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Abstract. The present paper introduces an efficient and accurate numerical scheme for the
solution of a highly anisotropic elliptic equation, the anisotropy direction being given by a variable
vector field. This scheme is based on an asymptotic preserving reformulation of the original system,
permitting an accurate resolution independently of the anisotropy strength and without the need of a
mesh adapted to this anisotropy. The counterpart of this original procedure is the larger system size,
enlarged by adding auxiliary variables and Lagrange multipliers. This Asymptotic-Preserving method
generalizes the method investigated in a previous paper [P. Degond, F. Deluzet, and C. Negulescu,
Multiscale Model. Simul., 8(2), 645–666, 2009/10] to the case of an arbitrary anisotropy direction
field.
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1. Introduction

Anisotropic problems are common in the mathematical modeling of physical prob-
lems. They occur in various fields of applications such as flows in porous media [3, 23],
semiconductor modeling [35], quasi-neutral plasma simulations [11], image processing
[44, 45], atmospheric or oceanic flows [43] and so on, the list being not exhaustive.
The initial motivation for this work is closely related to magnetized plasma simula-
tions such as atmospheric plasma [27, 29], internal fusion plasma [4, 13] or plasma
thrusters [1]. In this context, the medium is structured by the magnetic field, which
may be strong in some regions and weak in others. Indeed, the gyration of the charged
particles around magnetic field lines dominates the motion in the plane perpendicular
to magnetic field. This explains the large number of collisions in the perpendicular
plane while the motion along the field lines is rather undisturbed. As a consequence
the mobility of particles in different directions differs by many orders of magnitude;
this ratio can be as huge as 1010. On the other hand, when the magnetic field is weak
the anisotropy is much smaller. As the regions with weak and strong magnetic field
can coexist in the same computational domain, one needs a numerical scheme which
gives accurate results for a large range of anisotropy strengths. The relevant bound-
ary conditions in many fields of application are periodic (for instance in simulations
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31062 Toulouse, France. CNRS, Institut de Mathématiques de Toulouse UMR 5219, F-31062
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31062 Toulouse, France. CNRS, Institut de Mathématiques de Toulouse UMR 5219, F-31062
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2 DUALITY-BASED ASYMPTOTIC-PRESERVING METHOD

of the tokamak plasmas on a torus) or Neumann boundary conditions (atmospheric
plasma; see for example [5]). For these reasons we propose a strongly anisotropic
model problem for which we wish to introduce an efficient and accurate numerical
scheme. This model problem reads



















−∇·A∇φε =f in Ω,

n ·A∇φε =0 on ∂ΩN ,

φε =0 on ∂ΩD,

(1.1)

where Ω⊂R2 or Ω⊂R3 is a bounded domain with boundary ∂Ω=∂ΩD ∪∂ΩN and
outward normal n. The direction of the anisotropy is defined by a vector field B,
where we suppose divB=0 and B 6=0. The direction of B is given by a vector field
b=B/|B|. The anisotropy matrix is then defined as

A=
1

ε
A‖b⊗b+(Id−b⊗b)A⊥(Id−b⊗b), (1.2)

and ∂ΩD ={x∈∂Ω | b(x) ·n=0}. The scalar field A‖>0 and the symmetric positive
definite matrix field A⊥ are of order one while the parameter 0<ε<1 can be very
small, thus provoking the high anisotropy of the problem. This work extends the
results of [12], where the special case of a vector field b, aligned with the z-axis, was
studied. An extension of this approach is proposed in [6] to handle more realistic
anisotropy topologies. It relies on the introduction of a curvilinear coordinate system
with one coordinate aligned with the anisotropy direction. Adapted coordinates are
widely used in the framework of plasma simulation (see for instance [4, 15, 37]), these
systems being either developed to fit particular magnetic field geometries or plasma
equilibria (Euler potentials [42], toroidal and poloidal [21, 26], quasiballooning [16],
Hamada [22] and Boozer [7] coordinates). Note that the study of certain plasma
regions in a tokamak have motivated the use of non-orthogonal coordinates systems
[24]. In contrast with all these methods, we propose here a numerical scheme that
uses coordinates and meshes independent of the anisotropy direction, like in [39]. This
feature offers the capability to easily treat time evolving anisotropy directions. This
is very important in the context of tokamak plasma simulation, where the anisotropy
is driven by a time dependent magnetic field.

One of the difficulties associated with the numerical solution of problem (1.1) lies
in the fact that this problem becomes very ill-conditioned for small 0<ε≪1. Indeed,
replacing ε by zero yields an ill-posed problem as it has an infinite number of solutions
(any function constant along the b field solves the problem with ε=0). In the discrete
case the problem translates into a linear system which is ill-conditioned, as it mixes
the terms of different orders of magnitude for ε≪1. As a consequence the numerical
algorithm for solving this linear system gives unacceptable errors (in the case of direct
solvers) or fails to converge in a reasonable time (in the case of iterative methods).

This difficulty arises when the boundary conditions supplied to the dominant
O(1/ε) operator lead to an ill-posed problem. This is the case for Neumann bound-
ary conditions imposed on the part of the boundary with b ·n 6=0 as well as for periodic
boundary conditions. If instead, the boundary conditions are such that the dominant
operator gives a well-posed problem, the numerical difficulty vanishes. One can resort
to standard methods, as the dominant operator is sufficient to determine the limit
solution. This is the case for Dirichlet and Robin boundary conditions. The problem
addressed in this paper arises therefore only with specific boundary conditions. It has
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however a considerable impact in numerous physical problems concerning plasmas,
geophysical flows, plates and shells (for example). In this paper, we will focus on
Neumann boundary condition since they represent a larger range of physical applica-
tions. The periodic boundary conditions can be addressed in a similar way.

Numerical methods for anisotropic problems have been extensively studied in
the literature. Distinct methods have been developed. For example, finite volumes
schemes with carefully designed approximations to the normal fluxes on the cell edges
were proposed in [32, 17]. The mimetic finite difference discretization [33] is a closely
related but sometimes more efficient approach. The symmetric and asymmetric differ-
ence schemes were investigated in [20, 41]. In the context of finite element methods,
the use of slope limiters is advocated in [31]. Domain decomposition techniques using
multiple coarse grid corrections are adapted to the anisotropic equations in [19, 30].
Multigrid methods have been studied in [18, 38]. For anisotropy aligned with one
or two directions, point or plane smoothers are shown to be very efficient [34]. The
hp-finite element method is also known to give good results for singular perturbation
problems [36]. All of these methods try to discretize the anisotropic PDE as it is
written and then apply purely numerical tricks to circumvent the problems related
to lack of accuracy of the discrete solution or to the slow convergence of iterative
algorithms. This leads to methods which are sometimes difficult to implement.

The approach that we pursue in this paper is entirely different: we reformulate
first the original PDE in such a way that the resulting problem can be efficiently and
accurately discretized by straight-forward and easily implementable numerical meth-
ods for any anisotropy strength. Our scheme is related to the Asymptotic Preserving
method introduced in [25]. These techniques are designed to give a precise solution
in the various regimes with no restrictions on the computational meshes and with the
additional property of converging to the limit solution when ε→0. The derivation of
the Asymptotic Preserving method requires identification of the limit model. In the
case of Singular Perturbation problems, the original problem is reformulated in such
a way that the obtained set of equations contain both the limit model and the origi-
nal problem with a continuous transition between them, according to the values of ε.
This reformulated system of equation sets the foundation of the AP-scheme. These
Asymptotic Preserving techniques have been explored in previous studies, for instance
quasi-neutral or gyro-fluid limits [10, 13]. A similar approach was also pursued in [9]
where a reformulation of magnetohydrodynamics equations was used in conjunction
with the Jacobian-free Newton-Krylov technology and multigrid methods.

In this paper, we present a new algorithm which extends the results of [12].
The originality of this algorithm consists in the fact that it is applicable for variable
anisotropy directions b without additional work. The discretization mesh need not
be adapted to the field direction b, but is simply a Cartesian grid whose mesh-size
is governed by the desired accuracy, independently on the anisotropy strength ε. All
this is possible in a well-adapted mathematical framework (optimally chosen spaces,
introduction of Lagrange multipliers). The key idea, as in [12], is to decompose the
solution φ into two parts: a mean part p which is constant along the field lines and
the fluctuation part q consisting of a correction to the mean part needed to recover
the full solution. Both parts p and q are solutions to well-posed problems for any
ε>0. In the limit of ε→0 the AP-reformulation reduces to the so called Limit model
(L-model), whose solution is an acceptable approximation of the P-model solution
for ε≪1 (see Theorem 2.2). In [12] the Asymptotic Preserving reformulation of
the original problem was obtained in two steps. First, the original problem was



4 DUALITY-BASED ASYMPTOTIC-PRESERVING METHOD

integrated along the field lines (z-axis) leading to an ε-independent elliptic problem
for the mean part p. Second, the mean equation was subtracted from the original
problem and the ε-dependent elliptic problem for the fluctuating part q was obtained.
This approach however is not applicable if the field b is arbitrary. In this paper
we present a new approach. Instead of integrating the original problem along the
arbitrary field lines, we choose to force the mean part p to lie in the Hilbert space of
functions constant along the field lines and the fluctuating part q to be orthogonal (in
L2 sense) to this space. This is done by a Lagrange multiplier technique and requires
introduction of additional variables, thus enlarging the linear system to be solved.
This method allows to treat the arbitrary b field case, regardless of the field topology,
and thus eliminates the limitations of the algorithm presented in [12]. We note that
an alternative method, bypassing the need in Lagrange multipliers, is proposed in [8];
it is based on a reformulation of the original problem as a fourth order equation.

The outline of this paper is the following. Section 2 introduces the original
anisotropic elliptic problem. The original problem will be referred to as the Singular-
Perturbation model (P-model). The mathematical framework is introduced and the
Asymptotic Preserving reformulation (AP-model) is then derived. Section 3 is de-
voted to the numerical implementation of the AP-formulation. Numerical results are
presented for 2D and 3D test cases, for constant and variable fields b. Three methods
are compared (AP-formulation, P-model and L-model) according to their precision
for different values of ε. The rigorous numerical analysis of this new algorithm will
be the subject of a forthcoming publication.

