reduced to

nt +∇·(nu)=0, (1.2a)

ut +u ·∇u+
Aγ

γ−1
∇

(

nγ−1
)

=k∇∆−1n. (1.2b)

Let us list some known results regarding (1.1). For the local existence in the
small Hs neighborhood of a steady state, see [7, 17, 19]. Global existence due to
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damping relaxation with nonzero background can be found in [16, 23, 24]. For the
model without damping relaxation, global existence in the neighborhood of a steady
state was obtained in [8]. On the other hand, finite time blowup results for attractive
forces were obtained in [18], and for repulsive forces in [21, 3, 4].

Beyond the two scenarios of global existence of smooth solutions and finite-time
breakdown, a third scenario of conditional regularity was promoted in [5, 6, 14, 15],
where it was shown that there exists a “large” set of O(1) initial configurations which
lead to global smooth solutions, and the complementary “large” set of O(1) initial
configurations which yield finite-time breakdown. That is, global regularity versus
finite-time breakdown is separated by a non-trivial critical threshold in the configura-
tion space. The critical threshold in one-dimensional models of (1.1) were studied in
[5, 6]. The critical thresholds in higher dimensional models were analyzed in [14, 15]
via spectral dynamics. In particular, in [15] the authors studied the so-called re-
stricted Euler-Poisson model in two spatial dimensions, and showed the existence of
the critical threshold in terms of the initial density, initial divergence, and the initial
spectral gap.

The goal of this paper is to answer the question of global regularity versus finite-
time breakdown of radial solutions to the multi-dimensional repulsive Euler-Poisson
equations (1.2). Most of our discussion is devoted to the pressureless case, p(n)≡0,
where we distinguish between two different types of radial solutions: an axisymmetric
flow without swirl discussed in Section 2, and the two-dimensional axisymmetric flow
with swirl discussed in Section 3. Finally, we briefly comment on critical thresholds
for radial solutions of the full system (1.2) with pressure in Section 4, and on the
difficulties of addressing the question of global regularity of Euler-Poisson equations
beyond the radial case in Section 5.

2. Radial solutions of Euler-Poisson equations without swirl

We consider the d-dimensional pressureless Euler-Poisson equations (1.1):

nt +∇·(nu)=0, u(·,t) :Rd 7→R
d, (2.1a)

(nu)t +∇·(nu⊗u)=κn∇φ, ∆φ=n, (2.1b)

subject to spherically symmetric initial data

ρ0(x)=ρ0(r), u0(x)=R0(r)
x

r
, r= |x|.

Then, a radial solution of (2.1) of the form ρ := rd−1n, and u(x,t)=u(r,t)x

r is sought,
where (ρ,u) solves the corresponding system

ρt +(ρu)r =0, (2.2a)

ut +uur =κφr, (rd−1φr)r =ρ, (2.2b)

subject to initial conditions ρ(r,0)=ρ0(r) and u(r,0)=R0(r). Let e := rd−1φr be
the radial electric field so that er =ρ, and the charge e satisfies a transport equa-

tion et +uer =0. Therefore, e remains constant along particle paths: {r(α,t) :
dr

dt
=

u(r,t), r(α,0)=α},

d

dt
e(r(·,t))=0.
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Along these particle paths we also have

du

dt
=

κe

rd−1
=
κe0
rd−1

,

and we end up with the second-order equation

d2r

dt2
=
κe0
rd−1

, r(α,0)=α,
dr

dt
(α,0)=R0(α). (2.3)

We distinguish between two cases. If κ<0, then the solution of (2.3) always breaks
down at a finite time. We turn to the repulsive case, κ>0, which will occupy the
rest of this section. According to [6, Corollary 5.2], a smooth solution of the repulsive
Euler-Poisson equations (2.1) blows up at a finite time, t= tc, if and only if there
exist an α∈R such that (∂r/∂α)(α,tc)=0. Thus, the solution to the Euler-Poisson
equations (2.1) remains smooth as long as

∂r

∂α
(α,t)>0, ∀α>0. (2.4)

To verify (2.4), we multiply (2.3) by
dr

dt
, obtaining

1

2

d

dt

((dr

dt

)2)

=
κe0
rd−1

dr

dt
=κe0

dN(r)

dt
, N(r) :=







lnr, d=2

1

2−dr
2−d, d>2.

