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Abstract. We prove global existence and uniqueness of solutions of Oldroyd-B systems, with
relatively small data in Rd, in a large functional setting (Cα

∩L1). This is a stability result; solutions
select an equilibrium and converge exponentially to it. Large spatial derivatives of the initial density
and stress are allowed, provided the L∞ norm of the density and stress are small enough. We prove
global regularity for large data for a model in which the potential responds to high rates of strain in
the fluid. We also prove global existence for a class of large data for a didactic scalar model which
attempts to capture, in the simplest way, the essence of the dissipative nature of the coupling to
fluid. This latter model has an unexpected cone invariance in function space that is crucial for the
global existence.
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1. Introduction

The complex fluids models we consider treat the interaction of a normal fluid
(incompressible in our case) with insoluble matter suspended in it. Models have been
devised to deal with microscopic elastic thread-like objects such as polymers [12, 26].
The complicated hydrodynamic interactions are simplified using the separation of
scales, replacing the many degrees of freedom due to them by a few representative
ones. In the models we consider here, an end-to-end vector in R

3 (m in this paper)
represents the orientation of the polymer and it is the sole variable retained to de-
scribe the microscopic object. The models that are most studied with this degree
of simplification include the kinetic description of the Oldroyd-B model, the FENE
model and variants. The probability distribution of the vectors m depends on time
and physical space, and it is assumed to be absolutely continuous with respect to the
usual Lebesgue measure dm, so the chance of finding m at time t and location x ∈ R

3

in the volume element dm is f(x,m, t)dm. The aim is to describe the evolution of f
in space and time. When the polymer concentration is so dilute that the polymers
do not interact, and when the fluid is smooth, then the equation of f is a linear
Fokker-Planck equation. The effect of the fluid can be understood perturbatively:
because the objects suspended are assumed to have faster time scales and shorter
length scales than the scales on which solvent varies, it is then justified to treat the
fluid as varying little as far as the microscopic suspended objects are concerned. This
macro-micro interaction can be rationally discussed, and leads to a kinetic description
of the particles, given a fluid flow. On the other hand, the collective effect that the
particles have on the flow itself is a macroscopic effect of microscopic insertions: a
micro-macro interaction. These interactions are much more mysterious. There have
been attempts to produce systematic upscalings based on non-equilibrium thermo-
dynamics formalisms [2, 13]. When the microscopic insertions have a larger number
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of degrees of freedom, m ∈ M , where M is a Riemannian manifold representing a
finite number of degrees of freedom with constraints, then the kinetic equation is a
Smoluchowski equation on the manifold. The upscaling principle advocated in [5, 6]
is easiest formulated as the requirement that the sum of the energy of the fluid and
the free energy of the microscopic quantities be a Lyapunov functional for the coupled
system. In the known examples, this requirement leads to familiar rules of determin-
ing the added polymeric stress from the micro-micro and the macro-micro interactions
[16]. The mathematical treatment of the coupled systems is far from being complete
but has recently received increased attention. Early work [14, 28] established local
existence results for Oldroyd-B and FENE type equations. The problem of existence
of weak solutions is rather open. Global existence of weak solutions in the presence of
spatial diffusion of the polymers was proved in a sequence of papers, the most recent
of which is [1]. Global existence of weak solutions via propagation of compactness
was proved under the corotational assumption [22, 23] and, very recently, for the full
FENE model [25]. There is no such result for the Oldroyd-B model. The global exis-
tence of smooth solutions for small data for Oldroyd-B type models was established
in [17, 21].

Global existence of smooth solutions for large data in 2D was established for
Smoluchowski equations on compact manifolds [6, 7, 9, 10, 11, 27]. Global regularity
for large data in the FENE case, under the corotational assumption, was proved in
[19, 24]. An approach based on Lagrangian particle dynamics was described in [20].
Sufficient conditions for regularity in terms of bounds on the added stress tensor were
established in [4, 15] and further refined in [18]. Numerical evidence for singularities
was provided in [30].

In this paper we address issues related to global existence of smooth solutions in
simple kinetic models. In the presence of a quiescent solvent, the polymer distribution
is the unique stable time independent solution of the linear Fokker-Planck equation

∂tf = ǫdivm (f∇m(log f + U)) ,

i.e. f = Z−1e−U with Z a normalizing constant. The simplest form of U is harmonic,

U(m) = |m|2

2R2 and then the solution is Gaussian. The constant R2 represents the
expected value < |m|2 > of the square of the length of the end-to-end vector. In the
presence of smooth fluids the kinetic equation changes and acquires a dependence on
the macroscopic independent variable x.

In the second section of the paper we provide a priori bounds for linear Fokker-
Planck equations with Oldroyd-B type potentials. We do this by essentially giving
a formula for the solution of the Fokker-Planck equation in terms of the particle
trajectories of the underlying flow.

In the third section we derive a classical estimate for the velocity gradient in terms
of the added polymeric stress, when the coupling to fluid is done via time-independent
Stokes equations.

In the fourth section we prove global existence results for small data in Cα at
arbitrary Deborah numbers. The previously known global existence results for small
data are done using energy estimates and require derivatives of the stress. The main
difficulty in obtaining bounds for small data is the fact that quantities are not mono-
tonically decreasing, and, in particular, the spatial gradient of the density of particles
can grow in time but nevertheless saturates. The system formed by the kinetic equa-
tion for the particle distribution and the velocity of the fluid can be reduced to a closed
system for a reduced added stress τ and the particle density. This system looks like a
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damped and driven Euler equation where τ (a matrix) plays the role of vorticity and
ρ, the transported density, is part of the driver. The global existence of solutions is
proved under the assumption that the L∞ norm of the initial data is small enough
(4.82). The class of initial data that lead to global existence includes densities and
stresses with arbitrarily large gradients, provided the L∞ norms are suitably small.
While the limit added stress τ and limit velocity vanish, the limit particle density is
a rearranged initial particle density — a deformation of the initial density along the
limit back-to-labels map. The class of solutions we discuss is in fact rather wide, and
in particular the gradients need to be understood in the distributional sense. The
proof of uniqueness of solutions is done using Lagrangian transformations. An Eule-
rian proof is not readily available at this moment. In order to explain this we pursue
the analogy with Euler equations. Both the damped Euler vorticity equation and the
equation for τ have the form

Dtτ = −cτ +N(τ),

where c ≥ 0 is the damping and the nonlinearity N is quadratic and non-local,
obtained from products of τ and principal value singular integrals Hτ . Here Dt is
the material derivative along the divergence-free velocity u. The local (and global
for small data) existence results are in Banach algebras in which N is a continuously
differentiable nonlinear function. One of the largest and most natural such Banach
algebras is Cα, 0 < α < 1. The difference δ of two solutions τ1, τ2 obeys the equation

Dtδ = −cδ +N ′(τ)δ − v · ∇xτ ,

where Dt is transport along the average velocity u = 1
2 (u1+u2), τ is the average of the

solutions, τ = 1
2 (τ1 + τ2), N

′(τ) is the linearization of N obtained using polarization,
and v is the velocity difference v = u1 − u2. The last term in the equation is present
because the velocities depend on τ : u1 is obtained from τ1 and u2 from τ2. In both
the (damped-driven) Euler case and in the Stokes-Fokker-Planck system we study, the
dependence of u on τ is linear. The term v depends therefore linearly on δ. Uniqueness
proofs based on energy estimates proceed by estimating the growth of δ in some norm.
As the initial data vanishes, any closed, super-linear estimate of the norm is sufficient
to prove uniqueness. (We could allow logarithmically sublinear estimates, but that
is as far as that can go, in general). There are two sources of difficulty in obtaining
these estimates. The transport term u · ∇xδ can be dealt with by using integration
by parts, if the norm of δ we consider is an Lp norm. The other source of difficulty
is ∇xτ . If we are in the framework of Cα ∩ L1, adopted in this paper, then v is very
nice but in order to deal with ∇xτ we need to work in H−1. In general, the presence
of both v ·∇xτ and u ·∇xδ together is lethal for an Eulerian energy method approach
unless we work in a space in which ∇xτ is tame, like for instance W 1,p(Rd) with p > d.
The reason there is a successful Eulerian proof of uniqueness for Euler equations for
the vorticity in Cα is that, for Euler equations, the vorticity equation comes from a
velocity equation with a good cancellation property. Thus we can “retreat” to one
less derivative in the equation for δ. In terms of the vorticity equation this means
integrating against a vectorial stream function, i.e. working in H−1. In the Euler
equations the transport term together with the term N ′(τ)δ can be integrated by
parts one more time, revealing only H−1 terms in δ. In the absence of such algebraic
results, the retreat to one less derivative does not appear to work, and the fix for one
difficult term does not work for the other, and vice-versa. The Lagrangian approach
introduces commutators that are well behaved, and is successful.
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In the fifth section we show that the system is regularized for large data if the
potential is allowed to respond to excessively high rates of strain S in the fluid. The

Oldroyd-B potential is harmonic, U = |m|2

2R2 , although it is not generated by a spring
force that is related to a material property of the polymers. In fact, the representation
of the polymer by m is over-simplified, and R has something to do with an average
restoring force in the ensemble and not with the maximum extension allowed for an
individual molecule. In the case there is feedback coupling to a fluid, the interaction
might have properties that depend of the local properties of the fluid. We show that
if we allow R to depend on the local rate of strain in the fluid, when this exceeds a
threshold, and to grow with it (DtR

R
= δ(S)), then the equation has global smooth

solutions for all large data. Here δ(S) can vanish if the rate of strain S is not too high,
and becomes asymptotically linear in S for high values of (norms of) S. Allowing R
to grow in response to high rate of strain is like allowing more entropic “slack” in the
molecules at high rates of strain, and this turns out to be a mathematical regularizing
mechanism.

In the sixth section we return to the Oldroyd-B large data problem, and give an
example of blow up in one dimension for a crude model that does not respect the
principle of free energy decay. We motivate and give then a simple scalar example of
an equation that has some of the features of the type of equations arising in the large
data Oldroyd B equation, and which has an unbounded set of initial data that lead to
global smooth behavior. The reason for the global existence is an invariance of a cone
in function space under the nonlinear evolution. The consequence of this invariance
is an a priori bound that is sufficient for the persistence of smoothness of solutions.

2. Linear Fokker-Planck equation: kinematic observations

We take a vector field u(x, t) and a scalar f(x,m, t) representing a two or three-
dimensional incompressible velocity and a particle distribution. We start by describing
the simplest particle distribution equation:

Dtf + ((∇xu)m) · ∇mf = ǫdivm(f∇m(log f + U(m))). (2.1)

Here Dt = ∂t + u · ∇x is the material derivative. The potential is given by

U(m) =
|m|2
2R2

. (2.2)

In this section R is a positive constant. We consider here the case m ∈ R
d. We

associate to the particle distribution f an added stress tensor:

σ(x, t) =

∫

m∈Rd

(m⊗∇mU) f(x,m, t)dm. (2.3)

In this normalization R has units of length and ǫ/R2 is an inverse time. The potential
U and the stress σ are nondimensional. We study first (2.1) without regard to the
coupling to the fluid. In what follows the velocity field could be quite arbitrary, but
it is assumed to be smooth enough for the calculations below: the variable x ∈ R

d,
and the velocity field u(x, t) is in C1,α(Rd), is divergence-free,

divxu = 0,

and decays at infinity. Before we start our computations, let us make a few general
comments regarding the matrix σ. First, because the potential U is radially symmetric
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(2.2) and from its definition (2.3), it follows that σ is symmetric and non-negative.
Moreover its off-diagonal entries are bounded by the trace

|σij(x, t)| ≤ 1

2
Tr(σ(x, t)). (2.4)

We take now the Fourier transform in m:

f̂(x, t, ξ) =

∫

Rd

e−im·ξf(x,m, t)dm. (2.5)

In view of (2.2), f̂ obeys

Dtf̂(x, ξ, t) +
[ ǫ
R2

I − (∇xu)
T
]
ξ · ∇ξ f̂ = −ǫ|ξ|2f̂(x, ξ, t). (2.6)

We used the fact that u is divergence-free and denoted by (∇xu)
T the transposed

matrix. We solve (2.6) on characteristics. The connection between the Lagrangian
paths of u and the Oldroyd-B equation was exploited in [20] in the less complicated
case ǫ = 0, ρ = 1. Let X(a, t) be the particle paths

∂tX(a, t) = u(X(a, t), t), (2.7)

with X(a, 0) = a, and let

g(a, t) = (∇xu)(X(a, t), t). (2.8)