2. Problem definition
We consider a two or three dimensional anisotropic problem, given on a sufficiently

smooth, bounded domain Ω⊂Rd, d=2,3 with boundary ∂Ω. The direction of the
anisotropy is defined by the vector field b∈ (C∞(Ω))d, satisfying |b(x)|=1 for all
x∈Ω.

Given this vector field b, one can decompose vectors v∈Rd, gradients ∇φ, with
φ(x) a scalar function, and divergences ∇·v, with v(x) a vector field, into a part
parallel to the anisotropy direction and a part perpendicular to it. These parts are
defined as follows:

v|| := (v ·b)b, v⊥ := (Id−b⊗b)v, such that v=v||+v⊥,

∇||φ := (b ·∇φ)b, ∇⊥φ := (Id−b⊗b)∇φ, such that ∇φ=∇||φ+∇⊥φ,

∇|| ·v :=∇·v||, ∇⊥ ·v :=∇·v⊥, such that ∇·v=∇|| ·v+∇⊥ ·v,

(2.1)

where we denote by ⊗ the vector tensor product. With these notations we can now
introduce, the so-called Singular Perturbation problem, whose numerical solution is
the main concern of this paper.

2.1. The singular Perturbation problem (P-model). We consider the
following Singular Perturbation problem:

(P )



















− 1
ε∇‖ ·

(

A‖∇‖φ
ε
)

−∇⊥ ·(A⊥∇⊥φ
ε)=f in Ω,

1
εn‖ ·

(

A‖∇‖φ
ε
)

+n⊥ ·(A⊥∇⊥φ
ε)=0 on ∂ΩN ,

φε =0 on ∂ΩD,

(2.2)

where n is the outward normal to Ω and the boundaries are defined by

∂ΩD ={x∈∂Ω | b(x) ·n=0}, ∂ΩN =∂Ω\∂ΩD. (2.3)
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The parameter 0<ε<1 can be very small and is responsible for the high anisotropy
of the problem. The aim is to introduce a numerical scheme whose computational
costs (simulation time and memory), for fixed precision, are independent of ε.

We shall assume in the rest of this paper the following hypothesis on the diffusion
coefficients and the source terms.

Hypothesis A. Let f ∈L2(Ω) and
◦

∂ΩD 6=∅. The diffusion coefficients A‖∈L
∞(Ω)

and A⊥∈Md×d(L
∞(Ω)) are supposed to satisfy

0<A0≤A‖(x)≤A1, f.a.a. x∈Ω, (2.4)

A0||v||
2≤vtA⊥(x)v≤A1||v||

2, ∀v∈Rd and f.a.a. x∈Ω. (2.5)

As we intend to use the finite element method for the numerical solution of the P-
problem, let us put (2.2) under variational form. For this let V be the Hilbert space

V :={φ∈H1(Ω) / φ|∂ΩD
=0}, (φ,ψ)V := (∇||φ,∇||ψ)L2 +ε(∇⊥φ,∇⊥ψ)L2 .

Thus, we are seeking φε ∈V, the solution of

a||(φ
ε,ψ)+εa⊥(φε,ψ)=ε(f,ψ), ∀ψ∈V, (2.6)

where (·,·) stands for the standard L2 inner product and the continuous bilinear forms
a|| :V×V→R and a⊥ :V×V→R are given by

a||(φ,ψ) :=

∫

Ω

A||∇||φ ·∇||ψdx, a⊥(φ,ψ) :=

∫

Ω

(A⊥∇⊥φ) ·∇⊥ψdx. (2.7)

Thanks to Hypothesis A and the Lax-Milgram theorem, problem (2.2) admits a unique
solution φε ∈V for all fixed ε>0.

2.2. The Limit problem (L-model). The direct numerical solution of (2.2)
may be very inaccurate for ε≪1. Indeed, when ε tends to zero, the system reduces
to



















−∇‖ ·
(

A‖∇‖φ
)

=0 in Ω,

n‖ ·
(

A‖∇‖φ
)

=0 on ∂ΩN ,

φ=0 on ∂ΩD.

(2.8)

This is an ill-posed problem as it has an infinite number of solutions φ∈G, where

G={φ∈V | ∇‖φ=0} (2.9)

is the Hilbert space of functions which are constant along the field lines of b. This
shows that the condition number of the system obtained by discretizing (2.2) tends
to ∞ as ε→0 so that its solution will suffer from round-off errors.

For this reason, we should approximate (2.2) in the limit ε→0 differently. Sup-
posing that φε →φ0 as ε→0 we identify (at first formally) the problem satisfied by
φ0. From the above arguments we know that φ0∈G. Taking now test functions ψ∈G
in (2.6), we obtain

∫

Ω

A⊥∇⊥φ
ε ·∇⊥ψdx=

∫

Ω

fψdx. (2.10)
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Passing to the limit ε→0 yields the variational formulation of the problem satisfied
by φ0: (Limit problem): find φ0∈G, the solution of

(L)

∫

Ω

A⊥∇⊥φ
0 ·∇⊥ψdx=

∫

Ω

fψdx , ∀ψ∈G, (2.11)

which is a well posed problem. Indeed, the space G⊂V is a Hilbert space associated
with the inner product

(φ,ψ)G := (∇⊥φ,∇⊥ψ)L2 , ∀φ,ψ∈G, (2.12)

and the norm || · ||G is equivalent to the H1 norm. This is due to the Poincaré in-
equality, as

||φ||2L2 ≤C||∇φ||2L2 =C||∇||φ||
2
L2 +C||∇⊥φ||

2
L2 =C||∇⊥φ||

2
L2 , ∀φ∈G.

Hypothesis A and the Lax-Milgram lemma imply the existence and uniqueness of a
solution φ0∈G of the Limit problem (2.11).

Remark 2.1. For the moment let us restrict ourselves to the simple special case
(considered in a previous paper [12]) of the two dimensional domain Ω=(0,Lx)×
(0,Lz) in the (x,z) plane with a constant b-field aligned with the Z-axis:

b=

(

0
1

)

. (2.13)

The functions in the space G are independent of z, so that G can be identified with
H1

0 (0,Lx). The limit problem (2.11) now reads: Find φ0 in H1
0 (0,Lx) satisfying

∫ Lx

0

Ā⊥(x)∂xφ
0(x)∂xψ(x)dx=

∫ Lx

0

f̄(x)ψ(x)dx, ∀ψ∈H1
0 (0,Lx),

where Ā⊥(x)=(1/Lz)
∫ Lz

0
A⊥,11(x,z)dz and f̄(x)=(1/Lz)

∫ Lz

0
f(x,z)dz are the mean

values of A⊥ and f along the field lines. The limit solution φ0 thus satisfies a one-
dimensional elliptic equation whose coefficients are integrated along the anisotropy
direction:

−∂x

(

Ā⊥(x)∂xφ
0(x)

)

= f̄(x) on (0,Lx),

φ0(0)=φ0(Lx)=0.
(2.14)

We see now that φ0(x) is a solution to the one dimensional elliptic problem, so
that it belongs to H2(0,Lx) provided f ∈L2(Ω). Since φ0 as a function of (x,z) does
not depend on z, we have also φ0∈H2(Ω). This conclusion (φ0∈H2(Ω)) remains valid
in the case of a cylindrical three dimensional domain Ω=Ωxy ×(0,Lz) in the (x,y,z)
space with any sufficiently smooth Ωxy in the (x,y) plane and the field b aligned with
the Z-axis, b=(0,0,1)t. Indeed, it is easy to see that in this case φ0 =φ0(x,y) solves
an elliptic two dimensional problem in Ωxy similar to (2.14), so that we can apply
the standard regularity results for elliptic problems. These examples show that it
is reasonable to suppose φ0∈H2(Ω) in more general geometries of Ω and b. This
can be indeed proved under the hypotheses in Appendix A by specifying the (d−1)
dimensional elliptic problem for φ0. The proof, being rather lengthy and technical, is
postponed to a forthcoming work [14].
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2.3. The Asymptotic Preserving approach (AP-model). In this section
we introduce the AP-formulation, which is a reformulation of the Singular Perturba-
tion problem (2.2), and permits a “continuous” transition from the (P)-problem (2.2)
to the (L)-problem (2.11) as ε→0. For this purpose, each function is decomposed
into its mean part along the anisotropy direction (lying in the subspace G of V) and a
fluctuating part (cf. [12]) lying in the L2-orthogonal complement A of G in V, defined
by

A :={φ∈V |(φ,ψ)=0 , ∀ψ∈G}. (2.15)

Note that (·,·) denotes here and elsewhere the inner product of L2(Ω).
In what follows, we need the following

Hypothesis B. The Hilbert-space V admits the decomposition

V =G⊕⊥A, (2.16)

with G given by (2.9) and A given by (2.15), and where the orthogonality of the direct
sum is taken with respect to the L2-norm. Denoting by P the orthogonal projection
on G with respect to the L2 inner product:

P :V→G such that (Pφ,ψ)=(φ,ψ) ∀φ∈V, ψ∈G, (2.17)

we shall suppose that this mapping is continuous and that we have the Poincaré-
Wirtinger inequality

||φ−Pφ||L2(Ω)≤C||∇||φ||L2(Ω), ∀φ∈V. (2.18)

Applying the projection P to a function φ is nothing but a weighted average of φ along
the anisotropy field lines of b. The space G is the space of averaged functions (the
parallel Gradient of these averaged functions being equal to zero), whereas the space
A is the space of the fluctuations (the Average of the fluctuations being equal to zero).
Note that the decomposition (2.16) is not self evident (the orthogonality is assumed
here in the L2 sense, not that of H1!) and it may in fact fail on some “pathological”
domains Ω, cf. Example A.1. Indeed, although one can always define an L2-orthogonal
projection P̃ φ on the space of functions constant along each field line, for any φ with
square-integrable ∇||φ, one cannot assure in general that P̃ φ belongs to V for φ∈V

since one may lose control of the perpendicular part of the gradient of P̃ φ. Fortunately
however, Hypothesis B is typically satisfied for the domains of practical interest. The
interested reader is referred to Appendix A for an example of a set of assumptions on
Ω and b which entail Hypothesis B and which essentially reduces to the requirement
that the field b to intersect ∂ΩN in a uniformly non-tangential manner and for the
boundary components ∂ΩN and ∂ΩD to be sufficiently smooth.