It follows that
(dr

dt

)2

−R2
0(α)=2κe0(N(r)−N(α)).

Following [6], we restrict ourselves to the case R0>0. Since
du

dt
=

κe

rd−1
>0, we have

u(·,t)>R0(α)>0, which in turn implies that r(·,t) is increasing, r(α,t)>r(α,0)=α.
It follows, since the Newtonian potentialN(r) is increasing, thatN(r(·,t)) is increasing
in time; i.e., N(r(α,t))>N(r(α,0))=N(α). Therefore

dr

dt
=[2κe0

(

N(r)−N(α)
)

+R2
0(α)]1/2,

or

dr

[2κe0
(

N(r)−N(α)
)

+R2
0(α)]1/2

=dt. (2.5)

Integrating both sides we find

∫ r(α,t)

α

1

[2κe0
(

N(s)−N(α)
)

+R2
0(α)]1/2

ds= t. (2.6)

Taking the α derivative of (2.6) yields

∂r(α,t)

∂α

1

[2κe0(α)
(

N(r(α,t))−N(α)
)

+R2
0(α)]1/2

− 1

R0(α)

−1

2

∫ r(α,t)

α

2κρ0(α)
(

N(s)−N(α)
)

−2κe0(α)α1−d +2R0(α)R′
0(α)

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds=0.
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Therefore

∂r(α,t)

∂α
=

(

2κe0(α)
(

N(r(α,t))−N(α)
)

+R2
0(α)

)1/2

×ψα(r(α,t)), (2.7a)

where

ψα(y) :=

(

1

R0(α)
+

∫ y

α

κρ0(α)
(

N(s)−N(α)
)

−κe0(α)α1−d +R0(α)R′
0(α)

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds

)

.

(2.7b)
Thus, a global smooth solution exists as long as ψα(r(α,t)) remains positive,

so that ∂αr(α,t)>0 for all α>0. This leads us to the main theorem of this section,
which specifies the precise critical thresholds for radial solutions of the repulsive Euler-
Poisson equations.

Theorem 2.1 (Radial solutions without swirl). Consider the d-dimensional re-
pulsive Euler-Poisson equations (2.1) subject to the spherically symmetric initial con-

ditions, ρ0(r) and u0(x)=R0(r)
x

r
, with R0>0. Then, they admit a globally smooth

radial solution
(

ρ(r,t),u(r,t)
x

r

)

if and only if

R′
0(α)> sup

y>α
Fα(y;ρ0,e0,R0); (2.8a)

here Fα(y)≡Fα(y;ρ0,e0,R0) is given by

Fα(y) :=

− 1

R0(α)
−

∫ y

α

κρ0(α)
(

N(s)−N(α)
)

−κe0(α)α1−d

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds

R0(α)

∫ y

α

1

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds

. (2.8b)

Proof. Recall that u(α,t)>R0(α)>0. Therefore, every y>α takes the form
y= r(α,t) for some t>0. According to (2.7), therefore, the radial solutions of the
repulsive equations (2.1) remains smooth if and only if ψα(y) is positive for all y(>α)’s:

1

R0(α)
+

∫ y

α

κρ0(α)
(

N(s)−N(α)
)

−κe0(α)α1−d +R0(α)R′
0(α)

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds>0, ∀y>α>0.

(2.9)
The critical threshold condition (2.9) is equivalent to

R0(α)R′
0(α)

∫ y

α

1

[2κe0(α)N(s)−2κe0(α)N(α)+R2
0(α)]3/2

ds

>− 1

R0(α)
−

∫ y

α

κρ0(α)
(

N(s)−N(α)
)

−κe0(α)α1−d

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds.