Let now ξ = ξ(a, η, t) solve the ODE

d

dt
ξ =

ǫ

R2
ξ − g(a, t)T ξ (2.9)

with initial data ξ(a, η, 0) = η. We take the fundamental matrix Φ(a, t), the solution
of the linear ODE system

d

dt
Φ(a, t) = −g(a, t)T Φ(a, t) (2.10)

with initial data Φ(a, 0) = I, and we then have

ξ(a, η, t) = e
ǫt

R2 Φ(a, t)η, (2.11)

We write

F (a, η, t) = f̂(X(a, t), ξ(a, η, t), t). (2.12)

Then (2.6) implies

d

dt
F (a, η, t) = −ǫ|ξ(a, η, t)|2F (a, η, t),

and by integrating we obtain

F (a, η, t) = e−ǫ
∫

t

0
|ξ(a,η,s)|2dsf̂(a, η, 0). (2.13)
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Invert the linear map η 7→ ξ(a, η, t) and write, from (2.11),

η(a, ξ, t) = e−
ǫt

R2 Ψ(a, t)ξ, (2.14)

where Ψ(a, t) = Φ(a, t)−1 obeys

d

dt
Ψ(a, t) = Ψ(a, t)g(a, t)T (2.15)

with initial data Ψ(a, 0) = I. Reading (2.12) at η = η(a, ξ, t) for a fixed ξ and
substituting in (2.13) we obtain

f̂(X(a, t), ξ, t) = e−ǫ
∫

t

0
|ξ(a,η(a,ξ,t),s)|2dsf̂0(a, e

− ǫt

R2 Ψ(a, t)ξ), (2.16)

where f̂0(x, ξ) is the Fourier transform in m of the initial data f0(x,m) = f(x,m, 0).
Let us consider now the “back-to-labels” map A(x, t), the inverse of X(a, t). Let

M(x, t) = Ψ(A(x, t), t) (2.17)

and note that it obeys the transport equation

DtM = M(∇xu)
T (2.18)

with initial data M(x, 0) = I. Reading (2.16) at a = A(x, t), we deduce

f̂(x, ξ, t) = e−ǫ
∫

t

0
|ξ(A(x,t),η(A(x,t),ξ,t),s)|2dsf̂0(A(x, t), e−

ǫt

R2M(x, t)ξ). (2.19)

We compute, directly from (2.11) and (2.14),

ξ(A(x, t), η(A(x, t), ξ, t), s) = e−
ǫ(t−s)

R2 Q(x, t, s)ξ (2.20)

with

Q(x, t, s) = q(A(x, t), t, s), for t ≥ s, (2.21)

q(a, t, s) = Φ(a, s)Ψ(a, t) for t ≥ s, (2.22)

and deduce thus from (2.19)

f̂(x, ξ, t) = e−ǫ
∫

t

0
e
−

2ǫ(t−s)

R2 |Q(x,t,s)ξ|2dsf̂0(A(x, t), e−
ǫt

R2M(x, t)ξ). (2.23)

Let us note now that the matrix σij(x, t) is computed from the Hessian of f̂ at
ξ = 0,

σij(x, t) = − 1

R2

∂2f̂

∂ξi∂ξj
(x, ξ, t)|ξ=0 . (2.24)

Using (2.23) and noting that the cross-terms vanish, we deduce

σij(x, t) = 2ǫ
R2 ρ(x, t)

∫ t

0
e−

2ǫ(t−s)

R2
[
QT (x, t, s)Q(x, t, s)

]
ij
ds

− e
−

2ǫt

R2

R2 Mki(x, t)Mlj(x, t)
∂2f̂0

∂ξk∂ξl
(A(x, t), ξ)|ξ=0 .

(2.25)
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We used the notation ρ(x, t) := f̂(x, 0, t) =
∫

Rd f(x,m, t)dm. In view of (2.1) this
obeys the transport equation

Dtρ = 0, (2.26)

and therefore it is given by

ρ(x, t) = f̂0(A(x, t)) = ρ0(A(x, t)) (2.27)

in terms of the initial particle density at x. We used this in (2.25) as well as the
summation convention. In terms of the initial stress, the expression is

σij(x, t) = 2ǫ
R2 ρ(x, t)

∫ t

0
e−

2ǫ(t−s)

R2
[
QT (x, t, s)Q(x, t, s)

]
ij
ds

+e−
2ǫt

R2 Mki(x, t)Mlj(x, t)σ
kl(A(x, t), 0).

(2.28)

The solution of (2.28) solves the equation

Dtσ = − 2ǫ

R2
σ + (∇xu)σ + σ(∇xu)

T +
2ǫ

R2
ρ(x, t)I, (2.29)

which can be easily derived from the Equation (2.1) by multiplying by 1
R2mimj and

integrating with respect to dm. Let θ(x, t) be a passive scalar, i.e., a solution of

Dtθ = 0. (2.30)

If M solves (2.18) then M∇xθ is again a passive scalar, i.e.,

Dt (M∇xθ) = 0. (2.31)

This can be easily checked because

Dt(∂jθ) = −(∂jul)∂lθ,

and so

Dt(Mij∂jθ) = Mik(∂kuj)∂jθ −Mij(∂jul)∂lθ = 0.

This means that if θ(x, t) = θ0(A(x, t)) with arbitrary smooth θ0(a) then
M(x, t)∇xθ(x, t) = (∇aθ0)(A(x, t)). In fact, because the initial datum of Ψ is the
identity matrix, and because of uniqueness of ODEs, it follows from (2.15) that

Ψ(a, t) = (∇aX)T (a, t), (2.32)

and consequently

Mki(x, t) =
∂Xi

∂ak

(A(x, t), t). (2.33)

From (2.28) and (2.33) it follows that

σ(x, t) = 2ǫ
R2 ρ(x, t)

∫ t

0
e−

2ǫ(t−s)

R2 QT (x, t, s)Q(x, t, s)ds

+e−
2ǫt

R2 (∇aX(A(x, t), t))σ0(A(x, t))(∇aX(A(x, t), t))T .
(2.34)
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Let us introduce the notations

ei(x, t) := (∇Xi)(A(x, t), t), (2.35)

eij(x, t) := σ0(A(x, t))ei(x, t) · ej(x, t). (2.36)

Note that

σ(x, t) =
2ǫ

R2
ρ(x, t)

∫ t

0

e−
2ǫ(t−s)

R2 QT (x, t, s)Q(x, t, s)ds+ e−
2ǫt

R2
(
eij(x, t)

)
ij
. (2.37)

Moreover,

Dte
i = (∇xu)e

i (2.38)

with initial data that are constant in space and equal the canonical basis of R
d,

ei(x, 0) = (δij)j . Note that q given in (2.22) is given in terms of the gradient ∇aX by

q(a, t, s) = [(∇aX(a, s))−1]T (∇aX(a, t))T , (2.39)

solving

∂sq(a, t, s) = −gT (a, s)q(a, t, s) (2.40)

and

q(a, t, t) = I, q(a, t, 0) = (∇aX(a, t))T . (2.41)

Passing to Lagrangian variables in (2.37) we obtain

σ(X(a, t), t) = 2ǫ
R2 ρ0(a)

∫ t

0
e−

2ǫ(t−s)

R2 qT (a, t, s)q(a, t, s)ds

+e−
2ǫt

R2 (∇aX(a, t))σ0(a)(∇aX(a, t))T ,
(2.42)

and by integrating by parts we deduce

σ(X(a, t), t) − ρ0(a)I = 2ρ0(a)

∫ t

0

e−
2ǫ(t−s)

R2 qT (a, t, s)S(X(a, s), s)q(a, t, s)ds

+e−
2ǫt

R2 (∂aX(a, t))τ0(a)(∂aX(a, t))T , (2.43)

where we introduced the reduced stress

τ(x, t) = σ(x, t) − ρ(x, t)I (2.44)

and where

S(x, t) =
1

2

[
(∇xu(x, t)) + (∇xu(x, t))

T
]

(2.45)

is the rate of strain. Returning to Eulerian variables, we have

τ(x, t) = 2ρ(x, t)

∫ t

0

e−
2ǫ(t−s)

R2 QT (x, t, s)S(X(A(x, t), s), s)Q(x, t, s)ds

+e−
2ǫt

R2 (∇aX(A(x, t), t))τ0(A(x, t))(∇aX(A(x, t), t))T . (2.46)
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It is clear that in general, once the velocity u(x, t) is given, we can compute everything
we need to know about τ (and hence σ) from (2.46). In particular, we will be interested
in the relationship between various norms of u and norms of τ , as these relationships
will serve in establishing bounds for solutions of nonlinear equations. It is clear that
we should start with the fields ei, and in order to understand their norms we perform
some standard Lagrangian estimates. We take the finite difference

δh
(
∂aX

i(a, t)
)

= ∂aX
i(a+ h, t) − ∂aX

i(a, t). (2.47)

Its equation follows from (2.7) by differentiation,

∂t(∇aX
i) = g(a, t)(∇aX

i), (2.48)

and then by taking the finite difference:

d

dt
δh
(
∂aX

i(a, t)
)

=
g(a, t) + g(a+ h, t)

2
δh
(
∂aX

i(a, t)
)

+δhg(a, t)
∂aX

i(a+ h, t) + ∂aX
i(a, t)

2
, (2.49)

where g(a, t) is the velocity gradient in Lagrangian coordinates (2.8) and

δhg(a, t) = g(a+ h, t) − g(a, t). (2.50)

For matrices L we use the notation |L| for the Euclidean norm of the matrix |L| =√
TrL∗L. We denote by

γ(t) = sup
a

|g(a, s)| = ‖∇xu(·, t)‖L∞(dx) (2.51)

a quantity of some importance in the sequel. From (2.48), and the fact that the initial
data for ∂aX

i is (δij)j=1,...d, we have that

sup
a

|∂aX
i(a, t)| ≤ e

∫
t

0
γ(s)ds. (2.52)

Because the initial data for δh
(
∂aX

i
)

vanishes, we have, from Gronwall’s inequality
and (2.52),

∣∣δh
(
∂aX

i(a, t)
)∣∣ ≤ e

∫
t

0
γ(s)ds

∫ t

0

|δhg(a, s)|ds. (2.53)

We are interested in quantities in their Eulerian form. We consider the Hölder semi-
norm

[φ]α = sup
x6=y

|φ(x) − φ(y)|
|x− y|α (2.54)

with 0 < α < 1. We note that the back-to-labels maps are Lipschitz and

sup
x6=y

|A(x, t) −A(y, t)|
|x− y| ≤ e

∫
t

0
γ(s)ds (2.55)

because

DtA = 0 (2.56)
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with initial data A(x, 0) = x, and consequently

Dt∇xA = −(∇xA)(∇xu). (2.57)

In view of (2.55) and the fact that Hölder seminorms behave nicely with respect to
compositions with Lipschitz functions,

[φ ◦A]α ≤ [φ]αλ
α

if λ is a bound on the Lipschitz seminorm of A, it follows that

[ei(·, t)]α ≤ [∇Xi(·, t)]αeα
∫

t

0
γ(s)ds (2.58)

and, similarly

[g(·, t)]α ≤ [∇xu(·, t)]αeα
∫

t

0
γ(s)ds. (2.59)

From these considerations and from (2.53) it follows that

[ei(·, t)]α ≤ e(1+2α)
∫

t

0
γ(s)ds

∫ t

0

[∇xu(·, s)]αds. (2.60)

The reason for the 2α “loss” in comparison to the Lagrangian estimate (2.53) is that
we lose twice, once because the objective of the estimate is composed, and another
because what we estimate it with is also composed with a Lipschitz function. In the
same manner we also obtain

‖∇xe
i(·, t)‖Lp(Rd) ≤ e3

∫
t

0
γ(s)ds

∫ t

0

‖∇x∇xu(·, s)‖Lp(Rd)ds. (2.61)

We perform similar calculations for the matrix Q(x, t, s), taking into account (2.21,
2.22, 2.40, 2.41). We deduce

‖Q(·, t, s)‖L∞(Rd) ≤ Ce
∫

t

s
γ(z)dz, (2.62)

|δhq(a, t, s)| ≤ Ce
∫

t

s
γ(z)dz

∫ t

s

|δhg(a, z)|dz, (2.63)

and consequently

[Q(·, t, s)]α ≤ Ce(1+2α)
∫

t

0
γ(z)dz

∫ t

s

[∇xu(·, z)]αdz. (2.64)

with C =
√
d depending only on the dimension of space d. We are ready to state the

estimates on τ in terms of u.