Let us also define the operator

Q :V→A, Q= I−P. (2.19)

Each function φ∈V can be decomposed uniquely as φ=p+q, where p=Pφ∈G and
q=Qφ∈A. Using this decomposition, we reformulate the Singular-Perturbation prob-
lem (2.2). Indeed, replacing φε :=pε +qε in problem (2.2) and taking test functions
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η∈G and ξ∈A leads to an asymptotic preserving formulation of the original problem:
Find (pε,qε)∈G×A such that

{

a⊥(pε,η)+a⊥(qε,η)=(f,η), ∀η∈G,

a||(q
ε,ξ)+εa⊥(qε,ξ)+εa⊥(pε,ξ)=ε(f,ξ), ∀ξ∈A.

(2.20)

Contrary to the Singular Perturbation problem (2.2), formally setting ε=0 in (2.20)
yields the system

{

a⊥(p0,η)+a⊥(q0,η) =(f,η), ∀η∈G,

a||(q
0,ξ) =0, ∀ξ∈A,

(2.21)

which has a unique solution (p0,q0)∈G×A, where p0 is the unique solution of the
L-problem (2.11) and q0≡0. Indeed, taking ξ= q0 as test function in the second
equation of (2.21) yields ∇||q

0 =0, which means q0∈G. But at the same time, q0∈A,
so that q0∈G∩A={0}. Setting q0≡0 in the first equation of (2.21), shows that p0

is the unique solution of the L-problem.

Theorem 2.2. For every ε>0 the Asymptotic Preserving formulation (2.20), under
Hypotheses A and B, admits a unique solution (pε,qε)∈G×A, where φε :=pε +qε is
the unique solution in V of the Singular Perturbation model (2.2).
These solutions satisfy the bounds

||φε||H1(Ω)≤C||f ||L2(Ω), ||qε||H1(Ω)≤C||f ||L2(Ω), ||pε||H1(Ω)≤C||f ||L2(Ω), (2.22)

with an ε-independent constant C>0. Moreover, we have

φε →φ0, pε →φ0, and qε →0 in H1(Ω) as ε→0, (2.23)

where φ0∈G is the unique solution of the Limit model (2.11).

Proof. The existence and uniqueness of a solution for the P-problem as well as
L-problem are consequences of the Lax-Milgram theorem. The existence and unique-
ness of a solution of (2.20) is then immediate by construction, after noting that the
decomposition φε =pε +qε is unique.

The bound ||φε||H1(Ω)≤C||f ||L2(Ω) is obtained by a standard elliptic argument.
Furthermore pε =Pφε, where P is the L2-orthogonal projector on G, which is a
bounded operator in V by (A.4). This implies the estimates for pε and qε in (2.22).
Since pε ∈G and qε ∈A are bounded, there exist subsequences pεn and qεn that weakly
converge for εn →0 to some p0∈G and q0∈A. Taking ε=εn in (2.20) and passing
to the limit εn →0 we identify (p0,q0) with the unique solution of (2.21), i.e. p0 =φ0

is the unique solution of (2.11) and q0≡0. Since the limit does not depend on the
choice of the subsequence, we have the weak convergence as ε→0, i.e.

pε
⇀

ε→0p0 in H1(Ω), qε
⇀

ε→00 in H1(Ω).

We shall prove now that these convergences are actually strong. Introducing eε =
pε−p0, we have

a⊥(eε,η)+a⊥(qε,η)=0, ∀η∈G.
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Taking η=eε in this relation and adding it to the second equation in (2.20), where
we put ξ= qε/ε, yields

1

ε
a||(q

ε,qε)+a⊥(qε +eε,qε +eε)=(f,qε)−a⊥(p0,qε). (2.24)

Due to the Poincaré-Wirtinger Equation (2.18), there exist a constant C>0 such that

||q||L2(Ω)≤Ca||(q,q)
1/2, ∀q∈A. (2.25)

In combination with a Young inequality this gives (f,qε)≤||f ||L2 ||qε||L2 ≤εC2

2 ||f ||2L2 +
1
2εa||(q

ǫ,qǫ). Using this in the right hand side of (2.24), we arrive at

1

2ε
a||(q

ε,qε)+a⊥(qε +eε,qε +eε)≤ε
C2

2
||f ||2L2 −a⊥(p0,qε).

Noting that qε +eε =φε−p0 and ∇‖e
ε =0 we can rewrite this last inequality as

1

2ε
a||(φ

ε−p0,φε−p0)+a⊥(φε−p0,φε−p0)≤ε
C2

2
||f ||2L2 −a⊥(p0,qε).

Since a⊥(p0,qε)→0 as ε→0 (thanks to the weak convergence qε⇀0) we observe that
φε →p0 strongly in H1(Ω). Reminding again that pε =Pφε and P is bounded in the
norm of H1(Ω), we obtain also pε →Pp0 =p0, which entails qε →0.

Remark 2.3. Let us return to the simple special case discussed in Remark 2.1, i.e.
Ω=(0,Lx)×(0,Lz) and the b-field given by (2.13). Recall that the space G can be
identified in this case with the space of functions constant along the Z-axis, which
means G :={φ∈V / ∂zφ=0}. The space A is orthogonal (with respect to the L2-norm)
to G and thus contains the functions that have zero mean value along the Z-axis, i.e.

A :={φ∈V /
∫ Lz

0
φ(x,z)dz=0}. Therefore, for φε =pε +qε ∈V, the function pε is the

mean value of φε in the direction of the field b:

pε =
1

Lz

∫ Lz

0

φεdz, (2.26)

and qε is the fluctuating part with zero mean value:

qε =φε−
1

Lz

∫ Lz

0

φεdz. (2.27)

Hypothesis B is thus easily verified. The results obtained in this special case were
presented in a previous paper [12]. In the case of an arbitrary b-field, formula (2.26)
is generalized as (A.2) in Appendix A, where the length element along the b-field
line is weighted by the infinitesimal cross-sectional area of the field tube around the
considered b-field-line. This formula can be thus interpreted as a consequence of the
co-area formula. Note that in the special case of a uniform anisotropy direction,
the limit problem can easily be formulated as an elliptic problem depending only on
the transverse coordinates (see Equation (2.14)). The size of the problem is thus
significantly smaller than that of the initial one. This feature still occurs for non-
uniform b-fields as long as adapted coordinates and meshes are used. In our case,
aligned and transverse coordinates are not at our disposal and the solution of the
limit problem must be searched as a function of the whole set of coordinates.
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2.4. Lagrange multiplier space. The objective of this work is the numer-
ical solution of system (2.20) and the comparison of the obtained results with those
obtained by directly solving the original problem (2.2). In a general case, when the
field b is not necessarily constant, the discretization of the subspaces G and A is not
straightforward as in the simpler case [12]. In order to overcome this difficulty a
Lagrange multiplier technique will be used.

2.4.1. The A space. To avoid the use of the constrained space A, we can
remark that A can be characterized as being the orthogonal complement (in the L2

sense) of the G-space. Thus, instead of (2.20), the slightly changed system will be
solved: find (pε,qε,lε)∈G×V×G such that



















a⊥(pε,η)+a⊥(qε,η)=(f,η) ∀η∈G,

a||(q
ε,ξ)+εa⊥(qε,ξ)+εa⊥(pε,ξ)+(lε,ξ)=ε(f,ξ) ∀ξ∈V,

(qε,χ)=0 ∀χ∈G.

(2.28)

The constraint (qε,χ)=0, ∀χ∈G is forcing the solution qε to belong to A, and this
property is carried over to the limit ε→0. We have thus circumvented the difficulty
of discretizing A by introducing a new variable and enlarging the linear system.

Proposition 2.4. Problems (2.20) and (2.28) are equivalent. Indeed, (pε,qε)∈G×A
is the unique solution of (2.20) if and only if (pε,qε,lε)∈G×V×G with lε ≡0 is the
unique solution of (2.28).

Proof. Let (pε,qε)∈G×A be the unique solution of (2.20). Then it is trivial
to show that (pε,qε,0) solves (2.28). Let now (pε,qε,lε)∈G×V×G be a solution of
(2.28). Then the last equation of (2.28) implies that qε ∈A. Choosing in the second
equation a test function ξ∈G, one gets

εa⊥(qε,ξ)+εa⊥(pε,ξ)+(lε,ξ)=ε(f,ξ), ∀ξ∈G,

which, because of the first equation in (2.28), yields (lε,ξ)=0 for all ξ∈G. Thus
lε ≡0.

2.4.2. The G space. In order to eliminate the problems that arise when
dealing with the discretization of G, the Lagrange multiplier method will again be
used. First note that

p∈G⇔

{

∇||p=0,

p,∈V
⇔







∫

Ω

A||∇||p ·∇||λdx=a||(p,λ)=0, ∀λ∈L,

p∈V,

(2.29)

where L is a functional space that should be chosen large enough so that one could
find for any p∈V a λ∈L with ∇||λ=∇||p. On the other hand, the space L should
be not too large in order to ensure the uniqueness of the Lagrange multipliers in
the unconstrained system. A space that satisfies these two requirements, under some
quite general assumptions to be detailed later, can be defined as

L :={λ∈L2(Ω) /∇||λ∈L
2(Ω), λ|∂Ωin

=0}, with ∂Ωin :={x∈∂Ω / b(x) ·n<0}.
(2.30)
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Using the characterization (2.29) of the constrained space G, we shall now refor-
mulate the system (2.28) as follows: Find (pε, λε, qε, lε, µε)∈V×L×V×V×L such
that

(AP )











































a⊥(pε,η)+a⊥(qε,η)+a||(η,λ
ε)=(f,η) , ∀η∈V,

a||(p
ε,κ)=0, ∀κ∈L,

a||(q
ε,ξ)+εa⊥(qε,ξ)+εa⊥(pε,ξ)+(lε,ξ)=ε(f,ξ) , ∀ξ∈V,

(qε,χ)+a||(χ,µ
ε)=0, ∀χ∈V,

a||(l
ε,τ)=0, ∀τ ∈L.