That is, since R0(α)>0,

R′
0(α)>

− 1

R0(α)
−

∫ y

α

κρ0(α)
(

N(s)−N(α)
)

−κe0(α)α1−d

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds

R0(α)

∫ y

α

1

[2κe0(α)
(

N(s)−N(α)
)

+R2
0(α)]3/2

ds

, ∀y>α, (2.10)
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and (2.8) follows.

Remark 2.2. supy>αFα(y) is finite since Fα(y)<κe0(α)α1−d/R0(α), ∀y>α.

Example 2.3 (The two- and three-dimensional cases). Critical thresholds for
the two- and three-dimensional radial Euler-Poisson were worked out in [6, Sec-
tion 5]: they take the form of a sub-critical threshold, R′

0(α)>F+
α (ρ0,e0,R0), which

guarantees the existence of a global smooth solution, and a super-critical threshold
R′

0(α)>F−
α (ρ0,e0,R0) which leads to a finite-time breakdown. Here, we close the gap

F+
α >F−

α : Theorem 2.1 provides the precise description of the critical threshold Fα in
the two- and three-dimensional spaces of initial configurations.

Example 2.4 (The four-dimensional case). When d=4, then N(s)=−s−2/2,
and the integral (2.6) admits the explicit form,

∫ r

α

1

[2κe0(α)N(s)−2κe0(α)N(α)+R2
0(α)]1/2

ds

=

∫ r

α

1

[−κe0(α)s−2 +κe0(α)α−2 +R2
0(α)]1/2

ds

=

∫ r

α

s
[

−κe0(α)+
(

κe0(α)α−2 +R2
0(α)

)

s2
]1/2

ds

=
1

2

∫ r

α

1
[

−κe0(α)+
(

κe0(α)α−2 +R2
0(α)

)

s2
]1/2

d(s2)

=

[

−κe0(α)+
(

κe0(α)α−2 +R2
0(α)

)

r2
]1/2

−αR0(α)
(

κe0(α)α−2 +R2
0(α)

) .

Thus

r(α,t) =

√

√

√

√

√

(

t
(

κe0(α)α−2 +R2
0(α)

)

+αR0(α)

)2

+κe0(α)

κe0(α)α−2 +R2
0(α)

=

√

(

κe0(α)α−2 +R2
0(α)

)

t2 +2αR0(α)t+α2.

This is the same as [6, equation 5.46]. Taking the α derivative

∂r

∂α
=
α+(R0 +αR′

0)t+(R0R
′
0−κe0α−3 + 1

2κρ0α
−2)t2

√

(

κe0(α)α−2 +R2
0(α)

)

t2 +2αR0(α)t+α2

.

We conclude that ∂αr(·,t) remains positive for all t>0 if and only if both (i) and (ii)
hold:

(i) R0R
′
0−κe0α−3 + 1

2κρ0α
−2>0;

(ii) [R0−αR′
0]

2<4α[−κe0α−3 + 1
2κρ0α

−2] (so that ∂αr(·,t)=0 has no real so-
lution), or R0 +αR′

0>0 (so that ∂αr(·,t)=0 has two negative solutions, t1<0 and
t2<0).
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We set

f1(α) :=
κe0α

−3− 1
2κρ0α

−2

R0
, (2.11a)

and

f2(α)=

{

1

α
min{−R0,R0−

√

−4αR0f1(α)}, f1(α)≤0,

−∞, f1(α)>0.
(2.11b)

Then the critical threshold condition (2.8) for 4-dimensional radial repulsive solutions
reads

R′
0(α)>max{f1(α),f2(α)}. (2.11c)

Starting from (2.10) will yield the same result; that is,

sup
y>α

Fα(y)=max{f1(α),f2(α)},

which proves the 4-dimensional critical threshold condition of the form R′
0(α)>

supy>αFα(y). This extends the critical threshold result of [6, theorem 5.10] which
uses the further restriction that R′

0 needs to be upper-bounded for global smooth solu-
tions: the reason is that the authors of [6] ignored case (i) and the second part of case
(ii).