Proposition 2.1. Let u be a divergence-free function belonging to L1(0, T ;C1,α(Rd).
Let σ0(a) be a Hölder continuous, L1(Rd), positive symmetric matrix and let ρ0 be a
positive, Hölder continuous, L1(Rd) function. Then τ = σ−ρI, given in the expression
(2.46), obeys

‖τ(·, t)‖L∞(Rd) ≤ C‖ρ0‖L∞(Rd)

∫ t

0

exp

{
−2ǫ(t− s)

R2
+ 2

∫ t

s

γ(z)dz

}
γ(s)ds

+C‖τ0‖L∞(Rd) exp

{
−2ǫt

R2
+ 2

∫ t

0

γ(s)ds

}
, (2.65)
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and

[τ(·, t)]α ≤ C[ρ0]αe
α
∫

t

0
γ(z)dz

∫ t

0
exp

{
− 2ǫ(t−s)

R2 + 2
∫ t

s
γ(z)dz

}
γ(s)ds

+C‖ρ0‖L∞(Rd)

∫ t

0
exp

{
− 2ǫ(t−s)

R2 + (2 + 2α)
∫ t

0
γ(z)dz

}
γ(s)

∫ t

s
[∇xu(·, z)]αdzds

+C‖ρ0‖L∞(Rd)

∫ t

0
exp

{
− 2ǫ(t−s)

R2 + 2
∫ t

s
γ(z)dz + 2α

∫ t

0
γ(z)dz

}
[∇xu(·, s)]αds

+C
[
[τ0]α + ‖τ0‖L∞(Rd)

∫ t

0
[∇xu(·, s)]αdt

]
exp

{
− 2ǫt

R2 + (2 + 2α)
∫ t

0
γ(s)ds

}
,

(2.66)
with γ(t) = supx |∇xu(x, t)| and the constant C > 0 depending only on the dimension
d of space.

Proof. The L∞ estimate follows from (2.62) and

‖ei(·, t)‖L∞(dx) ≤ e
∫

t

0
γ(s)ds, (2.67)

which follows immediately from (2.38) and the fact that the initial data are of unit
norm. The Hölder seminorm estimate follows from the algebra inequality

[φψ]α ≤ [φ]α‖ψ‖L∞ + ‖φ‖L∞ [ψ]α,

(2.62) and (2.67) above, (2.60), (2.64), and the behavior of the Hölder continuous
function under composition with A and (2.55). This concludes the proof of the
proposition.

Before we conclude this section, we comment on the case of d = 2. In this case
the velocity gradient matrix is

∇xu(x, t) =

(
λ(x, t) µ(x, t) − ω(x,t)

2

µ(x, t) + ω(x,t)
2 −λ(x, t)

)
, (2.68)

where

λ(x, t) =
1

2

(
∂1u

1(x, t) − ∂2u
2(x, t)

)
, (2.69)

µ(x, t) =
1

2

(
∂1u

2(x, t) + ∂2u
1(x, t)

)
, (2.70)

and

ω(x, t) = ∂1u
2(x, t) − ∂2u

1(x, t). (2.71)

The symmetric part of the gradient (rate of strain matrix) is

S(x, t) =

(
λ(x, t) µ(x, t)
µ(x, t) −λ(x, t)

)
. (2.72)

Differentiating (2.38), we can write

D2
t e

i =
(
(∇xu)

2 +Dt(∇xu)
)
ei. (2.73)
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This equation holds in any number of dimensions, but because of the Hamilton-
Cayley theorem, in two dimensions we have

(∇xu(x, t))
2 = δ(x, t)I (2.74)

with

δ(x, t) = λ2(x, t) + µ2(x, t) − 1

4
ω2(x, t) = −det(∇xu)(x, t). (2.75)

Therefore the Equation (2.73) becomes

D2
t e

i = (δI +Dt(∇xu)) e
i. (2.76)

Similarly, we have

d2

ds2
q = −

(
δI + ∂s(g(a, s))

T
)
q. (2.77)

We can easily integrate (2.76, 2.77) when the velocity gradient is constant in space
and time (so that Dt(∇xu) = 0). In this case δ is a constant and its sign dictates the
size of solutions eiand Q. Consequently, when δ ≤ 0 or when δ > 0 but

√
δ ≤ ǫ

R2 ,
then τ is bounded, and when δ > ( ǫ

R2 )2, then τ may grow exponentially in time.
Integrating (2.76, 2.77) when Dt(∇xu) = 0 we see that if δ ≤ 0 the functions ei and
Q are bounded in time, and when δ > 0 they grow like exp

√
δt in time. If the initial

distribution f0 is radially symmetric in m then the matrix σ0(a) is a multiple of the
identity matrix (a scalar matrix, or an isotropic stress),

σ0(A(x, t)) = cρ0(A(x, t))I.

If δ is a positive constant, integrating (2.76) we have

e1(x, t) =

(
cosh(t

√
δ)

sinh(t
√
δ)

)
, e2(x, t) =

(
sinh(t

√
δ)

cosh(t
√
δ)

)
.

In this case

e11(x, t) = e22(x, t) = cρ0(A(x, t)) cosh(2t
√
δ),

e12(x, t) = cρ0(A(x, t)) sinh(2t
√
δ).

The case of a uniform gradient is used in rheology, but if the velocity gradient is
square-integrable in space, then δ has to have average zero in space because

(∇xu)
2
ij = ∂k(ui∂ju

k). (2.78)

Therefore, for moderately varying ∇xu we can expect τ to be bounded.

3. Coupling to the Stokes system

The Stokes system is

−∆xu+ ∇xp = kdivxσ (3.1)

coupled with

divxu = 0. (3.2)
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The coefficient k has units of inverse time, and represents the ratio between an
energy (kT) per unit mass and kinematic viscosity. The fluid density is taken to be 1.
We discuss the situation in which the fluid occupies all R

d and is at rest at infinity.
The velocity and pressure decay in space and are obtained from σ by classical singular
integrals. We can equally consider the case in which the velocity and pressure are
periodic in space. Let us denote by

Rj = Λ−1∂j , (3.3)

for j = 1, . . . d, in R
d the Riesz operators, where

Λ = (−∆)
1
2 (3.4)

is the Zygmund operator. By modifying the pressure we may write

−∆xu+ ∇xp̃ = kdivx(τ), (3.5)

and using (3.2) to solve for p̃,

p̃ = −kRmRn(τmn), (3.6)

we deduce

ui = kΛ−1
(
Rl(τ

il) +RiRmRn(τmn)
)

(3.7)

and

∂ju
i = kRj

(
Rl(τ

il) +RiRmRn(τmn)
)
, (3.8)

which we abbreviate as

∇xu = kRτ. (3.9)

The system formed by (2.39, 2.43) together with (3.7) is closed.

3.1. Energetics. The system formed by (2.1) coupled to (3.1) has a Liapunov
functional. We take (2.1), multiply by k(log f +U), integrate, take (3.1) and multiply
by u, integrate, and add the two: we deduce

k d
dt

[∫
Rd

∫
Rd f log fdmdx+ 1

2

∫
Rd Tr[σ(x, t)]dx

]

= −
∫

Rd |∇xu(x, t)|2dx− kǫ
∫

Rd

∫
Rd f |∇m(log f + U)|2 dmdx.

(3.10)

This is a general property of the class of Fokker-Planck equations in which we are
interested, but in the case of the Oldroyd-B system we are considering here we can
obtain the energetics directly from the Equation (2.29) by taking the trace, adding it
to the Stokes Equation (3.1), multiplying by 2

k
u and integrating:

∂t

∫

Rd

Tr σdx+
2

k

∫

Rd

|∇xu|2dx = − 2ǫ

R2

∫

Rd

Tr σdx+
2ǫ

R2

∫

Rd

ρ0dx. (3.11)

Using the fact that Trσ together with ρ bound the entries in τ , we derive

‖τ(·, t)‖L1(Rd) ≤ C[‖τ0‖L1(Rd) + ‖ρ0‖L1(Rd)], (3.12)

with a constant C depending only on d.
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3.2. Gradient bounds. We are going to investigate bounds on the time
integral of the maximum gradient of velocity,

∫ T

0

‖∇xu(·, t)‖L∞(dx)dt.

In order to do so we recall a classical fact ([29], Chapter 3, Section 5), namely that
operators given at Fourier level by multiplication by functions that are homogeneous
of degree zero and are smooth on the unit sphere can be represented as sums of
multiples of the identity and singular integral operators of a classical type.

Proposition 3.1. There exists a constant C depending only on d and α such that,
for any σ̃,

‖Rσ̃‖L∞(dx) ≤ C‖σ̃‖L∞(dx)



1 + log


1 +

‖σ̃‖
α

d+α

L1(Rd)
[σ̃]

d
d+α
α

‖σ̃‖L∞(dx)






 , (3.13)

where

[σ̃]α = max
mn

sup
x6=y

|σ̃mn(x) − σ̃mn(y)|
|x− y|α (3.14)

and 0 < α < 1. There exists a constant C depending only on d and α such that

[Rσ̃]α ≤ C[σ̃]α. (3.15)

Proof. In view of the fact that R is made from operators of the form RjRk and
RjRkRl, we have the representation

(Rσ̃)ij(x) = Cijmnσ̃
mn(x) + P.V.

∫

Rd

kijmn(ŷ)

|y|d σ̃mn(x− y)dy,

where Cijmn are constants and each kijmn is a smooth function (actually a harmonic
polynomial of degree no more than three) of ŷ = y/|y| with mean zero on the unit
sphere S

d−1. We need to prove the inequality for each entry, and we reduce the proof
to the scalar case. The proof then follows along very classical lines. We break the
integral

Kσ̃(x) = P.V.

∫

Rd

k(ŷ)

|y|d σ̃(x− y)dy

into three pieces. We choose two numbers m < M and write

I1(x) = P.V.

∫

|y|≤m

k(ŷ)

|y|d σ̃(x− y)dy,

I2(x) =

∫

m≤|y|≤M

k(ŷ)

|y|d σ̃(x− y)dy,

and

I3(x) =

∫

|y|≥M

k(ŷ)

|y|d σ̃(x− y)dy.
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We have, with the cancellation property of k(ŷ),

|I1(x)| ≤ Cmα[σ̃]α,

and then clearly

|I2(x)| ≤ C log

(
M

m

)
‖σ̃‖L∞

and

|I3(x)| ≤ CM−d‖σ̃‖L1(dx).

Now we choose the two length scales,

M =

[ ‖σ̃‖L1(Rd)

‖σ̃‖L∞(dx)

] 1
d

and

m =

[‖σ̃‖L∞(dx)

[σ̃]α

] 1
α

.

If M ≥ m we use both in the inequalities above and we obtain

|Kσ̃(x)| ≤ C‖σ̃‖L∞(dx)

[
2 + log

(
M

m

)]
.

If M ≤ m then we forgo the division above and split the integrals into only two pieces,
up to M and from M . We obtain then

|Kσ̃(x)| ≤ 2C‖σ̃‖L∞(dx).

This ends the proof of (3.13). The inequality (3.15) is a classical inequality for singular
integrals of the type above. This ends the proof of the proposition.

4. Small data

The approach we choose to control [τ ]α is via the explicit formula (2.46). The
equation obeyed by τ can be derived directly from (2.29):

Dtτ = − 2ǫ

R2
τ + (∇xu)τ + τ(∇xu)

T + 2ρS. (4.1)

Because 2S = kRτ + k(Rτ)T depends linearly on τ , it is clear that strong enough
damping will prevail and send the solution to zero. It is clear however that

ǫ

kR2
≥ C‖ρ0‖L∞(Rd) (4.2)

will have to be part of the requirement for this stability result. The system of (2.1),
with (2.2) and (2.3) coupled with (3.1), is equivalent to the system formed by (4.1),
the Stokes system (3.5) and (2.26). We use Proposition (2.1). We first prove a good
local existence result. Let us denote

M1 := ‖ρ0‖L1(Rd) + ‖τ0‖L1(Rd), (4.3)
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M∞ := ‖ρ0‖L∞(Rd) + ‖τ0‖L∞(Rd), (4.4)

and

Mα := [ρ0]α + [τ0]α. (4.5)

Let us introduce the Deborah number

D :=
k

κ0
=
kR2

ǫ
, (4.6)

the nondimensional ratio of the particle time scale R2

ǫ
to the viscous fluid’s response

time to the stress added by the particles, k−1. We denoted half the damping rate by

κ0 =
ǫ

R2
. (4.7)

Theorem 4.1. Let (τ0, ρ0) ∈ L1(Rd)2 ∩ Cα(Rd)2. There exist constants ε > 0,
Γ ≥ 2 and there exists a time T0 > 0 and a weak solution of (2.26, 3.7, 4.1) (ρ, τ) ∈
C([0, T0],W

−1,p(Rd)2) ∩ L∞([0, T0]; (C
α(Rd) ∩ L1(Rd))2), 1 < p < ∞, satisfying the

equations in the weak sense, and such that

Dk0T0M∞

{
1 + log

(
1 +M

d
d+α
α M

α
d+α

1 M−1
∞

)}
≥ ε (4.8)

and

‖ρ(·, t)‖L1(Rd) + ‖τ(·, t)‖L1(Rd) ≤ ΓM1, (4.9)

‖ρ(·, t)‖L∞(Rd) + ‖τ(·, t)‖L∞(Rd) ≤ ΓM∞, (4.10)
and

[ρ(·, t)]α + [τ(·, t)]α ≤ ΓMα (4.11)

hold on [0, T0].