(2.31)

The advantage of the above formulation, as compared to (2.20), is that we only have
to discretize the spaces V and L (at the price of the introduction of three additional
variables), which is much easier than the discretization of the constrained spaces G
and A. More importantly, the dual formulation (2.31) does not require any change
of coordinates to express the fact that pε is constant along the b-field lines and that
qε averages to zero along these lines. Therefore this formulation is particularly well
adapted to time-dependent b-fields, as it does not require any operation which would
have to be reinitiated as b evolves. The system (2.31) will be called the Asymptotic-
Preserving formulation in the sequel.

To analyze this Asymptotic-Preserving formulation, we need the following

Hypothesis B’ The trace λ|∂Ωin
is well defined for any λ∈Ṽ as an element of

L2(∂Ωin), with continuous dependence of the trace norm in L2(∂Ωin) on ||λ||Ṽ . More-
over, the Hilbert space

Ṽ ={φ∈L2(Ω) /∇||φ∈L
2(Ω)}, (φ,ψ)Ṽ := (φ,ψ)+(∇||φ,∇||ψ), (2.32)

admits the decomposition

Ṽ = G̃ ⊕L, (2.33)

where G̃ is given by

G̃ :={φ∈Ṽ /∇||φ=0}, (2.34)

and L is given by (2.30). The spaces G̃ and G= G̃ ∩V are related in the following
way: if g∈G̃ is such that

∫

∂Ωin
ηgdσ=0 for all η∈G, then g=0.

The decomposition (2.33) is quite natural. It simply says that any function φ can be
decomposed on each field line as a sum of a function that vanishes at one given point
on this line and a constant (which is therefore the value of φ at this point). Hypothesis
B’ will be thus normally satisfied in cases of practical interest. For example, we prove
in Appendix A that the set of assumptions on the domain Ω and the b-field, which
can be used to verify Hypothesis B, is also sufficient (but far from necessary) for
Hypothesis B’. We are now able to show the relation between systems (2.28) and
(2.31).
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Proposition 2.5. Assuming Hypotheses A, B, and B’, problem (2.31) admits a
unique solution
(pε, λε, qε, lε, µε)∈V×L×V×V×L, where (pε,qε,lε)∈G×V×G is the unique solu-
tion of (2.28).

The proof of Proposition 2.5 is based on the following two lemmas.

Lemma 2.6. Assume Hypothesis B’ and let p∈Ṽ be such that a||(p,λ)=0 ∀λ∈L.

Then p∈G̃.

Proof. Take any η∈Ṽ and write η=λ+g with λ∈L and g∈G̃. We have
a||(p,g)=0, and hence a||(p,η)=0 for all η∈Ṽ. This entails ∇||p=0, hence p∈G̃.

Lemma 2.7. Assume Hypothesis B’ and let F ∈Ṽ∗ be such that F (η)=0 for all η∈G.
Then the problem of finding λ∈L such that

a||(η,λ)=F (η), ∀η∈Ṽ, (2.35)

has a unique solution.

Proof. Consider the bilinear form b on Ṽ ×Ṽ

b(u,v)=a||(u,v)+

∫

∂Ωin

uvdσ.

By Hypothesis B’, this is an inner product on Ṽ. Indeed, if b(u,u)=0 then u∈G̃∩L
so that u=0. The Riesz representation theorem implies that the problem of finding
µ∈Ṽ such that

b(η,µ)=F (η), ∀η∈Ṽ,

has a unique solution. We can now decompose µ=λ+g with λ∈L and g∈G̃. This
yields

a||(η,λ)+

∫

∂Ωin

ηgdσ=F (η), ∀η∈Ṽ,

so that, in particular,
∫

∂Ωin
ηgdσ=0 for all η∈G, which implies g=0. We see now

that λ is a solution to (2.35). The uniqueness follows easily.

Let us now prove Proposition 2.5.

Proof of existence in Proposition 2.5.
Proof. Take (pε,qε,lε)∈G×V×G as the unique solution of (2.28). Then equations

2,3,5 in (2.31) are immediately satisfied. It remains to properly choose the Lagrange
multipliers λε,µε ∈L to satisfy equations 1,4 in (2.31). For this, let us define F1,F2∈
Ṽ∗ by

F1(η) :=
1

ε
a||(q

ε,η), F2(η) :=−(qε,η), ∀η∈Ṽ. (2.36)

These functionals are indeed continuous in the norm of Ṽ since their definitions do
not contain the derivatives in directions perpendicular to b. Since F1(η)=F2(η)=0
for all η∈G, Lemma 2.7 implies the existence of λε ∈L and µε ∈L such that

a||(η,λ
ε)=F1(η), a||(χ,µ

ε)=F2(χ), ∀η,χ∈Ṽ. (2.37)
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Taking η,χ∈V ⊂Ṽ we observe (cf. the second line in (2.28) where lε =0)

a||(η,λ
ε)= 1

εa||(q
ε,η)=(f,η)−a⊥(pε,η)−a⊥(qε,η), ∀η∈V,

a||(χ,µ
ε)=−(qε,χ), ∀χ∈V,

which coincides with equations 1,4 in (2.31).

Proof of uniqueness in Proposition 2.5.
Proof. Consider the solution to system (2.31) with f =0. Lemma 2.6 implies that

pε,lε ∈G̃∩V =G and (pε,qε,lε)∈G×V×G satisfies (2.28) with f =0, so that pε = qε =
lε =0 by Proposition 2.4. Equations 1,4 in (2.31) now tell us that λε,µε ∈G̃. But
G̃ ∩L={0}, so λε =µε =0.

The presence of 1/ε in the formulas (2.36), (2.37) defining λε indicates at a first
sight that λε may tend to ∞ as ε→0, which would be disastrous for an AP numerical
method based on (2.31) at very small ε. Fortunately λε remains uniformly bounded
in ε in the cases of practical interest. To ensure that this holds, it suffices to suppose
that the limit solution φ0 is in H2(Ω), which is a reasonable assumption as discussed
in Remark 2.1.

Proposition 2.8. Assume Hypotheses A, B, B’, and φ0∈H2(Ω) where φ0 is the
solution to (2.11). Then λε introduced in (2.31) satisfies

||∇||λ
ε||L2 ≤Cmax(||f ||L2 ,||φ0||H2) (2.38)

with a constant C independent of ε.

Proof. We will denote all the ε-independent constants by C in this proof. We
start from relation (2.24) in the proof of Theorem 2.2. Dropping the positive term
a⊥(qε +eε,qε +eε), it can be rewritten as

1

ε
a||(q

ε,qε)≤ (f,qε)−a⊥(φ0,qε).

Since φ0∈H2(Ω) we can integrate by parts in the integral defining a⊥(φ0,qε):

−a⊥(φ0,qε)=−

∫

Ω

A⊥∇⊥φ
0 ·∇⊥q

εdx

=−

∫

∂ΩN

(Id−bbt)A⊥∇⊥φ
0 ·nqεdσ+

∫

Ω

(∇⊥ ·A⊥∇⊥φ
0)qεdx

≤C||φ0||H2

(

||qε||L2(∂ΩN ) + ||qε||L2(Ω)

)

since ∇φ0 has a trace on ∂Ω and its norm in L2(∂ΩN ) is bounded by C||φ0||H2 . Thus,

1

ε
||∇||q

ε||2L2 ≤
C

ε
a||(q

ε,qε)≤C||f ||L2 ||qε||L2(Ω) +C||φ
0||H2

(

||qε||L2(∂ΩN ) + ||qε||L2(Ω)

)

.

By the Poincaré-Wirtinger inequality (2.18) (note that Pqε =0) and by Hypothesis
B’ we have

max(||qε||L2(Ω),||q
ε||L2(∂ΩN ))≤C||∇||q

ε||L2 ,

so that

1

ε
||∇||q

ε||L2 ≤Cmax(||f ||L2 ,||φ0||H2).
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This is the same as (2.38) since, according to (2.36) and (2.37), ∇||λ
ε = 1

ε∇||q
ε .

Remark 2.9. The Limit model (2.11), reformulated using the Lagrange multiplier
technique, now reads: Find (φ0, λ0)∈V×L such that

(L′)















∫

Ω

A⊥∇⊥φ
0 ·∇⊥ψdx+

∫

Ω

A||∇||ψ ·∇||λ
0dx=

∫

Ω

fψdx, ∀ψ∈V,
∫

Ω

A||∇||φ
0 ·∇||κdx=0, ∀κ∈L.

(2.39)

Problem (2.39) is also well posed assuming Hypotheses A, B, B’, and φ0∈H2(Ω).
Indeed, the uniqueness of the solution to (2.39) can be proved in exactly the same
manner as in the proof of Proposition 2.5 above. To prove the existence of a solution,
it suffices to take the limit ε→0 in the first two lines of (2.31). Indeed, we know by
Theorem 2.2 that pε →φ0, the solution to (2.11), and qε →0 in H1(Ω). Moreover,
the family {∇||λ

ε} is bounded in the norm of L2(Ω) by Proposition 2.8. We can
take therefore a weakly convergence subsequence {∇||λ

εn} and identify its limit with
{∇||λ

0} with some λ0∈L (cf. Lemma 2.7) to see that (φ0,λ0)∈V×L solves (2.39).

3. Numerical method
This section concerns the discretization of the Asymptotic Preserving formulation

(2.31), based on a finite element method, and the detailed study of the obtained
numerical results. The numerical analysis of the present scheme is investigated in
a forthcoming work [14]; in particular we are interested in the convergence of the
scheme, independently of the parameter ε>0.