3. Two-dimensional radial Euler-Poisson solutions with swirl

Consider the two dimensional Euler-Poisson equations

nt +∇·(nu)=0, u(·,t)=(u(·,t),v(·,t)) :R2 7→R
2, (3.1a)

(nu)t +∇·(nu⊗u)=κn∇φ, ∆φ=n=ρ/r, (3.1b)

subject to spherically symmetric initial data with swirl,

ρ0(x)=ρ0(r), u0(x)=R0(r)
x

r
+Θ0(r)

x⊥

r
, x=(x,y), x⊥ =(−y,x), r= |x|. (3.2)

Here, R0 and Θ0 are the radial and tangential components of the initial velocity
field u0. Due to the radial symmetry, the solution propagates along circles; starting

with a circle of radius α at time 0, the particle path
d

dt
x=u(x,t) such that |x|(α,0)=α

will form a circle at time t with radius |x|= r(α,t). Indeed, the precise evolution of
r(α,t) will be worked out in (3.8) below. To trace the solution along these circles, we
can therefore pick any sampling point on the initial circle with radius α and evolve
it along its particle path to discover r(α,t). Without loss of generality, we choose
the particle located at (x,y)|t=0 =(α,0). Observe that the x- and y-components of
the velocity at this initial position, (x,y)=(α,0), coincide with the polar components,
u0(α,0)=R0(α) and v0(α,0)=Θ0(α). Since the charge e= rφr remains constant along
these paths, then u(t)≡ (u(x(t),t),v(x(t),t)), is therefore governed by

du

dt
=
κe0(α)x

r2
,

dv

dt
=
κe0(α)y

r2
, (3.3)

subject to initial data u((α,0),0)=R0(α),v((α,0),0)=Θ0(α). This implies that

d2x

dt2
=κe0

x

r2
, (3.4a)
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d2y

dt2
=κe0

y

r2
. (3.4b)

Multiplying (3.4a) by 2
dx

dt
, (3.4b) by 2

dy

dt
, and adding, we obtain

2
dx

dt

d2x

dt2
+2

dy

dt

d2y

dt2
=2κe0

xdx
dt +y dy

dt

r2
,

or

d

dt

[(dx

dt

)2

+
(dy

dt

)2]

=
d

dt
(2κe0 lnr).

Therefore
(dx

dt

)2

+
(dy

dt

)2

=2κe0 ln
r

α
+R2

0(α)+Θ2
0(α). (3.5)

Another useful equality is

x
d2x

dt2
+y

d2y

dt2
=κe0. (3.6)

We combine (3.5) and (3.6) to find

d2(r2)

dt2
=
d2(x2 +y2)

dt2
=2κe0 +4κe0 ln

r

α
+2R0(α)2 +2Θ2

0(α). (3.7)

Multiplying (3.7) by d(r2)/dt, we obtain

d(r2)

dt

d2(r2)

dt2
=2r

dr

dt
[2κe0 +4κe0 ln

r

α
+2R2

0(α)+2Θ2
0(α)].

That is,

1

2

d

dt

[d(r2)

dt

]2

=(2κe0 +2R2
0(α)+2Θ2

0(α))
d(r2)

dt
+
d

dt
(4κe0r

2 lnr−2κe0r
2)− d

dt
(4κe0r

2 lnα),

and hence

1

2

[d(r2)

dt

]2

− 1

2

(

2αR0(α)
)2

=(2κe0 +2R2
0(α)+2Θ2

0(α))(r2−α2)+(4κe0r
2 lnr−2κe0r

2)

−(4κe0α
2 lnα−2κe0α

2)−(4κe0r
2 lnα)+(4κe0α

2 lnα)

=2(R2
0(α)+Θ2

0(α))(r2−α2)+4κe0r
2 ln

r

α
.