Proof. We consider the system (4.1, 3.7, 2.26) with initial data that have been
regularized by convolution with a standard mollifier φδ. We obtain uniform bounds
for quantities of interest and pass to the limit δ → 0, removing the mollifier. In order
to simplify the exposition, we will denote the solutions τ (δ), ρ(δ) by τ, ρ as if they did
not depend on δ. The bounds and constants below will indeed be δ-independent. We
use the following notations

γ(t) := (Dκ0)
−1 sup

0≤s≤t

‖∇xu(·, s)‖L∞(Rd), (4.12)

b(t) := (Dκ0)
−1 sup

0≤s≤t

[∇xu(·, s)]α, (4.13)

n(t) := sup
0≤s≤t

[‖τ(·, s)‖L∞(Rd) + ‖ρ(·, s)‖L∞(Rd)], (4.14)

and

m(t) := sup
0≤s≤t

{[τ(·, s)]α + [ρ(·, s)]α}, (4.15)
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We prove first uniform bounds, and then discuss their use. We use (3.12) to obtain

sup
0≤s≤t

[‖τ(·, s)‖L1(Rd) + ‖ρ(·, s)‖L1(Rd) ≤ CM1, (4.16)

which is based on the fundamental dissipative property of the system. We note
that the function (x, a, b) 7→ x log

(
1 + ab

x

)
is increasing in each of its arguments

x > 0, a > 0, b > 0. Therefore, we may use upper bounds in the right-hand side of
(3.13). Using (3.13) we deduce

γ(t) ≤ Cn(t)

{
1 + log

(
1 +

m(t)
d

d+αM
α

d+α

1

n(t)

)}
, (4.17)

and using (3.15)

b(t) ≤ Cm(t). (4.18)

We proceed to estimate in (2.65):

n(t) ≤ CM∞[1 +Dκ0tγ(t)]e
CDκ0tγ(t), (4.19)

and (2.66):

m(t) ≤ CMα[1 +Dκ0tγ(t)]e
CDκ0tγ(t) + C(M∞Dκ0t)[1 +Dκ0tγ(t)]e

CDκ0tγ(t)m(t).
(4.20)

The term Dκ0tγ(t) can be bound from (4.17):

Dκ0tγ(t) ≤ (CDκ0t)n(t)

{
1 + log

(
1 +

m(t)
d

d+αM
α

d+α

1

n(t)

)}
. (4.21)

The structure of the inequalities is the following: if we denote the group

x(t) := Dκ0tγ(t), (4.22)

we have from (4.19)

n(t) ≤ CM∞(1 + x(t))eCx(t), (4.23)

and therefore from (4.21) we deduce

x(t) ≤ (CDκ0t)M∞(1 + x(t))eCx(t)
(
1 + log

(
1 + 1

C(1+x(t))eCx(t)

))

×
{

1 + log
(
1 +m(t)

d
d+αM

α
d+α

1 M−1
∞

)}
,

(4.24)

so

F (x(t)) ≤ C(M∞Dκ0t)
{

1 + log
(
1 +m(t)

d
d+αM

α
d+α

1 M−1
∞

)}
, (4.25)

where

F (x) = xe−Cx(1 + x)−1

(
1 + log

(
1 +

1

C(1 + x)eCx

))−1

. (4.26)
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Let

a(t) := M∞Dκ0t. (4.27)

Now (4.20) can be written as

m(t) ≤ C(1 + (x(t)))eCx(t)[Mα + a(t)m(t)] (4.28)

and

F (x) ≤ Ca(t)
{

1 + log
(
1 +m(t)

d
d+αM

α
d+α

1 M−1
∞

)}
. (4.29)

We fix C0 a large enough absolute constant, larger than the C we encountered so far.
Without loss of generality we may assume 1 + x ≤ eC0x and

1 + log

(
1 +

1

C(1 + x)eCx

)
≤ 1 + log(1 + C−1) ≤ C0,

so that

F (x) ≥ xe−2C0x 1

C0

and therefore, as long as x(t) ≤ 1, we have from (4.29)

x(t) ≤ C2
0e

2C0a(t)
{

1 + log
(
1 +m(t)

d
d+αM

α
d+α

1 M−1
∞

)}
, (4.30)

and from (4.28)

m(t)

Mα

≤ C0e
2C0x(t)

[
1 + a(t)

m(t)

Mα

]
. (4.31)

Using x(t) ≤ 1 and requiring

a(t) ≤ 1

2
C−1

0 e−2C0 (4.32)

we deduce from (4.31) that, as long as x(t) ≤ 1, it follows that

m(t)

Mα

≤ 2C0e
2C0 . (4.33)

Returning to x(t), as long as x(t) ≤ 1, we have from (4.30) and (4.33) that

x(t) ≤ C2
0e

2C0a(t)
{

1 + log
(
1 + (2C0e

2C0Mα)
d

d+αM
α

d+α

1 M−1
∞

)}
. (4.34)

We require therefore also

a(t) ≤ 1

2

{
C2

0e
2C0

{
1 + log

(
1 + (2C0e

2C0Mα)
d

d+αM
α

d+α

1 M−1
∞

)}}−1

(4.35)

and thus, as long as x(t) ≤ 1, it follows that actually x is bounded by x(t) ≤ 1
2 . The

initial datum for x(t) is zero, and a(t) is explicitly proportional to t and starts from
zero. Therefore, because of continuity, if the time t is taken small enough so that
a(t) satisfies the requirements (4.32, 4.35) it follows that x(t) < 3

4 on that interval;
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we can reason by contradiction that the first time it would reach 3
4 it would have

to be not larger that 1
2 , which is absurd. Consequently, it follows from (4.33) that

m(t) ≤ 2C0e
2C0Mα and from (4.23) that n(t) ≤ 2C0e

2C0M∞ on the time interval,
providing the required short time uniform bound. The rest of the proof of the theorem
is based on the uniform bound. It is well known that regular solutions exist as long
as the L∞ bounds persist (see [4, 18], also next section). Therefore classical solutions
with regularized initial data exist for this interval of time. Indeed, by regularizing the
initial data we do not hamper the bounds M1, M∞, Mα. The most straightforward
proof of local existence for smooth data yields a very short time of existence, but the
a priori bounds permit the solution to be extended as long as (4.32) and (4.35) hold.
Then we remove the regularization of the initial data, and pass to limit in the equation
in distributional sense. We conclude that the limit obeys the equation because the
quadratic nonlinearity is strongly continuous in L2 (for the right-hand side) and in
W−1,2 for the advective derivative. Further details are left for the interested reader.

We will pursue now the stability issue. Let us start by assuming that

1

κ0
‖∇xu(·, t)‖L∞(Rd) ≤ Ge−κ0t (4.36)

on the time interval t ∈ [0, T ]. We require that

G ≤ 1

4
. (4.37)

Similarly, we assume

1

κ0
[∇xu(·, t)]α ≤ He−κ0t (4.38)

on the same time interval. We will show that we can choose G, H so that these
assumptions are invariant in time: once initiated they cannot break down. Before we
embark on the calculation, we should point out the simple strategy: we obtain from
(4.36), (4.38) a priori bounds on τ . We then deduce a posteriori bounds for ∇xu that
are strictly better than the assumptions (4.36, 4.38). Because we work in a class in
which the equation has unique solutions, if the initial data for τ are small we deduce
that, if initiated, the bounds continue indefinitely.

We start by estimating the terms in (2.66) using (4.36) and (4.38). We will use

∫ t

0

γ(z)dz ≤ G, (4.39)

which follows from (4.36). We have four terms, and in all of them, as well as in (2.65),
we bound

∫ t

0

exp

{
−2κ0(t− s) + 2

∫ t

s

γ(z)

}
γ(s)ds

≤ e2G exp {−2κ0t}
∫ t

0

exp {2κ0s}κ0G exp {−κ0s}ds ≤ Ge−κ0te2G

≤
√
eGe−κ0t, (4.40)

using (4.39) and the fact that 4G ≤ 1.From this calculation and (2.65) it follows that

‖τ(·, t)‖L∞(Rd) ≤ Ce−κ0t
[
‖ρ0‖L∞(Rd) + ‖τ0‖L∞(Rd)

]
= Ce−κ0tM∞, (4.41)
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with C depending on d alone. Using (2.62) and (2.67) in (2.46) and integrating we
obtain in the same way

‖τ(·, t)‖L1(Rd) ≤ Ce−κ0t
[
‖ρ0‖L1(Rd) + ‖τ0‖L1(Rd)

]
= Ce−κ0tM1. (4.42)

We write the inequality (2.66) as

[τ(·, t)]α ≤ I + II + III + IV, (4.43)

and we start with

I ≤ C[ρ0]αe
αG

(
1

2

)
e−κ0t = C[ρ0]αe

−κ0t, (4.44)

in which we used (4.39) and (4.40) above. This illustrates our use of the generic
constant C: we used αG ≤ 1

2 . For II we obtain

II ≤ C‖ρ0‖L∞(Rd)e
2αGe−κ0t

∫ t

0
[∇xu(·, s)]αds

≤ C‖ρ0‖L∞(Rd)e
−κ0t

∫ t

0
[∇xu(·, s)]αds.

(4.45)

We used 2αG ≤ 1 and (4.40). For III we need to use the assumption (4.38), and
instead of (4.40) we use a similar bound with the explicit κ0G exp (−κ0t) replacing
γ(t) and κ0H exp (−κ0t) replacing [∇xu]α(t). We obtain:

III ≤ C‖ρ0‖L∞(Rd)e
(2+2α)GHe−κ0t = C‖ρ0‖L∞(Rd)He

−κ0t. (4.46)

Finally,

IV ≤ C

[
[τ0]α + ‖τ0‖L∞(Rd)

∫ t

0

[∇xu(·, s)]αds
]
e−2κ0t. (4.47)

where we use again (4.39) and (2 + 2α)G ≤ 1. Collecting terms, we have proved that
(4.36, 4.37) and (4.38) imply that

[τ(·, t)]α

≤ Ce−κ0t

{
[ρ0]α + [τ0]α +H‖ρ0‖L∞(Rd)

+
[
‖ρ0‖L∞(Rd) + ‖τ0‖L∞(Rd)

] ∫ t

0

[∇xu(·, s)]αds
}
. (4.48)

Now from (3.9), (3.15) and a Gronwall-like inequality we derive

[τ(·, t)]α

≤ C
[
[ρ0]α + [τ0]α +H‖ρ0‖L∞(Rd)

]
exp

{
−tκ0 +

Ck[‖ρ0‖L∞(Rd) + ‖τ0‖L∞(Rd)]

κ0

}
.

(4.49)

Indeed, (4.48) together with (3.9, 3.15) imply an inequality of the type

y(t) ≤ Ce−tκ0

[
a+ b

∫ t

0

y(s)ds

]
= F (t)
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for the positive quantity y(t) = [τ(·, t)]α, with

a = [ρ0]α + [τ0]α +H‖ρ0‖L∞(Rd)

and

b = k[‖ρ0‖L∞(Rd) + ‖τ0‖L∞(Rd)].

Differentiating the right hand side F (t) and using the fact that y(t) ≤ F (t) we deduce

dF

dt
≤ −κ0F + Cbe−tκ0F,

and dividing by F and integrating we obtain

log

(
F (t)

Ca

)
≤ −κ0t+

Cb

κ0
.

Substituting back, we deduce (4.49). Let us consider now the right-hand side of (3.13)
with σ̃ = τ . We recall that (4.41) is

‖τ(·, t)‖L∞(Rd) ≤ Ce−κ0tM∞, (4.50)

(4.42) is

‖τ(·, t)‖L1(Rd) ≤ Ce−κ0tM1, (4.51)

and (4.49) becomes

[τ(·, t)]α ≤ C[Mα +H‖ρ0‖L∞(Rd)]e
−κ0t exp {CDM∞}. (4.52)

Assembling the right hand side of (3.13) we deduce

‖Rτ‖L∞(Rd) ≤ CM∞e
−κ0t

{
1 + log

[
1 +

M
α

d+α

1 [Mα +HM∞]
d

d+α

M∞

]
+DM∞

}
.