Let us denote by Vh ⊂V and Lh ⊂L the finite dimensional approximation spaces,
constructed by means of appropriate numerical discretizations (see Section 3.1 and
Appendix B). We are therefore looking for a discrete solution (pε

h, λ
ε
h, q

ε
h, l

ε
h, µ

ε
h)∈

Vh×Lh×Vh×Vh×Lh of the following system:











































a⊥(pε
h,η)+a⊥(qε

h,η)+a||(η,λ
ε
h)=(f,η), ∀η∈Vh,

a||(p
ε
h,κ)=0, ∀κ∈Lh,

a||(q
ε
h,ξ)+εa⊥(qε

h,ξ)+εa⊥(pε
h,ξ)+(lεh,ξ)=ε(f,ξ) , ∀ξ∈Vh,

(qε
h,χ)+a||(χ,µ

ε
h)=0, ∀χ∈Vh,

a||(l
ε
h,τ)=0, ∀τ ∈Lh.

(3.1)

Our numerical experiments indicate that the spaces Vh and Lh can be always
taken of the same type and on the same mesh. The only difference between these
two finite element spaces lies thus in the incorporation of boundary conditions. In
general, let Xh denote the complete finite element space (without any restrictions on
the boundary) which should be H1 conforming but otherwise arbitrarily chosen. We
define then

Vh ={vh ∈Xh/vh|∂ΩD
=0}, (3.2)

Lh ={λh ∈Xh/λh|∂Ωin∪∂ΩD
=0}. (3.3)

While this choice of Vh is straightforward, the boundary conditions in Lh require
special attention. Indeed, nothing in the definition (2.30) of space L, on the continuous
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level, indicates that its elements should vanish on ∂ΩD. However, this liberty on ∂ΩD

is somewhat counter-intuitive. Indeed, the Lagrange multiplier λε ∈L serves to impose
∇||p

ε =0 for some function pε taken from the space V. But, for p∈V the trace on
∂ΩD is zero so that ∇||p

ε =0 there without the help of a Lagrange multiplier. Of
course, this argument is not valid on the continuous level since the trace of functions
in L does not even necessarily exist. However this may become very important on the
finite element level. Indeed, we provide in Appendix B an example of a finite element
setting without incorporating λh|∂ΩD

=0 into the definition of Lh, which leads to an
ill-posed system (3.1). To avoid this difficulty, we choose Lh as in (3.3) in all our
experiments, thus obtaining well-posed problems.

3.1. Discretization of the (AP) problem. Let us present the discretiza-
tion in a 2D case, the 3D case being a simple generalization. The here considered
computational domain Ω is a square Ω=[0,1]× [0,1]. All simulations are performed
on structured meshes. Let us introduce the Cartesian, homogeneous grid

xi = i/Nx , 0≤ i≤Nx, yj = j/Ny , 0≤ j≤Ny, (3.4)

where Nx and Ny are positive even constants corresponding to the number of dis-
cretization intervals in the x- resp. y-direction. The corresponding mesh-sizes are
denoted by hx>0 resp. hy>0. Choosing a Q2 finite element method (Q2-FEM),
based on the quadratic base functions

θxi
=











(x−xi−2)(x−xi−1)
2h2

x
x∈ [xi−2,xi],

(xi+2−x)(xi+1−x)
2h2

x
x∈ [xi,xi+2],

0 else

, θyj
=











(y−yj−2)(y−yj−1)
2h2

y
y∈ [yj−2,yj ],

(yj+2−y)(yj+1−y)
2h2

y
y∈ [yj ,yj+2],

0 else

(3.5)

for even i,j and

θxi
=

{

(xi+1−x)(x−xi−1)
h2

x
x∈ [xi−1,xi+1],

0 else
, θyj

=

{

(yj+1−y)(y−yj−1)
h2

y
y∈ [yj−1,yj+1],

0 else

(3.6)

for odd i,j, we define

Xh :={vh =
∑

i,j

vij θxi
(x)θyj

(y)}.

We then search for discrete solutions (pε
h, q

ε
h, l

ε
h)∈Vh×Vh×Vh and (λε

h, µ
ε
h)∈Lh×Lh

with Vh and Lh defined by (3.2) and (3.3). This leads to the inversion of a linear
system, the corresponding matrix being non-symmetric and given by

A=













A1 Ã0 A1 0 0

ÃT
0 0 0 0 0

εA1 0 A0 +εA1 C 0

0 0 C 0 Ã0

0 0 0 ÃT
0 0













. (3.7)

The matrices A0, A1 resp. C correspond to the bilinear forms a||(·,·), a⊥(·,·) resp. (·,·)
on Vh×Vh, used in equations (2.31) and belong to RN×N where N =dimVh, so that
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N =(Nx +1)(Ny −1) if, as in our numerical examples, ∂ΩD consists of the bottom

(y=0) and top (y=1) parts of the boundary. The matrix Ã0∈RN×Ñ with Ñ =dimLh

is the sub-matrix of A0 obtained by crossing out the columns corresponding to the
mesh nodes on ∂Ωin. In the following numerical examples, we take ∂Ωin as the left
part of the boundary (x=0), so that Ñ =Nx(Ny −1).

The matrix elements are computed using the 2D Gauss quadrature formula, with
3 points in the x and y direction:

∫ 1

−1

∫ 1

−1

f(x,y)=
1
∑

i,j=−1

ωiωjf(xi,yj), (3.8)

where x0 =y0 =0, x±1 =y±1 =±
√

3
5 , ω0 =8/9 and ω±1 =5/9, which is exact for poly-

nomials of degree 5.

3.2. Discretization of (P) and (L) problems. To make comparisons, we
have also discretized (P) and (L) problems using the same finite element spaces. Thus,
the discretized (P) problem reads: Find φε

h ∈Vh such that

a||(φ
ε
h,ψ)+εa⊥(φε

h,ψ)=ε(f,ψ) , ∀ψ∈Vh.

This leads to the inversion of a linear system with the matrix A0 +εA1.
The discretized (L) problem reads (cf Remark 2.9): find (φ0

h, λ
0
h)∈Vh×Lh such

that






a⊥(φ0
h,ψ)+a||(ψ,λ

0
h)=

∫

Ω

fψdx, ∀ψ∈Vh,

a||(φ
0
h,κ)=0, ∀κ∈Lh.

This leads to the inversion of a linear system with the matrix
(

A1 Ã0

ÃT
0 0

)

.

In the following, we compare the three discretized methods outlined above on sev-
eral test cases with manufactured solutions. The linear systems in all the discretized
problems are solved directly, using the LU decomposition implemented in the library
MUMPS [2].

3.3. Numerical Results.

3.3.1. 2D test case, uniform and aligned b-field. In this section we
compare the numerical results obtained via the Q2-FEM, by discretizing the Singular
Perturbation model (2.2), the Limit model (2.11) and the Asymptotic Preserving
reformulation (2.31). In all numerical tests we set A⊥ = Id and A‖ =1. We start with
a simple test case, where the analytical solution is known. Let the source term f be
given by

f =(4+ε)π2 cos(2πx)sin(πy)+π2 sin(πy) (3.9)

and the b field be aligned with the x-axis. Hence, the solution φε of (2.2) and its
decomposition φε =pε +qε write

φε =sin(πy)+εcos(2πx)sin(πy), (3.10)

pε =sin(πy), qε =εcos(2πx)sin(πy). (3.11)
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We denote by φP , φL, φA the numerical solution of the Singular Perturbation
model (2.2), the Limit model (2.11) and the Asymptotic Preserving reformulation
(2.31) respectively. The comparison will be done in the L2-norm as well as the H1-
norm. The linear systems obtained after discretization of the three methods with
Q2-FEM are solved using the same numerical algorithm — a direct solver, namely a
LU decomposition implemented in a solver MUMPS[2]. In Figure 3.1 we plotted the
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(a) L2 error for a grid with 50×50 points.
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(b) H1 error for a grid with 50×50 points.
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(c) L2 error for a grid with 100×100 points.
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(d) H1 error for a grid with 100×100 points.
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(e) L2 error for a grid with 200×200 points.
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(f) H1 error for a grid with 200×200 points.

Figure 3.1. Absolute L2 (left column) and H1 (right column) errors between the exact solution
φε and the computed numerical solution φA (AP), φL (L), φP (P) for the test case with constant
b. The error is plotted as a function of the parameter ε and for three different mesh-sizes.

absolute errors (in the L2 resp. H1-norms) between the numerical solutions obtained
with one of the three methods and the exact solution, and this as a function of the
parameter ε and for several mesh-sizes. In Table 3.1 we specified the error values
for one fixed grid and several ε-values. One observes that the Singular Perturbation
finite element approximation is accurate only for ε bigger than some critical value εP ,
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ε
AP scheme Limit model Singular Perturbation scheme

L2 error H1 error L2 error H1 error L2 error H1 error

10 7.2×10−6 4.7×10−3 5.0×100 3.51×101 7.2×10−6 4.7×10−3

1 7.3×10−7 4.7×10−4 5.0×10−1 3.51×100 7.3×10−7 4.7×10−4

10−1 1.47×10−7 9.6×10−5 5.0×10−2 3.51×10−1 1.45×10−7 9.4×10−5

10−4 1.28×10−7 8.3×10−5 5.0×10−5 3.61×10−4 1.26×10−7 8.2×10−5

10−6 1.28×10−7 8.3×10−5 5.2×10−7 8.4×10−5 5.9×10−7 8.2×10−5

10−10 1.28×10−7 8.3×10−5 1.28×10−7 8.3×10−5 9.9×10−3 3.12×10−2

10−15 1.28×10−7 8.3×10−5 1.28×10−7 8.3×10−5 7.1×10−1 2.23×100

Table 3.1. Comparison between the Asymptotic Preserving scheme, the Limit model and the
Singular Perturbation model for h=0.005 (200 mesh points in each direction) and constant b: ab-
solute L2-error and H1-error, for different ε-values.

method # rows # non zero time L2-error H1-error

AP 50×103 1563×103 13.212 s 1.02×10−6 3.34×10−4

L 20×103 469×103 5.227 s 1.14×10−6 3.34×10−4

P 10×103 157×103 3.707 s 1.02×10−6 3.27×10−4

Table 3.2. Comparison between the Asymptotic Preserving scheme (AP), the Limit model (L),
and the Singular Perturbation model (P) for h=0.01 (100 mesh points in each direction) and fixed
ε=10−6: matrix size, number of nonzero elements, average computational time and error in L2

and H1 norms.