Therefore,

2r2
[dr

dt

]2

=2r2(R2
0(α)+Θ2

0(α))−2α2Θ2
0(α)+4κe0r

2 ln
r

α
,

which implies

dr

dt
=

[

R2
0(α)+Θ2

0(α)− α2

r2
Θ2

0(α)+2κe0 ln
r

α

]1/2

=: ζ(r,α)−1. (3.8)
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Integrating ζ(r,α)dr=dt we obtain

∫ r(α,t)

α

ζ(s,α)ds= t, (3.9)

and taking the α-derivative of (3.9) yields

∂r(α,t)

∂α
=

1

ζ(r(α,t),α)
×ϕα(r(α,t)), (3.10a)

where

ϕα(y)= ζ(α,α)−
∫ y

α

∂

∂α
ζ(s,α)ds=0, ζ(α,α)=

1

R0(α)
. (3.10b)

Thus, (3.1) admits global smooth solutions as long as ϕα(r(α,t)) remains positive.
Similar to our analysis of the case without a swirl in Section 2, we derive the following
theorem.

Theorem 3.1 (Radial solutions with swirl). Consider the two dimensional re-
pulsive Euler-Poisson equations (3.1) with radial initial data with swirl (3.2). They
admit global in time smooth solutions if and only if

Pα(y)R′
0(α)+Qα(y)Θ′

0(α)>Sα(y), ∀y>α>0, (3.11a)

where Pα,Qα and Sα are given by

Pα(y)=

∫ y

α

R0
[

R2
0 +Θ2

0−(α2/s2)Θ2
0 +2κe0 ln(s/α)

]3/2
ds,

Qα(y)=

∫ y

α

Θ0

(

1−(α2/s2)
)

[

R2
0 +Θ2

0−(α2/s2)Θ2
0 +2κe0 ln(s/α)

]3/2
ds,

Sα(y)=

∫ y

α

(α/s2)Θ2
0−κρ0 ln(s/α)+(κe0/α)

[

R2
0 +Θ2

0−(α2/s2)Θ2
0 +2κe0 ln(s/α)

]3/2
ds− 1

R0
.

4. Radial Euler-Poisson equations with pressure

We now return to the Euler-Poisson equations with pressure. The one-dimensional
critical threshold in this case [22] states that there exists a constant K0 =K0(k)>0
such that

R′
0(α)>−K0

√

ρ0(α)+
√

Aγ|ρ′0(α)|
(

ρ0(α)
)

γ−3

2 , γ≥1. (4.1)

When A=0, (4.1) recovers the critical threshold of the one-dimensional pressure-
less case with K0 =

√
2k. Otherwise, the inequality (4.1) quantifies the competition

between the destabilizing pressure effects, as the range of sub-critical initial con-
figurations shrinks with the growth of the amplitude of the pressure A, while the
stabilizing effect of the Poisson forcing increases the sub-critical range with a grow-
ing k. Similarly, we expect that pressure will have a similar “competitive” role with
multi-dimensional radial solutions of the Euler-Poisson equations (1.2a). Namely, if
the amplitude of the pressure is not “too large” relative to k then (1.2a) admits global
smooth solutions for a large set of sub-critical initial configurations. The precise form
of the multidimensional radial critical threshold is left for a future work.
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5. Euler-Poisson in R
2 – beyond the radial case

In this section we discuss the difficulties in addressing the question of global
smooth solutions vs. finite time breakdown of the Euler-Poisson equation in the
general non-radial case. The main difficulty lies with the nonlocal term ∇φ in the
system (2.1). This feature was emphasized in [15], and was the main motivation for
studying the restricted model, where the nonlocal term ∇φ is replaced by a local term.
Here is a brief overview.