(4.53)
Note that the term e−κ0t canceled in the expression for the argument of the logarithm.
Now we use (3.9) to obtain a posteriori estimates. From (4.53) we obtain

1
κ0
‖(∇xu(·, t)‖L∞(Rd)

≤ CDM∞e
−κ0t

{
1 + log

[
1 +

M
α

d+α
1 [Mα+HM∞]

d
d+α

M∞

]
+DM∞

}
.

(4.54)

Also, from (4.52) and (3.9) we have

1

κ0
[(∇xu)(·, t)]α ≤ CD[Mα +HM∞] exp {−κ0t+ CDM∞}. (4.55)

Let us choose G = 1/4 and

H =
Mα

M∞
. (4.56)
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Then (4.55) becomes

1

κ0
[(∇xu)(·, t)]α ≤ CDMα exp {−κ0t+ CDM∞}. (4.57)

The bound (4.52) becomes

[τ(·, t)]α ≤ CMαe
−κ0t exp {CDM∞}. (4.58)

The upper bound (4.54) implies the bound

1

κ0
‖(∇xu)(·, t)‖L∞(Rd) ≤ B1Ge

−κ0t, (4.59)

where

B1 = B0 + CD2M2
∞ (4.60)

and B0 = B0(M1,Mα,M∞,D) is given by

B0(M1,Mα,M∞,D) = CDM∞

{
1 + log

[
1 +M−1

∞ M
d

d+α
α M

α
d+α

1

]}
, (4.61)

with appropriate constants C depending on d only. The functionsB0(M1,Mα,M∞,D)
and B1(M1,Mα,M∞,D) are continuous in their arguments M1 > 0, Mα > 0, M∞ >
0, D > 0, and hence locally bounded, and vanish when M∞ → 0 while the rest are
held fixed, or when D → 0 and the rest are fixed.

The bound (4.57) implies the bound

1

κ0
[(∇xu)(·, t)]α ≤ B2He

−κ0t, (4.62)

where the function B2 = B2(DM∞) is given by

B2 = CDM∞ exp {CDM∞} (4.63)

with an appropriate constant C. We have proved therefore

Proposition 4.2. Let τ(x, t) be the solution of (4.1) given in (2.46) where ρ(x, t)
solves (2.26) and assume that u obeys (4.36), (4.38) on the time interval [0, T ]. Then
τ and u obey the bounds (4.50, 4.51, 4.58, 4.59, 4.62) one the same time interval,
where the constants M1,M∞,Mα are given in (4.3, 4.4, 4.5), the constants B0, B1, B2

are given in (4.60, 4.61, 4.63) and the constants C are independent of solutions, fixed,
and depend only on d.

We combine now this proposition with the good local existence result, Theorem
4.1. We start with initial data that are small. To fix the notation, we denote by C1 an
upper bound for the constants C appearing in Proposition 4.2 above. We can arrange
the constants so that, from

[τ(·, t)]α ≤ ΓMα, (4.64)

‖τ(·, t)‖L1(Rd) ≤ ΓM1, (4.65)
and

‖τ(·, t)‖L∞(Rd) ≤ ΓM∞, (4.66)
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it follows that

1

κ0
‖∇xu(·, t)‖L∞(Rd) ≤

G

8C1
(4.67)

and

1

κ0
[∇xu(·, t)]α ≤ H

8C1
(4.68)

because of the constitutive relations between u and τ . Note that the size of τ alone
determines that of u. Indeed, in view of (3.13)

1

κ0
‖∇xu(·, t)‖L∞(Rd) ≤ CB0(ΓM1,ΓMα,ΓM∞,D),

and in view of (3.15)

1

κ0
[∇xu(·, t)]α ≤ CDΓMα = CDΓM∞H.

So, the condition

B0(ΓM1,ΓMα,ΓM∞,D) ≤ 1

32CC1
(4.69)

implies (4.67), and the condition

DΓM∞ ≤ 1

8CC1
(4.70)

implies (4.68). Then, we automatically see that (4.36) and (4.38) hold on the interval
of time [0, T0]. In fact, if eκ0T0 ≤ 2C1 we deduce that

1

κ0
‖∇xu(·, t)‖L∞(Rd) <

1

2
Ge−κ0t (4.71)

and

1

κ0
[∇xu(·, t)]α <

1

2
He−κ0t (4.72)

hold on [0, T0]. On the other hand, as long as (4.36, 4.38) hold, the decay estimates
(4.50, 4.51, 4.58) imply that

‖τ(·, t)‖L∞(Rd) ≤
2

3
M∞, (4.73)

‖τ(·, t)‖L1(Rd) ≤
2

3
M1, (4.74)

and

[τ(·, t)]α ≤ 2

3
Mα, (4.75)

provided eκ0t ≥ 3
2C1e

C1DM∞ . The lower bound (4.8) on the life-span of the solution
is

κ0T0B0(M1,Mα,M∞,D) ≥ ε, (4.76)
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and it shows that if

B0(M1,Mα,M∞,D)

[
log

(
3C1

2

)
+ C1DM∞

]
≤ ε (4.77)

then the solution exists for a period of time that is long enough so that τ is reduced
from its original size (4.73, 4.74, 4.75) at the end T0 of the interval. Requiring that

C1DM∞ ≤ log

(
4

3

)
(4.78)

allows to arrange for T0 so that 3
2C1e

C1DM∞ ≤ eκ0T0 ≤ 2C1. Therefore, if the
initial data satisfy (4.69, 4.70, 4.77, 4.78) then the assumptions of Proposition 4.2
are satisfied with T = T0. We can repeat now argument taking the same time step.
Therefore we find that the solution, if unique, exists for all time and obeys the bounds
(4.64, 4.65, 4.66) for all time. In order to prove decay it is useful to consider first the
case of smooth initial data. The previous considerations of course apply and so the
solutions are global and obey the bounds (4.64, 4.65, 4.66) for all time, and therefore
obey (4.67, 4.68) for all time, and consequently (4.71, 4.72) for t ≤ T0 with T0 fixed
above. Now we consider the function

φ(T ) := max

{
sup

0≤t≤T

eκ0t 1

Gκ0
‖∇xu(·, t)‖L∞(Rd) ; sup

0≤t≤T

eκ0t 1

Hκ0
[∇xu(·, t)]α

}
.

(4.79)
This is a continuous nondecreasing function of T ∈ R+ (it is here that we use the
fact that we mollified the initial data). Also, (4.71, 4.72) imply that φ(T ) ≤ 1

2 , for
T ≤ T0. Now we claim that

sup
T≥0

φ(T ) ≤ 3

4
. (4.80)

Indeed, assume not. Then there would exist a first time T1 so that φ(T1) = 3
4 . In

particular, because φ(T1) ≤ 1, Proposition 4.2 applies on [0, T1], and hence (4.59,
4.62) hold on [0, T1]. But these inequalities imply φ(T1) ≤ 1

2 , which is absurd. Thus,
(4.80) holds for all time. Then, using again Proposition 4.2, (4.50, 4.51, 4.58) hold for
all t, and these are uniform decay bounds. The constants depend only on the norms
indicated, so by removing the mollifiers we see that the upper bounds are inherited
by the weak solutions in Cα ∩ L1.

We note that the smallness conditions (4.69, 4.70, 4.77, 4.78) all follow from a
single condition:

B0(M1,Mα,M∞,D) ≤ ε1. (4.81)

Theorem 4.3. Let the initial data τ0, ρ0 satisfy (τ0, ρ0) ∈ (L1(Rd))2 ∩ (Cα(Rd))2,
0 < α < 1. Let M1,M∞, and Mα defined in (4.3, 4.4, 4.5) denote the size of the
initial data. There exists a constant ε1 such that, if

DM∞

{
1 + log

(
1 +M−1

∞ M
d

d+α
α M

α
d+α

1

)}
≤ ε1, (4.82)

then there exists a unique global weak solution

(τ, ρ) ∈ L∞([0,∞), (L1(Rd) ∩ Cα(Rd))2) ∩ C([0,∞), (W−1,p(Rd))2),
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p < ∞ of (2.26), (4.1), with u given by (3.7). The meaning of weak solutions is in
the sense of distributions, and the time derivatives of τ and ρ belong to W−1,p(Rd)
for any p <∞. The gradient of velocity decays exponentially in time:

1

κ0
‖∇xu(·, t)‖L∞(Rd) ≤ Ke−κ0t, (4.83)

1

κ0
[∇xu(·, t)]α ≤ Ke−κ0t. (4.84)

The norms [τ ]α and ‖τ‖Lp(Rd) decay exponentially:

[τ(·, t)]α ≤ Ke−κ0t, (4.85)

‖τ(·, t)‖Lp(Rd) ≤ Kpe
−κ0t, (4.86)

for 1 ≤ p ≤ ∞ with explicit constants K that depend on d, D, M1, M∞, Mα, p and
α > 0 alone. The norms of ρ remain bounded:

‖ρ(·, t)‖Lp(Rd) = ‖ρ0‖Lp(Rd) (4.87)

and

[ρ(·, t)]α ≤ K. (4.88)

Remark 4.4. The condition (4.82) is satisfied if the Deborah number is arbitrary, the
initial τ0 is sufficiently small in Cα(Rd) and the initial ρ0 is small in Cα. Nontrivial
initial data with small L∞ norm and large spatial derivatives are allowed as well
because of the logarithmic dependence on Mα. The conditions are also satisfied if the
initial data are of order one but the Deborah number is small. If the initial data are
smoother, the smoothness propagates.

Remark 4.5. The proof of uniqueness, given below, uses Lagrangian transformations.
Unlike the case of Euler equations, a proof in Eulerian coordinates seems difficult to
obtain.

Proof. The previous argument is complete, modulo the uniqueness of the solu-
tion. We present here the proof of uniqueness. We consider the equation

d

dt
X = F [X], (4.89)

with X(a, 0) = a, where X = X(a, t) is viewed as an element of
X := C([0, T ], C1,α(Rd)d). We fix T . The function F depends on the whole path
X not only on the value of X at some point, and is obtained as follows. First we
construct, using the initial data ρ0 ∈ L1(Rd) ∩ Cα(Rd), σ0(a) = ρ0(a)I + τ0(a) ∈
(L1(Rd) ∩ Cα(Rd))d2

, and using (2.42), the map X 7→ σ[X] given by

σ[X](a, t) = 2κ0ρ0(a)
∫ t

0
e−2κ0(t−s)q(a, t, s)q(a, t, s)T ds

+e−2κ0t(∇aX(a, t))σ0(a)(∇aX(a, t))T
(4.90)

where q(a, t, s) = q[X](a, t, s) = (∇aX(a, t))(∇aX(a, s))−1 is given in (2.39).
We take

τ [X](a, t) = σ[X](a, t) − ρ0(a)I, (4.91)
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consider A(x, t) = X−1(x, t), compose τ [X] with it,

τX(x, t) = τ [X](X−1(x, t), t), (4.92)

and solve the Stokes system, resulting in (3.7)

ui
X(x, t) = kΛ−1(Rlτ

il
X +RiRmRn(τmn

X )). (4.93)

We write symbolically

uX = kΛ−1
H(τ [X] ◦X−1) = kΛ−1

H(τX), (4.94)

where H stands for the combinations of Riesz transforms that appear in (4.93),

Himn = δimRn +RiRmRn, (4.95)

and thus kΛ−1
H is the inverse of the Stokes system (3.1). Finally, we compose with

X(a, t) to obtain

F i[X](a, t) = ui
X(X(a, t), t). (4.96)

Thus F [X] is obtained via the succession of compositions

X 7→ τ [X] 7→ τX = τ [X] ◦X−1 7→ uX = kΛ−1
H(τX) 7→ F = uX ◦X. (4.97)

The norm in X is

‖X‖X := sup
0≤t≤T

‖X(·, t)‖C1,α(Rd). (4.98)

We consider a fixed constant M and the set

D := {X ∈ X | X(0, a) = a,
1

2
≤ det∇aX(a, t) ≤ 3

2
, ‖X‖X ≤M}. (4.99)

The initial data for the PDE serve as parameters in the definition of F . We wish to
show that two solutions X1 ∈ D and X2 ∈ D of the Equation (4.89) corresponding to
the same ρ0, τ0 are identical. In order to do so we establish

‖(DF [X])Y ‖X ≤ C‖Y ‖X (4.100)

with a uniform constant C that depends on M . We have to be careful to avoid taking
derivatives of σ0 and τ0. We start by noting that the map

X 7→ σ[X]

is Fréchet differentiable at X ∈ D as a map from the Banach space X to the Banach
space Σ = C(0, T ; [Cα(Rd) ∩ L1(Rd)]d

2

) of time-continuous maps with values in the
space of matrices with spatially Hölder continuous and integrable coefficients. The
derivative is a bounded linear map in L(X ,Σ),

Y 7→ (Dσ[X])Y.