the Limit model gives reliable results for ε smaller than εL, whereas the AP-scheme
is accurate independently of ε. The order of convergence for all three methods is
three in the L2-norm and two in the H1-norm, which is an optimal result for Q2

finite elements. When designing a robust numerical method one has therefore two
options. The first one is to use an Asymptotic Preserving scheme, which is accurate
independently of ε, but requires the solution of a bigger linear system. The second
one is to design a coupling strategy that involves the solution of the Singular Pertur-
bation formulation and the Limit problem in their respective validity domains. This
is however a very delicate problem, since we observe that the critical values εP and
εL are mesh dependent, namely εP is inversely proportional to h and εL is propor-
tional to h. Therefore for small meshes there may exist a range of ε-values where
neither the Singular Perturbation nor the Limit model finite element approximations
give accurate results. For our test case, this is even the case for meshes as big as
200×200 points, if one regards the L2-norm. This mesh-size is generally insufficient
in the case of real physical applications. Another interesting aspect with respect to
which the three methods must be compared is the computational time and the size
of the matrices involved in the linear systems. Table 3.2 shows that the Asymptotic
Preserving scheme is expensive in computational time and memory requirements, as
compared to the other methods. Indeed, the computational time required to solve the
problem is almost four times bigger than that of the Singular Perturbation scheme.
Moreover, the Asymptotic Preserving method involves matrices that have five times
more rows and ten times more nonzero elements than the matrices obtained with the
Singular Perturbation approximation. It is however the only scheme that provides
the h-convergence regardless of ε. In order to reduce the computational costs, a cou-
pling strategy for problems with variable ε will be proposed in a forthcoming paper.
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In sub-domains where ε>εP the Singular Perturbation problem will be solved, in
sub-domains where ε<εL the Limit problem will be solved and only in the remain-
ing part, where neither the Limit nor the Singular Perturbation model are valid, the
Asymptotic Preserving formulation will be solved.

3.3.2. 2D test case, non-uniform and non-aligned b-field. We now
focus our attention on the original feature of the here introduced numerical method,
namely its ability to treat nonuniform b fields. In this section we present numerical
simulations performed for a variable field b.

First, let us construct a numerical test case. Finding an analytical solution for
an arbitrary b presents a considerable difficulty. We have therefore chosen a different
approach. First, we choose a limit solution

φ0 =sin
(

πy+α(y2−y)cos(πx)
)

, (3.12)

where α is a numerical constant aimed at controlling the variations of b. For α=0,
the limit solution of the previous section is obtained. The limit solution for α=2 is
shown in Figure 3.2. We set α=2 in what follows. Since φ0 is a limit solution, it

Figure 3.2. The limit solution for the test case with variable b.

is constant along the b field lines. Therefore we can determine the b field using the
following implication:

∇‖φ
0 =0 ⇒ bx

∂φ0

∂x
+by

∂φ0

∂y
=0, (3.13)

which yields for example

b=
B

|B|
, B=

(

α(2y−1)cos(πx)+π
πα(y2−y)sin(πx)

)

. (3.14)

Note that the field B, constructed in this way, satisfies divB=0 — an important
property in the framework of plasma simulation. Furthermore, we have B 6=0 in the
computational domain. Now, we choose φε to be a function that converges, as ε→0,
to the limit solution φ0:

φε =sin
(

πy+α(y2−y)cos(πx)
)

+εcos(2πx)sin(πy). (3.15)
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ε
AP scheme Limit model Singular Perturbation scheme

L2 error H1 error L2 error H1 error L2 error H1 error

10 7.2×10−6 4.6×10−3 5.0×100 3.50×101 7.2×10−6 4.6×10−3

1 7.1×10−7 4.6×10−4 5.0×10−1 3.50×100 7.1×10−7 4.6×10−4

10−2 2.05×10−7 1.33×10−4 5.0×10−3 3.50×10−2 2.05×10−7 1.33×10−4

10−4 2.12×10−7 1.38×10−4 5.0×10−5 3.77×10−4 1.74×10−6 1.43×10−4

10−7 2.17×10−7 1.41×10−4 2.22×10−7 1.41×10−4 1.68×10−3 1.26×10−2

10−10 2.17×10−7 1.41×10−4 2.17×10−7 1.41×10−4 3.93×10−1 1.35×100

10−15 2.17×10−7 1.41×10−4 2.17×10−7 1.41×10−4 6.7×10−1 2.32×100

Table 3.3. Comparison between the Asymptotic preserving scheme, the Limit model and the
Singular Perturbation model for h=0.005 (200 mesh points in each direction) and variable b: abso-
lute L2-error and H1-error.

Finally, the force term is calculated using the equation, i.e.

f =−∇⊥ ·(A⊥∇⊥φ
ε)−

1

ε
∇‖ ·(A‖∇‖φ

ε).

As in the previous section, we compare the numerical solution of the Singular
Perturbation model (2.2), the Limit model (2.11), and the Asymptotic Preserving
reformulation (2.31), i.e. φP , φL, φA with the exact solution (3.15). The L2 and
H1-errors are reported on Figure 3.3 and Table 3.3. Once again the Asymptotic
Preserving scheme proves to be valid for all values of ε, contrary to the other schemes.
There is however a difference compared to the constant-b case. For a variable b, the
threshold value εP seems to be independent of the mesh size and is much larger than
that of the uniform b test case. This observation limits further the possible choice
of coupling strategies, since even for coarse meshes there exists a range of ε-values
where neither the Singular Perturbation nor the Limit model are valid. The coupling
strategy, involving all three models, remains interesting to investigate.

In the next test case we investigate the influence of the variations of the b field on
the accuracy of the solution. We would like to answer the following question: What
is the minimal number of points per characteristic length of b variations required to
obtain an acceptable solution? For this, let us modify the previous test case. Let
b=B/|B|, with

B=

(

α(2y−1)cos(mπx)+π
mπα(y2−y)sin(mπx)

)

, (3.16)

m being an integer. The limit solution and φε are chosen to be

φ0 =sin
(

πy+α(y2−y)cos(mπx)
)

, (3.17)

φε =sin
(

πy+α(y2−y)cos(mπx)
)

+εcos(2πx)sin(πy). (3.18)

We perform two tests: first, we fix the mesh size and vary m to find the minimal
period of b for which the Asymptotic Preserving method yields still acceptable results.
We define a result to be acceptable when the relative error is less then 0.01. In the
second test m remains fixed and the convergence of the scheme is studied. The results
are presented on Figures 3.4 and 3.5.

For ε=1 and 400 mesh points in each direction (h=0.0025) the relative error in

the L2-norm, defined as
||φε−φA||L2(Ω)

||φA||L2(Ω)
, is below 0.01 for all tested values of 1≤m≤50.
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(a) L2 error for a grid with 50×50 points.
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(b) H1 error for a grid with 50×50 points.
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(c) L2 error for a grid with 100×100 points.
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(d) H1 error for a grid with 100×100 points.
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(e) L2 error for a grid with 200×200 points.
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(f) H1 error for a grid with 200×200 points.

Figure 3.3. Absolute L2 (left column) and H1 (right column) errors between the exact solution
φε and the computed solution φA (AP), φL (L), φP (P) for the test case with variable b. Plotted
are the errors as a function of the small parameter ε, for three different meshes.

The relativeH1-error
||φε−φA||H1(Ω)

||φA||H1(Ω)
exceeds the critical value form>25. For ε=10−20

the maximal m for which the error is acceptable in both norms is 20. The minimal
number of mesh points per period of b variations is 40 in the worst case, in order to
obtain a 1% relative error.

Figure 3.5 and Table 3.4 show the convergence of the Asymptotic Preserving
scheme with respect to h for m=10 and ε=10−10. We observe that for big values of
h the error does not diminish with h. For h<0.025 the scheme converges at a better
rate then 2 for H1-error and 3 for L2-error. For h<0.00625 (160 points) the optimal
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convergence rate in the H1-norm is obtained (which is 32 mesh points per period of
b). The method is super-convergent in the whole tested range for the L2-error.

These results are reassuring, as they prove that the Asymptotic Preserving scheme
is precise even for strongly varying fields for relatively small mesh sizes, which was not
evident. Indeed, the optimal convergence rate in the H1-norm is obtained for 32 mesh
points per b period, and an 1% relative error for 40 points. It shows that accurate
results can be obtained in more complex simulations, such as tokamak plasma. The
application of the method to bigger scale problems is the subject of an ongoing work.
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Figure 3.4. Relative L2 and H1 errors between the exact solution φε and the computed solution
φA (AP) for h=0.0025 (400 points in each direction) as a function of m and for ε=1 respectively
10−20.
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Figure 3.5. Relative L2 and H1 errors between the exact solution φε and the computed solution
φA (AP) for m=10 and ε=10−10 as a function of h.

3.3.3. 3D test case, uniform and aligned b-field. Finally, we test our
method on a simple 3D case. Let the field b be aligned with the X-axis:

b=





1
0
0



 . (3.19)
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h # points per period L2-error H1-error

0.1 2 4.7×10−1 1.05

0.05 4 5.2×10−1 1.29

0.025 8 1.82×10−1 4.3×10−1

0.0125 16 1.89×10−2 6.4×10−2

0.00625 32 1.41×10−3 1.00×10−2

0.0003125 64 9.3×10−5 2.21×10−3

0.0015625 128 6.1×10−6 5.5×10−4

0.00078125 256 4.6×10−7 1.36×10−4

Table 3.4. Relative L2 and H1 errors between the exact solution φε and the computed solution
φA (AP) for m=10 and ε=10−10 as a function of h.
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(a) L2 error for a grid with 30×30×30 points.
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(b) H1 error for a grid with 30×30×30 points.

Figure 3.6. Absolute L2 (left column) and H1 (right column) errors between the exact solution
φε and the computed solution φA (AP), φL (L), φP (P) for the 3D test case. The errors are plotted
as a function of the anisotropy ratio ε.