We start with the local well-posedness and the blowup criterion for the system
(2.1). To simplify matters, we restrict our attention to the two-dimensional case,
governing the velocity field u := (u1,u2). Standard energy method arguments lead
to the local well-posedness for the system (2.1) in energy spaces Hs, s>2, and the
blowup criterion in terms of ∇u. Then, we will refine the blowup condition in terms
of the divergence d :=∇·u.

Proposition 5.1 (Local existence). Fix k>0 and consider the Euler-Poisson
equations

nt +∇·(nu)=0, (5.1a)

ut +u ·∇u=k∇∆−1n, (5.1b)

subject to initial conditions n0∈Hs(R2) and ∇u0∈Hs(R2), s>1. Then there exists
T >0 and a unique solution of (5.1), (n,∇u)∈C([0,T ];Hs). Moreover, we have the
following blow-up criterion: if tc>0 is the maximal time for the existence of such a
smooth solution, then

tc<∞⇒
∫ tc

0

‖∇·u(t)‖L∞dt=∞.

Proof. The proof consists of three steps.

Step 1. We begin with standard energy method arguments to obtain the usual
energy estimates in Sobolev spaces, Hs :={f | ‖f‖Hs =‖Dsf‖L2}, where D stands
for the pseudo-differential operator, D := (I−∆)1/2. We differentiate the momentum
equation (5.1b) by acting with Ds and integrate by parts against Dsu to find

1

2

d

dt
‖u(·,t)‖2

Hs

=−
∑

j

(

Dsu,[Ds,uj ]∂ju
)

+
1

2

(

Dsu,(∇·u)Dsu
)

+k
(

Dsu,Ds∇∆−1n
)

.

The commutator on the first term on the right does not exceed [11]

‖[Ds,uj ]∂ju‖L2 .‖∇u‖L∞‖u‖Hs ,

which yields

‖u(·,t)‖Hs .‖u0‖Hs +

∫ t

0

‖∇u(·,τ)‖L∞‖u(·,τ)‖Hsdτ+

∫ t

0

‖n(τ)‖Hs−1dτ. (5.2)

Similarly, an energy estimate of the mass Equation (5.1a) yields [13]

‖n(·,t)‖Hs .‖n0‖Hs +

∫ t

0

(

‖∇u(·,τ)‖L∞‖n(·,τ)‖Hs

)

dτ. (5.3)
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Let Y (T ) :=sup0≤t≤T

(

‖u(t)‖Hs +‖n(t)‖Hs

)

. Since Hs(R2)⊂L∞(R2) for s>1,

we have

Y (T ).Y (0)+TY 2(T ),

which implies the local well-posedness for the system (1.2).

Step 2. We prove the blow-up criterion in terms of ∇u. By (5.2), (5.3), and with
the aid of Gronwall’s inequality, we obtain

Y (T ).Y (0)exp
[

∫ T

0

(

‖∇u(·,t)‖L∞ +‖n(·,t)‖L∞ +1
)

dt
]

. (5.4)

The mass equation tells us that

nt +u ·∇n=−(∇·u)n,

and hence

sup
0≤t≤T

‖n(·,t)‖L∞ .‖n0‖L∞ exp
[

∫ T

0

||∇·u(·,t)||L∞dt
]

.

Therefore, we can replace (5.4) by

Y (T ). exp
[

Y (0)exp

∫ T

0

(‖∇u(·,t)‖L∞ +1)dt
]

, (5.5)

which implies the blow-up criterion in terms of ∇u.
Step 3. Next, we express ∇u in terms of the vorticity ω :=∂1u2−∂2u1 and the
divergence d=∇·u,

∂ui

∂xj
=RiRj(d)±RjR3−i(ω), i,j=1,2, ω=∇×u, d=∇·u.