The derivative has a complicated expression that depends on history but it can be
easily obtained; the derivative of q[X] is

((Dq[X])Y )(a, t, s) = (∂aY (a, t))(∇aX(a, s))−1 − q(a, t, s)(∇aY (a, s))(∇aX(a, s))−1.
(4.101)
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Then the derivative of σ[X] is

((Dσ[X])(Y ))(a, t)

= 2κ0ρ0(a)

∫ t

0

e−2κ0(t−s)(Dq[X]Y )(a, t, s)q(a, t, s)T ds

+2κ0ρ0(a)

∫ t

0

e−2κ0(t−s)q(a, t, s)(Dq[X]Y )T (a, t, s)ds

+e−2κ0t
[
(∇aY (a, t))σ0(a)(∇aX(a, t))T + (∇aX(a, t))σ0(a)(∇aY (a, t))T

]
.

(4.102)

It is clear that

‖Dσ[X]Y ‖Σ ≤ C‖Y ‖X , (4.103)

where

‖τ‖Σ = sup
0≤t≤T

{
‖τ(·, t)‖L∞(Rd) + ‖τ(·, t)‖L1(Rd) + [τ(·, t)]α

}
. (4.104)

The map

X 7→ τ [X]

is just a translation of σ[X] by anX-independent amount, so it has the same derivative

(Dτ [X])Y = (Dσ[X])Y. (4.105)

Now, the map

X(a, t) 7→ τX(x, t)

is obtained from the map τ [X] by composition with X−1. We cannot afford to take
the derivative of τX . However, uX is obtained from τX by using a linear smoothing
operator of degree −1, so we can differentiate it. We take a path Xε(a, t) = X(a, t)+
εY (a, t), differentiate with respect to ε and then set ε = 0:

((DuX)Y )(x, t) = kΛ−1
H((Dτ [X]Y ) ◦X−1) − kΛ−1

H((∇xτX)(Y ◦X−1)). (4.106)

The first term appears when we differentiate τ [X] ◦X−1 with respect to X, keeping
X−1 fixed. The second term arises when we differentiate X−1 using the fact that

d

dε
X−1

ε | ε=0(x, t) = −(∇xX
−1)Y (X−1(x, t), t).

This fact is obtained by differentiating d
dε

.

X−1
ε (X(a, t) + εY (a, t)) = a,

setting ε = 0, and reading at a = X−1(x, t). Then the derivative of τ [X] ◦X−1
ε with

respect to ε is obtained using the chain rule

d
dε

(τ [X])(X−1
ε )| ε=0 = ((∇aτ [X]) ◦X−1)( d

dε
X−1

ε )| ε=0

= −((∇aτ [X]) ◦X−1)(∇xX
−1)(Y ◦X−1) = −(∇xτX)(Y ◦X−1).
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The second term in (4.106) is strictly speaking a distribution, as it involves derivatives
of τX , which is only Hölder continuous. At this stage, we can view this as a formal
calculation that will be justified in the end. Finally, we need to compose back with
X(a, t).

(DF (X)Y )(a, t) = ((DuX)Y )(X(a, t), t) + (∇xuX)(X(a, t), t)Y (a, t). (4.107)

The second term in the expression above is unbounded as a linear operator from C1,α

to itself, simply because the coefficient ∇xuX is not differentiable. But this term
combined with the second problematic term in (4.106) produces a commutator that
is better behaved, K[X]Y . Thus, we have

(DF (X)Y )(a, t) = k
{
Λ−1

H((Dτ [X]Y ) ◦A)
}

(X(a, t), t) + (K[X]Y )(a, t), (4.108)

where

(K[X]Y )(a, t) = (∇xuX)(X(a, t), t)Y (a, t) − k(Λ−1
H((∇xτX)(Y ◦X−1)))(X(a, t), t).

(4.109)
We would like to show that the map Y 7→ K[X]Y is a bounded linear operator in
C(0, T ; (C1,α)d) with norm uniformly bounded for X ∈ D. Because composition with
X−1 and composition with X are both bounded linear operators C1,α → C1,α, with
norms controlled by M , the boundedness of K[X]Y is equivalent to the boundedness
of the map

φ 7→ L[X]φ,

where

φ(x, t) = Y (X−1(x, t), t) (4.110)

and

(L[X]φ)(x, t) = k(∇xΛ−1
HτX)(x, t)φ(x, t) − k(Λ−1

H((∇xτX)φ))(x, t). (4.111)

It is important to specify the tensorial nature of this commutator, as not all such
expressions are better behaved than their individual terms. In our case, τX is a fixed
symmetric matrix in Σ, k is a number, and the commutator is

(L[X]φ)i = k
[
φp∂pΛ

−1
Himnτ

mn
X − Λ−1

Himn(φp∂pτ
mn
X )

]
. (4.112)

We can write the commutator as

L[X]φ = k
[
φp(∂pΛ

−1
Himn)(τmn

X ) − (∂pΛ
−1

Himn)(φpτmn
X )

]
−kΛ−1

Himn((∂pφ
p)τmn

X ).
(4.113)

For incompressible X we could only consider divergence-free φ,

∂pφ
p = 0, (4.114)

but that would force us to work tangent to volume-preserving maps and would make
the proof a little more complicated; we do not need to use that because the map

φ 7→ Λ−1
Himn((∂pφ

p)τmn
X )
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is bounded as a linear map from C(0, T ; [C1,α]d) to itself. Clearly, because τX is Hölder
continuous, and because classical Calderon-Zygmund operators are bounded in Hölder
spaces, there is no difficulty in bounding Hölder norms of derivatives of the expression
Λ−1

Himn((∂pφ
p)τmn

X ). Proving that the undifferentiated quantity is bounded is done
using the fact that τX ∈ L1 ∩ L∞, and therefore (∂pφ

p)τX ∈ L1 ∩ L∞. The operator
Λ−1

H continuously maps L1 ∩ L∞ to L∞. The operators Rpimn = ∂pΛ
−1

Himn are
sums of classical Calderon-Zygmund operators and multiples of the identity. The
commutators

φ 7→ φpRpimn(τmn
X ) −Rpimn(φpτ

mn
X ) (4.115)

are bounded as operators from C(0, T ; [C1,α]d) to itself. This is quite obvious for
smooth τX but a little less obvious for τX ∈ Σ. Let us write the kernel of Rpimn as
Kpimn, so the commutator is

∫

Rd

K(x− y)(φ(x) − φ(y))τX(y)dy, (4.116)

where we did not write all the indices and the time dependence for ease of notation.
The kernel K is smooth away from the origin and is homogeneous of order −d. Dif-
ferentiating in some direction and writing K ′ for the singular (of order d+ 1) kernel
obtained by differentiating K, we have

T [X]φ = P.V.

∫
K ′(x− y)(φ(x) − φ(y))τX(y)dy (4.117)

plus a nice operator (∇xφ
p)Rpimn(τmn

X ). This last operator is clearly bounded in Cα,
with bound controlled by M , so we concentrate our attention on T [X]. Now we write

T [X]φ =

∫ 1

0

dλ

[
P.V.

∫

Rd

(x− y)K ′(x− y)∇φ(x+ λ(y − x))τX(y)dy

]
. (4.118)

The kernel (x − y)K ′(x − y) is homogeneous of order −d. It might have nonzero
average on the unit sphere. Nevertheless, we subtract the value ∇xφ(x):

T1[X]φ

=

∫ 1

0

dλ

{
P.V.

∫

Rd

(x− y)K ′(x− y) [∇xφ(x+ λ((y − x))) −∇xφ(x)] τX(y)dy

}
.

(4.119)

The contributions left from the average on the unit sphere, if nonzero, are a constant
multiple of (∇xφ(x))τX(x) and ∇xφ(x)T2τX(x),

T2(τX)(x) =

∫

Rd

(x− y)K ′(x− y)(τX(x) − τX(y))dy, (4.120)

both bounded with values in Cα. The fact that T1[X]φ is bounded in Cα, and similarly
that T2(τX) is a Hölder continuous function, are classical. A proof can be found in
[3]. We have one more term in DF [X], namely

Y 7→ k(Λ−1
H((Dτ [X]Y ) ◦X−1)) ◦X. (4.121)
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Its boundedness is equivalent to the boundedness of the maps of the type

φ 7→ Λ−1
H(gX∇φ) (4.122)

in C1,α, where gX is in Σ. These are easily bounded because when we take spatial
derivatives we arrive at

φ 7→ R(gX∇φ), (4.123)

which are bounded in Cα, and if we do not take derivatives the L∞ boundedness
follows as above from the fact that gX∇φ ∈ L1 ∩ L∞. We have therefore verified the
fact that DF [X] is bounded in X uniformly for X ∈ D. The function F is locally
Lipschitz and because solutions of (4.89) start from the identity, they coincide for
short time. The same argument does not need the initial data to be the identity, but
rather the same invertible C1,α transformation so uniqueness propagates because F
is locally Lipschitz. This concludes the proof of the theorem.

5. A regularization

We consider here the system formed by the (2.1) coupled with (3.1), (3.2) via
(2.3). In this section, we consider the same potential (2.2) but we allow R to be a
function of x and t (but of course, not of m). The properties that σ is symmetric,
non-negative, and the bound (2.4) remain valid. In order to see what dependences on
R would be allowed by the energy considerations, we repeat the calculation leading
to (3.10): we take (2.1), multiplied by k(log f + U), integrate, take (3.1) multiply by
u, integrate, and add the two: we deduce

k
d

dt

[∫

Rd

∫

Rd

f log fdmdx+
1

2

∫

Rd

Tr[σ(x, t)]dx

]
+ k

∫

Rd

2DtR

R

(∫

Rd

fUdm

)
dx

= −
∫

Rd

|∇xu(x, t)|2dx− kǫ

∫

Rd

∫

Rd

f |∇m(log f + U)|2 dmdx. (5.1)

It is thus clear that DtR ≥ 0 is energetically favorable. The solution on character-
istics might be less explicit, however the equation obeyed by σ is easily obtained by
multiplying (2.1) by (m⊗m)/R2 and integrating. The result is very similar to (2.29):

Dtσ = (∇xu)σ + σ(∇xu)
T − 2ǫ

R2
σ +

2ǫ

R2
ρI − 2DtR

R
σ. (5.2)

We again see that DtR ≥ 0 has the effect of an additional damping. In fact, if DtR
R

is
a constant, then the effect is precisely one of enhanced damping and is similar to the
situation covered previously in Theorem 4.3, but in a better regime. More interesting,
perhaps, is a damping that responds locally to very high rate of strain in the fluid.
Let us consider a coupled system in which, in addition to (2.1) coupled to (3.1), (3.2)
via (2.2), R evolves according to

DtR = δ (|∇xu(x, t)|)R (5.3)

and δ(g) is a smooth nonnegative function of one nonnegative variable g, that vanishes
for g ≤ κ

2 ,

δ(g) =

{
0, if g ≤ κ

2 ,

C0

√
κ2 + g2, if g ≥ κ,

(5.4)
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and satisfies

|δ′(g)| ≤ 2C0 (5.5)

for all g ≥ 0. In particular δ(|∇xu|) satisfies

δ = C0

√
κ2 + |∇xu|2 (5.6)

if |∇xu| ≥ κ > 0. The constant κ > 0 is fixed, and represents the order of magnitude of
the largest permissible temporal growth rate. The constant C0 > 0 is a function of the
dimension of space (this is needed because of the tensorial nature of the calculation),
so that

3c|∇xu| − 2δ ≤ 0 (5.7)

holds, if |∇xu| ≥ κ, where c is the norm equivalence constant that bounds

maxil |∂lu
i| ≤ c|∇xu|. Thus c is a norm equivalence constant in R

d2

, and we can
choose C0 = 3

2c.
Because the problem evolves in time, the initial data f0 and R0 need to be speci-

fied. We assume that f0 is non-negative and smooth enough in x, decaying fast enough
in m, (f0 ∈W 1,p(Rd;L1((1 + |m|2)dm))) and R0(a) ≥ Rmin > 0 is in W 1,p(Rd) with
p > d. Then from (5.2) and from the fact that σii are nonnegative for each fixed i, it
follows that