Let Ω=[0,1]× [0,1]× [0,1], and let the source term f be such that the solution is given
by

φε =sin(πy)sin(πz)+εcos(2πx)sin(πy)sin(πz), (3.20)

pε =sin(πy)sin(πz), qε =εcos(2πx)sin(πy)sin(πz). (3.21)

Numerical simulations were performed on a 30×30×30 grid. Once again all three
methods are compared. The L2 and H1-errors are given on Figure 3.6. The numer-
ical results are equivalent with those obtained in the 2D test with constant b. Note
that it is difficult to perform 3D simulations with more refined grids due to memory
requirements on standard desktop equipment. Every row in the matrix constructed
for the Singular Perturbation model can contain up to 125 non-zero entries (for Q2

finite elements), while matrices associated with the Asymptotic Preserving reformu-
lation have rows with up to 375 non-zero entries. Furthermore the dimension of the
latter is five times bigger. The memory requirements of the direct solver used in our
simulations grow rapidly. The remedy could be to use an iterative solver with suitable
preconditioner. Finding the most efficient method to invert these matrices is however
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beyond the scope of this paper. In future work we will address this problem as well
as a parallelization of this method.

4. Conclusions
The Asymptotic Preserving method presented in this paper is shown to be very

efficient for the solution of highly anisotropic elliptic equations, where the anisotropy
direction is given by an arbitrary but smooth vector field b with non-adapted coordi-
nates and meshes. The results presented here generalize the procedure used in [12] and
have the important advantage of permitting the use of Cartesian grids which are in-
dependently of the shape of the anisotropy. Moreover, the scheme is equally accurate,
independently of the anisotropy strength, avoiding thus the use of coupling methods.
The numerical study of this AP-scheme shall be investigated in a forthcoming paper,
in particular the ε-independent convergence results shall be stated.

Another important related work consists in extending our methods to the case
of anisotropy ratios ε, which are variable in Ω from moderate to very small values.
This is important, for example, in plasma physics simulations as already noted in the
introduction. An alternative strategy to the Asymptotic Preserving schemes would be
to couple a standard discretization in subregions with moderate ε with a limit (ε→0)
model in subregions with small ε as suggested, for example, in [5, 28]. However, the
limit model is only valid for ε≪1 and cannot be applied for weak anisotropies. Thus,
the coupling strategy requires existence of a range of anisotropy strength where both
methods are valid. This is rather undesirable since this range may not exist at all, as
illustrated by our results in Figure 3.1.

Appendix A. Decompositions V =G⊕⊥A, Ṽ = G̃ ⊕L and related esti-
mates. We shall show in this Appendix that all the statements in Hypotheses
B and B’ can be rigorously derived under some assumptions on the domain boundary
∂Ω and on the manner in which it is intersected by the field b. We assume essentially
that b is tangential to ∂Ω on ∂ΩD and that b penetrates the remaining part of the
boundary ∂ΩN at an angle that stays away from 0 on ∂ΩN . This assumption is indeed
essential as shows the following counter-example:

Example A.1. Consider a two dimensional domain Ω of the form

Ω={(x,y) : 0<x<1, 0<y<L(x)},

where L(x)=1+ 4
√

x(1−x), and take b=(0,1) so that ∂ΩD is the part of the boundary
consisting of {x=0, 0<y<1} and {x=1, 0<y<1}. Note that the angle of penetra-
tion of b in Ω is arbitrarily close to 0 on ∂ΩN , near its junction with ∂ΩD. Consider
the function u∈V given by

u(x,y)=

{

(y−1), if y>1,
0, otherwise.

We have

||∇u||2L2 =

∥

∥

∥

∥

∂u

∂y

∥

∥

∥

∥

2

L2

=

∫ 1

0

(L(x)−1)dx<∞,

hence u∈ V. Let p=Pu be the orthogonal (with respect to the L2 scalar product)
projection of u on G:

p=p(x)=
(L(x)−1)2

2L(x)
.
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Computing the norm of its derivatives gives

||∇p||2L2 =

∥

∥

∥

∥

∂p

∂x

∥

∥

∥

∥

2

L2

=

∫ 1

0

(

d

dx

(

(L(x)−1)2

2L(x)

))2

L(x)dx=∞

since the expression inside the last integral is equal to 1
16x +O(1) as x→0. We have

thus a function u∈ V such that Pu 6∈ V. Hence, the property V =G⊕⊥A does not
hold for such a domain.

To prove V =G⊕⊥A, we assume also that ∂ΩN consists of two disjoint compo-
nents for which there exist global and smooth parametrizations. This last assumption
can be weakened (existence of an atlas of local smooth parametrizations should be
sufficient) at the expense of lengthening the proofs. The precise set of our assumptions
is assembled in Hypothesis C below. We then proceed by proving that this hypothesis
implies V =G⊕⊥A and also Ṽ = G̃ ⊕L.

Hypothesis C. The boundary of Ω is the union of three components: ∂ΩD where
b ·n=0, ∂Ωin where b ·n≤−α and ∂Ωout where b ·n≥α with some constant α>0.
Moreover, there is a smooth system of coordinates ξ1,... ,ξd−1 on ∂Ωin, meaning that
there is a bounded domain Γin ∈Rd−1 and a one-to-one map hin : Γin →Rd such that
hin ∈C

2(Γin) and ∂Ωin is the image of hin(ξ1,... ,ξd−1) as (ξ1,... ,ξd−1) goes over
Γin. The matrix formed by the vectors (∂hin/∂ξ1,... ,∂hin/∂ξ1,n) is invertible for all
(ξ1,... ,ξd−1)∈Γin. Similar assumptions hold also for ∂Ωout (changing Γin to Γout and
hin to hout).

Using this hypothesis we can introduce a system of coordinates in Ω such that
the field lines of b coincide with the coordinate lines. To do this consider the initial
value problem for a parametrized ordinary differential equation (ODE):

∂X

∂ξd
(ξ′,ξd)= b(X(ξ′,ξd)), X(ξ′,0)=hin(ξ′). (A.1)

Here X(ξ′,ξd) is Rd-valued and ξ′ stands for (ξ1,... ,ξd−1). For any fixed ξ′∈Γin,
equation (A.1) should be understood as an ODE for a function of ξd. Its solution
X(ξ′,ξd) goes then over the field line of b starting (as ξd =0) at the point on the
inflow boundary ∂Ωin, parametrized by ξ′. This field line hits the outflow boundary
∂Ωout somewhere. In other words, for any ξ′∈Γin there exists L(ξ′)>0 such that
X(ξ′,L(ξ′))∈∂Ωout. The domain of definition of X is thus

D={(ξ′,ξd)∈Rd / ξ′∈Γin and 0<ξd<L(ξ′)}.

Gathering the results on parametrized ODEs, from for instance [40], we conclude that
X(ξ′,ξd)=X(ξ1,... ,ξd) is a smooth function of all its d parameters, or more precisely
X ∈C2(D). Evidently, the map X is one-to-one from D to Ω and thus ξ1,... ,ξd
provides a system of coordinates for Ω. Moreover this system is not degenerate in
the sense that the vectors ∂X/∂ξ1,... ,∂X/∂ξd are linearly independent at each point
of Ω. Indeed, if this was not the case, then there would exist a non trivial linear
combination λ1∂X/∂ξ+ ···+λd∂X/∂ξd that would vanish at some point in Ω. But,
ODE (A.1) implies

∂

∂ξd

d
∑

i=1

λi
∂X

∂ξi
(ξ′,ξd)=∇b(X(ξ′,ξd)) ·

d
∑

i=1

λi
∂X

∂ξi
(ξ′,ξd),
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so that the unique solution of this ODE, i.e. the linear combination
∑d

i=1λi
∂X
∂ξi

,
would vanish on the whole field line, in particular on the inflow. But this is im-
possible since ∂X

∂ξi
= ∂hin

∂ξi
, i=1,... ,d−1 on the inflow, while ∂X

∂ξd
= b and the vectors

(

∂hin

∂ξ1
,... , ∂hin

∂ξd−1
,b
)

are linearly independent for all (ξ1,... ,ξd−1)∈Γin. We see thus

that the Jacobian J =det(∂Xj/∂ξi) does not vanish on Ω, and we can assume that
m<J <M everywhere on Ω with some positive constants m and M (assuming that
J is positive does not harm the generality since if J is negative in Ω than one can
replace ξ1 by −ξ1). Since X ∈C2(Ω), we have also that J ∈C1(Ω).

One also sees easily that the top of D is given by a smooth function L(ξ′). Indeed,
L(ξ′) is determined for each ξ′∈Γin from the equationX(ξ′,L(ξ′))=hout(η) with some
η=(η1,... ,ηd−1)∈Γout. We know already that this equation is solvable for ξd =L(ξ′),
η1,... ,ηd−1 for any ξ′∈Γin. To conclude that the solution depends smoothly on ξ′ we
can apply the implicit function theorem to the equation

F (ξ′;ξd,η1,... ,ηd−1)=X(ξ′,ξd)−hout(η1,... ,ηd−1)=0.

Indeed, the Rd-valued function F is smooth and the matrix of its partial derivatives
with respect to ξd,η1,... ,ηd−1 is invertible, since ∂F/∂ξd = b and ∂F/∂ηi =−∂hout/∂ηi

at some point at the outflow and the vectors ∂hout/∂ηi lie in the tangent plane to
∂Ωout while b is nowhere in this plane. We have moreover that L∈C1(Γin). Indeed,
we can prove that all the derivatives of L are bounded. In order to do it, let us remark
that the differential of X(ξ′,L(ξ′)) represents a vector in the tangent plane at some
point on ∂Ωout so that it is perpendicular to the outward normal n. We have thus for
any i=1,... ,d−1

0=n ·

(

∂X

∂ξi

(ξ′,L(ξ′))+
∂X

∂ξd

(ξ′,L(ξ′))
∂L

∂ξi

(ξ′)

)

=n ·

(

∂X

∂ξi

(ξ′,L(ξ′))+b(ξ′,L(ξ′))
∂L

∂ξi

(ξ′)

)

so that

∂L

∂ξi
(ξ′)=−

n · ∂X
∂ξi

(ξ′,L(ξ′))

n ·b(ξ′,L(ξ′))
,

which is bounded since X has bounded partial derivatives and n ·b≥α by hypothesis.
Note also that L is strictly positive.