Here, Ri’s are the singular Riesz transforms, Ri =∂i∆
−1/2. These singular integral

operators do not map L∞ to L∞, yet the estimate ∇u in terms of ω and d can be
saved using a logarithmic correction,

‖∇u‖L∞ . (‖ω‖L∞ +‖d‖L∞)log(‖u‖Hs +1), s>2. (5.6)

Finally, we recall that the two-dimensional vorticity is transported

ωt +u ·∇ω+ωd=0,

from which we can estimate the vorticity ω in terms of d as

sup
0≤t≤T

‖ω(·,t)‖L∞ .‖ω0‖L∞ exp
[

∫ T

0

‖d(·,t)‖L∞dt
]

. (5.7)

Therefore, we only need to control the divergence d in L∞ to determine whether a
smooth solution exists globally in time. The final regularity result, in the form of a

double exponential bound on Y (T ) in terms of

∫ T

0

‖d(·,t)‖L∞dt, then follows from

(5.5), (5.6), and (5.7).
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To proceed with the global regularity, we obtain an evolution equation for the
divergence d: taking the divergence of (5.1b), we find,

(∂t +u ·∇)d=kn−
∑

i,j=1,2

∂iuj∂jui

=kn+2(∂1u1∂2u2−∂1u2∂2u1)−(∇·u)2

=kn−d2 +2λ1λ2 =kn− 1

2
d2− 1

2
η2. (5.8)

Here, λ1 and λ2 are eigenvalues of the 2×2 gradient matrix, ∇u :={∂ui/∂xj}i,j=1,2,
and η :=λ2−λ1, is the spectral gap. One possible approach for controlling d in (5.8)
is therefore to estimate η globally-in-time. To this end, we first differentiate the
momentum equation, (5.1b), which yields that the gradient matrix ∇u satisfies the
Riccati-type equation

(∂t +u ·∇)(∇u)+(∇u)
2
=kR(n), R(n)ij :=RiRj(n), i,j=1,2. (5.9)

The spectral dynamics associated with this system [14, Lemma 3.1] tells us that the
eigenvalues λi, associated with left and right eigenvectors li and ri, are governed by

(∂t +u ·∇)λi +λ
2
i =k〈li,R(n)ri〉. (5.10)

Taking the difference, we find that the spectral gap satisfies the non-local evolution
equation

(∂t +u ·∇)η+dη=k〈l2,R(n)r2〉−k〈l1,R(n)r1〉. (5.11)

The right-hand side of (5.11) is highly nonlinear and non-local and it therefore seems
rather difficult to control the spectral gap globally in time.

To avoid this difficulty, the authors of [15] introduced the following restricted
Euler-Poisson system for the 2×2 matrix M :R2 7→R

2×R
2,

{

nt +∇·(nu)=0,

(∂t +u ·∇)M+M2 =
k

2
nI2×2.

(5.12)

This is similar to the system of equations satisfied by the 2×2 velocity gradient of
the non-restricted Euler-Poisson equations (5.9),

{

nt +∇·(nu)=0,

(∂t +u ·∇)(∇u)+(∇u)
2
=kR(n), R(n)ij :=RiRj(n), i,j=1,2.

(5.13)

Thus, compared with the restricted model (5.12), we see that the non-local Riesz
matrix R(n) is replaced here by the local matrix, 1

2nI2×2 while keeping the same
trace:

trace
(

R(n)
)

=trace

(

1

2
nI2×2

)

.

This simplification of the restricted model yields a spectral dynamics, (∂t +u ·∇)λi +
λ2

i =kn/2, which in turn implies the following evolution equation for the spectral gap:

(∂t +u ·∇)η+dη=0.
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This should be contrasted with the nonlocal terms on the right-hand-side of (5.11).
Using this local version of the spectral gap, one is able to derive a complete description
of the critical threshold in the two dimensional restricted Euler-Poisson equations [15,
Theorem 1.1], expressed in terms of the relative sizes of three quantities: the initial
density, the initial divergence, and the initial spectral gap.
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Poisson pour l’evolution l’étoiles gazeuses, Japan J. Appl. Math., 7, 165–170, 1990.
[19] T. Makino and S. Ukai, Sur l’existence des solutions locales de l’equation d’Euler-Poisson pour
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