Dt Tr(σ) ≤ 2cκ Tr(σ) +
2dǫ

R2
ρ (5.8)

which, after integration on characteristics, results in

sup
x
Tr(σ(x, t)) ≤ e2cκt

[
sup

x
Tr(σ0(x)) +

dǫ

cκR2
min

‖ρ0‖L∞(Rd)

]
= N0(t). (5.9)

In view of (2.4), we thus have control of the L∞ norm of σ in time. Once this
is achieved, based on previous results for similar models, we may expect to prove
regularity. The method of proof of regularity that we employ here, given boundedness
of σ, is the simplest and most explicit. The idea is to differentiate the equation, pay
the price of differentiating the advective term, and do an Eulerian calculation in Lp

spaces with p > d. Working in Lebesgue spaces makes it easy to take advantage of
incompressibility. The approach used in the proof of global existence for Smoluchowski
equations on compact manifolds coupled with time-dependent Stokes equations in
[6], and in the proof of global existence [11] for Smoluchowski equations coupled to
Navier-Stokes equations in d = 2, can be adapted to the present situation as well.
In other words, we can consider the time dependent R evolving according to (5.3),
a Fokker-Planck equation (2.1) with potential given in (2.2) coupled via (2.3) to a
fluid velocity evolving according to the time-dependent Stokes equation in d = 3
or Navier-Stokes equation in d = 2. The method of [4], used in [9] to prove the
global regularity for d = 2 Smoluchowski equations on compact manifolds coupled
with Navier-Stokes equations, requires a little less smoothness on the Navier-Stokes
initial data. That method is also Eulerian, but uses commutation and a penalty
that results in a controlled loss of regularity. The proof is a bit more technical as it
employs Besov spaces and paradifferential calculus, but in principle it can be adapted
to the noncompact particle phase space case with spatially dependent R. We will not
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pursue these matters here, but rather content ourselves with the simplest proof, in
the simplest nontrivial case. Differentiating (5.2) we obtain

Dt(∂kσ
ij) = −(∂ku

l)(∂lσ
ij) + (∂lu

i)(∂kσ
lj) + (∂lu

j)(∂kσ
il) − 2δ(∂kσ

ij)

− 2ǫ
R2 (∂kσ

ij) + (∂2
klu

i)σlj + (∂2
klu

j)σil − (∂k
2ǫ
R2 )σij

−2∂k(δ)(σij) + ∂k( 2ǫ
R2 ρδij).

(5.10)

We mutiply by ∂k(σij) and sum. The terms explicitly involving first derivatives of u
are bounded using (5.7):

[
−(∂ku

l)(∂lσ
ij) + (∂lu

i)(∂kσ
lj) + (∂lu

j)(∂kσ
il) − 2δ(∂kσ

ij) − 2ǫ
R2 (∂kσ

ij)
]
(∂kσ

ij)

≤ 3cκ|∇xσ|2.
(5.11)

The terms explicitly involving second derivatives of u are bounded using (5.9):

[
(∂2

klu
i)σlj + (∂2

klu
j)σil

]
(∂kσ

ij) ≤ CN0(t)|∇x∇xu||∇xσ|. (5.12)

The term containing a derivative of δ is bounded using (5.5), which implies

|∇xδ(|∇xu|)| ≤ 2C0|∇x∇xu| (5.13)

and therefore

−2∂k(δ)(σij)(∂kσ
ij) ≤ CN0(t)|∇x∇xu||∇xσ|. (5.14)

Summarizing, we have so far, pointwise:

1

2
Dt|∇xσ|2

≤ 3cκ|∇xσ|2 + CN0(t)|∇x∇xu||∇xσ| + CN0(t)ǫ

∣∣∣∣∇x

1

R2

∣∣∣∣ |∇xσ| + Cǫ
∣∣∣∇x

ρ

R2

∣∣∣ |∇xσ|.

(5.15)

We have to bound the terms involving ∇xρ and ∇x
1

R2 . In view of the fact that
ρ(x, t) = ρ0(A(x, t)), we have

∇xρ

R2
=

(∇xA

R2

)T

(∇aρ0)(A). (5.16)

Now, because of (2.57) and (5.3) we have

Dt

(∇xA

R2

)
= −

(
(∇xA)

R2

)
((∇xu) + 2δI) (5.17)

and, in view of (5.7), we deduce that

|∇xA(x, t)|
R(x, t)2

≤ ecκt

R2
min

, (5.18)

and consequently

|∇xρ(x, t)|
R(x, t)2

≤ C
ecκt

R2
min

|∇aρ0(A(x, t))| ≤ C
ecκt

R2
min

‖∇aρ0‖L∞(Rd). (5.19)
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The term involving ∇x

(
1

R2

)
is treated using (5.3):

Dt

∇xR

R3
=
(
−(∇xu)

T − 2δI
)(∇xR

R3

)
+

∇xδ

R2
, (5.20)

and therefore in view of (5.7) and (5.13) we deduce

Dt

( |∇xR|
R3

)
≤ cκ

( |∇xR|
R3

)
+ C

|∇x∇xu|
R2

, (5.21)

Integrating on characteristics, we obtain

|∇xR(x, t)|
R3(x, t)

≤ Cecκt

( |∇aR0(A(x, t))|
R3

min

+
1

R2
min

∫ t

0

|∇x∇xu(X(A(x, t), s), s)|ds
)
.

(5.22)
Now we collect the terms in (5.15), divide by |∇xσ| and use (5.19) and (5.22):

Dt|∇xσ(x, t)|
≤ 3cκ|∇xσ(x, t)| + CN0(t)|∇x∇xu(x, t)| + C ecκt

R2
min

ǫ|∇aρ0(A(x, t))|
+Cǫ(N0(t) + ‖ρ0‖L∞(Rd))

×ecκt
(

|∇aR0(A(x,t))|
R3

min

+ 1
R2

min

∫ t

0
|∇x∇xu(X(A(x, t), s), s)|ds

)
.

(5.23)

The inequality (5.23) has the form

Dt(y(x, t)) ≤ 3cκy(x, t)+C(t)z(x, t)+D(t)

∫ t

0

z(X(A(x, t), s), s)ds+E(x, t), (5.24)

where




y(x, t) = |∇xσ(x, t)|,
z(x, t) = |∇x∇xu(x, t)|,

C(t) = CN0(t) = Ce2cκt
[
supx Tr(σ0(x)) + dǫ

cκR2
min

‖ρ0‖L∞(Rd)

]
,

D(t) = C ǫ
R2

min

(N0(t) + ‖ρ0‖L∞(Rd))e
cκt,

E(x, t) = C ǫ
R2

min

ecκt
{
|∇aρ0(A(x, t))| +

(
N0(t) + ‖ρ0‖L∞(Rd)

) |∇aR0(A(x,t))|
Rmin

}
.

(5.25)
The interested reader can check that (5.23) is dimensionally balanced. Now it is time
to start looking at Lp norms. We start by noting that

∥∥∥∥
∫ t

0

z(X(A(x, t), s), s)ds

∥∥∥∥
Lp(dx)

≤
∫ t

0

‖z(X(A(x, t), s), s)‖Lp(dx)ds =

∫ t

0

‖z(X(a, s), s)‖Lp(da)ds

=

∫ t

0

‖z(x, s)‖Lp(dx)ds (5.26)

because of incompresssibility. We integrate (5.24) on characteristics and take the Lp

norm. In order simplify the answer we use the fact that C(t),D(t) are non-decreasing
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functions of time. We obtain

‖y(·, t)‖Lp(Rd)

≤ e3cκt

{
‖y0‖Lp(Rd) + ‖E(·, t)‖Lp(Rd) +

∫ t

0

(C(s) +D(t)(t− s))‖z(·, s)‖Lp(Rd)ds

}
.

(5.27)

We recall (3.9), which implies

∇x∇xu = kR̃(∇xσ̃). (5.28)

In view of the well-known boundedness of Riesz transforms in Lp spaces, we deduce
that

‖z(·, t)‖Lp(Rd) ≤ Ck‖y(·, t)‖Lp(Rd). (5.29)

We note also that ‖E(·, t)‖Lp(Rd) is explicitly a sum of norms of initial data multiplied
by exponentials of time. Now a simple Gronwall argument provides an a priori bound
for y in Lp,

‖y(·, t)‖Lp(Rd) ≤ Fp(t), (5.30)

with Fp(t) an explicit function of time with exponential growth and depending only
on norms of intitial data ‖σ0‖L∞(Rd), ‖ρ0‖L∞(Rd), ‖∇xσ0‖Lp(Rd), and Rmin,
‖∇xR0‖Lp(Rd).

Theorem 5.1. Let f solve (2.1) with U given by (2.2) and R evolving according to
(5.3) with smooth δ satisfying (5.5) and (5.7). Let u be obtained by solving (3.1),
(3.2), with σ given by (2.3). Assume that the initial distribution f0 and R0 satisfy





supx∈Rd

∫
Rd f0(x,m)(1 + |m|2)dm <∞,

R0(x) ≥ Rmin > 0,
∫

Rd |∇xR0(x)|pdx <∞,
∫

Rd

(∫
Rd(1 + |m|2)|∇xf0(x,m)|dm

)p
dx <∞,

(5.31)

with p > d. Then the solution exists for all time, is unique and obeys the a priori
bounds (5.9) and (5.30).

Proof. The space W 1,p(Rd) is a space of local existence and uniqueness of
solutions. The condition infxR(x, t) ≥ Rmin is invariant in time, because R(x, t) ≥
R0(A(x, t)) ≥ Rmin. Then the a priori bounds are enough to finish the proof.

Remark 5.2. The a priori bounds hold in any Lp, 1 < p <∞.

Remark 5.3. Similar theorems hold if we replace steady-state Stokes equation with
time-dependent Stokes equation in d = 2, 3 and with Navier-Stokes equation in d = 2.

Remark 5.4. Higher regularity of solutions can be obtained without difficulty from
higher regularity of the initial data.
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6. Large data

The problem of global regularity for arbitrary smooth initial data is open. The
system formed by (2.1) and (3.1) has potentially finite-time blowup. Indeed, consider
the system in d = 1:




Dtf(x,m, t) + ux∂m(mf(x,m, t)) = ǫ∂m(f∂m(log f(x,m, t) + U(m)))

U(m) = m2

2R2 ,

σ(x, t) =
∫∞

−∞
m2

R2 f(x,m, t)dm,

ux = kHσ,

(6.1)

where H is the Hilbert transform. This system is a 1-d analogue of (2.1) with (2.2),
(2.3), and (3.9). This blows up in finite time. Indeed, we multiply the linear Fokker

Planck equation by m2

R2 and integrate dm to obtain the analogue of (2.29):

Dtσ = 2uxσ − 2ǫ

R2
σ +

2ǫ

R2
, (6.2)

which then, in view of (6.1), is

Dtσ = 2kσHσ − 2ǫ

R2
σ +

2ǫ

R2
(6.3)

and resembles the baby vorticity equation [8]. The blow up argument of [8] works
here also, notwithstanding the fact that the present equation is computed on charac-
teristics. We form z = Hσ + iσ and use the fact that

H(σHσ) =
1

2

(
(Hσ)2 − σ2

)

to deduce

Dtz = kz2 − 2ǫ

R2
z + i

2ǫ

R2
,

which blows up in finite time.
This simple example does not capture incompressibility and the tensorial nature

of the problem, just like the baby vorticity equation of [8] does not capture them.
The main quadratic nonlocal nonlinearity of (2.29) is modeled by σHσ, and this is
the only available model in one dimension. Unlike the incompressible Euler equation
however, the system we study has an additional dissipative structure, and we believe
that this is of some significance and represents the main fallacy of the one-dimensional
model. We describe below a simple scalar model that addresses this issue. We take
henceforth d = 2. We consider the variables




a(x, t) = 1
2

(
σ11(x, t) − σ22(x, t)

)
,

b(x, t) = σ12(x, t) = σ21(x, t),

c(x, t) = σ11(x, t) + σ22(x, t) = Tr (σ(x, t)).

(6.4)

The gradient of velocity is represented by λ(x, t), µ(x, t), and ω(x, t) given in (2.69),
(2.70), and (2.71). The Equation (2.29) can be written as the system





Dta = −ωb+ λc− 2ǫ
R2 a,

Dtb = ωa+ µc− 2ǫ
R2 b,

Dtc = 4λa+ 4µb− 2ǫ
R2 c+ 4 ǫ

R2 ρ,

Dtρ = 0.