• We can now establish the decomposition V =G⊕⊥A. Take any φ∈V ∩C1(Ω)
and introduce p∈L2(Ω) by

p(x)=p(ξ′,ξd)=p(ξ′)=

∫ L(ξ′)

0
φ(ξ′,t)J(ξ′,t)dt

∫ L(ξ′)

0
J(ξ′,t)dt

. (A.2)

From now on we switch back and forth between the Cartesian coordinates
x=(x1,... ,xd) and the new ones (ξ′,ξd)=(ξ1,... ,ξd). Evidently, p is constant
along each field line. Moreover, p is the L2-orthogonal projection of φ on the
space of such functions. Indeed, if ψ=ψ(ξ′)∈L2(Ω) is any function constant
along each field line, then

∫

Ω

pψdx=

∫

D

pψJdξ=

∫

Γin

p(ξ′)ψ(ξ′)

∫ L(ξ′)

0

J(ξ′,ξd)dξddξ
′

=

∫

Γin

∫ L(ξ′)

0

φ(ξ′,ξd)ψ(ξ′)J(ξ′,ξd)dξddξ
′ =

∫

Ω

φψdx.
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Let us prove that p∈V, i.e. that its derivatives are square integrable. The
change of variable t=L(ξ′)s yields the function

p(ξ′)=

∫ 1

0
φ(ξ′,L(ξ′)s)J(ξ′,L(ξ′)s)ds
∫ 1

0
J(ξ′,L(ξ′)s)ds

.

Now we have ∂p/∂ξd =0 and for all ∂p/∂ξi,i=1,...,d−1, denoting a=a(ξ′)=

(
∫ 1

0
J(ξ′,L(ξ′)s)ds)−1, φ=φ(ξ′,L(ξ′)s), and the same for J , we obtain

∂p

∂ξi
=

∂a

∂ξi

∫ 1

0

φJds+a

∫ 1

0

∂φ

∂ξi
Jds+a

∫ 1

0

∂φ

∂ξd

∂L

∂ξi
sJ ds

+a

∫ 1

0

φ
∂J

∂ξi
ds+a

∫ 1

0

φ
∂J

∂ξd

∂L

∂ξi
sds.

(A.3)

Using all the previous bounds on the functions L and J and skipping the
details of somewhat tedious calculations, we arrive at

∫

Ω

(

∂p

∂ξi

)2

dx=

∫

Γin

∫ L(ξ′)

0

(

∂p

∂ξi

)2

Jdξddξ
′

≤C

∫

Γin

∫ L(ξ′)

0

(

φ2 +

(

∂φ

∂ξi

)2

+

(

∂φ

∂ξd

)2
)

Jdξddξ
′,

implying

∥

∥

∥

∥

∂p

∂ξi

∥

∥

∥

∥

2

L2(Ω)

≤C

(

‖φ‖
2
L2(Ω) +

∥

∥

∥

∥

∂φ

∂ξi

∥

∥

∥

∥

2

L2(Ω)

+

∥

∥

∥

∥

∂φ

∂ξd

∥

∥

∥

∥

2

L2(Ω)

)

≤C ‖φ‖
2
H1(Ω) .

Thus p∈H1(Ω), hence p∈G and q=φ−p∈A. Since the dependence of p on
φ is continuous in the norm of H1(Ω), a density argument shows that the
decomposition φ=p+q with p∈G and q∈A exists for any φ∈V.

• Let us now introduce the operator P as the L2-orthogonal projector on G,
i.e.

P :V→G, φ∈V 7−→Pφ∈G given by (A.2).

The estimates in the preceding paragraph show that the operator P is con-
tinuous in the norm of H1(Ω):

||∇⊥(Pφ)||L2(Ω)≤C||∇φ||L2(Ω), ∀φ∈V. (A.4)

• We have also the following Poincaré-Wirtinger inequality:

||φ−Pφ||L2(Ω)≤C||∇||φ||L2(Ω), ∀φ∈V. (A.5)

To prove this, it is sufficient to establish that ||q||L2(Ω)≤C||∇||q||L2(Ω) for all
q∈A. We observe that

||q||2L2(Ω) =

∫

Γin

∫ L(ξ′)

0

q2(ξ′,ξd)J(ξ′,ξd)dξddξ
′
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and

||∇||φ||
2
L2(Ω) =

∫

Γin

∫ L(ξ′)

0

(

∂q

∂ξd

)2

(ξ′,ξd)J(ξ′,ξd)dξddξ
′.

The requirement q∈A is equivalent to

∫ L(ξ′)

0

q(ξ′,ξd)J(ξ′,ξd)dξd =0 f.a.a. ξ′∈Γin. (A.6)

We have thus to prove, for every ξ′,

∫ L(ξ′)

0

q2(ξ′,ξd)J(ξ′,ξd)dξd ≤C
2

∫ L(ξ′)

0

(

∂q

∂ξd

)2

(ξ′,ξd)J(ξ′,ξd)dξd

provided (A.6). Fixing any ξ′, making the change of integration variable
ξd =L(ξ′)t and introducing the functions u(t)= q(ξ′,L(ξ′)t)J(ξ′,L(ξ′)t) and
J(t)=J(ξ′,L(ξ′)t), we rewrite the last inequality as

∫ 1

0

u2(t)

J(t)
dt≤

C2

L2(ξ′)

∫ 1

0

(

u′(t)

J(t)
−
u(t)

J2(t)
J ′(t)

)2

J(t)dt. (A.7)

Since
∫ 1

0
u(t)dt=0, we have by the standard Poincaré inequality

∫ 1

0

u2(t)dt≤C2
P

∫ 1

0

(u′(t))
2
dt. (A.8)

• Let us turn to the verification of Hypothesis B’. Take any u∈Ṽ. We want to
prove that one can decompose u=p+q with p∈G̃ and q∈L and the trace of u
on ∂Ωin (denoted g) is in L2(∂Ωin). In the ξ-coordinates we can write a sur-
face element of ∂Ωin as dσ=S(ξ′)dξ′ with a function S smoothly depending
on ξ′. We see now that for u suffuciently smooth,

||g||2L2(∂Ωin) =

∫

Γin

g2(ξ′)S(ξ′)dξ′

≤C

∫ 1

0

∫

Γin

[

u2(ξ′,L(ξ′)s)+
1

L(ξ′)

(

∂u

∂ξd

)2

(ξ′,L(ξ′)s)

]

S(ξ′)dξ′ds

(by a one-dimensional trace inequality)

≤C||u||2
Ṽ
.

By density, the trace g is thus defined for any u∈Ṽ with ||g||L2(∂Ωin)≤C||u||Ṽ .
Taking p=p(ξ′)=g(ξ′), we observe by a similar calculation that ||p||L2(Ω)≤

C||u||Ṽ , so that p∈G̃. By definition q=u−p∈L.

Appendix B. On the choice of the finite element space Lh. Let Ω be
the rectangle (0,Lx)×(0,Ly) and the anisotropy direction be constant and aligned
with the y-axis: b=(0,1). Let us use the Qk finite elements on a Cartesian grid,
i.e. take some basis function θxi

(x), i=0,... ,Nx and θyj
(y), j=0,... ,Ny and define

the complete finite element space Xh (without any restrictions on the boundary) as
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span{θxi
(x)θyj

(y) 0≤ i≤Nx, 0≤ j≤Ny}. The following subspace is then used for the
approximation of the unknowns p,q,l∈V:

Vh ={vh ∈Xh/vh|∂ΩD
=0}.

We want to prove that taking for the approximation of λ,µ∈L, the space Lh under
the form

Lh ={λh ∈Xh/λh|∂Ωin
=0}, (A.1)

leads to an ill posed problem (3.1).

Claim. There exist λh ∈Lh, λh 6=0 such that a||(λh,ph)=0 for all ph ∈Vh. In fact
there are exactly 2Ny linearly independent functions having this property.

Remark B.1. In the continuous case, the equation

a||(p,λ)=0, ∀p∈V,

implies λ=0 by density arguments. These density arguments are lost when discretiz-
ing the spaces V and L.

Proof of the Claim. We can suppose that the basis functions θij(x,y) :=θxi
(x)θyj

(y)
are enumerated, so that θij(0,y)=0 for all i≥1 and θ0j(0,y) 6=0. Hence for all ph =
∑

pijθij ∈Vh the coefficients satisfy p0j =0, since the part of the boundary {x=0}
is in ∂ΩD. Let M =(mik)0≤i,k≤Nx

be the mass matrix in the x-direction: mik =
∫

θxi
(x)θxk

(x)dx. This matrix is invertible, hence there is a vector a∈RNx+1 that
solves Ma=e with e∈RNx+1, e=(1,0,... ,0)t. Take any fixed integer j, 1≤ j≤Ny,
and define λh ∈Lh as λh =

∑

aiθij . Then for all ph =
∑

pklθkl ∈Vh we have

a||(λh,ph)=
∑

i,k,l

aipkl

∫

Ω

∂θij

∂y

∂θkl

∂y
dxdy

=
∑

i,k,l

aipkl

∫ Lx

0

θxi
(x)θxk

(x)dx

∫ Ly

0

θ′yj
(y)θ′yl

(y)dy

=
∑

k,l

δk0pkl

∫ Ly

0

θ′yj
(y)θ′yl

(y)dy=0.

As we can do this for all (i,j), i=0, 1≤ j≤Ny, and in the same manner for all (i,j),
i=Nx, 1≤ j≤Ny, there are 2Ny linearly independent functions with the property
a||(λh,ph)=0 for all ph ∈Vh.

We see now that the system (3.1) with zero right hand side f =0 possesses non-
zero solutions (pε

h, λ
ε
h, q

ε
h, l

ε
h, µ

ε
h)=(0,λj

h,0,0,0), where λj
h is any of the functions con-

structed in the preceding paragraph. It means that (3.1) is ill-posed, i.e. the corre-
sponding matrix is singular.
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