(6.5)
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As we saw before, if we couple this with an equation for the velocity (steady or un-
steady Stokes, or Navier-Stokes), then the regularity issue is decided by whether or
not we can bound c in L∞(dx). We note in passing that the co-rotational system cor-
responds to λ = µ = 0 in the system above, and the bound for c follows immediately.
Let us multiply the c equation by c

2 , the a equation by 2a, the b equation by 2b, and
subtract the last two from the first. We obtain

Dt

(
c2

4
− a2 − b2

)
= − 4ǫ

R2

(
c2

4
− a2 − b2

)
+

2ǫ

R2
ρc. (6.6)

This cancellation of nonlinearity is not surprising because

c2

4
− a2 − b2 = Det (σ), (6.7)

and the determinant is conserved along particle trajectories if ǫ = 0. The matrix σ is
symmetric and positive by construction, and is given in terms of a, b, c by

σ =

(
c
2 + a b
b c

2 − a

)
. (6.8)

The positivity of the matrix is equivalent (in this case) to the positivity of the deter-
minant, i.e. to

c2

4
− a2 − b2 > 0. (6.9)

The two eigenvalues of σ

z1,2 =
c

2
±
√
a2 + b2 (6.10)

are both positive. We have of course c = z1 + z2 > 0 and z1 − z2 = 2
√
a2 + b2.

Because of (6.9), c controls
√
a2 + b2. But, on the other hand, unbounded growth of c

on any trajectory cannot happen without unbounded growth of
√
a2 + b2 on the same

trajectory. Indeed, if a particle path would be such that
√
a2 + b2 is bounded on it,

but c grows without bound or blows up in finite time, then for large enough time we
would have

− ǫ

R2

(
c2

4
− a2 − b2

)
+

2ǫ

R2
ρc ≤ 0

on the particle path (because ρ is bounded), and from (6.6) we would arrive at the
contradiction that c remains bounded. From (6.5) we can write

c(x, t) = e−
2ǫ

R2 tc0(A(x, t)) +

∫ t

0

e−
2ǫ

R2 (t−s)
(
λa+ µb− ǫ

R2
ρ0

)
(X(A(x, t), s), s)ds.

(6.11)
Thus, exponential growth or blowup of c is possible only if (λa+µb) has time integrals
on particle paths that are positive and grow at least exponentially and without bound.

In two dimensions we can express the velocity in terms of a stream function ψ(x, t)
and write u1 = −∂2ψ, u2 = ∂1ψ. Then ω = ∆ψ, and therefore

λ = ∂1∂2(−∆)−1ω = Bω (6.12)
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and

µ = −1

2

(
∂2
1 − ∂2

2

)
(−∆)−1ω = −Aω, (6.13)

where

A =
1

2

(
∂2
1 − ∂2

2

)
(−∆)−1 =

1

2
(R2

1 −R2
2) (6.14)

and

B = ∂1∂2(−∆)−1 = R1R2 (6.15)

are bounded operators in Lp(R2) spaces. They are also bounded, selfadjoint in L2(R2),
they commute AB = BA, and each is given by a multiplier at Fourier level:

Âh(ξ) =
ξ22 − ξ21
2|ξ|2 ĥ(ξ) (6.16)

and

B̂h(ξ) = −ξ1ξ2|ξ|2 ĥ(ξ). (6.17)

Note that

4(A2 +B2) = I. (6.18)

Let us consider now the time independent Stokes system (3.1). Taking the curl of
(3.1) and inverting the Laplacian we obtain

ω = 2k (Ab−Ba) . (6.19)

Consequently, from (6.12) we have

λ = 2k
(
−B2a+ABb

)
, (6.20)

and from (6.13) we have

µ = 2k
(
ABa−A2b

)
. (6.21)

It is convenient to measure time in units of 1
2k

. The system (6.5) coupled with (6.19),
(6.12), and (6.13) is





Dta = −(A(b) −B(a))b+ [−B2(a) +AB(b)]c− ε−1a,

Dtb = (A(b) −B(a))a+ [AB(a) −A2(b)]c− ε−1b,

Dtc = 4
{
[−B2(a) +AB(b)]a+ [AB(a) −A2(b)]b

}
− ε−1c+ 2ε−1ρ,

Dtρ = 0,

(6.22)

where ε is given by (4.6). The all-important term λa+ µb is given by

1

2k
(λa+ µb) = aB(ω) − bA(ω) = −aB(B(a) −A(b)) + bA(B(a) −A(b)). (6.23)
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This expression is quadratic, nonlocal, and has negative spatial integral. While blow
up requires the pointwise positivity of this expression (6.11), its spatial average is
negative. Integrating the third equation in (6.22) we obtain, using the selfadjointness
of A and B,

∫
R2 c(x, t)dx+ 4

∫ t

0
e−

t−s
ε

∫
R2 |B(a)(x, s) −A(b)(x, s)|2dx

= e−
t
ε

∫
R2 c0(x)dx+ 2(1 − e−

t
ε )
∫

R2 ρ0(x)dx.
(6.24)

This is just the energetic bound on
∫
Tr σdx. We saw earlier that if the size of initial

data is of order 1, then small enough ε leads to global existence of solutions. The case
of large initial data and moderate ε is wide open. In order to clarify the issues, we
will take ε = ∞. In this case the system is simplified somewhat, because in view of
(6.6) we have

c = 2
√
a2 + b2 + d0(x, t), (6.25)

where

d0(x, t) = Det (σ0(A(x, t))), (6.26)

and so the first two equations of (6.5) become just

{
Dta = −b(Ab−Ba) + 2

√
(a2 + b2 + d0) B(Ab−Ba),

Dtb = a(Ab−Ba) − 2
√

(a2 + b2 + d0) A(Ab−Ba),
(6.27)

and consequently

Dt

√
(a2 + b2 + d0) = 2aB(Ab−Ba) − 2bA(Ab−Ba). (6.28)

Integrating in space we again get the bound on the trace. Blowup for the system
(6.27) is still too difficult to analyse. The simplest possible didactic model of a scalar
equation exhibiting this kind of quadratic nonlocal structure with an L1 dissipation
is a scalar equation of the form

∂tτ = −τ(A2τ), (6.29)

where A is a bounded selfadjoint operator given in Fourier representation by multi-
plication by a function that is homogeneous of degree zero,

Âh(ξ) = α(ξ)ĥ(ξ), (6.30)

with α(λξ) = α(ξ), α(ξ) ∈ R,
∫

S2 α(ξ)dξ = 0, α smooth on the unit sphere. The
unknown τ(x, t) (representing the trace of σ) is a positive scalar. We note the salient
features of this model; if τ0 is smooth and positive, (let us consider for instance
τ(·, 0) ∈ L1 ∩ C0,s with s > 0) then the solution exists and is unique for some time,
and remains positive as long as it exists. If a bound on ‖τ‖L∞ is given, then higher
regularity of the solution follows. Integrating the equation, we have the dissipative
bound

∫
τ(x, t)dx+

∫ t

0

‖Aτ‖2
L2dt ≤

∫
τ(x, 0)dx, (6.31)



P. CONSTANTIN AND W. SUN 71

and multiplying by A2τ and integrating we have
∫

|Aτ(x, t)|2dx ≤
∫

|Aτ(x, 0)|2dx. (6.32)

We are going to give an example of global regularity for some large data for such an
equation, in the spatially periodic case. For simplicity we take the period to be 2π in
each direction. We write

τ(x, t) = τ0(t) +
∑

k∈Z2\{0}

τk(t)eik·x. (6.33)

The requirement that τ be real is implemented by τk = τ−k. We will consider the
symbol α(k), and assume that it is real valued, even, α(−k) = α(k), and bounded
|α(k)| ≤ Γ. We also assume α(0) = 0. The Equation (6.29) is the infinite system of
ODEs

dτl
dt

= −
∑

k+j=l

τkα
2(j)τj . (6.34)

Proposition 6.1. Let τ(x, 0) =
∑

k τk(0)eik·x satisfy

τ−k(0) = τk(0), (6.35)

∑

k

(1 + |k|)s|τk(0)| ≤ Cs(0) <∞, (6.36)

for some s > 0, and

τ0(0) ≥
∑

k 6=0

|τk(0)|. (6.37)

Then the solution of (6.34) exists for all time and obeys

τ−k(t) = τk(t), (6.38)

∑

k

(1 + |k|)s|τk(t)| ≤ Cs(0)e2
s+1τ0(0)Γ

2t <∞, (6.39)

and

τ0(t) ≥
∑

k 6=0

|τk(t)| (6.40)

which of course implies that τ(x, t) remains smooth and positive.

Proof. We start with the dissipation, the equation at l = 0, which reads

dτ0
dt

= −
∑

k 6=0

α(k)2|τk(t)|2. (6.41)

Now for l 6= 0 we have

dτl
dt

= −
∑

k+j=l, k 6=0, j 6=0

τkα
2(j)τj − τ0α

2(l)τl,
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and therefore

d|τl|
dt

≤ −τ0α2(l)|τl| +
∑

k+j=l, k 6=0, j 6=0

|τk|α2(j)|τj |. (6.42)

Summing in l 6= 0, we obtain

d

dt

∑

l 6=0

|τl| ≤ −τ0
∑

l 6=0

α2(l)|τl| +
∑

l 6=0

∑

k+j=l, k 6=0, j 6=0

|τk|α2(j)|τj |

= −τ0
∑

l 6=0 α
2(l)|τl| +

∑
j 6=0

∑
k 6=0 α

2(j)|τj ||τk| −
∑

j 6=0 α
2(j)|τ−j ||τj |

=
(∑

j 6=0 α
2(j)|τj |

)(
−τ0 +

∑
k 6=0 |τk|

)
+ d

dt
τ0.

This results in the inequality

d

dt



∑

l 6=0

|τl| − τ0


 ≤



∑

j 6=0

α2(j)|τj |





∑

l 6=0

|τl| − τ0


 . (6.43)

If the initial data is non-positive, the quantity remains non positive. Thus we have
the invariance of this cone in function space. Once this is achieved, we know

∑

l 6=0

|τl(t)| ≤ τ0(t) ≤ τ0(0), (6.44)

which implies an L∞ bound on τ . We know this should be sufficient for regularity.
In the present situation, the proof of regularity is quite straightforward: we multiply
(6.42) by (1 + |l|)s and sum. Using |l| ≤ 2max(|k|, |j|) and |α(j)| ≤ Γ, we obtain

d

dt

∑

l 6=0

(1 + |l|)s|τl| ≤ 2sΓ2



∑

j

|τj |





∑

l 6=0

(1 + |l|)s|τl|


 .

Using (6.44) we deduce

d

dt

∑

l 6=0

(1 + |l|)s|τl| ≤ 2s+1τ0(0)Γ2



∑

l 6=0

(1 + |l|)s|τl|


 , (6.45)

which finishes the proof.
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[1] J.W. Barrett and E. Süli, Existence and equilibration of global weak solutions to kinetic models

for dilute polymers I: finitely extensible nonlinear bead-spring chain, M3AS 21 (6), 1–79,
2011.

[2] A.N. Beris and B.J. Edwards, The Thermodynamics of Flowing Systems, Oxford University
Press, New York, 1994.

[3] A. Bertozzi and P. Constantin, Global regularity for vortex patches, Commun. Math. Phys.,
152, 19–28, 1993.



P. CONSTANTIN AND W. SUN 73

[4] J.Y. Chemin and N. Masmoudi, About lifespan of regular solutions of equations related to

viscoelastic fluids, SIAM J. Math. Anal., 33, 84–112, 2001.
[5] P. Constantin, Nonlinear Fokker-Planck Navier-Stokes systems, Commun. Math. Sci., 3, 531–

544, 2005.
[6] P. Constantin, Smoluchowski Navier-Stokes systems, Contemp. Math., G-Q Chen, E. Hsu, M.

Pinsky (eds), AMS, Providence, 429, 85–109, 2007.
[7] P. Constantin, C. Fefferman, E. Titi, and A. Zarnescu, Regularity for coupled two-dimensional

nonlinear Fokker-Planck and Navier-Stokes systems, Commun. Math. Phys., 270, 789–811,
2007.

[8] P. Constantin, P. Lax, and A. Majda, A simple one-dimensional model for the three-

dimensional vorticity equation, Commun. Pure Appl. Math., 38, 715–724, 1985.
[9] P. Constantin and N. Masmoudi, Global well-posedness for a Smoluchowski equation coupled

with Navier-Stokes equations in 2D, Commun. Math. Phys., 278, 179–191, 2008.
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